NEW METHODOLOGIES FOR MATHEMATICAL REPRESENTATION AND COMPUTER SIMULATIONS OF MICROSTRUCTURAL GEOMETRY: APPLICATIONS TO LIGHT ALLOYS AND THEIR COMPOSITES

AUTHOR(S)
Arun M Gokhale

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
School of Materials Science and Engineering
Georgia Institute of Technology
771 Ferst Drive, Atlanta, GA-30332-0245

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
High Temperature Aerospace Materials Program
Directorate of Aerospace, Chemistry, and Material Sciences, AFOSR
875 North Randolph Street, Suite 326
Arlington VA 22203-1768

ABSTRACT
High-resolution large-volume segments of three-dimensional microstructures of a set of boron modified Ti-alloys containing TiB whiskers have been reconstructed and visualized using montage serial sectioning. These microstructures have been quantitatively characterized in detail using stereology and digital image analysis. A novel methodology has been developed for computer simulations of realistic two-dimensional (2D) and three-dimensional (3D) two-phase microstructures where the features have realistic complex shapes/morphologies, spatial clustering, morphological anisotropy, and global microstructural properties statistically similar to those in the corresponding real microstructures. The methodology was applied for simulations of realistic 2D and 3D microstructures of a set of discontinuously reinforced Al-alloy (DRA) composites containing SiC particles of complex shapes and different degrees of spatial clustering, and microstructures of a set of boron modified Ti-alloys having different degrees of morphological anisotropy of the TiB whiskers. Large windows of real and simulated 2D and 3D microstructures have been implemented as representative volume elements in the finite elements based frameworks to simulate the mechanical response.

SUBJECT TERMS
Microstructure characterization, microstructure simulations, DRA composites, boron modified titanium alloys
1. Principal Investigator Name:
 Arun M Gokhale

2. Grant/Contract Title:
 NEW METHODOLOGIES FOR MATHEMATICAL REPRESENTATION AND COMPUTER SIMULATIONS OF MICROSTRUCTURAL GEOMETRY: APPLICATIONS TO LIGHT ALLOYS AND THEIR COMPOSITES

3. Grant/Contract Number:
 FA9550-05-1-0062

4. Reporting Period Start (MM/DD/YY):
 04/01/2005

5. End (MM/DD/YY):
 09/30/2008

6. Program Manager:
 Dr. Joan Fuller

7. Distribution Statement (as on SF-298):
 Distribution A - Approved for public release

8. Annual Accomplishments (200 words maximum):
 High-resolution large-volume segments of three-dimensional microstructures of a set of boron modified Ti-alloys containing TiB whiskers have been reconstructed and visualized using montage serial sectioning. These microstructures have been quantitatively characterized in detail using stereology and digital image analysis. A novel methodology has been developed for computer simulations of realistic two-dimensional (2D) and three-dimensional (3D) two-phase microstructures where the features have realistic complex shapes/morphologies, spatial clustering, morphological anisotropy, and global microstructural properties statistically similar to those in the corresponding real microstructures. Using this methodology, virtual microstructures can be simulated for any specified two-point correlation functions, volume fractions, and size distributions of the two phases. The methodology was applied for simulations of realistic 2D and 3D microstructures of a set of discontinuously reinforced Al-alloy (DRA) composites containing SiC particles of complex shapes and different degrees of spatial clustering, and microstructures of a set of boron modified Ti-alloys having different degrees of morphological anisotropy of the TiB whiskers. Large windows of real and simulated 2D and 3D microstructures have been implemented as representative volume elements (RVEs) in the finite elements based frameworks to simulate the mechanical response. The methodologies developed in this research program provide useful tools for simulations based materials design.
9. Archival Publications (published) during reporting period:

10. Changes in research objectives (if any):
 None

11. Change in AFOSR program manager, if any:

12. Extensions granted or milestones slipped, if any:
 No-cost-extension for six months

13. Attach Final Report (max. 2MB) (If the report is larger than 2MB, please email file to program manager.)

14. Please attach saved SF298 Form here:

 (Please be sure to have already saved the SF298 Form, that you plan to attach to this survey, to your desktop so that it may be uploaded within this field.)

 file_42510_21457790_0_-070820-035.pdf