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1. Introduction and Background 

Ordered titanium dioxide (TiO2) nanostructures, especially nanotubes and nanoparticles, have 
received a great deal of attention in recent years due to their application as efficient carrier 
transporters in dye-sensitized solar cells (DSSCs) (1–3). Considerable efforts have been made to 
synthesize highly aligned TiO2 nanotubes (TiNT), which have a more efficient mode of electron 
transfer than nanoparticles due to reduced boundaries and a more uniform structure. A variety of 
methods have been used to prepare TiNT arrays utilizing ion track lithography (4), chemical 
precursor reactions (5), atomic layer deposition (6), rapid breakdown anodization  and laser-
drilled microhole array formation (7). However, among the various techniques used to form 
aligned TiNT arrays, the electrochemical anodization of Ti foil (8-12) is the most straightforward 
method of preparing highly ordered TiNT arrays with controllable dimensions. The anodic 
oxidation of Ti is appealing due to the reproducible control of the length, tube diameter, pore 
size, and thickness through applied voltage, time, and electrolyte composition (13-16). Previous 
studies demonstrate that the application of an alternating high and low voltage has led to 
bamboo-shaped TiNTs, showing fast tube growth during high voltage, slow growth during low-
voltage application, and the formation of a compact initial oxide layer during the holding period 
(3, 11). It has been shown that TiNT with bamboo-like rings have increased surface area versus 
smooth walled tube, lending themselves towards increased DSSC performance, as well as 
improved utilization in other applications, such as H2O splitting, photocatalytic degradation of 
pollutants, reduction of CO2, etc. (5, 17, 18). It is important to note that hexagonal, closely 
packed, highly aligned TiNT structures are often made using a two-step process: a preliminary 
first-anodization to create a highly ordered hexagonal template and a second anodization that 
further etches the “dimples” left on the Ti surface after removing the initial oxide layers (19–21). 
In this report, we report the formation of highly ordered hexagonal, TiNTs with bamboo-type 
structure via a single-step, constant voltage anodization of Ti foil. 

2. Experimental Procedure 

Titanium dioxide nanotube arrays were grown using a single-step anodization process with a Ti 
foil working electrode (cathode) and a Platinum (Pt) foil counter electrode. The titanium foils 
(Sigma-Aldrich, 99.7%, 0.25 mm) were electrochemically anodized in a standard two-electrode 
cell using an Agilent E3649A DC power supply. The electrodes were kept at a fixed distance of 
1.5 cm. The foils were first mechanically polished using a 9 µm diamond compound paste with a 
silk cloth and microid extender followed by a colloidal silica/wetted imperial cloth. The foil was 
then cut into 1 × 2 cm samples. The substrates were separately sonicated in acetone, isopropanol, 
and ethanol, each for 5 min using an ultrasonic cleaner (Branson 3510) before being rinsed with
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deionized (DI) water. The anodization process was performed at 30, 40, and 60 V for 1–6 h using 
an electrolyte consisting of 0.25–0.5 wt.% ammonium fluoride (NH4F) and 0.75–1.00 wt.% H2O 
in ethylene glycol. The anodized samples were rinsed with DI water and then soaked in methanol 
for 30 s to initiate the detachment procedure. Free-standing TiNT membranes were separated 
from the Ti substrate by drying the methanol-wetted samples with a stream of nitrogen gas. This 
caused the freshly formed TiNT array to rapidly dry and delaminate from the substrate. To 
effectively remove the TiNT membranes for characterization, methanol wetting and nitrogen gas 
blowing were repeated several times.  

To crystallize the amorphous TiNT arrays into the anatase phase, the arrays were annealed in a 
tube furnace at 723 K for 3 h using a heating rate of 20 Ks–1. The structure and the morphology 
of the synthesized tubes were analyzed by powder x-ray diffraction (Rigaku TTRAXIII) and 
scanning electron microscopy (FEI NOVA NanoSEM). 

3. Anodic Growth of TiO2 Nanotube Layers 

Nanotube formation in fluoride-ion-bearing electrolytes results from three simultaneously 
occurring processes (22, 23): electric field-assisted oxidation of Ti metal to form TiO2 
(equation 1) (2, 3), the chemical dissolution of Ti (equations 2 and 3), and the field-assisted 
dissolution of TiO2 due to fluoride-ion etching as shown in the following chemical reactions:  

 +− +→−+ HTiOeOHTi 442 22 , (1)  

 −−+ →+ 2
6

4 6 TiFFTi , (2) 

 OHTiFHFTiO 2
2

62 246 +→++ −+− . (3) 

When a voltage is applied, the amount of current gradually decreases as the oxide layer forms, 
according to equation 1, due to an increase in resistance. Once the TiO2 layer has formed, the 
chemical dissolution of the oxide begins to compete with the anodic oxidation. The current 
finally becomes constant when the oxidation reaction and dissolution rates balance out and reach 
a steady-state. As the oxygen ions (O2−) are transported from the solution to the Ti, titanium ions 
(Ti4+) are transported from the titanium to the electrolyte interface and are dissolved into the 
solution via equations 2 and 3. These two dissolution mechanisms gradually etch selective pits in 
the oxide layer, which lead to the formation of nanotubes (18). As the anodization time increases, 
all three processes continuously increase the depth of the pores (pits) and produce highly 
ordered, vertically aligned nanotubes (24, 25). 
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4. Results and Discussion 

The x-ray diffraction (XRD) patterns for the as-prepared and the annealed samples are shown in 
figure 1. As seen from the XRD pattern, the as-prepared sample is amorphous whereas the 
annealed sample is crystalline anatase. It has been reported that the crystallinity of the nanotubes 
has a direct effect on the electrical and optical performance of the nanotube array (22, 26). 
 

 

Figure 1. X-ray diffraction of (a) as-prepared TiO2 nanotubes and (b) TiO2 nanotubes 
annealed at 723 K for 3 h. 

Furthermore, figure 2 shows a differential scanning calorimetry thermogram measurement 
displaying an exothermic crystallization peak (anatase) at 560 K of the as-prepared sample, 
which further confirms the amorphous nature of the as-prepared sample. 
 

 

Figure 2. Differential Scanning Calorimetry (DSC) 
thermogram of as-prepared TiO2 nanotube 
sample. 
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Scanning electron microscopy images in figure 3 display a profile view of the highly organized 
structure, a view of the bottom of the closely packed nanotube array, the open pores of the 
nanotube structure, and the “dimples” left on the top of the Ti metal substrate after removal.  

 

 

Figure 3. Scanning electron micrographs of (a) side profile view of 
hexagonal, highly oriented nanotube array, (b) bottom view of the 
array closely packed array, (c) bottom of nanotube array separated 
from the Ti substrate, and (d) top of Ti metal substrate after 
removing the nanotubes anodized at 60 V. 

These images reveal the closely packed nature of the array. A closer look reveals highly aligned, 
densely packed, hexagonally oriented nanotube arrays that exhibit bamboo-like rings, which is 
closely shown in figure 4. Although the bamboo-like rings do not form at constant distances 
along the length of the tubes, they appear to be growing uniformly and on distinct planes. These 
rings appear to aid in the highly aligned and closely packed nature of the array by acting as a 
connection matrix for the nanotubes. The nanotubes shown in figures 3 and 4 were anodized for 
4 h and have an approximate length of 18 μm with a tube wall thickness of 64 nm and a pore 
diameter of 32 nm at the Ti metal interface. The array growth rate was roughly 1.3 nm/s whereas 
the bamboo rings had a growth rate of approximately one ring every 40 s (0.025 Hz) with a 
separation distance of approximately 50 nm. 

In order to further verify that bamboo-like rings indeed form at constant voltages, another 
anodization experiment was conducted using an electrolyte of 0.5 wt.% NH4F and 1% H2O in 

(c) 
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ethylene glycol. A constant voltage was verified by using a Keithly 6430 to measure voltage vs. 
time, displayed in figure 5. Figure 6 shows the Scanning Electron Microscope (SEM) images 
confirming the growth of bamboo-like structures using a one-step, constant voltage anodization. 
The bamboo rings displayed in figure 4 have a separation distance of approximately 33 nm.  

 

Figure 4. SEM images of the side view of TiO2 nanotubes anodized at (a) 60 V and (b) 40 V. 

 

 

Figure 5. Voltage vs. time monitoring during the anodization of TiO2 
nanotubes. 

The growth mechanism and composition of bamboo-like rings on TiO2 nanotubes are not fully 
understood and have been attributed to alternating voltage. It has been proposed (11, 17) that the 
bamboo-like rings are composed of a compact oxide. This is most likely caused by the oxidation 
reaction temporarily dominating the dissolution reactions, resulting in residual oxide. We 
propose that the bamboo-like structure is a result of the competing nature of the dissolution and 
oxidation reactions. When the oxidation reaction dominates over the dissolution rate, rings form 
along a distinct plane. This corresponds with previous studies, which apply an alternating 
potential to control the frequency that the rings occur. Because the reactions are heavily driven 

(a) (b) 
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by the applied voltage, alternating the potential changes the rate at which the reactions occur. 
Therefore, the size and spacing of the bamboo-like rings will change with different voltage levels 
and time delays. 

 

 

Figure 6. (a) Scanning electron microscopy images of TiO2 nanotubes with bamboo-
like rings, anodized at 40 V, 0.5% NH4F and 1% H2O under constant 
voltage and (b) close-up image of bamboo-like ring formations. 

 

5. Conclusions 

Highly ordered, densely packed, hexagonally oriented TiNTs were synthesized by a one-step 
anodic oxidation of Ti foils by applying a constant DC voltage. The tubes exhibit bamboo-like 
structure with rings formed at nearly equal distances along the length. Bamboo-like ring growth 
during constant voltage shows that the formation of nanotubes with bamboo-like rings is not 
caused by alternating the anodization potential. Controlling the growth of these nucleation sites 
can lead to nanostructures with definite advantages. Further studies on the composition of the 
oxide rings may elucidate how these structures can be further controlled and applied to other 
nanomaterials. 
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