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Compensation Method for the Estimation of the 

Autospectral Density Function of the Unevenly Spaced 

HIFiRE-1 Flight Data 

Scott A. Stanfield
1
 

Spectral Energies, LLC, Dayton, OH, 45431 

and 

Roger L. Kimmel
2
 

Air Force Research Laboratory, WPAFB, OH, 45433 

The time series data collected during the HIFiRE-1 flight experiment was sampled 

unevenly due to telemetry dropouts and the sampling scheme selected.  Sampling unevenly 

results in frequency translation of power to artificial sidelobes.  These sidelobes distort the 

real and imaginary components of the Fourier transform such that the spectrum of the 

sampled data no longer represents the spectrum of the physical process generating the data.  

These sidelobes can be eliminated by resampling the data onto an evenly spaced grid at the 

cost of under predicting the power of the higher frequency components in the data.  In this 

paper, a compensation procedure is developed to recover the power loss caused by 

resampling.  This compensation procedure is suitable for stochastic time series data having 

red-noise spectra such as the pressure fluctuations recorded underneath laminar and 

turbulent boundary layers. 

 

 

Nomenclature 

ai = regression coefficient  

a50 = overlap correlation constant 

bi = regression coefficient  

cxy = coherency  

D = location data point of a partition  

f = frequency, Hz  

                                                           
1
 Research Scientist, AIAA Member. 

2
 Senior Research Engineer, AFRL, Associate Fellow. 
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f0 = fundamental frequency, Hz 

fc = Nyquist frequency, Hz  

Gxx = autospectrum, Pa
2
 / Hz 

Gxy = cross-spectrum, Pa
2
 / Hz 

K = number of partitions 

Keff = effective number of partitions 

L = number of data samples in a partition 

N = number data samples in a time series 

R = sum of squares 

t = time, sec 

tf = time used to account for different time origins of time series used in cross spectral analysis, sec 

tL = time at the end of a partition, sec 

Tp = period, sec 

TR = sampling interval, sec 

wn = Hanning window function coefficients 

yn = time series data 

σ
2
 = variance 

τ = time shift, sec 

ω = angular frequency, rad 

I. Introduction 

HE Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test 

program executed by the Air Force Research Laboratory (AFRL) and the Australian Defence Science and 

Technology Organisation (DSTO).
1, 2

  Its purpose is to develop and validate technologies critical to next generation  

hypersonic aerospace systems.  Candidate technology areas include, but are not limited to, propulsion, propulsion-

airframe integration, aerodynamics and aerothermodynamics, high temperature materials and structures, thermal 

management strategies, guidance, navigation, and control, sensors, and system components such as munitions, 

submunitions and avionics.  The HIFiRE program consists of extensive ground tests and computation focused on 

specific hypersonic flight technologies.  Each technology program is designed to culminate in a flight test. 

 The first science flight of the program, designated as HIFiRE-1, launched March 22, 2010 at Woomera 

Prohibited Area, Australia.
3
  This flight was dedicated to two aerothermal experiments including laminar-turbulent 

boundary-layer transition on a 7-degree half-angle cone with nose bluntness of 2.5 mm and turbulent shock-

boundary-layer interaction on a 33-degree flare/cylinder configuration.  Prior to flight, a series of experimental and 

numerical studies were performed to aid the design of the aerothermal experiments such as sensor selection and 

placement, and vehicle geometry and materials.
4-15
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 The cone, cylinder, and flare surfaces of the HIFiRE-1 payload were instrumented with many thermocouples, 

heat transfer gauges, and pressure transducers.  During flight, the data from these transducers were digitized using a 

sampling scheme with a non-constant time interval between samples.  This sampling scheme was used in order to 

achieve maximum stable throughput for a variety of sensors on a single flight computer.  Although this sampling 

scheme maximized data acquisition, special care must be taken when performing spectral analysis on such 

unevenly-sampled data.  This was especially true for the HIFiRE-1 high-bandwidth pressure data that were sampled 

at rates up to 60 kHz.  In addition to the sampling scheme, random data dropouts sometimes occurred in the 

telemetry.  Generally, these events were infrequent, and the dominant feature of data sampling was the uneven 

sampling rate.  The current paper summarizes the methods used to analyze the high bandwidth pressure data, and 

quantifies spectral error introduced by uneven sampling. 

 A system consisting of a transducer, antialiasing filter, and sampling scheme is inherently nonlinear even 

though the transducers and antialiasing filters were linear devices.  This nonlinearity is a direct consequence of the 

mutual dependence between frequencies in the frequency space of unevenly sampled time series data, and is 

dependent on only the sampled times.  The spectral analysis of data measured by such a system is inherently 

complicated and requires special methods such as least squares,
17-22

 interpolation,
23

 slotted resampling,
24, 25

 or 

continuous time models.
26, 27

  Approaches based on these methods have been extensively studied and developed in 

other disciplines such as astronomy,
17-20

 paleoclimatology,
21

 seismology,
28

 biomedical engineering,
29, 30

 genetics,
31

 

and laser Doppler velocimetry.
24

  

 The least squares method, also referred to as the Lomb-Scargle method, determines the Fourier transform by 

estimating the different sinusoidal components of a time series.  While more complicated to develop, the least 

squares method is robust requiring very little user input, and can be applied to any arbitrary sampling scheme 

including random sampling.  Moreover, the least squares approach has been shown to be more fundamental than the 

traditional Fourier methods since, for evenly sampled time series data, the two methods are exactly identical.  For 

unevenly sampled time series data, the two methods are identical within the numerical error generated when 

estimating the Fourier transform by numerical integration.  As mentioned, the spectral distortion caused by sampling 

unevenly is independent of the data and depends only on the sampling scheme.  Therefore, estimating the power 

spectrum from unevenly sampled data results a distorted spectrum that does not necessarily represent the spectrum 

of the physical process.  The least squares method is not suitable for stochastic time series data with red-noise 

spectra such as the surface pressure fluctuations underneath a laminar or turbulent boundary layer because the 

analysis yields a distorted spectrum.  The method can be useful for accurately computing the Fourier transform of 

unevenly sampled, sinusoidal periodic, complex periodic, and almost periodic data.  There are some periodic data 

recorded during the HIFiRE-1 flight experiment for which the least squares method is the preferred method for 

computing the Fourier transform. 

 In general, the results obtained using interpolation methods, slotted resampling methods, and continuous time 

models introduce unwanted distortion, are not robust, and can require significant user input that is dependent on the 

nature of the time series.  Specifically, interpolating methods such as nearest neighbor or spline interpolation are 

known to cause an underestimate of high frequency components independent of the employed interpolation 

scheme.
20, 21, 23

  Moreover, results obtained using kernel based interpolation methods are dependent on the 

interpolation kernel and kernel parameters selected such as sinc, Gaussian, Laplacian, or rectangular kernels, and 

bandwidth, mainlobe width, and window width kernel parameters.
16

  Unlike the least squares method, these methods 

are useful for estimating the spectral content of unevenly sampled, stochastic signals having red-noise spectra.   

 The use of slotted resampling, which estimates the autocorrelation function by summing the product pairs XiXj 

into bins lagged by ti – tj, cannot be employed for an arbitrary sampling scheme since sufficiently large gaps in the 

data can cause the method to fail.  These gaps could be filled in using interpolation.  The interpolation process, if 

needed, and the binning process both independently contribute unwanted distortion to the time series data.  

Regardless of these negative attributes, the slotted resampling method may be a useful method for analyzing the 

HIFiRE-1 data.  The use of this method for analyzing the HIFiRE-1 data is still under investigation and will not be 

discussed further in this paper.  

 The objective of this paper is to identify and outline a method capable of accurately estimating the autospectral 

density function from the unevenly sampled, surface pressure data underneath laminar, turbulent, and shock-

influenced boundary layers collected during the HIFiRE-1 flight experiment.  This objective requires some 

background information, which is developed prior to outlining an estimation procedure for the autospectral density 

function.  In Section II, sampling theory is developed for unevenly sampled time series data.  Several useful tools 

are identified from this development including the spectral window function and an alternate definition of the 

Nyquist frequency that holds for unevenly sampled time series data.  Additionally, the nonlinear nature of the 

measurement and the source of the distortion in the Fourier transform of unevenly sampled measurements are 
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discussed.  In Section III, the discussion applies the methodology developed in Section II to identify the nature of 

the HIFiRE-1 sampling scheme.  The Nyquist frequencies for the unevenly sampled, surface pressure data recorded 

during the flight experiment are given and compared to the cutoff frequencies of the antialiasing filters.  The range 

in frequencies without distortion, and thus suitable for analysis, is identified for each high bandwidth pressure 

transducer.  In Section IV, the effects of resampling the unevenly spaced time series data onto an evenly spaced grid 

via linear interpolation are discussed.  In this section, it is shown that resampling simplifies the process for 

estimating the autospectral density function of unevenly sampled data by replacing the distortion caused by the 

nonlinear sidelobes with an underestimate in power of the higher frequencies in the autospectral density function.  In 

Section V, a compensation procedure is outlined for recovering the power loss caused by resampling.  This 

compensation method is suitable for estimating the autospectral density function of stochastic time series data 

having red-noise spectra such as the surface pressure fluctuations recorded underneath laminar and turbulent 

boundary layers during the HIFiRE-1 flight experiment.  

 

 

II. Sampling Theory 

A block diagram representing the sampling process of a continuous function is given in Fig. 1.  In Fig. 1, the 

signal      represents the output from a measurement device such as a pressure transducer and is a continuous 

function,       is a band limited function assumed to have the same amplitude and phase spectrum as      for 

frequencies below the cutoff frequency of the antialiasing filter,      is the sampling function, and       is a set of 

discrete samples of       sampled at times   .  The function      is filtered before sampling so that the frequency 

content of       is limited to frequencies below the Nyquist frequency, defined as 

 

   
 

   
                                                                                     (1) 

 

where    represents the sampling interval.  According to the sampling theorem,       can be reconstructed from 

      without information loss or distortion if the sampling rate is greater than or equal to twice the Nyquist 

frequency.  If the sampling rate is less than twice the Nyquist frequency, spectral leakage from frequencies greater 

than the Nyquist frequency wrap-around and combine with the frequency content of frequencies below the Nyquist 

frequency.  This problem is known as aliasing and in general cannot be removed.   

The sampling function is defined as  

 

      
∑           
   

∑   
 
   

                                                                           (2) 

 

where         is the Dirac delta function, tn are the sampled times, N is the number of data points, and C and wn 

are constants.  The discrete signal       is given as  

 

                
 

 
∑              

 
                                                       (3) 

 

where the constants   and    were set equal to 1.  The discrete Fourier transform of Eq. 3 is given as 

 

                                                                                       (4) 

 

where the Fourier transform is defined as 

 

      ∫              ∑   
   
   

 

  
          .                                               (5) 

 

Typically, the sampling interval is moved outside the summation because it is constant for an evenly sampled time 

series.  In this paper, the sampling interval is not necessarily constant and the sampling interval is left within the 

summation.  In Eq. 4,      is the Fourier transform of      ,       is the Fourier transform of       , and      is 

the Fourier transform of      and is referred to as the normalized spectral window function.  According to Eq. 4, and 

as pointed out by Deeming
32

, “the pathology of the data distribution is all contained in the spectral window, which 
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can be calculated from the data spacing alone, and does not depend directly on the data themselves.”  The discussion 

will now focus on identifying the source of the distortion in the Fourier transform of unevenly sampled time series 

data using the normalized spectral window function.   

 

 

 
Figure 1.  Block diagram depicting the sampling process of a continuous function. 

 

 

The power spectrum of the spectral window function, defined as |    | , is shown in Fig. 2 for an evenly 

sampled time series with a sample rate of 100 Hz.  From Fig. 2, the normalized spectral window function has peaks 

with amplitude of 1 centered at 2nfc where n = 0, 1, 2 … ∞.  Hence, the normalized spectral window function is a 

periodic function with period 2fc.  This periodicity is independent of the sample rate.   

The power spectrum of the normalized spectral window function for an unevenly sampled time series sampled at 

a sampling rate of 200 Hz but with gaps in the data is shown in Fig. 3a.  The power spectrum in Fig. 3a is similar to 

the power spectrum in Fig. 2 with peaks centered at 2nfc, however, there are additional peaks centered at 2, 6, and 10 

Hz, as shown in Fig. 3b.  These additional peaks are commonly referred to as sidelobes.  The magnitude and 

location of the sidelobes are dependent on the sampling scheme.  As will be shown, these sidelobes cause the real 

and imaginary components of      and       to be different.  This difference is referred to within this paper as the 

distortion in      caused by the sampling scheme.   

The period of the spectral window function for an unevenly sampled time series is approximately 2fc, as shown 

in Fig. 3a.  The spectral window function of an unevenly sampled time series is not always exactly periodic, as the 

peaks centered at 2nfc for n > 0 are sometimes split into multiple peaks.  The separation in frequency of the split 

peaks is very small such that the peaks are centered at approximately 2nfc.   The center of the peak(s) at 2nfc is used 

to determine the Nyquist frequency of an unevenly sampled time series since Eq. 1 is not valid when the sampling 

interval is not constant
33

.  The meaning of the Nyquist frequency determined from the spectral window function is 

unchanged i.e. signals with non-zero amplitudes at frequencies exceeding the Nyquist frequency wrap-around 

polluting the Fourier transform at frequencies below the Nyquist frequency.   

There is an additional unwanted artifact caused by aliasing that is inherent only to unevenly sampled time series 

data.  For example, let       =           with f = 96 Hz and let       be the set of discrete samples of       where 

the sampling scheme has the normalized spectral window function depicted in Fig. 3a.  The Nyquist frequency for 

this sampling scheme is 100 Hz.  The sidelobes centered at 2, 6, and 10 Hz in Fig. 3b are centered at 98, 104, and 

106 Hz after convolving      with      .  The sidelobes centered at 104 and 106 Hz are greater than the Nyquist 

frequency and wrap-around to 96 and 94 Hz, respectively.  Notice the peak in the power spectrum corresponding to 

the input signal has a frequency below the Nyquist frequency and does not wrap-around but combines with the 

sidelobe aliased to 96 Hz.  The real and imaginary components of      at 96 Hz are distorted due to the aliased 

sidelobe.   

Another property of interest is now given.  Assume that      is the output of a constant parameter linear system.  

If the output of such a system is sampled unevenly, then the overall system is nonlinear.  This property is 

demonstrated with the following example.  Let       =           with f = 23 Hz and let       be the set of discrete 

samples of       where the sampling scheme has the normalized spectral window function depicted in Fig. 3a.  The 

Fourier transform of       will be zero everywhere except at f = 23 Hz.  The Fourier transform of      according to 

Eq. 4 is           .  The power spectrum of      is shown in Fig. 4.  In Fig. 4, the Fourier transform of      is 

computed by convolving      with       and by computing the Fourier transform of      .  The Fourier transform 

of       was computed using the least squares Fourier transform to eliminate error caused by numerical integration. 

The least squares Fourier transform is shown to be identical to the traditional Fourier transform defined in Eq. 5 in 

Appendix A.  In Fig. 4, the two methods for computing      are identical.  More importantly, the sampling scheme 

results in the leakage of power from 23 Hz to sidelobes centered at 13, 17, 21, 25, 29, and 33 Hz.  That is, a system 
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sampled unevenly causes frequency translation and is therefore nonlinear regardless of whether the transducer has a 

linear response.  

Due to the inherent nonlinearity caused by sampling unevenly, the reconstruction of       from      and       

does not in general exist.  However, it has been shown that it is possible to reconstruct       exactly from      and 

      if the power spectrum of       is sparse, and if the frequency content of       is below the Nyquist frequency 

evaluated at the mean sampling interval
34

.  This reconstruction process requires nonlinear methods such as an 

iterative deconvolution and is important for the research area of compressed sensing.  Unfortunately, the power 

spectra of surface pressure fluctuations underneath laminar, turbulent, or shock-influenced boundary layers show a 

continuous decrease of spectral amplitude with increasing frequency (red-noise spectrum) and hence are not sparse.  

Therefore, methods that estimate       from      and/or       have to be used.   

 

 

 
Figure 2.  Power spectrum of the normalized spectral window function for an evenly sampled time series with a 

sample rate of 100 Hz. 

 

 

 
Figure 3. (a) Power spectra for the spectral window function of an unevenly sampled time series, (b) Rescaled view 

of Fig. 3(a) showing the sidelobes.  The sampling interval was constant at 0.005 seconds with gaps between 0.250 to 

0.500, 0.750 to 1.000, and 1.250 to 1.500 seconds. 
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Figure 4.  Power spectrum computed by convolving a sinusoidal input at a single frequency of 23 Hz with the 

normalized spectral window function, and by computing the Fourier transform of the unevenly sampled time series. 

 

The discussion has so far focused on periodic data.  The discussion is now extended to stochastic time series 

data such as surface pressure data recorded underneath laminar, transitional, turbulent, or shock-impinged boundary 

layers.  The power spectra of this type of data will have nonzero power at each resolvable frequency.  The 

frequencies with nonzero power each contribute sidelobes resulting in significant distortion of the Fourier transform 

due to the sum contribution of so many sidelobes.  The distortion in the Fourier transform of surface pressure 

measurements underneath a transitional boundary layer is shown in Fig. 5.  Evenly sampled surface pressure data 

was acquired at a sample rate of 500 kHz
35

.  The corresponding Nyquist frequency was 250 kHz.  Two unevenly 

sampled time series were generated from the evenly sampled time series by deleting every sixth and every third data 

point.  Each time series was partitioned into 400 segments.  The Fourier transform of each segment was computed 

using the least squares Fourier transform.  The Fourier transform of each time series was determined by averaging 

the Fourier transform from each segment.   The power spectrums of the evenly sampled and two unevenly sampled 

time series are shown in Fig. 5a.  In Fig. 5a, the distortion caused by the sidelobes is apparent by comparing the 

amplitude of the evenly sampled time series (ESTS) with the amplitudes of the two unevenly sampled time series 

(USTS).   The phase was determined for each time series by computing the arctangent of the ratio of the imaginary 

and real component of the Fourier transform.  A comparison between the phase of the evenly sampled time series 

and one of the unevenly sampled time series is shown in Fig. 5b.  The phase spectrum from the other unevenly 

sampled time series was not included for clarity purposes.  In Fig. 5b, the phases of the evenly and unevenly 

sampled time series are different due to the distortion caused by the sidelobes.     

 

 

 
Figure 5.  (a) Power spectrum of an evenly sampled time series (ESTS), and two unevenly sampled time series 

generated by deleting every sixth data point (USTS 1) and every third data point (USTS 2) of the ESTS, (b) A 

comparison between the phase spectrum of the ESTS and USTS.  The time series data correspond to surface 

pressure fluctuations recorded underneath a transitional boundary layer.   
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III. The HIFiRE-1 Sampling Scheme 

The sampling scheme for the high bandwidth pressure transducers on the cone, flare, and cylinder are shown in 

Figs. 6a, 6b, and 6c, respectively.  In this paper, the normalized time interval is defined as          ⁄  and 

represents the duration between consecutive measurements in units of the time interval.  As shown in Fig. 6, the 

sampling scheme used for each high bandwidth pressure transducer is periodic.  The high bandwidth pressure 

transducer designated as transducer 12 was sampled at a lower rate than the rest of the transducers located on the 

cylinder to satisfy telemetry bandwidth constraints, as shown in Fig. 6d.  As will be shown, the sample rate for 

transducer 12 was well below the cutoff frequency of the antialiasing filter. The sampling scheme used for the 

transducers distributed on the flare consisted of 48 consecutively measured data points sampled evenly for 1.2407 x 

10
-3

 seconds, as shown in Fig. 6b.  The fundamental frequency for these evenly sampled blocks of data is ~806 Hz 

and hence the frequency resolution is poor.  However, the Fourier transform of these blocks of data are free of the 

distortion caused by sidelobes.   

 

 

 

 
Figure 6.  The sampling scheme for the high bandwidth pressure transducers mounted on (a) the cone, (b) the flare, 

(c) the cylinder (transducers 7, 8, 9, 10, 11, and 19), and (d) the cylinder (transducer 12). 

 

 

 The power spectrum of the normalized spectral window functions for the high bandwidth pressure transducers 

mounted on the cone, flare, and cylinder are shown in Figs. 7a, 7b, and 7c, respectively.  The power spectrum of the 

normalized spectral window function is riddled with many sidelobes.  As demonstrated in the previous section, these 

sidelobes cause significant distortion of the Fourier transform.  The mean Nyquist frequency, computed using the 

mean sampling interval and Eq. 1, are given as 17.81, 15.87, and 22.67 kHz for the transducers mounted on the 

cone, flare, and cylinder, respectively.  The cone transducers were bandpass-filtered at 100 Hz – 30 kHz, and those 

on the cylinder and flare were filtered at 100 Hz – 20 kHz.  Signals on the cone and flare were thus subject to some 

aliasing at higher frequencies, but the cylinder transducers should be free of aliasing. 
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Figure 7.  Power spectrum of the spectral window function for the high bandwidth pressure transducers mounted on 

(a) the cone, (b) the flare, (c) the cylinder (transducers 7, 8, 9, 10, 11, and 19), and (d) the cylinder (transducer 12). 

 

 

IV. Linear Interpolation 

 Resampling irregularly spaced data onto a uniformly spaced grid by interpolation eliminates the nonlinear 

sidelobes, as can be shown by computing the spectral window function.  However, interpolation acts as a low-pass 

filter, significantly reducing the power of the higher resolvable frequencies of the data.  The amount of power loss 

depends on the interpolation scheme.  In general, every interpolation scheme acts as a low-pass filter causing some 

power loss
36

.   

 The grid spacing for an evenly spaced grid, which is commonly referred to as the resampling time, is given as  

 

   
 

   
                                                                                     (6) 

 

where the Nyquist frequency is determined from the period of the spectral window function.  The uniform grid is 

given as               for n = 1, 2, 3…. (     )   ⁄  where    and    are the initial and final times of the 

time series.   

 The discussion will now focus on estimating the power loss caused by resampling the HIFiRE-1 data onto a grid 

with grid spacing    .  The objective will be to determine a time-series with analytically described spectral 

characteristics similar to the expected HIFiRE-1 pressure signals.  The spectral distortion caused by uneven 

sampling can then be quantified, and this known distortion can then be used to determine the transfer function of the 

resampling process.   

 Consider Langevin’s equation describing the velocity x(tn) of a Brownian particle given as 
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                                                                                       (7) 

 

where     and      represents a random process consistent with Brownian motion.  According to Robinson
37

, the 

velocity samples generated by Eq. 7 are also generated by  

 

         ( 
       

 
)                                                                         (8) 

 

where  

 

       {       (  
       

 
)}.                                                             (9) 

 

In Eq. 9,   represents the random component of the time series and is assumed to have a normal distribution with a 

mean and variance of zero and      (  
       

 
), respectively.  The autospectral density function can be 

determined by computing the Fourier transform of the autocorrelation function of Eq. 8 and is given as 

 

  ̃ ̃      
    

       (
  

  
)   

                                                                        (10) 

 

where    is the average spectral amplitude and   is given as  

 

     ( 
  ̅̅ ̅

 
).                                                                           (11) 

 

In Eq. 11,   is a time constant and represents the decay period of the autocorrelation function, and   ̅̅ ̅ is the average 

sampling interval given as 

 

  ̅̅ ̅  
     

   
.                                                                                 (12) 

 

According to Robinson
37

, Eq. 8 may be thought of as a first order autoregressive model with time-varying 

coefficients and heteroscedastic errors.  

 Equations 8 and 10 provide a way to compute time series data with a known autospectral density function for 

any arbitrary sampling scheme.  Equations 8 through 12 were validated by generating time series data for uniformly 

spaced samples and then comparing the autospectral density functions computed using Eq. 10 and computed directly 

from the time series data using the procedures given in Bendat and Piersol
38

.  The comparison is nearly identical, as 

shown in Fig. 8a.   

 The power loss caused by resampling the HIFiRE-1 data was estimated by generating time series data using Eq. 

8 for the HIFiRE-1 sampling scheme.  This time series was interpolated onto an evenly spaced grid.  The 

autospectral density function was determined directly from Eq. 10 and compared with the autospectral density 

function computed from the interpolated time series.  Comparisons are shown in Figs. 8b, 8c, and 8d for the 

sampling schemes used by the pressure transducers located on the cone, flare, and cylinder, respectively.  The results 

shown in Figs. 8b, 8c, and 8d are for a linear interpolation scheme.  Other interpolation methods were investigated 

and yielded similar results.  As shown in the Fig. 8, the power loss was greatest for the transducers located on the 

cone, whereas, the transducers located on the flare experienced the least power loss.  It is reasonable that the 

transducers on the cone experienced a greater power reduction than the transducers on the flare because the data 

collected on the cone were missing more samples than the data collected on the flare, as shown in Fig. 6.  Similarly, 

blocks of data riddled with many missing data points such as near the beginning of the first and second stage rocket 

burn will experience the most power reduction.  The uncertainty for these blocks of data will be greater than blocks 

of data with fewer missing samples.  
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Figure 8.  (a) Equation 8 and Eq. 10 are compared for a uniformly spaced sampling scheme, (b) The sampling 

scheme of the pressure transducers located on the cone are used to generate a time series with Eq. 8.  The time series 

is interpolated and the autospectral density function is computed and compared to the theoretical autospectral 

density function, (c) The theoretical autospectral density function is compared to the autospectral density function 

computed from interpolated data for the sampling scheme used by the transducers mounted on the flare, (d) The 

theoretical autospectral density function is compared to the autospectral density function computed from 

interpolated data for the sampling scheme used by the transducers mounted on the cylinder. 

  

V. Compensation Method for Estimating the Autospectral Density Function 

As discussed in the previous section, interpolating unevenly sampled data onto an evenly spaced grid eliminates 

the nonlinear sidelobes but acts as a low-pass filter reducing the power of the higher frequency content of the time 

series data.  In this section, a method is developed to compensate the reduction in power caused by linear 

interpolation.  The compensation method developed in this section is very similar to the method given by Schulz and 

Mudelsee
39

.  After compensation, the autospectral density function is similar to the autospectral density function of 

     .   

It is assumed that the time series data does not have sinusoidal periodic, complex periodic, or almost-periodic 

components and is a stochastic time series with a red-noise “like” autospectral density function.  Sinusoidal 

components should be removed from the time series before compensation.  The steps for the compensation method 

are as follows: 

 

1. Determine   by fitting the measured data with Eq. 8.  There are two equivalent approaches for determining   in 

Eq. 8 from the measured data.  The first approach is to use the estimation procedure given by Mudelsee
40

, which 

utilizes Brent’s method.  The second approach consists of more steps but utilizes the equations given in this paper.  

To begin, interpolate the measured data onto a uniformly spaced grid and determine the autoregressive coefficient 

given as 
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 ̂     ( 
  

 
)                                                                          (13) 

 

by fitting the interpolated data using least squares given as   

 

[
∑     

  
     ∑         

 
     

∑         
 
     ∑     

  
     

] [
 ̂ 

 ̂ 
]  [

∑       
 
     

∑       
 
     

].                         (14) 

 

In Eq. 14, M is the total number of autoregressive coefficients.  The time constant is given as 

 

      
  

    ̂ 
.                                                                             (15) 

 

The time constant given in Eq. 15 does not actually correspond to   of the measured data.  Instead, an iterative 

procedure is required to determine the appropriate value for  .  To do so,   is assigned an initial value designated as 

  .  Next, compute a time series using Eq. 8 for the same sampling scheme as the measured data for     .  
Interpolate this time series onto the same uniformly spaced grid as the measured time series data.  Determine the 

time constant designated as  ̃ for this time series using Eqs. 14 and 15.  Adjust    so that | ̃      |   .  The time 

constant of the measured data is then estimated as   .   
 

2. Compute an autoregressive time series using Eq. 8 for     .   
 

3. Interpolate the time series data from Step 2 and compute the autospectral density function.  The autospectral 

density function from this step is designated as     . 

 

4. Compute the autospectral density function of the time series data from Step 2 using Eq. 10.  The autospectral 

density function from this step is designated as    .   

 

5. Compute the compensation factor given as 

 

     
      

       
.                                                                           (16) 

 

6. Determine the compensated autospectral density function given as  

 

                                                                                      (17) 

 

where         is the autospectral density function of the measured data interpolated onto an evenly spaced grid.   

 

   The compensation method was checked in two ways.  In one approach, short blocks of flight data with even 

sampling rates provided spectra undistorted by uneven sampling time intervals.  In the second approach, a large-

eddy simulation (LES) of a turbulent shock boundary-layer interaction provided a time-series that could be evenly 

and unevenly sampled.  The evenly-sampled LES time series provided a truth-model against which to compare the 

unevenly-sampled, compensated spectrum.   

 As shown in Fig. 6b, the flight sampling scheme on the flare featured evenly sampled blocks of data separated by 

gaps with duration of approximately 10.5 sampling intervals.   The autospectrum was determined by averaging the 

autospectrum computed for 1200 evenly sampled blocks of data.  This spectrum is treated as a known spectrum with 

frequency resolution of approximately 800 Hz.  This known spectrum is designated as G(ESTS).  The autospectrum 

of unevenly sampled data was determined from the flare data by partitioning the data into blocks with the gaps.  As 

shown in Fig. 9,   
      is significantly lower than G(ESTS) for frequencies greater than 2 kHz.  A comparison 

between        and G(ESTS) shows that the compensation method recovers the correct roll off and power levels.      
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Figure 9.  Comparison between   

      and        with a baseline spectrum, designated as         for surface 

pressure measurements recorded by transducer 21 located on the flare.  The baseline spectrum was determined from 

the evenly sampled blocks of data shown in Fig. 6b.    

 
The compensation method was also validated using numerical time series data.

41
  This numerical time series was 

sampled evenly at a sample rate of 192.9 MHz.  The numerical time series was resampled to match the sampling 

scheme used for the transducers located on the cone.  The numerical time series was digitally low-pass filtered prior 

to resampling in the same pass-band as the HIFiRE-1 data.  Resampling was accomplished by sampling the time 

series using the sampling scheme shown in Fig. 6a.  Since the numerical time-series was sampled at discrete time 

intervals, the uneven sampling rate was similar to the HIFiRE sampling rate, but did not exactly reproduce it.  The 

spectral window functions for the sampling scheme of the cone transducers and the resampled numerical time series 

are shown in Fig. 10.  As shown, the spectral window functions are very similar, thus the distortion caused by 

sidelobes in the autospectral density function should be very similar for the two time series.  In Fig. 11, the 

autospectral density function was determined for the evenly spaced numerical time series, the unevenly spaced 

numerical time series interpolated onto an evenly spaced grid, and the unevenly-spaced time series, interpolated and 

compensated.    As shown in Fig. 11, the compensation method recovers the roll-off and power loss caused by 

interpolating the unevenly sampled numerical time series onto an evenly spaced grid.  This numerical experiment 

and the comparison of unevenly to evenly-spaced flight data confirm the validity of the compensation method. 

 

 
Figure 10.  Comparison between the spectral window functions of the sampling scheme used in flight by 

the transducers located on the cone with the resampled numerical time series.  The frequencies were 

normalized by the Nyquist frequency of each sampling scheme. 
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Figure 11.  Comparison between the autospectral density function of the compensated spectrum, the 

evenly sampled numerical time series, and the resampled numerical time series interpolated onto an 

evenly spaced grid. 

 
 A comparison between the dimensional and nondimensional   

      and        for surface pressure 

measurements recorded at different times during the ascent by transducers 7 and 9 located on the cylinder are shown 

in Figs. 12 and 13.  These transducers were located respectively 8 and 6 cm upstream of the flare.  The frequency 

and autospectral density function were normalized using the 99 percent boundary-layer thickness, and the dynamic 

pressure.  These normalizing quantities were provided by Robert Yentsch of The Ohio State University.  The flight 

conditions for the times shown in Figs. 12 and 13 are summarized in the table below.  Times prior to t=6 seconds 

correspond to the first-stage boost phase.  Times between t=6 and t=15 seconds correspond to the coast phase 

between first-stage burnout and second-stage ignition. 

 The flight data show a rolloff in amplitude with increasing frequency, typical of that seen in shock-boundary 

interactions.
42

  As shown in the figure, the compensation method does not noticeably alter power levels for 

frequencies below 1.5 – 3 kHz but becomes more prominent as the frequency increases.  The compensated spectra 

roll off at a rate of about 8 dB/octave.  This rolloff rate is slightly lower than that observed in Ref 41, but similar to 

other data cited in the same reference.  These data, combined with checks against numerical experiment and small 

blocks of evenly-sampled flight data, indicate that unevenly-sampled flight data may be analyzed to provide 

meaningful spectral data. 
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Figure 12.  (a) Comparison between   

      and        determined from surface pressure measurements recorded 

at different times during the ascent, (b) Comparison between normalized   
      and        versus normalized 

frequency.   

 

 

 
Figure 13.  (a) Comparison between   

      and        determined from surface pressure measurements recorded 

at different times during the ascent, (b) Comparison between normalized   
      and        versus normalized 

frequency.   

 

Table – Flight Conditions Analyzed 
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VI.  Conclusion 

 

Computing the autospectral density function directly from an unevenly sampled time series results in a distorted 

spectrum.  The distortion is caused by nonlinear sidelobes that are nonzero only for unevenly sampled data.  This 

nonlinearity can be removed by resampling the unevenly sampled time series onto an evenly spaced grid at the cost 

of under predicting the power of the higher frequency components of the time series data.  A compensation method 

was implemented to recover the power lost by resampling.  Specifically, the compensation method developed in this 

paper estimates the autospectral density function of stochastic, surface pressure data having red-noise “like” spectra 

sampled unevenly during the HIFiRE-1 flight experiment.  This compensation method estimates the autospectral 

density function by determining a correction factor.  The coefficients of a first order autoregressive model, that holds 

for unevenly sampled data, are determined from the measured time series data using a nonlinear least squares 

procedure.  The autoregressive coefficients are used to generate a time series with the same sampling scheme as the 

surface pressure data.  This autoregressive time series and measured time series are resampled onto an evenly spaced 

grid.  The autospectral density function is computed from the resampled autoregressive time series, the resampled 

measured data, and directly from the autoregressive coefficients.  A correction factor is determined by taking the 

ratio of the autospectral density function computed from the autoregressive coefficients with the autospectral density 

function of the resampled autoregressive time series.  The autospectral density function of the measured data is 

estimated by multiplying the correction factor with the autospectral density function of the resampled measured 

pressure data.   

The time series data measured during the flight experiment has some aerothermal data that would benefit from 

correlation-based analysis such as crossflow instabilities, rolling and pitching motions of the payload, and shock-

foot motion overtop surface mounted transducers.  Future work will investigate methods for preserving the phase 

information of the time series data recorded during the HIFiRE-1 flight.  
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Time, sec

Freestream 

Mach, M

Freestream Unit Reynolds 

Number per meter

3.870 2.14 4.26E+07

4.550 2.61 4.95E+07

6.200 3.43 5.57E+07

7.200 3.25 4.71E+07

5.791 3.41 5.80E+07

7.624 3.19 4.44E+07

10.000 2.90 3.20E+07

11.000 2.83 2.88E+07

13.500 2.67 2.21E+07

15.000 2.58 1.89E+07
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Appendix A: Least Squares Fourier Transform 

In this section, the least squares periodogram and the least squares Fourier transform are developed 

quantitatively by summarizing the results given in References 17-21.  The discrete Fourier transform is defined as 

 

      ∑             
 
                                                               (A1) 

 

where  is the angular frequency given as  = 2πf.  The classical periodogram is defined as 

 

      
 

 
|     | .                                                                     (A2) 

 

Substituting Eq. A1 into Eq. A2 gives 
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In the derivation that follows, the time series data y(t) is fit with the model      (    )       (    ) using the 

method of least squares.  The derived least squares fit is then shown to be equivalent to the classical periodogram 

defined in Eq. A4.  The equivalence includes the preservation of the statistical properties of the classical 

periodogram.  The least squares Fourier transform is then defined using the least squares periodogram.  

The sum of squares is given as 

 

  ∑ {   [     (    )       (    )]}
  

                                                 (A5) 

 

For a simultaneous reduction of ω = ω1, ω2, … ωj, the corresponding parameters aj and bj are chosen such that the 

stationary conditions 
  

   
 

  

   
  .  The stationary conditions are given as 
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 (    )       (    )    (    )}
 
                           (A6) 
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                               (A7) 

 

Adopting the notation 
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and 
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   ,                                                               (A12) 

 

the stationary conditions reduce to  

 
  

   
                                                                            (A13) 

 

and 
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Rearranging Eq. A13 and A14 gives 
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or 
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].                                                                  (A17) 

 

The two equations represented in Eq. A17 are the so-called normal equations for least squares.  Solving Eq. A17 for 

the aj and bj coefficients gives 
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].                                           (A18) 

 

From Eq. A5 and A18, the sum of squares becomes 
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].                                              (A19) 

 

At this point    is not yet in the form of the classical periodogram.  In order to show equivalence between the least 

squares periodogram and the classical periodogram, the model      (    )       (    ) is replaced by 

     [        ]       [        ] where τ is defined so that CS = 0 for each tn.  Solving 

   ∑    (    )
 
      (    )    for τ gives 
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Equations A18 and A19 become 

 

[
  

  
]  [

   
   

]
  

[
  
  

]  [
 

  ⁄  

  
  ⁄

] [
  
  

]                                             (A21) 

 

and 

 

   [    ] [
 

  ⁄  

  
  ⁄

] [
  
  

]                                                      (A22) 

 

or 
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By assuming that CC and SS ≅ N/2, Eq. A23 becomes  
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and 
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.                                   (A26) 

 

By comparing Eqs. A26 and A4, it is concluded that the least squares periodogram is equivalent to the classical 

periodogram.  

While the definition of τ in Eq. A20 conveniently reduces the normal equations, establishing equivalence 

between the least squares and classical periodogram, it also preserves the time invariance property.  This can easily 

be demonstrated by translating tn by T0, given as tn + T0.  Under this translation, τ becomes τ + T0 and          

becomes               , which is         .  By maintaining time invariance, the statistical properties of 

the classical periodogram are identical to the statistical properties of the least squares periodogram.  

With the least squares periodogram defined as 
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√  
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,                                                               (A27) 

 

it is now advantageous to redefine the Fourier transform.  By comparing Eqs. A2 and A27, the magnitudes of the 

real and imaginary components of the Fourier transform are given as 
  

√  
 and 

  

√  
, respectively.  The sign of these 

components is not yet known since shifting each tn by   introduces a phase shift.  The phase shift can be accounted 

for by scaling the real and imaginary components of the Fourier transform by    {    [    (  )]} where    = 0 

for univariate analysis and 
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                                                              (A28) 

 
for bivariate analysis.  In practice, tf accounts for time series data with different time origins.   

To summarize, the least squares Fourier transform is given as 
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where   is given as 
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Substituting YC, CC, YS, and SS into Eq. A29 gives 

 

      
 

√ 
   {    (    )}∑ {

     [        ]

√∑     [        ] 
   

  
     [        ]

√∑     [        ] 
   

} 
                               (A31) 

 

 

 

D
ow

nl
oa

de
d 

by
 D

'A
zz

o 
R

es
ea

rc
h 

L
ib

ra
ry

 D
E

T
 1

 A
FR

L
/W

SC
 o

n 
O

ct
ob

er
 1

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

31
69

 

 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 

21 
Approved for public release; distribution unlimited.


	2013-0244Cover.pdf
	AFRL-RQ-WP-TP-2013-0244
	STINFO COPY

	2013-0244SF 298.pdf
	REPORT DOCUMENTATION PAGE




