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SOCIAL NETWORK ANALYSIS

Szell et al, Nature 2012
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PROTEIN-PROTEIN INTERACTIONS

http://mippi.ornl.gov/areas/bioinfo.shtml
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COLLABORATIVE FILTERING
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EXPLICIT VS. IMPLICIT NETWORKS

Typically, we see edges and reason about the 
latent properties of the vertices.
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EXPLICIT VS. IMPLICIT NETWORKS

What if we don’t observe edges, but only 
noisy emissions from each vertex?
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FUNCTIONAL CONNECTIVITY OF NEURONS

Truccolo, Hochberg & Donoghue, 2010
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PATTERNS OF GANG VIOLENCE
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OVERVIEW

‣Mutually-Exciting Point Processes

‣Aldous-Hoover Graph Priors

‣MCMC Inference with Data Augmentation

‣Application Examples

‣Extending for Neural Models with Inhibition
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MULTIVARIATE POINT PROCESSES

‣ The point process is a foundational statistical object.
‣ Gives us random subsets of a larger space.
‣ Many data are well modeled as point processes:
‣ Seismology
‣ Epidemiology
‣ Economics

‣ Modeling dependence is challenging - “beyond Poisson”
‣ Strauss and Gibbs Processes
‣ Determinantal and Permanental Point Processes
‣ TODAY: Mutually-Exciting (Hawkes) Processes
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POINT PROCESS

‣ A point process on     gives us random subsets               .

‣ Formally, a random locally-finite counting measure.

‣ Most of the time we think of them as giving us finite 
subsets of compact subset of     , e.g., time or space.

X {xn}Nn=1

Rd
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POISSON PROCESS

‣ The Poisson process is the most basic point process.
‣ Disjoint regions are independent.
‣ The number of points in a region is determined by 

integrating the rate function over that region.
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DEPENDENCE IN MULTIVARIATE POINT PROCESSES

‣ In the Poisson process, everything is conditionally 
independent given the rate function.

‣ How can we get spike-driven dynamics?
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HAWKES PROCESS DYNAMICS
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HAWKES PROCESS

‣ The Hawkes process specifies conditional Poisson 
dynamics in causal cascades.
‣ Hawkes - Biometrika (1971), J. RSS-B (1971)
‣ Hawkes - Stochastic Point Processes (1972)
‣ Hawkes & Oakes - J. Applied Prob. (1974)

‣ Purely excitatory: each spike increases the intensity 
according to a weighted temporal kernel.

‣ Self-excitation: increase your own rate.
‣ Mutual-excitation: increase other rates.
‣ Spectral conditions ensure stability.
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GRAPH STRUCTURE FROM HAWKES DYNAMICS
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GRAPH STRUCTURE FROM HAWKES DYNAMICS
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BAYESIAN INFERENCE

‣ The Hawkes process provides a likelihood to connect 
hypotheses about an unobserved graph to observed 
event data.

‣ With a Bayesian model, we can manipulate the posterior 
distribution over graphs, marginalizing out nuisance 
parameters.

‣ We can infer the temporal kernels that modulate the 
interaction.

‣ We can perform model comparison between different 
random graph models and their properties.
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EXCHANGEABLE RANDOM GRAPHS

‣ Recent work on exchangeable random graphs provides 
a rich set of priors for underlying networks, e.g., 
Diaconis & Janson (2007), Orbanz & Roy (2013).

‣ Aldous-Hoover unifies many existing graph models:

Erdös-Renyi Stochastic Block
Model

Latent Distance
Model
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HAWKES PROCESS FORMALISM

‣     nodes with events in         .
‣     ordered event times                  . 
‣ Node of event n given by                               . 
‣ Base rates 
‣ Kernel         , such that                        and                         .

‣ Binary adjacency matrix
‣ Interaction weight matrix

‣ An event on    induces                    expected events on    .

K [0, T ]

N sn 2 [0, T ]

cn 2 {1, 2, · · · ,K}

g✓(t) g✓(t < 0) = 0

Z 1

0
g✓(t) dt = 1

�0
k(t)

A 2 {0, 1}K⇥K

W 2 RK⇥K
+

Wk,k0Ak,k0k k0
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HAWKES PROCESS WITH DATA AUGMENTATION

‣ Instantaneous Poisson rate:

‣ The superposition property of Poisson processes means 
that each event is explained by either the background 
rate or exactly one previous event.

‣ Use                           to represent these latent variables, 
where                  means that event    induced event    .

�k(t) = �0
k(t) +

NX

n=1

I(sn < t)Acn,kWcn,kg✓(t� sn)

Z 2 {0, 1}N⇥N

Zn,n0 = 1 n n0
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DATA-AUGMENTED LIKELIHOOD

p({sn, cn}Nn=1,Z |A,W , {�0
k(t)}Kk=1, ✓) =

KY

k=1

exp

(
�
Z T

0
�0
k(⌧) d⌧

)
NY

n=1

�0
k(sn)

I(cn=k)I(1�P
n0 Zn0,n)

⇥
KY

k0=1

(
�
Z T

sn

Acn,k0Wcn,k0g✓(⌧ � sn) d⌧

)

⇥
NY

n0=1

(Acn,k0Wcn,k0g✓(sn0 � sn))
Zn,n0
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DATA-AUGMENTED LIKELIHOOD

p({sn, cn}Nn=1,Z |A,W , {�0
k(t)}Kk=1, ✓) =

KY

k=1

exp

(
�
Z T

0
�0
k(⌧) d⌧

)
NY

n=1

�0
k(sn)

I(cn=k)I(1�P
n0 Zn0,n)

⇥
KY

k0=1

(
�
Z T

sn

Acn,k0Wcn,k0g✓(⌧ � sn) d⌧

)

⇥
NY

n0=1

(Acn,k0Wcn,k0g✓(sn0 � sn))
Zn,n0

Poisson process likelihood for events
from the background process.
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DATA-AUGMENTED LIKELIHOOD

p({sn, cn}Nn=1,Z |A,W , {�0
k(t)}Kk=1, ✓) =

KY

k=1

exp

(
�
Z T

0
�0
k(⌧) d⌧

)
NY

n=1

�0
k(sn)

I(cn=k)I(1�P
n0 Zn0,n)

⇥
KY

k0=1

(
�
Z T

sn

Acn,k0Wcn,k0g✓(⌧ � sn) d⌧

)

⇥
NY

n0=1

(Acn,k0Wcn,k0g✓(sn0 � sn))
Zn,n0

Poisson process likelihood for events
induced by previous events.
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DATA-AUGMENTED LIKELIHOOD

p({sn, cn}Nn=1,Z |A,W , {�0
k(t)}Kk=1, ✓) =

KY

k=1

exp

(
�
Z T

0
�0
k(⌧) d⌧

)
NY

n=1

�0
k(sn)

I(cn=k)I(1�P
n0 Zn0,n)

⇥
KY

k0=1

(
�
Z T

sn

Acn,k0Wcn,k0g✓(⌧ � sn) d⌧

)

⇥
NY

n0=1

(Acn,k0Wcn,k0g✓(sn0 � sn))
Zn,n0

Ugly looking, but just normalization constants.
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MODELING DETAILS

‣Logistic-normal impulse response

‣Reasonably flexible, with compact support.

‣Gaussian process for log background rate

‣Smoothly-varying or periodic external effects.

‣Conjugate gamma priors for weights

‣Can also be coupled via, e.g., latent block identity.

Saturday, August 3, 13



INFERENCE WITH MCMC

‣ Graph structure: collapsed block Gibbs

‣ Edge weights: Gibbs (conjugate gamma posterior)

‣ Latent parent explanations: parallel Gibbs

‣ Background rates: elliptical slice sampling

‣ Temporal kernels: Gibbs or slice sampling

‣ Many transitions can be efficiently simulated on a 
GPU, enabling models with hundreds of nodes and 
millions of events.
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FINANCIAL UPTICKS/DOWNTICKS
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HOMICIDES AND ARMED BATTERIES IN CHICAGO
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CPD-IDENTIFIED GANNG BOUNDARIES
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ALLIANCES: FOLK NATION VS. PEOPLE NATION
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SEASONAL VARIATION
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INFERRED INTERACTING TERRITORIES
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We also infer the event 
sources, using a spatial 
model and a Dirichlet 

process prior. 
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TRYING TO PREDICT HOTSPOTS
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NEURAL MODELING WITH INHIBITION

‣ Neural functional connectivity involves both excitation 
and inhibition, so the pure Hawkes is inappropriate.

‣ We extend the model to allow for negative weights and 
include a saturating nonlinearity.

‣ This effective becomes a Bayesian variant of the 
popular generalized linear model (GLM) from the 
computational neuroscience literature.

‣ We can leverage graph priors within this framework to 
discover latent neural properties and connectivity.
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BAYESIAN GLM FOR NEURAL DATA
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RETINAL GANGLION CELLS
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Figure 4: Inferred stimulus filters under a Gaussian process prior distribution. (a) Spatial component of the
tuning curve convolved with the inferred locations of the 27 retinal ganglion cells in the dataset, separated
according to their inferred types. Shading indicates the amplitude of the tuning curve at that location. (b)
Inferred spatial shape of tuning curves shared by inferred blocks of ON and OFF cells. (c) Amplitude of the
inferred filters versus temporal offset.

5 Application to Neural Recordings

Next we applied our model to spike trains simultaneously recorded from a population of 27 retinal
ganglion cells (RGCs)2, previously analyzed in [16]. This population is comprised of two types
of cells, ON and OFF cells, characterized by their response to visual stimuli. ON cells increase
their firing when light is shone upon the area of the retina to which they are sensitive; OFF cells
increase their firing when light is not shone upon their retinal location. These region of the retina
to which a cell is sensitive is called its receptive field, and the expected firing rate as a function of
the stimulus presented in the receptive field is called the “tuning curve” of the neuron. Cell types
are identified by a common tuning curve centered at various locations throughout the retina. In
this dataset, the population is presented with a Gaussian white noise video. We use one minute of
recording corresponding to approximately 50K spikes.

We develop a Bayesian model to infer (a) the presence of multiple neuron types sharing the same
tuning curve, (b) the location at which each neuron’s tuning curve is centered, (c) the distribution of
weights as a function of these neural types, and (d) the effect of distance between neuron locations
on the probability of functional interaction. To do so we introduce a block model with a Gaussian
process prior over spatiotemporal tuning curves, and Gaussian priors over weights as a function of
block type. Each neuron has a 2-dimensional location in the retinal plane, also Gaussian distributed,
at which its tuning curve is centered. The tuning curve is convolved with the stimulus at this location
to produce a background activation. The adjacency matrix A is given a latent distance prior using
these same locations. Details of these priors are given in the supplementary material.

Using the labels found in [16] as ground truth, our model correctly infers the neuron types with
100% accuracy. The inferred cell locations are shown in Figure 4a in units of pixels of the presented
stimuli, and agree with the results of [16]. The spatial and temporal components of the inferred type-
specific tuning curves are shown in Figures 4b and 4c, respectively. These exhibit the canonical form
which characterizes ON and OFF cells. In comparison to [16], this model has a reduced parameter
set due to the sharing of receptive fields.

In addition to these inferred receptive fields, we also infer latent structural patterns of the interaction
network as a function of cell type and location. Figure 5a shows the inferred weighted adjacency ma-
trix of interactions (ordered first by type and then by location along a 1D projection). As expected,
cells excite nearby cells of the same type and inhibit those of the opposite type. These are quantified

2We thank Jonathan Pillow and E.J. Chichilnisky for providing this data

7

27 neurons, 50K spikes, macaque retina
(Data from Pillow and Chichilnisky)
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INFERRED NETWORK PROPERTIES
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SUMMARY

‣ We cannot directly observed edges for 
many networks of interest.

‣ However, these latent graphs can be 
inferred from vertex emissions.

‣ The purely-excitatory case (Hawkes 
process) enables an elegant data-
augmentation approach to inference.

‣ MCMC is fast and tractable, and lets us 
reason about different graphs and graph 
priors.

‣ The inhibitory case is less tractable, but 
important for neuroscience applications.

Scott Linderman
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