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1 SUMMARY 

The meaning of Space Situational Awareness (SSA), which has drawn a lot of attention recently, 
is more than just the characterization of the space environment and how it will affect space 
activities [1, 2]. SSA activities can be divided into many possible categories, including but not 
limited to detecting new space objects and tracking their motion, understanding how the space 
environment will impact mission behaviors, and determining useful characteristics of identified 
objects [3]. Interest has also been expressed in using SSA to properly track nearby or distant 
objects, while being aware of unexpected rendezvous by outside actors [3]. 

As space becomes more and more crowded, to achieve an effective SSA, not only the capabilities 
of detecting and tracking objects, but also the capabilities of rapid response and re-planning 
semi-autonomously or autonomously are crucial. The following are just a few planning problems 
that are often seen for rapid SSA response: formation keeping, formation reconfiguration, 
rendezvous and docking, space inspection and assembly without intensive labor, coordinated 
movement, debris avoidance, and proximity operations considering exhaust plume impingement. 

Central to all these planning activities is the capability of computing optimal control commands 
rapidly while considering nonlinear dynamics, state and control variable constraints, 
environment limitations, etc. The objectives may be the minimum fuel maneuvers needed to 
achieve a maximized life time, or the minimum time maneuvers needed to achieve a quick 
response. 

In the performed research, the virtual motion camouflage (VMC) based optimal planning 
algorithm, inspired by the observation in mating hoverflies, is further investigated and the 
performance is enhanced significantly in terms of the convergence speed and collision avoidance 
capability.  In addition, the method is compared with the newly developed local pursuit based 
method. Also the dimension and time complexities of the innovative algorithms are analyzed. 
The algorithm is validated in an enhanced low cost robots testbed. 
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2 INTRODUCTION 

To date, the majority of local optimal trajectory planning methods belongs to one of the 
following categories: mathematical programming, heuristic approaches, and hybrid methods.  It 
is worth noting that there are many feasible, real-time methods, such as the A* [4] and the 
rapidly exploring random tree approaches [5].  The calculus of variations (CoV) together with 
the Pontryagin’s Minimum Principle (PMP) approaches and the Direct Collocation (DC) with 
nonlinear programming (NLP) approaches are two main methods in the mathematic 
programming category [6][7]. The CoV + PMP approach works effectively when there is no 
severe state inequality constraint and a good initial guess is provided.  DC + NLP approach can 
easily incorporate state and control constraints, and its initial guess is not that difficult to obtain.  
However, the problem dimension of the achieved NLP is normally large and results in a high 
computational cost. To obtain global optimal solutions, many heuristics and meta-heuristics 
based methods have been studied, such as evolutionary programming [8] and particle swarming 
[9]. As mentioned in [10], although these methods work effectively for many different problems, 
they cannot be rigorously proved and are mostly used off-line due to the high computational cost. 

The studied virtual motion camouflage (VMC) and local pursuit (LP) techniques belong to the 
hybrid category, in which the trajectory planning problem is optimized using a mathematical 
programming approach in a simultaneously refined manifold. Specifically, in this approach, the 
path of a vehicle is optimized in a varying subspace or manifold, which is defined by a virtual 
prey motion and possibly a reference point.  The optimization in such a manifold is controlled by 
a single dimension parameter. The problem dimension in the achieved NLP is small, particularly 
for the cases with severe constraints and many obstacles. However, just like any other NLP based 
approaches, a good initial guess is crucial for these methods to converge rapidly, especially when 
the vehicle is required to navigate in an obstacle-laden environment. 

The objectives of the research project are: 

O1: The virtual motion camouflage method, inspired by the observations in mating hoverflies, 
was further investigated for rapid optimal planning problems. 

O2: Detailed analyses about the enhanced algorithm were conducted and the performances, 
such as problem dimension and time complexity, have been investigated.  Furthermore 
the feasibility and flexibility of the algorithm were studied for the cases when the number 
of obstacles and the number of vehicles in the system are changing. 

and 

O3: These algorithms were tested in a significantly enhanced low cost robot testbed. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

The research conducted is summarized here: virtual motion camouflage method, initial guess 
enhancement, local pursuit method, and software update. 

3.1 Virtual Motion Camouflage Method 

A male hoverfly (Fig. 1) uses the motion camouflage to fly along a path connecting the female 
hoverfly and a background reference point to conceal its motion from the view point of the 
female one [11].  

 
Figure 1. Motion camouflage used by hoverflies 

An inherent thread is observed: “the predator only moves along paths in a certain manifold.” 
Inspired by this observation, the simple rule used by the hoverflies can be mimicked to construct 
varying subspaces (or “manifold”) such that the planning problem can be solved rapidly. In the 
meantime, to avoid potential shortcomings (i.e. the solution optimality depends on the selection 
of the subspace), the actual vehicle will follow paths that are optimized in an iteratively refined 
“manifold”. 

Expanding on these results, the algorithm is outlined in the following steps: 

Step 1: Dimension reduction via the motion strategy. The simple rule in the virtual motion 
strategy is: the “position” state x  is confined by the motion of the virtual prey px , the reference 
point rx , and the path control parameter (PCP) ( )v t . The original problem will be converted into 
the following reduced dimension problem: Given px , (possibly) the parameters rx , ( )v t , ( )v t , 
…, will be designed to minimize the performance index ( )2 2 , , ,...r fJ J v v t x &  subject to inequality 
constraints (I.E.Cs.) and equality constraints (E.Cs). It is worth noting that the optimization of 
the virtual prey motion px  will be conducted in Step 4 to achieve the optimal solution. 

Step 2: Convert the problem achieved in Step 1 into a nonlinear programming problem (NLP) 
via collocation. Through this discretization, the performance index can be re-written as 

3 ( )3 , ,r fJ J t x v , in which 0 ,..., ]=[v vv T
N  is the discretized version of the PCP ( )v t .  The 

derivatives of the PCP variables can be found from [ / ( )]02n n n nd v / dt t t D v f , in which D  is 
the differentiation matrix. 
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Step 3: Further dimension reduction via the necessary conditions derived from boundary 
conditions:  Certain PCPs, such as the initial PCP ( 0v ) and final PCP ( Nv ), can be calculated 
instead of being optimized. It is worth noting that the necessary conditions are different for 
different dynamical systems and different boundary conditions. 

Step 4: The curve of the virtual prey motion px  needs be flexible enough so that the solution 
achieved using the proposed method can be optimal. In the meantime the number of the 
parameters controlling the prey motion must be small enough such that the computational cost 
will not be compromised much. In this step, the virtual prey motion will be represented using B-
spline curves [12] and the control points P  for the B-spine will be optimized. Therefore the final 
achieved problem is: the performance index can be re-written as 4 ( )4 , , ,r fJ J t x v P . The I.E.C.s. 
and E.C.s. are converted to 4 ( ) 0, , ,r ft g x v P  and 4 ( ) 0, , ,r ft h x v P , respectively. 

3.2 Enhanced Initial Guess  

In the previous version of the VMC algorithm, a straight line connecting the starting and ending 
points is used as the initial virtual prey path.  For most of the obstacle avoidance cases, the 
algorithm works well if the reference point in the VMC algorithm is not on this straight line. 

However, when the straight line of the virtual prey motion happens to pass through the center of 
any obstacle, as shown in Fig.2, it becomes challenging for the VMC algorithm (or any other 
gradient based methods) to rapidly find an optimal or even feasible solution. Therefore, in order 
to improve the robustness of the VMC method, an alternative approach is investigated in 
milestone 1 to obtain a good initial virtual prey motion guess. 

 

Figure 2. A “bad” initial guess of the virtual prey path 

Figure 3 outlines the basic steps involved in finding a good initial guess for the VMC algorithm 
in finding nonlinear optimal trajectory in obstacle-laden environment. 

Step 1: The wavefront algorithm [13] is used to find an obstacle-free corridor, and the virtual 
prey path in this corridor will generate a trajectory with a high possibility of being obstacle-
collision free. 

Initial Position

Final Position

Initial guess of 
prey path

Obstacle

Initial Position

Final Position

Initial guess of 
prey path

Obstacle
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Step 2: Since  the path generated by the wavefront method doesn’t involve time information and 
may not be smooth, the result achieved will be regarded as an initial guess and further optimized 
in a B-spline based optimization. An arbitrary performance index, such as the shortest distance, 
can be used in the optimization. The obstacle avoidance is regarded as the inequality constraints. 

Step 3: The virtual prey found in Step 2 will be used as the initial guess in the VMC method.  

Empirically, the initial guess of the PCP variables should be 1.  With the enhanced initial guess 
strategy, the initial selection of a reference point is not as sensitive as the original VMC method.  
It is more effective if the reference point is placed far away from the actual vehicle’s path. 

 

Figure 3. VMC algorithm with enhanced initial guess in obstacle-laden environments 

3.3 Local Pursuit Method 

The local pursuit (LP) motion strategy is a biological phenomenon found in the behavior patterns 
of ants. As shown in Fig. 4, an ant points its velocity towards the position of the ant ahead of it to 
achieve the minimum time performance.  

 

Figure 4. LP strategy 

The LP strategy can be described as 

( ) ( ) ( )a p at v t t     x x x     (1) 

in which the position of prey px  is   steps ahead of the predator.   is a scale variable that we 
call the path control parameter (PCP) so as to be consistent with the VMC method. 

Wavefront algorithm

Virtual prey motion optimization

Control points

VMC algorithm
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Since the prey is a virtual one, the value of   will not affect the solution optimality and thus will 
be regarded as zero. Following the LP motion strategy Eq. (1), the position vector of the Lego 
robot, x , is formulated by the trajectory of the virtual prey, [ , ]T

p p px y�x , and PCP,  , as 

( ) ( ) ( )pt v t v t x x x       (2) 

The acceleration derivatives can be derived from Eq. (2), as 

( ) ( ( ) ( )) ( ( ) ( ))p pt v t t v t t     x x x x x    (3) 

Then, the control variables V  and   are computed via the dynamic inversion as 

 
   
   

/ cos , cos 0
/ sin , cos 0

x
V

y

 
 

  




    (4) 

and 

     2 2 2 2/ , 0yx xy x y x y              (5) 

respectively. Using a high order discretization method, such as the Legendre-Gauss-Lobatto 
(LGL) method [14], the position of Lego robot can be further represented as  

' 1
,( )j p jD   ζ ζ       (6) 

in which ,0 ,,...,
T

j j j Nx x   ζ , where 1, 2j   is the thj  direction of the position of Lego robot, 

subscript 0,..., N  denotes the discretization node.  , , ,0 , ,,...,
T

p j p j p j Nx x   ζ is the discretized 
version of the virtual prey position. { }diag  v  is the diagonal matrix with a proper dimension 
and v  is the discretized version of the SCP variable. D  is the differentiation matrix and 

'
02 / ( )fD t t D  � . 

Similarly, the discretized velocity and acceleration states of the predator can be derived as  

   1 1' ' 1 '
, ,( )j p j p jD D D

          
  ζ ζ ζ    (7) 

and 
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 
 

' 1

' 1
1 ,' ' 1

1' 1 ' ' 1
, ,

( )
( )

2 ( )

2( ) ( )

j p j

p j p j

D
D

D D

D D D




 

 

           
             

               

 


  

  

ζ ζ

ζ ζ

  (8) 

To make the virtual prey motion flexible and enhance the quality of the optimization space, B-
spline, which is a method using a small number of control points to define a flexible curve, is 
chosen to represent the virtual prey motion.  

For example, the thj  direction of the virtual prey “position” at node k , , , , 1, 2, 0,...,p j kx j k N  , 
can be represented by a nonlinear rational B-spline (NURBS) [12] curve of degree d , as 

 , , , ,
0

cpn

p j k i d k j i
i

x B t P


 , 1, 2j  , 0,...,k N   (9) 

where  , , 0,...,i d cpB t i n  are the thd  degree basis functions, , , 0, ...,j i cpP i n  are the control 

points for the thj  direction of the virtual prey “position”, and 1cpn   is the number of control 
points. The B-spline representation of the virtual prey motion Eq. (9) can also be written in the 
vector form as 

p, j jBζ P , 1,..., aj n      (10) 

in which  ,[ ]i d kB B t , 0,..., cpi n , 0,...,k N , and ,0 ,[ ,... ]
cp

T
j j j nP PP  is the column vector of 

the control points. 

The thl  derivative of , ,p j kx  can be written either in the scalar form as 

 , ,
, ,

0
, 1,2, 0,...,

cpl n
p j k l

m d k j ml
m

d x
B t P j k N

dt 

      (11) 

or in the matrix form as 

( ) ( )
,
l l

p j jBζ P  , 1, 2j      (12) 

in which  ( ) ( )
,[ ]l l

m d kB B t  and the superscript ( )l  represents the thl  derivative. 

To further reduce the number of optimizable parameters and mitigate the difficulty of the 
convergence when equality constraints are involved, necessary conditions are derived based on 
the boundary conditions (BC), which are used to calculate a part of the control points and PCPs.  
The following BCs are known: the initial and final positions, and the initial velocity. 
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Thus, after given the first PCP, 0v , the first control point of the virtual prey can be calculated by 

,0 , ,0 , ,0 , ,0 0/i p i a i a iP x x x v    , 1, 2j     (13) 

and the robot’s position at all the discretized nodes, except the first and last nodes, will be 
calculated using, 

   , ,1 , ,0 , 1 , , , 1,...,a i LP i LP a i LP N a i N aM B M ζ M ζ i n


    � �ζ P  (14) 

in which '( )LPM D � , and ,1LPM , , 1LP NM  , and LPM �  are the first, last, and remaining columns 

of LPM , respectively.  , ,0a iζ , , ,a i Nζ , and ,a i
�ζ  are respectively the first, last, and remaining 

“position state” variables of the vehicle in the thi  direction.     denotes the pseudo-inverse 
operation. 

Since the BC of the Lego robot has been included in Eq. (13) and Eq. (14) and the dynamic 
model has been considered in Eq. (4) and Eq. (5), there is no equality constraint in the following 
formulated nonlinear programming (NLP) problem. 

The performance index  0
0

0.5
N

f i
i

J t t w


   is optimized subject to the inequality constraints 

( , , ) 0ft g v P' ' , which includes the limits on the state and control variables and obstacle 
avoidance. Here v'  and P'  are the subsets of the parameters in v  and P  that are optimized.   

For convenience, let’s define Set OS  to include all the parameters to be optimized, and Set CS  to 
include the parameters, which are calculated using the necessary conditions derived.  The steps 
involved in the optimization are summarized in Algorithm 1. 

Algorithm 1. LP Optimization Algorithm 
Steps in the 
Initialization Step 1: Provide initial guesses for the parameters in OS . 

 
 

Steps inside 
the NLP 

Step 2: 
Calculate the parameters in CS  using the appropriate 
necessary condition described. 

Step 3: Construct the virtual prey motion using B-splines. 
Step 4 Compute the state and control variables. 
Step 5: Evaluate the performance index. 
Step 6: Evaluate the inequality constraints. 

Step 7: 

If the convergence criterion is not satisfied and the 
maximum number of iterations has not been reached, 
update the parameters in Set OS  for the next iteration, and 
go back to Step 2. Otherwise, the optimization is 
terminated. 



 

                Approved for public release; distribution is unlimited.  
9 

 

3.4 Software and Graphical User Interface (GUI) Updates 

The LP based algorithm is programmed and packaged in the Lego robot testbed software 
(delivered to AFRL-RVSV).  

(1) Subroutine: BLP_TRAJ 

(2) Objective: Find minimum-time obstacle avoidance optimal path by LP method. 

(3) Equation: min  0
0

0.5
N

f i
i

J t t w


   , such that inequality constraints ( , , ) 0ft g v P' ' , v'  is a 

scalar and P' is a vector. 

(4) Syntax 

[pos_true,time_true,PATHGEN_CPU,i_count,tf,error_flag]=eval('BLP_TRAJ(struct_robot,i_sort
ed_points,i_replan_iteration,figs,handles)'): Returns the dimensionalized optimal path, optimal 
time, central process unit (CPU) calculation time, etc. 

(5) Input and Output Arguments and Function Calls. (Table 1) 

Table 1. Input and Output Arguments and Function Calls 
Variable Variable description Dimension 

struct_robot Information related to robot, and defined in the main 
document  

i_sorted_points Pixel locations of two color dots on the Lego robot 1*4 
i_replan_iteration(*) The number of planning horizons 1  

figs Defined in the main document  
handles Defined in the main document  

Output 
Variable Variable description Dimension 

pos_ture Optimal position (dimensionless) of the Lego robot 
in the test bed 2*(N+1) 

time_true Time span (dimensionless) discretized by the LGL 
method 1*(N+1) 

pathgen_CPU The overall CPU time to generate an optimal 
trajectory by the LP method 1 

i_count Number of tries 1 

tf 
The minimum time (in dimension) for the Lego 
robot to move from its initial position to its final 

position 
1 

error_flag (**) Whether or not the initial guess of the prey path is a 
good one 1 
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4 RESULTS AND DISCUSSIONS 

4.1 Model Used in Simulation and Hardware Validation  

The B-spline augmented virtual motion camouflage (BVMC) approach is customized for the 
two-wheel driven robot with a specific boundary condition (BC). The motion of the robot [15] is 
governed by the following dynamics model 

cos 0
sin 0

0 1

x

y V


 



     
           
          






     (15) 

in which 2
,1 ,2[ , ] [ , ]T T

a a ax y r r � �r  is the midpoint position of the robot, and   is the heading 
angle. The position of the robot is confined within the test area as min maxx x x   and 

min maxy y y  . The speed V  and the turning rate   are the control variables, which are 
constrained by maxV V  and max  , respectively. The parameters associated with hardware 
limitations are found from experiments, which may vary depending on the battery level onboard 
robots. 

The randomly distributed obsn  obstacles are assumed to be represented by circles, thus the 
midpoint positions of the robots need to satisfy , ,a obs i obs i bufR a  r r , 1,..., obsi n , where ,obs ir  

is the center of the thi  obstacles, and ,obs iR  is the corresponding radius.  bufa  is a buffer to take 
into account the maximum width of the robot from its midpoint. 

The planning objective of the robots is to navigate through a series of obstacles from their 
starting position to chosen ending positions with a minimized final time 

0

ft

t
J dt  , satisfying the 

above mentioned constraints.  In addition, the robots are required to re-plan their minimum time 
trajectories, while taking the new additional/pop-up obstacles into account. 

The position vector of the robot ar  is optimized within a varying subspace (or “manifold”), 
which is defined by two main parameters, the trajectory of the virtual prey 

,1 ,2[ , ] [ , ]T T
p p p p px y r r� �r  and a selected reference point [ , ]T

ref ref refx yr  as 

( )a ref p ref  r r r r       (16) 

Here a scale variable called the path control parameter (PCP)   determines how the aggressor 
behaves inside this varying subspace (or “manifold”) using the motion camouflage (MC) rule 
(Eq. 2). Its velocity and acceleration derivatives are defined as 

( )a p ref p     r r r r       (17) 
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and 

( ) 2a p ref p p         r r r r r      (18) 

It is worth noting that the reference point is constant but optimized. If 0V  , the heading angle 
  is calculated by 1tan ( / )y x     if 0x   or 1sin ( / )y V    if 0x  . The speed V  and the 

heading rate   can be calculated using 2 2V x y    and 2( ) /yx xy V    . If 0V  ,   can be 
any value, and the heading rate can be zero. 

There are two simultaneous steps involved in varying the robot trajectory in the problem search 
space: the subspace (or “manifold”) is varied and the actual position of the robot is varied in the 
subspace. First if the subspace defined by pr  and refr  is fixed, the result obtained may be optimal 
only in the subspace but not optimal in the space defined in the original problem. To address this 
issue, the parameters that define the subspace, i.e. the reference point and the virtual prey 
motion, need to be simultaneously optimized along with the variation of the robot trajectory.  

The reference point refr  can be included in the later achieved nonlinear program problem and 
optimized. The virtual prey motion pr  needs to be varied carefully. In B-spline augmented VMC 
(BVMC) method, B-spline curves are used to represent the virtual prey motion trajectory pr  as 

   , , ,
0

, 1, 2
cpn

p i k d i k
k

r t B t P i


      (19) 

where 1cpn   is the number of the control points ,[ ]i kPP , 0,..., cpk n , 1, 2i  , determining the 
shape and direction of the B-spline curves. Unlike polynomials, B-splines have good local 
control, which allows for more stable curves.  ,k dB t , 0,..., cpk n  are the thd  degree basis 
functions. 

Second, the position of the robot that is controlled by the PCP variable within the subspace (or 
“manifold”) is discretized to 0,..., N  nodes using a high order discretization method [14]. The 
discretized PCP vector is  1 1

0 1, NT
N         , and the thk  derivative of the PCP vector is 

found with the equation  

 0/ 2 /
k

k k k
fdt t t D          (20) 

in which D  is the differentiation matrix [14]. The discretized minimum time cost function is 
then written as 

 0
0

0.5
N

f i
i

J t t w


        (21) 
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and the inequality constraint is 

  1, , , 0, p
ref t  g P r g     (22) 

which includes the limits on the state and control variables, obstacle avoidance, and collision 
avoidance among the robots as described before. The equality constraint  , , , 0ref t h P r , 

1qh , includes the BC.  The dynamic model Eq. (1) has already been considered, thus not 
included as the equality constraint here. 

To further reduce the number of optimizable parameters in the achieved NLP and mitigate the 
difficulty of the convergence, necessary conditions are derived based on the BC and used to 
calculate part of the control points and PCPs. 

4.2 Robustness of the Enhanced VMC Method 

To test the robustness of the enhanced VMC algorithm, many simulation cases with lots of 
obstacles are conducted.  Only six cases are shown in the following pictures.  In these 
simulations, a robot navigating through a test area with randomly generated obstacles is 
simulated.  The cases shown are just six out of the 1000-run Monte Carlo simulation.  The CPU 
time is less than 4.72 seconds when programmed in Matrix Laboratory (MATLAB). 
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Figure 5. Simulation runs for different settings 

4.3 Sensitivity Analysis of the Enhanced VMC Method 

In order to study the sensitivity of the parameters in the enhanced VMC method, thousands of 
Monte Carlo runs are simulated. In the studies, a robot is commanded to move from one corner 
of the testbed to the other areas in the minimum time, while avoiding obstacles that are randomly 
generalized. The following tunable parameters are varied: (a) the number of control points of the 
B-spline curve, (b) the degree of the B-spline curve, (c) the number and the radius of the 
obstacles, (d) the initial turning angle of the robot; (e) the number of discretization nodes; and (f) 
the reference point. The following parameters are not varying: (a) the length and width of the 
testbed (640 pixel x 480 pixel), (b) the initial position and the final position of the robot is 
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uniformly generated in the corner [0, 20; 0, 20] pixel location and [620, 640; 460, 480] pixel 
location of the testbed, respectively; (c) 500 Monte Carlo runs are performed for each tunable 
parameter case; and (d) the initial PCPs are set to be one. 

The parameter is regarded as sensitive if the change of this parameter will produce significant 
change in the successful rate.  For example, the number of control points is sensitive as shown in 
Table 2.  When the number of control points is 5, 29 out of 500 runs fail; while if the number of 
control points is set to be 8, only 7 out of 500 runs (1.4%) fail. 

It can be seen from the following table that only the degree of B-spline is less sensitive.  
Therefore, it can be concluded that it is important to tune the parameters properly in order to 
achieve very robust results. 

Table 2. Sensitivity Analysis 

Tunable 
Parameters 

Sensitive 
or Not 

Examples 

Case 1 # Failed/500 Case 2 # Failed/500 

# of Control 
Points Sensitive 5 29/500 8 7/500 

Degree of B-
Spline 

Less 
sensitive 4 2/500 6 5/500 

# of Discre-
tization 
Points 

Sensitive 10 20/500 15 6/500 

Reference 
Point Sensitive -[1800,1800] pixel 6/500 -[18000,18000] pixel 39/500 

Initial Angle Sensitive [0 90]o 25/500 [40 45]o 6/500 
# of 
Obstacles Sensitive [1 10] 2/500 [30 40] 51/500 

Radius of 
Obstacles Sensitive  [5 15] pixel 6/500 [20 30] pixel 125/500 

In this section, ten hardware experiments are collected and compared. All the programs are 
written in the Matlab (R2010b) with the following toolboxes: Acquisition, Image Processing, 
RWTH-Mindstorms Nxt, and Optimization. All computations were performed on the same 
laptop with a frequency of 2GHz and random access memory (RAM) of 6GB. 

4.4 Experiments Comparison between VMC and LP 

Experiment Settings:  

These ten experiments are categorized in two groups.  In the first group, the whole optimization 
is completed in one planning horizon, while in the second group, two planning horizons are used 
to handle the unexpected pop-up obstacles.  
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In each test, the Lego robot will move from a randomly generated initial position to a randomly 
placed final position using both the LP and VMC methods. Four or five obstacles with the same 
radius will be placed randomly on the test bed. The maximum translational speed of the Lego 
robot is measured as max 15 /V cm s , while the maximum rotational speed is max 16 /rad s  . 

Performance Index and Success Rate Comparison: 

The performance index (PI) and CPU time of the 1st group are shown in Table 3. 

Table 3. The performance index and CPU time of the 1st group 

Group 1  LP VMC 

Test 1 CPU Time 3.69 8.08 
PI 29.24 31.56 

Test 2 CPU Time 2.16 3.44 
PI 30.29 30.23 

Test 3 CPU Time 4.81 32.28 
PI 38.41 39.54 

Test 4 CPU Time 4.72 5.44 
PI 39.22 39.54 

Test 5 CPU Time 3.11 5.10 
PI 36.17 37.18 

Test 6 CPU Time 5.03 9.51 
PI 33.13 34.07 

For each test, the minimum performance index among these two methods is regarded as the 
“best” solution. If the performance index from the other method is within 5% difference of the 
best solution, the solution found using this method is regarded as an “optimal” one; otherwise it 
will be regarded as a “feasible” solution only. 

 

Figure 6. Use Case 1 for solutions obtained using the LP method and the VMC method 

From Table 2 and Fig. 6, the following observations are obvious: (i) Both the LP and VMC 
methods can help Lego robot find minimum-time path successfully, the largest difference 
between the PIs is only 7%. (ii) The LP method has much higher “best” solution rate in finding 

Best

Optimal

Feasible

(a) LP Method (b) VMC Method

Best

Optimal

Feasible

(a) LP Method (b) VMC Method
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the optimal solutions as compared with that of the VMC method. (iii) The CPU time needed in 
the VMC method is in the range of 3-9s, while the LP method has a much smaller CPU time, 
which is in the range of 2-5s.  

It is worth mentioning that to record the experiment results, some unnecessary CPU time is 
wasted in exporting some information during the optimization. 

The performance index (PI) and CPU time of the 2nd groups are shown in Table 4 and the 
comparison of solutions is shown in Fig. 7. Observations similar to the first group can be made 
for the second group. It is worth noting that the performance index is changed during the two 
planning horizons because the distance to the desired position is reduced. 

Table 4. The performance index and CPU time of the 2nd group 

Group 2  LP VMC LP VMC 
  1st planning 2nd planning 

Test 1 CPU Time 3.29 9.23 2.67 8.42 
PI 31.28 31.83 20.41 22.05 

Test 2 CPU Time 4.25 6.33 2.41 4.15 
PI 30.45 29.79 19.23 18.39 

Test 3 CPU Time 4.05 6.35 2.78 6.81 
PI 29.40 30.78 18.80 20.64 

Test 4 CPU Time 3.97 6.45 2.07 4.69 
PI 34.75 36.13 21.82 22.38 

 

Figure 7. Use Case 2 for solutions obtained using the LP method and the VMC method 

Optimal Trajectories: 

Two tests (Test 2 and Test 4) from the 1st group are selected and shown in Fig. 8 and Fig. 9, 
respectively.  It can be seen from Fig. 8 and Table 2 that the optimal trajectories (represented by 
the red lines) and the minimum time to arrive at the desired position calculated by the VMC 
method and the LP method are approximately the same, and Lego robot can track the optimal 
trajectory (represented by the blue, dotted line) very well using the low level tracking controller. 
Seen from Fig. 9 and Table 3, the optimal trajectory generated by the LP method is smoother 
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Best
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than the one generated by the VMC method, and the minimum time calculated by the LP method 
is smaller than that of the VMC method.  

 

Figure 8. The optimal trajectory generated in test 2 of the 1st group: (a) VMC method; (b) 
LP method 

 

Figure 9. The optimal trajectory generated in test 4 of the 1st group: (a) VMC method; (b) 
LP method 

One result from the 2nd group is shown in the Fig. 10. Obstacles 1-3 are known a priori, while 
obstacles 4-5 are popped up obstacles. As shown in Fig. 6, once the optimal trajectories are 
computed using either the VMC method or the LP method, the Lego robot will follow the 
generated path. When new obstacles appear, the Lego robot will stop and wait for a new optimal 
trajectory to be generated and then follow the re-planned trajectory to reach the desired final 
position. It can be seen that the planned path in the first horizon passes through obstacle 4 
(unknown), while the re-planned trajectory corrects the trajectory in the second horizon. 
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Figure 10. The optimal trajectories generated in test 3 of the 1st group: (a) VMC method; 
(b) LP method 
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5 CONCLUSIONS 

In this research, the VMC trajectory optimization method is enhanced.  The performance of the 
VMC method is compared with a new strategy (LP) based method. It is concluded that the LP 
method can achieve a better performance than the VMC method in terms of convergence rate, 
optimization speed, and solution optimality.  New perturbation methods are proposed to enhance 
the initial guess.  

The following publications have been achieved: 

 N., Li, Y. Xu, K. Pham, “Micro Air Vehicle’s 3D Trajectory Planning and Parametric 
Estimation,” 2013 AIAA GNC, Boston, MA, August 18-22, 2013. 

 A journal version is under preparation. 

The following software packages have been delivered to AFRL-RV. 

 Software Version 1.0 for 2D Robot Trajectory Planning in Obstacle-Laden Environment 
(In report 1) 

 Software Version 2.0 for 2D Robot Trajectory Planning in Obstacle-Laden Environment 
(Monte Carlo Simulation Version) (in Report 2) 

 Software Version 3.0 for 2D Robot Trajectory Planning in Obstacle-Laden Environment 
(Monte Carlo Simulation Version) (in Report 3) 

 Ten Experiment Videos are submitted (in Report 3). 
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6 FUTURE WORK 

Some potential research and development improvements include: (i) The LP method needs to be 
further enhanced and used in decentralized cooperative trajectory planning problems. (ii) System 
identification or estimation methods can be used online to quantify the coefficients of the 
nonlinear dynamic model and a receding horizon framework can be used to update the command 
generation.  Stability needs to be proven for such a system. (iii) A helicopter platform needs to be 
incorporated into the testbed to provide real-time information about the test area from a moving 
platform. (iv) Communication issues such as delay is one of the next steps to be studied.  
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM  Description
   

BC  Boundary Condition
BVMC  B-Spline Augmented Virtual Motion Camouflage 

CoV  Calculus of Variations
CPU  Central Process Unit

DC  Direct Collocation
E.C.  Equality Constraints

  GUI  Graphical User Interface
I.E.C.  Inequality Constraints
NLP  Nonlinear Programming
LGL  Legendre-Gauss-Lobatto

LP  Local pursuit
MATLAB  Matrix Laboratory

MC  Motion Camouflage
NURBS  Non-uniform Rational B-Spline

PI  Performance Index
PMP  Pontryagin’s Minimum Principle
PCP  Path Control Parameter

RAM  Random Access Memory
SSA  Space Situational Awareness

VMC  Virtual Motion Camouflage
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