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Abstract 

In this paper a model-based approach is taken to identify certain geometric 
and/or material parameters for a structure. Specifically, the focus is on determin- 
ing the average thickness of a thin, fully-clamped plate undergoing free vibra- 
tion. The methodology is described and then implemented in an experimental 
setting using the measured free response of a plate. The practical SHM scenario 
driving this investigation is corrosion, since the extent of corrosion damage is 
often described in terms of the effective thickness of the plate, i.e. how much 
of the plate’s thickness is still structurally intact. Data are gathered from three 
resistive strain gages, placed at arbitrary locations and orientations. Using the 
experimental response and a finite element model, a Bayesian approach is taken 
to estimate the plate thickness, h. This thickness could then be used to infer the 
extent of the damage, had corrosion been present. The results show that even 
with limited, noisy vibration data valuable information regarding the geometry 
and material characteristics of a plate can be successfully estimated. 

 

1 INTRODUCTION 
Research into the effects of corrosion on the structural integrity of a component 

has been an active field for many years. Such work has been motivated by a vari- 
ety of applications, including ocean going vessels, civil engineering structures (e.g., 
bridges), etc. The extent of the corrosion damage is dependent on the material used in 
the structure and on environmental factors. For maximum accuracy, the description of 
the damage should be treated as spatially stochastic [1]. This unfortunately requires 
significant knowledge of the plate and how the environment factors into the system. 
For example, the extent to which a bridge structure is submerged in sea water might 
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vary with the tides, making the exposure time-varying. Requiring this level of knowl-
edge of a real-world system is, to say the least, impractical. Others have predicted
(i.e., not measured) an effective thickness using service time and tabulated constants
that account for environmental conditions [2]. This effective thickness is then used to
predict remaining life. An alternate approach compares the strength of a uniformly
and stochastically corroded plates under different loading conditions [3, 4, 5]. It has
been shown that the uniform effective thickness approximation produces conserva-
tive estimate for plate strength in both bending and compression. While the effective
thickness approach is useful/conservative in estimating remaining life, it is not overly
practical. Why? Because there is not a simple and reliable technique for obtaining
the effective thickness in-situ; direct measurements are either difficult or impossible.
One is left to the guesswork and legwork described in Reference [2].

The present paper does not focus on corrosion, per se. Instead, it lays out a con-
sistent (and simple) procedure for determining from experimental data the effective
thickness of a plate, regardless of its condition or accessibility. But the approach
is more flexible and broadly applicable than this. It can actually be used to iden-
tify any arbitrary geometric parameter or material property that can be incorporated
into a mathematical/numerical (usually physics-based) model for use in the Bayesian
methodology. See, for example, the crack and delamination detection examples pro-
vided in References [6, 7, 7]. But the Bayesian approach does not stop at giving esti-
mates of the desired parameter(s). It also gives an actual probability distribution for
the parameter, such that you can obtain meaningful credible intervals (the Bayesian
version of a confidence interval); one finds an estimate of the parameter and obtains
a measure of how certain that answer is. And this has been expanded to a incorporate
global searches, using what is called a population-based Bayesian approach [8]. The
“pop” approach opens the door to a more thorough search of the space of possible
solutions and may lead to multi-modal parameter distributions.

In the following section, a brief description of the methodology is described, in-
cluding a summary of the finite element model used. This is followed by a description
of the experimental setup, the sensors, the excitation, and the data itself. This is fol-
lowed by a few results and some general conclusions and future work. It is found that
this approach provides a straight forward and reliable means to determine effectively
the predicted thickness of the plate and its probability distribution.

2 THE BAYESIAN APPROACH
The following is a brief discussion of the Bayesian and population-based Bayesian

approaches for determining the unknown parameters and their probability distribu-
tions. For a thorough discussion of these techniques, see Reference [7].

The parameter identification process requires three things. First, the free response
of the structure under consideration must be measured. Second, a dynamic model of
the structure, containing the unknown parameter (here the thickness, h), must be de-
veloped; this model should be capable of predicting the free response, such that a
direct comparison to the experimental response can be made. Third, the Bayesian
methodology has to be implemented; this take the two signals and produces the pa-
rameter estimate and its distribution.
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2.1 The Standard Bayesian/MCMC Procedure
The experimental and model predicted responses are recorded in the vectors y and

x(θ), respectively. θ is a vector containing the unknown (to be determined) param-
eters. In this case, θ is simply the scalar h. The objective is to use the observations
y to estimate the probability distribution for the thickness. In Bayesian terms, this is
referred to as the posterior: pθi(θi|y). This is read as the probability of θ given y or,
alternatively, the probability of h conditioned on y.

Another key concept used in the Bayesian approach is the prior distribution:
pπ(θ,σ2). This probability incorporates any a-priori knowledge one might have about
the system. For example, if one hundred similar structures had been examined and
their thicknesses were all approximately the same (have), this constitutes valuable prior
knowledge. The initial parameter search could then be directed toward that value by
choosing a prior distribution with a single peak at have. If no information is known
a-priori, then a uniform prior distribution could be assumed.

Relating these two distributions (prior to posterior) is the likelihood. It represents
the probability of the data being recorded from a test given a presumed plate thick-
ness. Using the same notational form, the likelihood is expressed as: pL(y|θ). The
likelihood is formed by considering the uncertainty in our observations. Consider,
for example, describing the measured response at sensor “r” at discrete time “n” as
y ≡ yrn. Similarly, the model response is denoted x ≡ xrn. These two differ by some
amount of error - both modeling error and experimental noise. Thus, one may write:

yrn = xrn(θ)+ηrn, n = 1,2,3....N, r = 1, · · · ,M (1)

where N is number of recorded instances in the time series, M is the number of
sensors, and ηrn is the error. Both sources of error are assumed to be Gaussian. With
this assumption, the probability that the data y was produced by the model, under the
assumed parameters (θ) and the (unknown) noise variance σ2, is:

pL(y|θ,σ2) =
1

(2πσ2)
MN

2
exp

[
− 1

2σ2

M

∑
r=1

N

∑
n=1

(yrn − xrn(θ))
2

]
. (2)

This is the likelihood function. Equation (2) is clearly governed by the sum of
the squared error between the experimental data and the predicted model response:
∑∑(yrn − xrn(θ))

2.
Relating these three distributions (the posterior [our objective], the prior, and the

likelihood) is accomplished via Bayes’ theorem:

pΘ(θ,σ2|y) = pJ(θ,σ2,y)
pD(y)

=
pL(y|θ,σ2)pπ(θ,σ2)

pD(y)
. (3)

The term on the left is, in fact, the desired posterior. The prior and the likelihood are
in the numerator of the right side. And the denominator is a normalizing quantity,
which is very difficult to evaluate. So instead of directly calculating the posterior
from Equation (3), the Markov-chain Monte Carlo (MCMC) approach is taken to
evaluate the posterior [9], [10].

In short, the MCMC process is as follows. Using the prior, an initial guess for the
plate thickness h is generated. This parameter is used in the model to generate the
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response xrn(θ). This, along with the experimental signal yrn, are used to generate the
likelihood, Equation (2). The parameter (h) is perturbed and the process is carried out
again. A Bernoulli trial (with an approximately 40% acceptance rate) is used to either
keep the new value or discard it. Either way, the parameter is perturbed again and the
process repeated. This creates the MCMC chain, whose distribution is (exactly) the
desired posterior.

2.2 Population-Based MCMC
The MCMC method provides a good description of the posterior if there is a

single minima. However, for more complex problems with multiple minima, this
approach may just explore one local minima. In the process, the generated posterior
does not provide a good estimate of the desired parameter (h) nor does it reflect the
complexity of the problem. In the frequentist framework, methods such as genetic
algorithms and simulated annealing are commonly used to find global minima. To
explore more complex spaces multiple chains may be run simultaneously [11, 12].

Without going into the mathematical details, the pop-based MCMC involves cre-
ating k chains, each with different initial guesses (of h) spread throughout the space.
The first chain is of the actual posterior. Subsequent chains are raised to successively
higher powers, smoothing the distributions. These chains all move forward with each
iteration and, with a 50% probability, the chains are randomly swapped. This way, all
of the chains are informing one another as to the presence of multiple peaks within the
distribution. For a more detailed discussion of population based Bayesian methods
see Reference [12].

3 MECHANICS MODEL
Regardless of the type of model used, many estimation methods require repeat-

edly evaluating the model with different parameter combinations. So while accuracy
and computational speed both matter, speed is the dominant factor. The finite element
method is used to model the plate, with the number of degrees of freedom being kept
to a minimum. A 20 by 16 element quadrilateral mesh is used. Despite the coarse-
ness of the mesh, the model still matches the theoretical predictions of the first and
second natural frequencies for a cracked plate to within 0.5%. The model is classi-
cally damped, with all modes sharing the same damping ratio of 0.003. For a detailed
discussion of this model see Reference [7].

The unknown model parameter of interest is the thickness of the plate, though
in theory any geometric or material property could be placed in the vector θ. There
is an additional “nuisance” structural parameter, whose use is necessitated by the
differences between perfect theoretical models and physical reality. This additional
parameter is a lumped rotational stiffness added to the nodes on the perimeter of the
plate, which allows the finite element model to represent the rigid-seeming, yet im-
perfect, boundary condition used in the experiment. While the plate is well clamped,
as described in section 4, it is not perfectly clamped. Instead of a fully clamped con-
dition, and eliminating rows and columns from the global stiffness matrix, the plate is
considered simply supported with a large lumped rotational stiffness applied around
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Normalized Dim. Value

Width (Lx/Ly) 1.25
Length (Ly/Ly) 1
Thickness (h/Ly) 0.0026

Figure 1 & Table 1: The experimental test setup and nondimensional plate geometry

the perimeter of the plate. A constant is added to the edge rotational degrees of free-
dom elements of the global stiffness matrix. For each node, the constant is scaled by
the edge length of each finite element so as to produce a comparable result between
meshes of different element density. The output of this model is the rotational deflec-
tion of the plate at the sensor locations of the experimental plate. Strain is calculated
from these rotations using central differences.

The actual time response is determined via modal analysis. The FEM model
is used to determine the natural frequencies and mode shapes. The analytic modal
solution is then generated from these numerical eigen-results.

In its current form, the model is constructed with the implicit assumption that the
corrosion is uniform. A more detailed model that included details of the pitting would
require too many variables. A large number of variables would greatly increase the
solution time, and it is likely that different pitting patterns could have very similar
impacts on the vibration response, making it difficult to distinguish between them
without many more sensors.

4 EXPERIMENTAL PROCEDURE
The test specimen was a 0.76m by 0.60m (30” by 24”, 5:4 aspect ratio), 1.55mm

(1/16”) thick 6061-T6 aluminum plate. The density was calculated using a digital
scale and a vernier caliper. Normalized dimensions are given in Table 1.

The plate was clamped in a bolted fixture shown in Figure 1. The values of
Young’s modulus and Poisson’s ratio used by the model were determined via tension
tests following the ASTM E8 standard.

4.1 EXCITATION
The plate was excited from rest by the impact of a simple rubber-tipped mallet.

The impact point was selected to be an arbitrary point along the diagonal of the plate.
There are two phenomena not captured by the model that are dominant immediately
after impact. The first is nonlinearity of the response due to the large transverse de-
flection experienced. For deflections larger than about one plate thickness membrane
stresses are significant, whereas the finite element model includes only the effects of
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Figure 2: The arbitrarily selected locations and orientations of the three strain gages
(short red lines) and the impact location (circle)

bending. The second unmodeled phenomenon is the power in non-modal frequencies
transmitted by impact. This “ringing” in the response dissipated quickly, but must
not be compared to the model prediction by the MCMC process, as the behavior can
not be captured by the simple model. A more complex model may be used, but at the
cost of computational speed. Once these two effect subside, free bending vibration
dominates the response. Hence, the first part of the response (t < to) must be omitted.

The initial conditions of the plate are needed to compute the amplitudes and
phases of the various terms in the solution. Unfortunately, at to - the beginning of
the signal that was retained - the initial conditions are unknown. Using the strain and
the strain rate (found via central difference) at to, the unknown amplitudes and phases
were determined numerically.

4.2 SENSORS
Three single-axis Vishay MicroMeasurements model EA-13-125AD-120 strain

gages were located in arbitrary positions and orientations as shown in Figure 2. The
signals were sampled at a frequency of 25kHz. In the case of a heavily corroded plate,
accelerometers may be a better choice because they are easier to apply to uneven
surfaces, but the type of data produced is similar, and so the method used here would
be unaffected by the change.

The signals were filtered with a passband filter between the frequencies of 13Hz
and 66Hz. These frequencies were chosen based on the FFT of the unfiltered signal,
showing that the first three frequencies would be well inside the band, and higher
frequencies would be well outside it.

The length of time modeled is selected to maximize the quantity of data used,
while avoiding using data with a low signal to noise ratio (SNR). Because the mag-
nitude of the response decays, the SNR decreases over approximately 0.75 seconds
from about 25 to about 15. By utilizing data in the time domain all available infor-
mation, including frequency, magnitude, and phase of the response, is used.
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Figure 3: The probability density function of the non-dimensionalized plate thickness
based on the recorded data. True value is shown as a solid vertical line.

5 RESULTS
The probability density function calculated for the plate thickness parameter is

shown in Figure 3. The most likely value of thickness is 0.002645, which is 1.7%
larger than the directly measured thickness. This is likely sufficiently accurate for
industrial purposes. It is clear that there are two distinct peaks in the result. This
is likely due to the fact that a change in thickness has a similar effect on the free
response to a change in the edge spring constant parameter. It is important to note
that the peak near the correct value about twice as tall as that at the spurious value,
and is thus shown to be the more likely answer. Had a genetic algorithm been applied
to this problem, only the location of the taller peak would have been found, and the
user would remain ignorant of the possibility of a thinner plate/higher edge stiffness
combination. In generating this result, a non-informative uniform prior was used
for all parameters. It is likely that using information about length of service and
environmental conditions, a more descriptive prior could be selected. Such a change
would likely increase the certainty in the correct answer, and this ability is one of the
main benefits of Bayesian methods.

6 CONCLUSIONS
This work demonstrates the potential that a Bayesian parameter identification

methodology has for identifying key geometric features from an experimental sys-
tem. In this case, determining the effective thickness of a plate provides a means for
assessing the degree of corrosion damage that has occurred in a plate structure. The
results show that the methodology was able to identify the correct plate thickness
with a reasonable degree of certainty.

It is expected that this work will be expanded to consider a plate that has under-
gone actual corrosion damage. Using this pop-based Bayesian method, an effective
thickness estimate (confirmed by alternative tests) will be used to assess the remain-
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ing life of the plate.
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