Y ¥ l
ARMY RESEARCH LABORATORY ‘ | R

Two-Dimensional Translations, Rotations, and Intersections
Using C++

by Robert J. Yager

ARL-TN-539 June 2013

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TN-539 June 2013

Two-Dimensional Translations, Rotations, and Intersections
Using C++

Robert J. Yager
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
June 2013

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
20 March 2013

4. TITLE AND SUBTITLE

Two-Dimensional Translations, Rotations, and Intersections Using C++

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Robert J. Yager

5d. PROJECT NUMBER
AHB80

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory

ATTN: RDRL-WML-A

Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TN-539

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Two-dimensional operations, such as rotations, translations, and intersections, are tools that are essential for many types of
scientific modeling. However, the C++ programming language does not natively perform them.

15. SUBJECT TERMS

rotation, translation, intersection, 2-D, two dimensional, C++, operation

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT
Unclassified Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT

uu

18. NUMBER
OF PAGES

20

19a. NAME OF RESPONSIBLE PERSON
Robert J. Yager

19b. TELEPHONE NUMBER (Include area code)
410-278-6689

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures
Acknowledgments
1. Introduction

2. Translation of a Point in Space

2.1 DEIIVALION ..viiiieiecie et
2.2 CH++ Implementation ..o

3. Rotation of a Point About an Arbitrarily Positioned Axis

TN B 1= 01 711 o o SRR
3.2 CH+ IMplementationccccceoeeiieieiie s
RMALIIX2D() COUR ...t

4. Intersection Between Two Lines

O R B 1= 4 1V [0 o PSR
4.2 CH+ IMpIementationc.ccceeieiieiieeiecie e

5. Summary

Distribution List

List of Figures

Figure 1. Translate() EXAMPIE.ooi it 2
Figure 2. ROtate() EXAMPIE.ccveeiiiie et e et enre e ae e e nreas 5
Figure 3. Intersecting liN€S A @Nd B.cooeiiiiiiic e e e 7
Figure 4. INtersect2D() eXaAMPIE.c.ooiiioi et e 9

Acknowledgments

The author would like to thank Luke Strohm of the U.S. Army Research Laboratory’s Weapons
and Materials Research Directorate. Mr. Strohm provided technical and editorial
recommendations that improved the quality of this report.

INTENTIONALLY LEFT BLANK.

Vi

1. Introduction

Two-dimensional (2-D) operations, such as rotations, translations, and intersections, are tools
that are essential for many types of scientific modeling. However, the C++ programming
language does not natively perform them. This report documents a set of functions, written in
C++, that can be used to perform 2-D rotations, translations, and intersections. All of the
functions have been grouped into the y2DOps namespace, which is summarized at the end of this
report.

The functions that are presented in this report are special cases of more general three-
dimensional (3-D) functions.! Compared to the 3-D functions, the 2-D functions provide simpler
interfaces and faster calculations.

2. Translation of a Point in Space

2.1 Derivation

Let the position vector p represent an arbitrary point in a plane, where
p=pX+p,y. 1)

Furthermore, let d represent a displacement vector, where

d=dx+dy. (2)
If p’ is used to represent p after it has been translated, then
p' = (p,+d)%+(p, +d,)g. 3)
2.2 C++ Implementation
Translate2D() Code
inline void Translate2D(//<==========================PERFORMS A 2D TRANSLATION
double p[2],//<------- COORDINATES TO TRANSLATE (MODIFIED BY THIS FUNCTION)
const double d[2]){//<--==========-mmmmmm e DISPLACEMENT VECTOR
p[@]+=d[@] , p[1]+=d[1];
}/ /[~~nnYAGENAUT@GMATL . COM~nmmnmnn RS LAST~UPDATED~@2MAY 201 3~~nnnn

1Yager, R. J. Three-Dimensional Translations, Rotations, and Intersections Using C++; U.S. Army Research Laboratory:
Aberdeen Proving Ground, MD, 2013, in press.

Translate2D() Parameters

p p is a two-element array that stores the position vector that is described by equation 1
(P={p,, p,}). Note that p is modified by the Translate() function, as described by
equation 3.

d d is a two-element array that stores the displacement vector that is described by

equation 2 (d={d,,d,}). d determines the amount and direction by which p is

translated.
Translate2D() Example

Figure 1 shows point p being translated to a new position (') by displacement vector d .

y
A

v
>

Figure 1. Translate() example.

Let p=1{31} and d = {-21}. Point p’ can be found by using the Translate2D() function, as
shown in the following sample code.

#include <CStdiod/ /.t it e printf()
#tinclude "y 2d 0pPS.h /i ettt e e e Translate2D()
int main(){

double p[2]={3,1};

double d[2]={-2,1};

y2DOps: :Translate2D(p,d);

printf("p[@]=%f, p[1]=%f\n",p[0],p[1]);

OUTPUT:

|p[@]=1.000000, p[1]=2.000000

3. Rotation of a Point About an Arbitrarily Positioned Axis

3.1 Derivation

Suppose that the unit vector Vv is used to define an arbitrary axis about which a point in space
will be rotated.

V=V X+V,y+V,2. 4)

Rodrigues’s rotation formula can be used to construct a rotation matrix,?> R, that can be used to
perform a rotation about v by an angle . The direction of the rotation can be determined by
using the right-hand-thumb rule (when the right thumb is pointed in the direction of v, the curled
fingers of the right hand will point in the direction of the rotation).

Vi(l-cy)+c, vyv,[L-c,)-v,s, vy, (l-c,)+vs,
R=|vy,(l-c,)+v,s, Vi(l-cy)+c, vyv,(L—c,)-Vs, |, (5)
vy, (L-c,)-v,s, Vv, (d-c,)+vs, Vil-c,)+c,

X

where
¢, = cos(6) (6)
and
s, =sin(9). 7)
For the 2-D case, assume that v points in the positive Z direction. Then
v,=0,v,=0,and v, =1, (8)
This greatly simplifies equation 5:
c, —-s, O
R=|s, ¢, 0. 9)
0O 0 1

Substituting equations 6 and 7 into equation 5, then converting to 2D,

cosfd -sind
R=| |) (20)
sin@ cos@

2Mason, M. T. Mechanics of Robotic Manipulation; Massachusetts Institute of Technology Press: Cambridge, MA, 2001,
(p 46, equation 3.26).

Let the position vector p locate an arbitrary point in a plane, where

p=pX+p,y. (11)
Let the position vector 0 locate the origin of the rotation axis defined by V.

G6=0X+0,y. (12)

The translation-rotation-translation sequence described by equation 13 can be used to find p’,

where p’ is used to represent p after it has been rotated about V.

p'=R(p-0)+0. (13)

3.2 C++ Implementation

Two functions are used to perform 2-D rotations. The first function, RMatrix2D(), calculates the
rotation matrix that is presented in equation 10. The second function, Rotate2D(), performs the
rotation that is presented in equation 13. Breaking the calculation into two functions allows
functions that rotate objects containing more than one point to be written in a manner that
doesn’t sacrifice performance.

Rmatrix2D() Code
inline void RMatrix2D(//<======================CALCULATES A 2D ROTATION MATRIX
double R[4],//<-------------- ROTATION MATRIX (CALCULATED BY THIS FUNCTION)
double rads){//<--------------- THE ANGLE OF THE ROTATION (CCW IS POSITIVE)
R[@]=R[3]=cos(rads) , R[1]=-(R[2]=sin(rads));
}/ / ~~ornYAGENAUT@GMAIL . COMnnnmmmmmmnnnmmnmmmsmm s LAST~UPDATED~02MAY201 3~~nnnn

Rmatrix2D() Parameters

R R is a four-element array that stores the rotation matrix that is described by equation 10
(R={R;,.,Ry1: Ry, R;1}). Note that R is modified by the Rmatrix2D() function. R is

intended to be used as the third argument of the Rotate2D() function.

rads rads is used to represent the angle (in radians) of the rotation. The direction of the
rotation is counterclockwise (see figure 2).

Rotate2D() Code

inline void Rotate2D(//<===================================PERFORMS A ROTATION
double p[2],//<---------- COORDINATES TO ROTATE (MODIFIED BY THIS FUNCTION)
const double 0[2],//<---==--=cmmmmmmuu- THE ORIGIN OF THE AXIS OF ROTATION
const double R[4]){//<-----------=---- A ROTATION MATRIX (FROM RMatrix2D())

double tO=p[@]-0[0] , tl=p[1l]-0[1];
p[@]=R[0©]*tO+R[1]*t1+0[0] , p[1]=R[2]*tO+R[3]*tl+0[1];
}/ /~~nnYAGENAUT@GMAIL . COMnnnmnnmn A LAST~UPDATED~02MAY2013~~nmnn

Rotate2D() Parameters

p p is a two-element array that stores the position vector that is described by equation 11
(P={p,, p,})- Note that p is modified by the Rotate2D() function, as described by
equation 13.

0 0 is a two-element array that stores the position vector that is described by equation 12

(0={o,,0,}). 0 is the point about which p is rotated.

R R is a rotation matrix that has been precalculated using the RMatrix2D() function.

Rotate2D() Example

Figure 2 shows point p being rotated about 6 to a new position (p’).

y

A

v
<>

Figure 2. Rotate() example.

Let p=1{31} and G ={21}. Furthermore, let the angle of rotation be /2. Point P’ can be found

by first using the RMatrix2D() function to calculate a rotation matrix, then using the Rotate2D()
function to perform the rotation.

#include <CStdiod/ /.t ittt et i e e printf()
#include "y _2d_ops.h
int main(){
double p[2]={3,1};
double o[2]={2,1};
double R[4];/*<-*/y2DOps: :RMatrix2D(R,3.14159265358979/2);//...rotation matrix
y2DOps: :Rotate2D(p,0,R);
printf("p[@]=%f, p[1]=%f\n",p[@],p[1]);

OUTPUT:

|p[@]=2.000000, p[1]=2.000000

4. Intersection Between Two Lines

4.1 Derivation

Suppose that line A passes through the points AO and Ai where

Ay=A, R+ A9 and A=A R+A Y. (14)

Let p, represent a point that lieson A. A, and A can be used to construct a parametric
equation for p, as a function of the parameter t,:

pa=A (AR, (15)
The parameter t, represents the scaled distance from A to A along A. Thus, if t, =0, p, is
located at A,. If t, =1, p, is located at A, .

Similarly, suppose that line B passes through the points B, and B, where
B, =B,,X+B,,y and B, =B,,X+B,,¥. (16)

Let P, represent a point that lieson B. B, and B, can be used to construct a parametric
equation for P, as a function of the parameter t;:

By =B, + (B, - B,)t,. 17)

Figure 3 presents an image of lines A and B for the case where they intersect.

Figure 3. Intersecting lines A and B.

The point of intersection between A and B occurs where p, isequal to p;. Thus,

A+ (A — A)ty =B, + (B, — B,)t,. (18)
Rearranging terms,
'E\)_go Z(;\)_;‘i)to_*—(gl_éo)tl' (19)
This can be written in matrix form as
|:A0,x - BO,xi| _ |:A0x - Ai,x Bl,x - BO,xi| |:t0:| . (20)
AO,y - BO,y AO,y - Ai,y Bl,y - BO,y t1
Solving for t,
|:t0:| _ |:A0x - Ai,x Bl,x - BO,X :|_l |:A)x - BO,X:| (21)
t AO,y - Ai,y Bl,y - BO,y AO,y - BO,y

Recall that the vector t contains the parameters from equations 15 and 17. Thus, once t is
known, t, can be substituted into equation 15 to find the point of intersection between A and B.

Note that if the two-by-two matrix defined in equation 21 is noninvertible, then A is parallel to
B.

Because t, and t, are defined to be scaled distances from A, to A and B, to B,, respectively,
if the conditions presented in equation 22 are met, then the point of intersection lies between ﬁb
and A and between B, and B,, as shown in figure 3.

O0<t <1 and O<t, <1. (22)

4.2 C++ Implementation

Two functions are used to find line-line intersections. The first function, IParameters2D(),
calculates a two-element array that is the solution to equation 21. The second function,
Intersect2D(), calculates the point of intersection between two lines.

Because there is a chance that the two-by-two matrix shown in equation 21 will be singular, a
Boolean that indicates whether or not a solution is valid is returned by the IParameters2D()
function.

IParameters2D() Code

inline bool IParameters2D(//<============PARAMETERS FOR LINE-LINE INTERSECTION
double t[2],//<------ INTERSECTION PARAMETERS (CALCULATED BY THIS FUNCTION)
const double A[4],//<--===--—=cmmmmmeemee LINE A {A®X,AQY,A1X,A1Y}
const double B[4],//<--===-=-==-cmmmmmmmmeee LINE B {B@X,B)Y,B1X,B1Y}
double e=1E-9){//<----CUTOFF VALUE FOR DETERMINING IF A AND B ARE PARALLEL
double a=A[0]-A[2] , b=B[2]-B[O],//«cuuueeeeeeeeeeerieeeeaeannnnns 2x2 matrix
c=A[1]-A[3] , d=B[3]-B[1];// elements
double D=a*d-b*cC;// ..ttt determinant of 2x2 matrix
if(fabs(D)<e)return false;//....=> A & B are parallel (and t is meaningless)
double f=A[0]-B[0@] , g=A[1]-B[1];
t[@]=(d*f-b*g)/D , t[1]=(-c*f+a*g)/D;
return true;//. ..o e => A & B are not parallel
}Y/ / ~~nnYAGENAUT@GMAIL . COMnnmmmmmmmmmmmmmmmmnnnnninin LAST~UPDATED~02MAY2013~~~~nn

IParameters2D() Parameters
R R is a rotation matrix that has been precalculated using the RMatrix2D() function.

t t is a two-element array that stores the parameters described in equation 21 (t={t,,t,}).
Note that t is modified by the IParameters2D() function.

A A is a four-element array that stores the line that is defined by equation 14

(A={Ao: Aoys A Ay 3)-

B B is a four-element array that stores the line that is defined by equation 16
(B={B,, . Bo.y s Bixs Blyy}).

e e is the cutoff value for testing whether or not A and B are parallel. If the determinant
of the matrix in equation 21 is less than e, then A and B are considered to be parallel.
The default value of e is 10~°.

IParameters2D() Return Value

IParameters2D() returns false if A is parallel to B. A return value of false indicates that t has not
been calculated and, thus, should not be passed to the Intersect2D() function.

Intersect2D() Code

inline bool Intersect2D(//<============CALCULATES LINE-LINE INTERSECTION POINT
double x[2],//<-------- POINT OF INTERSECTION (CALCULATED BY THIS FUNCITON)
const double t[2],//<------- INTERSECTION PARAMETERS (FROM IParameters2D())
const double A[4]){//<---====m--mmmmmmmee e LINE A {A®X,AQY,A1X,AlY}

x[@]=A[@]+t[@]*(A[2]-A[@]) , x[1]=A[1]+t[@]*(A[3]-A[1]);
return t[0]>08&t[0]<18&t[1]>08&t[1]<1;
}/ [~mnnYAGENAUT@GMAIL . COMnnnmnmmmmmnnmmmmmmmmmnnnns LAST~UPDATED~02MAY 201 3~~nnnn

Intersect2D() Parameters

X X is a two-element array that stores the point of intersection between lines A and B.
Note that x is modified by the Intersect2D() function.

t t is a parameter list that has been precalculated using the IParameters2D() function.

A A is a two-element by two-element array that stores the line that is defined by equation

14 (A:{AO,X’ AO,y ! Al,x’ Al,y})'
Intersect2D() Return Value
Intersect2D() returns true if line segment A intersects line segment B.

Intersect2D() Example

Figure 4 shows intersecting line-segments A and B.

y

A

b|_3>1

@ TJ|
o
o,

v
><>

S

Figure 4. Intersect2D() example.

Let A, ={2,0}, A ={2,2}, B, ={11}, and B, ={31}. The point of intersection can be found by
first calling the IParameters2D() function, then using the result in the Intersect2D() function.

Hinclude <CStdio>/ /. vttt et ettt e e e, printf()

#include "y_2d_ops.h"

int main(){
double A[4]={2,0 , 2,2} ;// ettt ittt eneneeeeeonnneannns a line segment
double B[4]={1,1 , 3,01}/ /et eennnnnnoasssssnnns a line segment
double t[2];/*<-*/y2DOps: :IParameters2D(t,A,B);//...... intersection parameters
double p[2];/*<-*/y2D0Ops::Intersect2D(p,t,A);//cceeeeeo.. point of intersection
printf("p[0]=%f, p[1]=kf\n",p[0],p[1]);

Y/ [~ YAGENAUT@GMAIL . COM~~ ~n ~LAST~UPDATED~02MAY2013~~r~~rn

OUTPUT:

|p[@]=2.000000, p[1]-1.000000

5. Summary

A summary sheet is provided at the end of this report. It presents the y2DOps namespace, which
contains the five functions that are described in detail in sections 2, 3, and 4. Also presented are
two examples that demonstrate the versatility of the functions described in this report. The first
uses the Rotate2D() function to calculate a set of points that defines a simple orbit of a moon
around a planet, which in turn is in orbit around a star. The second uses the Intersect2D()
function to draw a four-sided spiral. Both functions create text files that contain all of the
information needed to create the two images presented in the summary sheet.

10

1T

Y2DOps Summary

y_2d_ops.h
#ifndef Y_2D_OPS_H_
#define Y_2D_OPS_H_
#include <cmath>//. . oo sin(),cos(),abs()
namespace y2DOps{//........... TWO-DIMENSIONAL OPERATIONS (CARTESIAN COORDINATES)

//0@EECERCERCARCARCAREACCRRERCARCARCARCARCARCARCRREREEAREAREARARCACCEACERCAREE
inline void Translate2D(//< PERFORMS A 2D TRANSLATION
double p[2],//<------- COORDINATES TO TRANSLATE (MODIFIED BY THIS FUNCTION)
const double d[2]){//<--=-=-mmmmmmmmmm e DISPLACEMENT VECTOR
p[e]+=d[e] , p[1]+=d[1];
}/ /~~~~YAGENAUT@GMAIL .COM LAST~UPDATED~@2MAY2013~~n~nmn
inline void Rotate2D(//< PERFORMS A ROTATION
double p[2],//<-====-=--- COORDINATES TO ROTATE (MODIFIED BY THIS FUNCTION)
const double 0[2],//<----==---mmmmcmmn-n THE ORIGIN OF THE AXIS OF ROTATION
const double R[4]){//<-- A ROTATION MATRIX (FROM RMatrix2D())
double t@=p[@]-0[0] , tl=p[1]-o[1];
p[@]=R[@]*t0+R[1]*t1+0[@] , p[1l]=R[2]*tO+R[3]*t1l+o[1];
}/ /~~~~YAGENAUT@GMAIL .COM LAST~UPDATED~@2MAY 2013 ~~n~nmn
inline void RMatrix2D(//< ==CALCULATES A 2D ROTATION MATRIX
double R[4],//< ROTATION MATRIX (CALCULATED BY THIS FUNCTION)
double rads){//<--------------- THE ANGLE OF THE ROTATION (CCW IS POSITIVE)
R[@]=R[3]=cos(rads) , R[1]=-(R[2]=sin(rads));
}/ /~~~~YAGENAUT@GMAIL . COM
inline bool Intersect2D(//<=

LAST~UPDATED~02MAY 2013 ~~nmnn
===CALCULATES LINE-LINE INTERSECTION POINT

double x[2],//<-------- POINT OF INTERSECTION (CALCULATED BY THIS FUNCITON)
const double t[2],//<------- INTERSECTION PARAMETERS (FROM IParameters2D())
const double A[4]){//<-=====mmmmmmmmmmmmamaaaa LINE A {A@X,A®Y,A1X,A1Y}

x[@]=A[@]+t[0]*(A[2]-A[0]) , x[1]=A[1]+t[@]*(A[3]-A[1]);
return t[0]>08&t[0]<1&&t[1]>08&t[1]<1;
}/ /~~~~YAGENAUT@GMAIL . COM: LAST~UPDATED~82MAY 2013~
inline bool IParameters2D(//<== PARAMETERS FOR LINE-LINE INTERSECTION
double t[2],//<------ INTERSECTION PARAMETERS (CALCULATED BY THIS FUNCTION)
const double A[4],//<--- LINE A {A@X,AQY,A1X,AlY}
const double B[4],//<--- LINE B {BOX,B)Y,B1X,B1Y}
double e=1E-9){//<----CUTOFF VALUE FOR DETERMINING IF A AND B ARE PARALLEL

double a=A[@]-A[2] , b=B[2]-B[O],// cueueriririiinenaninanannen.. 2x2 matrix
c=A[1]-A[3] , d=B[3]-B[1];// elements
double D=a*d-b*c;//...ccviiiiiii i determinant of 2x2 matrix

if(fabs(D)<e)return false;//....=> A & B are parallel (and t is meaningless)

double f=A[@]-B[@] , g=A[1]-B[1];

t[@]=(d*f-b*g)/D , t[1]=(-c*f+a*g)/D;

return true;//. o => A & B are not parallel
}/ /~~~~YAGENAUT@GMAIL .COM LAST~UPDATED~@2MAY2013~~~nmn

}//g@g@@
#endi

FIGURE 1

image created from orbit.txt.

EXAMPLE 1

#include <cstdio>//.....oooviiiiiiiiiii, FILE,freopen(),stdout,printf(),fclose()
#include "y_2d_ops.h"//..cuo i Rmatrix2D(),Rotate2D()
int main(){//< USE ROTATIONS TO MODEL CIRCULAR ORBITS
using namespace y2DOps;
FILE *f=freopen(“orbit.txt","w",stdout);//........... redirect output to a file
double s[2]={0,0},p[2]={1,0},m[2]={1.2,0};//..... sun, planet, & moon positions
double Rp[4];/*<-*/RMatrix2D(Rp,.00436);//.. ...rotation matrix for planet
double Rm[4];/*<-*/RMatrix2D(Rm,.279);//....rotation matrix for moon
printf("# planet | moon\n# x , y | x , y\n");//.column header
for(int i=0;i<1444;++i){
printf("%6.3f,%6.3f,%6.3f,%6.3f\n",p[@],p[1],m[@],m[1]);//..record positions
Rotate2D(p,s,Rp),Rotate2D(m,s,Rp);//....rotate planet-moon system around sun
Rotate2D(m,p,Rm);}// o oo rotate moon around planet
fclose(f);
}/ [~~mmnnYAGENAUT@GMAIL . COM:

LAST~UPDATED~@2MAY2013~~nmnn

orbit.txt

planet | moon
X,y X 5y
1.000, 0.000, 1.200, 0.000
1.000, ©.004, 1.192, ©.060
1.000, ©.009, 1.169, 0.116

EXAMPLE 2

FIGURE 2

image created from spiral.txt

#include <cstdio>//....cooviiiiiiiiii, FILE,freopen(),stdout,printf(),fclose()
#include "y_2d_ops.h"//. . <cmath>,IParameters2D(),Intersect2D()
int main(){//<= == =USE LINE-LINE INTERSECTIONS TO MAKE A SPIRAL
using namespace y2DOps;
FILE *g=freopen("spiral.txt","w",stdout);//.......... redirect output to a file
double x[25@][2]={ {-1,1} , {-1,-1} , {1,-1} , {1,1} };
for(int i=3;i<249;++i){
double a=(1.585)*(i-1)-.0285;//.....cc.... "a" increments by about 90 degrees
double A[4]={X[i][@],X[i][1],X[i][@]+cos(a),X[i][1]+sin(a)};//
double B[4]={X[i-3][@],X[i-3]1[1],X[i-2][0],X[i-2][1]};// - eerrrro. .
double t[2];/*<-*/IParameters2D(t,A,B);//..... calculate intersect parameters
Intersect2D(X[i+1],t,A);}// ccvvn. use parameters to find X[i] intersections
printf("# x , VAN)5/ et print column header
for(int i=0;1<250;++i)printf("%6.3f,%6.3f\n",X[1][0],X[1][1]);//..print points
fclose(g);
}/ / ~mnmnnYAGENAUT@GMAIL . COM

LAST~UPDATED~02MAY 2013 ~~nmnin

spiral.txt

#x , oy
-1.000, 1.000
-1.000,-1.000
1.000,-1.000
1.000, 1.000
-1.000, 1.000
-0.972,-1.000
1.000,-0.944
0.917, 1.000

NO. OF
COPIES ORGANIZATION

1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
DTIC OCA

1 DIRECTOR
(PDF) US ARMY RESEARCH LAB
IMAL HRA

1 DIRECTOR
(PDF) US ARMY RESEARCH LAB
RDRL CIO LL

1 GOVTPRINTG OFC
(PDF) A MALHOTRA

24 DIR USARL
(5HC, RDRL WM
19PDF) P BAKER
RDRL WML
M ZOLTOSKI
RDRL WML A
M ARTHUR
B BREECH
P BUTLER
B FLANDERS
W OBERLE
C PATTERSON
R PEARSON
L STROHM
A THOMPSON
R YAGER (5 HC)
RDRL WML B
N TRIVEDI
RDRL WML C
S AUBERT
RDRL WML D
R BEYER
RDRL WML E
P WEINACHT
RDRL WML F
D LYON
RDRL WML G
J SOUTH
RDRL WML H
JINEWILL

