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1. Introduction 

Extensions of the original constant-temperature Dissipative Particle Dynamics (DPD) method 

have been developed; in particular, methods that impose constant-energy (DPD-E) (1, 2) and 

constant-pressure (DPD-P) (3, 4) conditions. An extension not currently available within the 

DPD framework is an approach that imposes constant-enthalpy conditions (DPD-H). While 

conserving total enthalpy, such an approach would allow temperature variations within the 

simulation cell under constant-pressure conditions. Analogous to applications of constant-

enthalpy molecular dynamics (MD), DPD-H can be applied to pressure-dependent 

nonequilibrium conditions, e.g., where mixing becomes prohibitive as the simulation cell 

pressure increases for diffusion-limited phenomena (5). As part of the work presented here, we 

develop a DPD-H method by combining the equations of motion (EOM) for a barostat with the 

EOM for the DPD-E method. Both deterministic (Hoover) and stochastic (Langevin) barostats 

are implemented within the DPD-H formulation, where a barostat temperature is defined to 

satisfy the fluctuation-dissipation theorem (FDT) for the Langevin barostat. 

When applying any DPD variant, numerical integration of the EOM is a key consideration 

because the stochastic component requires special attention. Recent work by our group (6–8) has 

provided a comprehensive description of numerical integration schemes based upon the 

Shardlow-splitting algorithm (SSA) (9) for the isothermal, isothermal-isobaric, and isoenergetic 

DPD methods. The SSA decomposes the EOM into differential equations that correspond to the 

deterministic dynamics, and elementary stochastic differential equations (SDEs) that correspond 

to the stochastic dynamics. In the original SSA formulation, both types of differential equations 

are integrated via the velocity-Verlet algorithm (9), where the stochastic dynamics are 

additionally solved in an implicit manner that conserves linear momentum. 

In this work, we provide an SSA formulation for the DPD-H method, which is verified by 

considering both the standard DPD fluid (pure and binary mixtures) (10) and a coarse-grain solid 

model (11). For both models, we further verify the DPD-H variant by instantaneously heating a 

slab of particles in the simulation cell. We monitor the evolution of the temperature, pressure, 

and density as the system approaches an equilibrated state while maintaining constant-enthalpy 

conditions. For completeness, derivations of the Fokker-Planck equation (FPE) and the FDT for 

the DPD-H variant are included in appendix A. 
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2. Formulations of DPD at Fixed Pressure and Enthalpy Using Shardlow-

Like Splitting Numerical Discretization 

2.1 General Formulation of DPD 

DPD particles are defined by a mass im , position ir , and momentum ip . The particles interact 

with each other via a pair-wise force ijF  that is written as the sum of a conservative force 
C

ijF , 

dissipative force 
D

ijF , and random force 
R

ijF : 

 
R

ij

D

ij

C

ijij FFFF  . (1) 

C

ijF  is given as the negative derivative of a coarse-grain potential, 
CG

iju , expressed as 

 
ij

ij

ij

CG

ijC

ij
rr

u r
F

d

d
  (2) 

where jiij rrr   is the separation vector between particle i  and particle j , and ijijr r . The 

remaining two forces, 
D

ijF  and 
R

ijF , can be interpreted as a means to compensate for the degrees 

of freedom neglected by coarse-graining. The conservative force is not specified by the DPD 

formulation and can be chosen to include any forces that are appropriate for a given application, 

including multibody interactions (e.g., 11–13). 
D

ijF  and 
R

ijF  are defined as 
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and 

  
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F  , (4) 

where ij  and ij  are the friction coefficient and noise amplitude between particle i  and particle 

j , respectively, 
j

j

i

i
ij

mm

pp
v  , and ijW  are independent Wiener processes such that jiij WW  . 

The weight functions  rD  and  rR  vanish for crr  , where cr  is the cutoff radius. Note that 

C

ijF is completely independent of 
D

ijF  and 
R

ijF , while 
D

ijF  and 
R

ijF  are not independent but rather 

coupled through a fluctuation-dissipation relation. This coupling arises from the requirement that 

in the thermodynamic limit, the system samples the corresponding probability distribution. The 

necessary conditions can be derived using a FPE, which are derived in appendix A for the DPD-

H variant.



 

3 

2.2 Constant-Enthalpy DPD 

We propose a constant-enthalpy DPD variant based upon a combination of the EOM for a 

barostat (7) and the EOM for DPD-E (8). For uniform dilation, the combined EOM read as 
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where   pPP

i i

ii

f

Wp
mN

d
PPdVF   


 

pp
0 , while ij , ij , ij , and ij , along with the 

weight functions, are given by the fluctuation-dissipation relations from the DPD-E method (8): 
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where the relevant temperature is 















ji

ij


11

2

11 , and  rDq  and  rRq  can be chosen 

similar to  rD  and  rR , respectively. 
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Analogous to the DPD-P variant, either a Hoover barostat ( 0 PP  ) or a Langevin barostat 

can be invoked. As elaborated in appendix A, the FDT derived from the FPE for the Langevin 

barostat parameters P  and P  read as 

 barPP TkW B

2 2   , (7) 

where barT  is the Langevin barostat temperature, which is an additional Langevin barostat 

parameter taken together with P , P  and W . 

The system temperature, which is the same as defined in DPD-E, 



i i

ii

mNk
T

pp

B3

1
, does not 

necessarily coincide with the Langevin barostat temperature since the DPD-H variant 

corresponds to an adiabatic system. More generally, the equilibrium state (and its fluctuations) of 

an adiabatic piston in contact with a volume reservoir is a thermodynamically ill-defined 

problem. Effectively, the equilibrium of the system is achieved through irreversible processes 

(i.e., where no connection with an external reversible-work device such as a Hoover barostat 

exists) that depend upon the dissipative processes occurring in both the heat reservoir and in the 

system (14). Consequently, the Langevin barostat parameters given in equation (7), the system 

compressibility, and the system viscosity determine the amplitude of the volume fluctuations, 

and thus the amplitude of the system’s energy fluctuations. When barT  is set equal to the system 

temperature, the equilibrium state (as well as its fluctuations) are identical with those obtained by 

the Hoover barostat. The effect of the value of barT  on the system properties is presented in  

table A-1 and figure A-1 of appendix A. 

Interestingly, since the Hoover barostat corresponds to the coupling of the system to a volume 

reservoir through a reversible mechanical device, the volume reservoir is neither associated with 

a barostat temperature nor does it produce any thermal perturbations on the system. Rather, the 

fluctuations of the system volume itself are due solely to thermal perturbations caused by the 

motions of the particles, and thus the system volume fluctuations are independent of W . 

In the following, we demonstrate that the EOM for the Hoover barostat conserves the total 

enthalpy, VPEH 0 . Analogous to constant-enthalpy MD (15), DPD-H with the Hoover 

barostat should also conserve the quantity 
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, (8)



 

5 

i.e., the time derivative of 'H  should be zero. First, considering the time derivative of E  only in 

equation (8) gives 

  
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mech
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d r
F

pp
. (9a) 

Substituting the corresponding equations given in equation 5 into equation 9a, and using 

0
d

d


i
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t

u
i  (as a result of 

jicond

j

jicond

i uu   ,, dd , cf. equation 11c), and the expression for the 

instantaneous pressure 
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Substituting equation 9b into 
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and using the corresponding equations from equation 5, directly leads to 0
d

'd


t

H
, demonstrating 

that the EOM in equation 5 in the case of the Hoover barostat conserves total system enthalpy. 

Numerical discretization of the EOM straightforwardly follows the splitting strategies employed 

for DPD-P (7) and DPD-E (8). The conservative terms of the deterministic differential equations 

are identical to the expressions for DPD-P given as 
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while the fluctuation-dissipation terms of the elementary SDEs are identical to the expressions 

for DPD-E given as 
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As before, the stochastic flow map t  is approximated from the first-order splitting algorithm 

given by 
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where   denotes a composition of operators. 

For the Shardlow-splitting algorithm velocity-Verlet (SSA-VV) approach, updates for each 
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term are performed by 
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In equations 13a and 13b, the superscript ji   is omitted for notational simplicity. Note that the 

total system energy is exactly conserved via equation 13b. In equation 13a, 
q

ji

q

ij    is a 

Gaussian random number with zero mean and unit variance, chosen independently for each pair 

of interacting particles. Finally, C

t  can be approximated by the velocity-Verlet algorithm  

given by 
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where  0L  and  ttL   are the lengths of the cubic simulation box at 0t  and tt  , 

respectively. Next, the conservative forces at tt  ,   N

i

C

i tt
1

F , are evaluated and 

subsequently used in the second part of the algorithm, which requires an iterative approach. The 

iteration starts with an estimation of p  at tt   using       ttFttpttp   20 , 

followed by solving the set of equations
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self-consistently until 
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 is less than a prescribed tolerance, which 

is typically less than 
610

. In equation 14b, P  is a Gaussian random number with zero mean and 

unit variance and  k  is the iteration index. 

A practical implementation of the SSA-VV for DPD-H follows. The EOM and the numerical 

discretization for nonuniform dilation are also presented in appendix B. 

1. Stochastic Integration for all ji   pairs of particles 

(i)  ii' pp  , jj' pp   

(ii) 
22

t

rrr

t

ij

ij

ij

R

ij

ij

ij

ij

ij

ijD

ijii






















rr
v

r
pp   

(iii) 
22

t

rrr

t

ij

ij

ij

R

ij

ij

ij

ij

ij

ijD

ijjj






















rr
v

r
pp   

(iv) 
j

j

i

i
ij

mm

pp
v   

(v)  
22

2
1

2

t

r
t

rrr
t

t

ij

ij

ij

R

ij

ij

ij

ij

R

ij

ij

ij

ij

ij

ij

ij

D

ij

ij

D

ij

ii







































rrr
v

r
pp 







 

(vi) 
22

2
1

2

t

r
t

rrr
t

t

ij

ij

ij

R

ij

ij

ij

ij

R

ij

ij

ij

ij

ij

ij

ij

D

ij

ij

D

ij

jj







































rrr
v

r
pp 







 

(vii) ttuu q

ij

Rq

ij

Dq

ji

ij

cond

i

cond

i 













 



11



 

9 

(viii) ttuu q

ij

Rq

ij

Dq

ji

ij

cond

j

cond

j 













 



11

 

(ix) 










 











j

jj

i

ii

j

jj

i

iimech

i

mech

i
m

''

m

''

mm
uu

22222

1 pppppppp
 

(x) 










 











j

jj

i

ii

j

jj

i

iimech

j

mech

j
m

''

m

''

mm
uu

22222

1 pppppppp
 

2. Deterministic Integration #1.1 

(i)     tF
t

tp
t

tp 
22










 
  

(ii)    





W

t
tdp

tttt








 



2

 

(iii)       ttVttV  exp0  

(iv)     3/1
ttVttL   

3. Deterministic Integration #1.2 for Ni ,...,1  

(i)     
 

 






































 
 t

W

tp

N

d
t

t
t

t
t i

f

C

iii pFpp


2
22

 

(ii)         

























 



i

i

ii
m

t
t

ttttttt
2

exp

p

rr   

4. Conservative Force Calculation:  N
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3. Computational Details 

The SSA-VV for the DPD-H variant was tested using both the standard DPD fluid (10) and a 

coarse-grain solid model (11), where complete details of the conservative forces for these models 

are given in appendix C. Both a pure component case and an equimolar binary mixture were 

tested for the DPD fluid model. System sizes for the DPD fluids and coarse-grain solid were, 

respectively, 10125N  and 13500. For these simulations, the following reduced units were 

used: cr  and 0r  are the unit of length for the DPD fluid and coarse-grain solid, respectively; the 

mass of a DPD particle is the unit of mass; and the unit of energy is iniTkB , where iniT  is the 

initial system temperature. Using these reduced units, we set the maximum repulsion between 
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particles i  and j  as 25ija for the pure DPD fluid, and as 25ija and 28 for the like and unlike 

ji   interactions, respectively, for the binary DPD fluid. Further, we set the noise amplitude 

3ij , and the barostat characteristic time 2P . Prescriptions for the choice of P  (3, 16) 

suggest that the value should be between P/2  and P/10 ; therefore, we set 5/10  PP  . 

Next, we assume that the internal degrees of freedom are purely harmonic and express the 

coarse-grain particle equation of state as iiVi Cu , , with heat capacity 60// BB,  kCkC ViV  

and 48 for the pure DPD fluid and coarse-grain solid, respectively. Note that these values 

correspond to coarse-graining approximately 20 atoms and, separately, 16 atoms into a DPD 

particle, respectively (17). For the binary DPD fluid, we set 12 10mm   and 1,2, 10 VV CC  , where 

60/ B1, kCV . Finally, following Ripoll et al. (18), the mesoscopic thermal conductivity ij  is 

chosen as 

  2
B

2

0
4

ji
V

ij
k

C
  , (15) 

where 0  is the parameter controlling the thermal conductivity of the DPD particles, which are 

chosen as 4

0 1080.2   for the pure DPD fluid and 4

0 1052.1   for the coarse-grain solid. 

For the binary fluid, we set 
4

11,0 1080.2  , 
6

22,0 1080.2  , and 22,011,012,0   . Note that 

when 1 ji  , these particular values of 0  and VC  give 1ij . 

4. Results 

The results section is organized as follows. The validity of the SSA integration algorithm for the 

DPD-H variant is verified by considering equilibrium and nonequilibrium scenarios, where 

results are given in subsections 1 and 2, respectively. Finally, we briefly review the energy drift 

associated with finite integration methods and propose a simple strategy to minimize these drifts 

in DPD-H simulations. 

4.1 Test Case No. 1: Equivalence of DPD Variants 

As a first test of the SSA-VV formulation for the DPD-H variant, we verify that it converges to 

the same equilibrium properties when at the same thermodynamic conditions as other DPD 

variants. Starting from an equilibrated configuration from a constant-temperature DPD 

simulation, DPD-P, DPD-E, and DPD-H simulations were performed at imposed values of P , 

E , and H , respectively, where these values were determined from the constant-temperature 

DPD simulation. 

4.1.1 DPD Fluid 

The benchmark systems for both the pure and binary DPD fluid cases are taken from a constant-

temperature DPD simulation performed at 3  and 1T , and run for 3000runt  and 

03.0t . Further, DPD-P simulations were performed using both the Langevin and Hoover 
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barostats with an imposed pressure determined from the constant-temperature DPD simulation  

( 65.230 P  and 79.240 P  for the pure and equimolar binary DPD fluids, respectively) for 

3000runt  and 03.0t . The following quantities were evaluated and are listed in table 1  

(pure fluid) and table 2 (equimolar binary fluid): virial pressure virP , configurational energy per 

particle u , kinetic temperature kinT , and self-diffusion coefficients D  using the Einstein 

relation (15). 

Table 1. The configurational energy per particle u , the kinetic temperature kinT , 

the internal temperature intT , the virial pressure virP , the particle density

 , and the self-diffusion coefficient D , determined from test case no. 1 

simulations of the pure DPD fluid. barT  is the Langevin barostat temperature 

and .  denotes an ensemble average, where numbers in parentheses are 

uncertainties calculated from block averages. 

Variant u  
kin

T  
int

T  
vir

P    D  

DPD 

3   
4.56(1) 1.005(8) — 23.65(8) — 0.295(13) 

DPD-P 

Langevin 

0 = 23.65P  
4.55(1) 1.005(8) — 23.59(8) 2.997(8) 0.294(14) 

DPD-P 

Hoover 

0 = 23.65P  
4.55(1) 1.004(8) — 23.61(8) 2.997(8) 0.296(19) 

DPD-E 

3   4.54(1) 0.985(8) 0.985(3) 23.61(11) — 0.293(6) 

DPD-H 

Langevin 

=1.0barT  

0 = 23.65P  

4.54(2) 0.985(8) 0.985(3) 23.65(11) 3.002(11) 0.294(7) 

DPD-H 

Hoover 

0 = 23.65P  
4.54(2) 0.986(8) 0.985(3) 23.65(9) 3.002(13) 0.292(8) 



 

12 

Table 2. The configurational energy per particle u , the kinetic temperature kinT , the internal 

temperature intT , the virial pressure virP , the particle density  , and the self-diffusion 

coefficient D , determined from test case no. 1 simulations of the equimolar binary DPD 

fluid. barT  is the Langevin barostat temperature and . denotes an ensemble average, where 

numbers in parentheses are uncertainties calculated from block averages. 

Variant u  
kin

T  
int

T  
vir

P    
1

D  2
D  

DPD 

3   
4.76(1) 1.005(8) — 24.79(13) — 0.177(13) 0.165(13) 

DPD-P Langevin 

0 = 24.79P  
4.76(2) 1.004(8) — 24.76(4) 2.998(8) 0.176(15) 0.163(17) 

DPD-P Hoover 

0 = 24.79P  
4.76(1) 1.004(8) — 24.75(4) 2.998(9) 0.179(12) 0.165(9) 

DPD-E 

3   4.75(1) 0.993(8) 0.994(3) 24.77(21) — 0.174(9) 0.161(10) 

DPD-H 

Langevin 

=1.0barT  

0 = 24.79P  

4.75(2) 0.992(8) 0.994(3) 24.78(13) 3.001(9) 0.174(8) 0.160(9) 

DPD-H 

Hoover 

0 = 24.79P  
4.75(2) 0.993(8) 0.994(3) 24.78(19) 3.001(13) 0.173(8) 0.160(10) 

 

To validate the constant-enthalpy SSA-VV formulation, DPD-H simulations were performed at 

conditions taken from the constant-temperature DPD simulation, i.e., 33753  LV  ( L is the 

box length) and 65.230 P  or 79.240 P  for the pure and equimolar binary fluids, respectively. 

DPD-H simulations were carried out using both the Langevin and Hoover barostats, where 

1barT  was used for the Langevin barostat. The final configuration of the constant-temperature 

DPD simulation is used to determine the imposed value of H , thus it is also used as the starting 

configuration for the DPD-H simulation. The values of iu  were initialized by setting iniiVi TCu , , 

where 1TTini , and were carried out for 3000runt  and 01.0t . Analogous to isoenthalpic 

MD simulations, the use of a smaller t , with respect to constant-temperature DPD or DPD-P 

simulations, is required for proper conservation of 'H . Using 01.0t , we observed a relative 

drift in 'H  no higher than 
4101  . (For the DPD fluid simulations, reported relative drifts refer to 

an average of relative drifts over time periods of 1000.) 

Comparing the DPD-E (8) and DPD-H results with the constant-temperature DPD and DPD-P 

results in tables 1 and 2, excellent overall agreement is found. For the DPD-H simulation, the 

internal temperature, 

1

1

int

11





N

i iN
T


was also evaluated, where the values of kinT  and intT  

agree within statistical uncertainties. For the pure DPD fluid, these values are approximately 

1.5% lower than 1iniT ; however, this discrepancy is due to the fundamental differences 
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between the constant-temperature DPD and DPD-E/DPD-H methods. Effectively, the two 

systems are different since the imposed temperature for the constant-temperature DPD system 

should be equivalent to kinT , while in the DPD-E/DPD-H system the total energy initially given 

to the system is dynamically partitioned among the kinetic and internal energies, yielding a 

variation in the equilibrium temperature with respect to iniT  (19). This difference is of  vCkO /B  

as compared with unity, while an additional contribution of the same order arises from the “extra 

degree of freedom” due to the fluctuations in iu , since the relevant macroscopic temperature is 

related to 

1

1











i
. Hence, for a pure DPD fluid up to first order in vCk /B , 

  983.0/1 Bint  vinikin CkTTT  (19), in agreement with the simulated values of 

003.0985.0  . For the equimolar binary fluid, the simulated values are also in agreement with 

the estimate 994.0int  TTkin . Note that the estimated value is closer to 1iniT  due to the 

larger value of 2,VC  that reduces the  vB Ck /  contribution. Due to these lower values of kinT  

and intT , the values of   for DPD-H in tables 1 and 2 differ slightly from   for DPD-P. 

Reproducing equilibrium averages is necessary but not sufficient proof that the integration 

scheme is behaving properly. Hence, as a further demonstration of the quality of the SSA-VV 

and the proper choice of t , for the pure DPD fluid, we calculated probability distributions for 

ip , iu , and V  for constant-temperature DPD and DPD-P with 03.0t , and for DPD-H with 

01.0t . We compared the probability distribution for ip  with the corresponding Maxwell-

Boltzmann distribution (15), while the probability distributions for iu  and V  were compared 

with those obtained with a very small 001.0t , which is more than an order of magnitude 

smaller than typical values of t  used and is thus approximated as the “exact” result. As an 

example of results, figure 1 presents the probability distributions of ip , iu , and V for DPD-H 

using the Langevin barostat, where agreement is excellent.
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Figure 1. The probability distributions of (a) ip , (b) iu , and (c) V for DPD-H 

with a Langevin barostat. Symbols represent simulation results for 

01.0t , and lines correspond to (a) the Maxwell-Boltzmann 

distribution for ip  and (b, c) “exact” results, i.e., simulation results 

where 001.0t .
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4.1.2 Coarse-Grain Solid 

A validation study analogous to the DPD fluids study is performed for a coarse-grain solid 

model, where a recently developed nickel model is considered that reasonably reproduces several 

measured properties, including the melting temperature (11). For a benchmark system, a 

constant-temperature DPD simulation is performed at = 8260ρ  kg/m
3
 and =1300T K for 

1runt  ns and 5t  fs, where results are listed in table 3. At this state point, the atomistic 

Sutton-Chen (SC) model of nickel predicts a pressure of approximately 0 bar (11), while virP  

for the coarse-grain solid model is larger than 0 bar. Next, starting from an equilibrated 
configuration from a constant-temperature DPD simulation, nonuniform dilation DPD-P 

simulations were performed using both the Langevin and Hoover barostats at 00 P  bar for 

1runt  ns and 5t  fs, where results are also shown in table 3. 

Table 3. The molar configurational energy u , the kinetic temperature kinT , the internal 

temperature intT , the virial pressure virP , and the mass density   

determined from test case no. 1 simulations of the coarse-grain solid model of 

nickel. barT  is the Langevin barostat temperature and .  denotes an ensemble 

average, where numbers in parentheses are uncertainties calculated from block 

averages. 

Variant 
u  

(kJ/mol) 

kin
T  

(K) 

int
T  

(K) 

vir
P  

(bar) 

  

(kg/m
3
) 

DPD 

= 8260ρ  kg/m
3
 

–508.44(11) 1300.1(91) — 5.91(94) — 

DPD-P  

Langevin 

0 = 0P  bar 
–508.43(14) 1299.9(92) — -0.13(95) 8259.3(73) 

DPD-P  

Hoover 

0 = 0P bar 
–508.44(14) 1299.7(91) — 0.06(99) 8260.1(68) 

DPD-E 

= 8260ρ kg/m
3
 

–508.71(11) 1274.8(88) 1274.5(5) –150.49(98) — 

DPD-H 

Langevin 

=1300barT  K 

0 = 0P bar 

–508.86(14) 1276.1(89) 1275.7(11) –0.27(97) 8273.2(73) 

DPD-H 

Hoover 

0 = 0P bar 
–508.87(13) 1275.8(89) 1275.6(5) 0.07(986) 8273.9(80) 
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Analogous to the DPD fluid study, DPD-H simulations were performed at conditions determined 

from the constant-temperature DPD simulation, specifically, 00 P bar. The value of H imposed 

in the DPD-H simulation was determined from the final configuration of the constant-

temperature DPD simulation, which is used as the starting configuration. The value of iu  was 

initialized by setting iniVi TCu  , where 1300TTini  K. Nonuniform dilation DPD-H 

simulations were carried out using both the Langevin and Hoover barostats, with 1300barT  K 

for the Langevin barostat. All simulations were run for 1runt ns and 5t fs, where a relative 

drift in 'H  under 
4102   was observed. (For the coarse-grain solid simulations, reported relative 

drifts refer to an average of relative drifts over time periods of 1 ns.) Comparing the DPD-E (8) 

and DPD-H results with the constant-temperature DPD and DPD-P results in table 3, excellent 

overall agreement is found. For both DPD-E and DPD-H, the values of kinT and intT are equal 

within statistical uncertainties. These values are approximately 2% lower than 1300iniT K but 

agree within statistical uncertainties when the extra degree of freedom due to the fluctuations in 

iu is considered, i.e.,   1273/1 Bint  vinikin CkTTT K (19). Furthermore, due to these 

lower values of kinT  and intT , the values of virP for DPD-E and  for DPD-H in table 3 

differ accordingly from virP and  for constant-temperature DPD and DPD-P, respectively. 

4.2 Test Case No. 2: Heating Response in DPD-H Simulations 

As a second test case to verify the SSA-VV formulation for the DPD-H variant, a nonequilibrium 

scenario was considered for both the DPD fluids and the coarse-grain solid model. Starting from 

a final configuration of a constant-temperature DPD simulation, a slab of DPD particles in the 

middle of the simulation box was instantaneously heated and the system response was studied at 

constant-  HP, conditions, i.e., by DPD-H simulations. 

4.2.1 DPD Fluid 

Analogous to test case no. 1, the final configuration from the constant-temperature DPD 

simulation (at 1T  and 3 ) was used as the starting configuration. For this configuration, a 

slab of particles of width L5.0  in the middle of the simulation box was heated by assigning 

velocities from a Maxwell-Boltzmann distribution corresponding to heatT , and by setting 

heatiVi TCu , . The remaining (nonheated) particles were assigned iniiVi TCu , , where 1TTini . 

As a test of the DPD-H variant with the Langevin and Hoover barostats, a simulation was 

performed using 10heatT  and 65.230 P  (pure fluid) or 79.240 P  (equimolar binary fluid) for 

5000runt  and 005.0t  (the value of 0P  corresponds to the pressure determined from the 

constant-temperature DPD simulation at 1T  and 3 ). inibar TT   was used for the Langevin 

barostat. The time evolutions of kinT , intT , virP , and   for the pure DPD fluid are shown in  

figure 2, where a relative drift of 
5106   in 'H  was observed. As evident in figures 2a and 2b, 

rapid equalization of kinT  and intT  was observed, followed by increasing kinT  and intT with t , until 

reaching equilibrium at 600t . Comparing the performance of the Langevin and Hoover 

barostats, the Hoover barostat exhibits substantial oscillations in virP  and   at the beginning of 

the simulation due to the initial heat impulse, after which the oscillations dampen with time. 
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Jakobsen observed similar pressure oscillations (ringing) for the DPD fluid using a Hoover 

barostat (3). Figure 2 shows an expansion of the system (  decreases with t ) to compensate for 

the inputted heat. Early-time behavior is displayed in the insets of figures 2a and 2b, where a 

sharp decrease in kinT , due to the interfacial relaxation of the cold and hot regions, and the 

oscillating response of virP  and  for the Hoover barostat are shown in detail. The equimolar 

binary DPD fluid exhibits analogous behavior, where the values of kinT , intT , virP , and   

determined at equilibrium conditions are summarized in table 4. Here again intTTkin  is 

found, along with equivalent values of virP and  for the Langevin and Hoover barostats. 
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Figure 2. Time evolution of the kinetic temperature kinT , internal temperature intT , virial pressure 

virP , and particle density  for a DPD-H simulation of the pure DPD fluid at 0 = 23.65P , 

where a slab of particles in the simulation box was instantaneously heated by =10heatT  at 

0t : (a) DPD-H simulations using the Langevin barostat with a barostat temperature 

=1.0barT , and (b) DPD-H simulations with a Hoover barostat.  Insets display early time 

behavior of kinT , intT ,  , and virP .

inset  
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Figure 2. Time evolution of the kinetic temperature kinT , internal temperature intT , virial pressure 

virP , and particle density  for a DPD-H simulation of the pure DPD fluid at 0 = 23.65P , 

where a slab of particles in the simulation box was instantaneously heated by =10heatT  at 

0t : (a) DPD-H simulations using the Langevin barostat with a barostat temperature 

=1.0barT , and (b) DPD-H simulations with a Hoover barostat.  Insets display early time 

behavior of kinT , intT ,  , and virP .

 

inset 
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Table 4. The kinetic temperature kinT , the internal temperature 

intT , the virial pressure virP , and the particle density 

 , determined for Test Case #2 simulations of the 

pure and equimolar binary DPD fluids. barT  is the 

Langevin barostat temperature and .  denotes an 

ensemble average, where numbers in parentheses are 

uncertainties calculated from block averages. 

Pure DPD Fluid 

Variant kin
T  int

T  vir
P    

DPD-E 

= 3ρ  

=10heatT  

5.405(43) 5.403(20) 37.36(14) — 

DPD-H 

Langevin 

=1.0barT  

0 = 23.65P  

=10heatT  

5.374(41) 5.372(20) 23.65(11) 2.247(8) 

DPD-H 

Hoover 

0 = 23.65P  

=10heatT  

5.400(44) 5.401(20) 23.65(23) 2.243(13) 
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Table 4. The kinetic temperature kinT , the internal temperature 

intT , the virial pressure virP , and the particle density 

 , determined for Test Case #2 simulations of the 

pure and equimolar binary DPD fluids. barT  is the 

Langevin barostat temperature and .  denotes an 

ensemble average, where numbers in parentheses are 

uncertainties calculated from block averages (continued). 

Binary DPD Fluid 

Variant 
kin

T  int
T  vir

P    

DPD-E 

= 3ρ  

=10heatT  

5.340(44) 5.350(16) 38.36(14) — 

DPD-H 

Langevin 

=1.0barT  

0 = 24.79P  

=10heatT  

5.498(42) 5.507(23) 24.79(11) 2.259(8) 

DPD-H 

Hoover 

0 = 24.79P  

=10heatT  

5.501(43) 5.509(24) 24.79(25) 2.258(13) 

 

4.2.2 Coarse-Grain Solid 

A validation study analogous to the DPD fluid study is carried out for the coarse-grain solid 

model of nickel. The final configuration from the constant-temperature DPD simulation  

(at 1300T  K and 8260  kg/m
3
) was used as the starting configuration. From this starting 

configuration, a slab of particles of width L5.0 in the middle of the simulation box was heated by 

assigning velocities from a Maxwell-Boltzmann distribution corresponding to heatT , and by 

setting heatVi TCu  . The remaining (nonheated) particles were assigned iniVi TCu  , where 

1300TTini K. As tests of the DPD-H variants, simulations were performed at 00 P  bar, 

using 3000heatT K for 1runt ns and 5t fs. For the DPD-H simulation, the non-uniform 

dilation approach with both Langevin and Hoover barostats was used; inibar TT   was chosen for 

the Langevin barostat. Relative drifts of 
4108.1   in 'H  were observed. At low and moderate 

pressures, the coarse-grain solid model melts between 1800 and 1850 K (11). As a result, at the 

end of the DPD-H runs, the particle configuration corresponds to a liquid state. Figure 3 displays  
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the time evolution of kinT , intT , and   for the DPD-H simulation with the Langevin barostat. 

Complete melting is evidenced by reaching a plateau in the time evolution of   for the DPD-H 

simulation, where complete melting occurs at approximately 0.15 ns. Melting at constant-  EV ,  

conditions occurs at a slightly higher temperature (8) due to the pressure build-up within the 

simulation cell, which is relieved under constant  HP,  conditions. The values of kinT , intT , 

virP , and  determined at equilibrium conditions are summarized in table 5, where again 

intTTkin  is found. 

 

 

Figure 3. Time evolution of the kinetic temperature kinT , internal temperature intT , and 

mass density   for a DPD-H simulation using a Langevin barostat with a 

barostat temperature =1300barT K for the coarse-grain solid at 0 = 0P bar, where 

a slab of particles in the simulation box was instantaneously heated by 

= 3000heatT K at 0t .
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Table 5. The kinetic temperature kinT , the internal temperature intT , the 

virial pressure virP , and the mass density  , determined for 

Test Case #2 simulations of the coarse-grain solid model of nickel. 

barT  is the Langevin barostat temperature and .  denotes an 

ensemble average, where numbers in parentheses are uncertainties 

calculated from block averages. 

Variant kin
T  

(K) 

int
T  

(K) 

vir
P  

(bar) 

  

(kg/m
3
) 

DPD-E 

8260   kg/m
3
 

= 3000heatT K 

2060.1(146) 2060.0(28) 8863.2(55) — 

DPD-H 

Langevin 

=1300barT  K 

00 P  bar 

= 3000heatT K 

2032.7(144) 2032.1(9) 0.0 (83) 7339.3(89) 

DPD-H 

Hoover 

0 = 0P  bar 

= 3000heatT K 

2034.1(143) 2033.8(8) 0.3(76) 7339.0(101) 

 

4.3 Conservation of Total System Enthalpy 

For values of t  comparable to those used in constant-temperature DPD and DPD-P 

simulations, we observed a small long-term drift in 'H  for the DPD-H simulations. For example, 

for the values of t  used for the DPD-H simulations in this work ( 01.0t  for the DPD fluids 

and 5t  fs for the coarse-grain solid), the small relative drift produced in 'H  was typically of 

order 
410
. When t  was decreased by an order of magnitude, the relative drift in 'H  dropped 

to order 
710
. A typical example of the dependence of the relative drift in 'H  on t  for the DPD 

fluid is shown in figure 4. The values of other properties (not shown here), such as the kinetic 

and internal temperatures, configurational energy, density and virial pressure, change with t  by 

less than 0.5%. This behavior is comparable with microcanonical or isoenthalpic MD simulations 

when the velocity-Verlet algorithm is used for the integration of the EOM (15). Since the 

integration of the fluctuation-dissipation contribution exactly conserves the energy (up to 

machine precision), the drift is caused by the velocity-Verlet algorithm during the integration of 

the deterministic contribution in the DPD-E or DPD-H EOM. Similar to microcanonical or 

isoenthalpic MD, a long-term drift in E  and 'H  is thus inevitable in the SSA for DPD-E and 

DPD-H. 
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Figure 4. The relative drift in 'H  as a function of the integration time step t  for 

DPD-H simulations with the SSA-VV. 

To enforce enthalpy beyond this small drift, one can apply the following numerical procedure. 

After each time step, the difference between the current 'H  and the inputted 'H  is calculated. 

This difference is then divided by the number of particles and equally subtracted from each iu . 

This is a useful strategy provided that the drift in 'H  has a mechanical origin, which implies that 

the energy drift scales as TkB . Thus, the extra energy per particle subtracted in this procedure is 

very small compared to the magnitude of iu , which scales as TCv . In this work, the variation of 

the system temperature due to this drift was found to be negligible and the dynamics unaffected. 

This strategy was applied to all test cases for DPD-H with a Hoover barostat, where no variation 

in the results was observed. Note that 'H  is not a fixed quantity for DPD-H with a Langevin 

barostat (rather it fluctuates about an average of 'H ); therefore, this error suppression scheme 

can only be applied to DPD-H with a Hoover barostat.
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5. Conclusion 

An isoenthalpic, isobaric DPD method was developed by combining the equations of motion 

from both the DPD-P and DPD-E methods. Both Hoover and Langevin barostats were 

implemented, where an additional barostat parameter, the barostat temperature, was defined for 

the DPD-H variant with the Langevin barostat. A comprehensive description of a numerical 

integration scheme based upon the Shardlow-splitting algorithm was presented for the DPD-H 

approach, which was found to be a readily extendable and accurate integration scheme.  

The equivalence of the DPD-H variant was verified using both a standard DPD fluid model and a 

coarse-grain solid model, where thermodynamic quantities as well as probability distributions 

were considered. The integration algorithm was further verified by considering equilibrium and 

nonequilibrium simulation scenarios. Finally, a discussion of the inevitable small, long-term drift 

in 'H  associated with finite integration methods was given, where we propose a simple strategy 

to minimize the effect of this drift in DPD-H simulations.
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Appendix A. Fokker-Planck Equation (FPE) and Fluctuation-Dissipation 

Theorem (FDT) 
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The FPE corresponding to the equation of motion (EOM) given by equation 5 of the technical 

report is 
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where  tupV ;,,,,   pr . The conservative operator CL  is given by 
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The operator DL  representing the effects of the dissipative and random forces is given by 
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The operator condL  associated with the effects of the mesoscopic heat transfer between particles 

is given by 
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with the condition 02 
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The operator LBL  representing the Langevin barostat terms in the EOM is given by 
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Analogous to the constant-energy (DPD-E) variant, an implicit heat reservoir is not present in 

constant-enthalpy Dissipative Particle Dynamics (DPD-H), nor is the total system enthalpy 

specified in the FPE (A-1). Therefore, to simplify the derivation of the FDT for DPD-H, we 
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choose the isothermal-isobaric ensemble. Under the steady-state condition,  upVeqeq ,,,,   pr  

corresponds to the probability density.1,2,3 
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Analogous to the previous cases 6–8, 0eq

CL   for the equilibrium distribution. The FDT then 

follows from the requirements that 0eq

DL  , 0eq

condL   and 0eq

LBL  , which lead to 

equations (6) and (7) given in the report. As mentioned in the report, while the FDT relations 

relevant to the dynamics of the particles depend only on particle variables, the FDT relevant to 

the Langevin barostat depends on the heat reservoir temperature. For constant-pressure DPD, this 

temperature is simply the system temperature; however, in constant-enthalpy DPD, the heat 

reservoir temperature (i.e., barostat temperature) becomes an additional Langevin barostat 

parameter along with P , P , and W , which can be written as 

 barPP TkW B

2 2   , (A-7) 

where barT  is the Langevin barostat temperature. Interestingly, a Hoover barostat is a purely 

mechanical barostat with no dissipation (nor an associated barostat temperature); hence, the 

volume fluctuations are only a result of the inherent thermal perturbations from the motions of 

the particles. In contrast, a Langevin barostat incorporates dissipation via the friction and random 

terms in F  (see equation 5 of the report); thus the volume fluctuations of the system will 

additionally depend on the value of barT . (As an illustrative analogy, one can consider the 

Hoover barostat as a piston in a vacuum, while the Langevin barostat can be viewed as a piston 

in a viscous fluid, whose temperature-dependent viscosity affects the piston fluctuations.) 

To demonstrate the effects of barT  on the system properties, we carried out DPD-H simulations 

using the Langevin barostat with  0.2,5.1,0.1,5.0barT for the DPD fluid. We also performed 

DPD-H simulations using the Hoover barostat, where all simulation results are summarized in 

table A-1. The table clearly shows that the values of the volume fluctuation 
2V  and the 

associated isentropic compressibility depend on barT , while thermodynamic properties such as 

the configurational energy per particle, kinetic temperature, internal temperature, virial pressure, 

and particle density are, as expected, not affected by barT . Additionally, figure A-1 displays the 

                                                 
1Jakobsen, A. F. Constant-Pressure and Constant-Surface Tension Simulations in Dissipative Particle Dynamics. J. Chem. 

Phys. 2005, 122, 124901. 
2Mackie, A. D.; Bonet Avalos, J.; Navas, V. Dissipative Particle Dynamics With Energy Conservation: Modelling of Heat 

Flow. Phys. Chem. Chem. Phys. 1999, 1, 2039. 
3Quigley, D.; Probert, M. I. J. Langevin Dynamics in Constant Pressure Extended Systems. J. Chem. Phys. 2004, 120, 11432. 
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volume probability distributions for the Langevin barostat at different barT  and for the Hoover 

barostat, which further elaborates the effects of barT  on 
2V . In table A-1 and figure A-1, the 

volume fluctuations corresponding to the Langevin barostat with 0.1barT  and those 

corresponding to the Hoover barostat are nearly equivalent since 0.1barT  is close to the 

equilibrium system temperature of approximately 0.986. If barT was set to the value of the 

equilibrium system temperature, the volume fluctuations given by the Langevin barostat and 

those given by the Hoover barostat would match precisely.  

 
Table A-1. The configurational energy per particle u , the kinetic temperature kinT , the internal 

temperature intT , the virial pressure virP , the particle density  , the isentropic 

compressibility S , and the volume fluctuation 
2V  for the DPD fluid at various values 

of the Langevin barostat temperature, barT . .  denotes an ensemble average, where 

numbers in parentheses are uncertainties calculated from block averages. These 

simulations were all started from the same final configuration of a constant-temperature 

DPD simulation at =1T  and particle density = 3ρ . The imposed pressure 0 = 23.65P  

corresponds to virP  from the constant-temperature DPD simulation. Since B/ = 60VC k  

was used in the coarse-grain particle equation-of-state, equilibrium temperatures should be 

1– / 0.983B vk C  ; VC  is the heat capacity. 

Barostat u  kin
T  int

T  vir
P    1

×10
S
κ  2

V  

Hoover Barostat 4.542(19) 0.986(8) 0.986(1) 23.65(14) 3.002(13) 0.207 68.76 

Langevin Barostat 

= 0.5barT  
4.541(14) 0.986(8) 0.985(1) 23.65(10) 3.002(10) 0.110 36.58 

Langevin Barostat 

=1.0barT  
4.541(19) 0.986(8) 0.986(1) 23.65(13) 3.002(12) 0.209 69.37 

Langevin Barostat 

=1.5barT  
4.542(20) 0.986(8) 0.986(1) 23.66(13) 3.003(13) 0.308 102.3 

Langevin Barostat 

= 2.0barT  
4.542(26) 0.986(8) 0.986(1) 23.65(9) 3.002(11) 0.417 138.59 
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Figure A-1. The probability distributions of (a) ip , (b) iu , and (c) V for 

DPD-H with a Langevin barostat. Symbols represent simulation 

results for 01.0t , and lines correspond to (a) the Maxwell-

Boltzmann distribution for ip  and (b, c) “exact” results, i.e., 

simulation results where 001.0t .
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Appendix B. Constant-Enthalpy Conditions (DPD-H) for Nonuniform 

Dilation 
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Following the derivation of the uniform dilation constant-enthalpy conditions (DPD-H) variant, 

the combined equations of motion for non-uniform dilation using a Langevin barostat and 

constant-energy conditions (DPD-E) are given as 
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  . (B-1)

 

where d  is the dimensionality of the system and the variables  ,  ,p , W , V ,  ,F , and P  

are the same as in the non-uniform dilation DPD-P variant, except barPP TkW B

2 2   , and barT  is 

the Langevin barostat temperature. Variables pertaining to mech

iu  and cond

iu are the same as those 

in the uniform dilation DPD-H variant. 

B.1 Numerical Discretization 

Applying a numerical integration splitting strategy similar to the uniform dilation DPD-H 

variant, the deterministic differential equations and the elementary constant-energy (SDEs) 

corresponding to equation (B-1) are the following. The conservative terms are the same as those 

for the non-uniform dilation constant pressure conditions (DPD-P) variant,
1

  while the 

fluctuation-dissipation terms are identical to the expressions given in equation 11 of the report. 

                                                 
1Bonet Avalos, J.; Mackie, A. D. Dissipative Particle Dynamics With Energy Conservation. Europhys. Lett. 1997, 40 (2), 141. 



 

37 

As stated in the report, the stochastic flow map
 t  

is approximated by equation 12 of the report.
 

For each fluctuation-dissipation term 
diss

jit ,; , momenta and internal energies are updated by using 

the same expressions as in the uniform dilation DPD-H variant for the constant energy  

(SSA-VV) scheme (equations 13a and 13b of the report). 
C

t  can be treated in identical fashion
 

to the nonuniform dilation DPD-P variant.
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Appendix C. Simulation Model Details
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For the models considered in this work, the details of the conservative forces expressed in 

equation 2 of the main text are the following. 
CG

iju  for the pure and binary constant-temperature 

Dissipative Particle Dynamics (DPD) fluids is given by 
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ij rrau  , (C-1) 

where ija  is the maximum repulsion between particle i  and particle j . 

For the coarse-grain solid model, which has a face-centered-cubic (f.c.c.) lattice structure, 

particles interact through a shifted-force Sutton-Chen embedded potential (SC) given as: 
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where  
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 (C-3) 

  and 0r  are the energy and length parameters, respectively, n  and m  are positive integers  

( mn   to satisfy elastic stability of the crystal), and c  is a dimensionless parameter. Although 

effectively this is a many-body potential, the force on each particle can be written as a sum of 

pair-wise contributions. The coarse-grain solid model used here approximates nickel (Ni), where 

one constant-temperature Dissipative Particle Dynamics (DPD) particle was chosen to represent 

four f.c.c. unit cells, i.e., 16 Ni atoms. SC potential parameters were determined by fitting to 

various 0-K properties and the melting temperature at zero pressure,1 where the following values 

were found: 225/ B k K, 8698.80 r Å, 4314.39c , 6m , and 9n . Further details for 

determining SC parameters based upon such a procedure can be found elsewhere and references 

therein.1

                                                 
1Brennan, J. K.; Lísal, M. Proceedings of the 14th International Detonation Symposium, Coeur d’Alene, ID, 11–16 April 

2010; Office of Naval Research, 2010, p 1451. 
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List of Symbols, Abbreviations, and Acronyms 

DPD  constant-temperature Dissipative Particle Dynamics  

DPD-E  constant-energy Dissipative Particle Dynamics 

DPD-H constant-enthalpy Dissipative Particle Dynamics  

EOM  equations of motion  

f.c.c.  face-centered-cubic 

FDT  fluctuation-dissipation theorem  

FPE  Fokker-Planck equation  

MD  molecular dynamics 

SC  Sutton-Chen embedded potential 

SSA  Shardlow-splitting algorithm  
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