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ABSTRACT 
 

Context-driven decision making relies upon a multitude of information, but placing a tangible 

value on these pieces of information is an upcoming problem in the Information Age. In an 

application to combating piracy, the US Navy relies upon a probability surface which 

integrates intelligence, commercial shipping routes, and meteorological and oceanographic 

(METOC) information, and forms the basis for predicting geo-temporal patterns of pirate 

presence and attack, commonly referred to as Piracy Attack Risk Surface (PARS). 

Degradation in the quality of this information lowers the quality of PARS, which forms the 

basis for counter-piracy surveillance and interdiction asset allocations to geographic regions. 

In this paper, we investigate the value of PARS in the presence of uncertainty in intelligence 

and weather when it is used in an asset allocation algorithm that seeks to minimize the 

probability of success of a pirate attack; the algorithm allocates both interdiction and 

surveillance assets to deter pirate activities. We perform a sensitivity analysis using 

hypothetical counter-piracy scenarios to quantify the value of information. 

 

Keywords: Value of information, Counter-piracy, Decision making, Piracy Attack Risk 

Surface (PARS)  

 

I. INTRODUCTION 
 

Motivation 

 

The Navy has identified a need to quantify the value of data to be delivered to decision 

makers (DMs) with the aim of eliminating superfluous information, while simultaneously 

aiding in understanding the context of the pending action [29]. If the value of data were able 

to be easily measured, distinction of what should and should not be delivered to the DM 

would be trivial. Emphasis ought to be placed on delivering high-value information to enable 

faster and more precise decision-making tailored to the situational context. Arranging an 

information display to achieve higher clarity of information of value to the DMs has been 

found to lead to faster decisions, thereby lending support to the idea that proper information 

valuation is a key step towards the successful conduct of warfare [42]. The layered decision 

architecture proposed in [29], and reproduced in Figure 1, consists of transforming Data  

Information  Knowledge  Understanding  Wisdom. Sensors and data logging are 

components of the Data layer, while the concept of value of information in this hierarchy is 

subsumed in the Knowledge and Information layers. If information with high expected value 

is identified, it then passes up through the Understanding and subsequent Wisdom layers, 
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culminating in DMs’ enhanced decision-making. Filtering high-valued information is thus 

imperative in this architecture in order for the DMs to attain situational awareness and take 

context-specific courses of action (COA) to achieve superior mission performance. 

 
Figure 1: Data to decision making architecture 

This paper is concerned with the value of information in the C4ISR domain, specifically 

counter-piracy in the Gulf of Aden and off the coast of Somalia. In this environment, the 

Navy uses a probability surface, called Pirate Attack Risk Surface, or PARS. PARS is a grid 

of cell values that represents the probability of pirate presence (for surveillance) or pirate 

attack (for interdiction); this surface integrates weather factors, pirate behavior (via 

intelligence), and commercial shipping routes. PARS map serves as the blueprint for 

surveillance and interdiction operations for counter-piracy missions. Utilizing the PARS, a 

dynamic asset allocation to combat the threat of piracy was considered in [2], encompassing 

both interdiction and surveillance operations. 

 

Given the information gathered and consolidated into the PARS map, the asset allocation 

problem considered in [2] requires the DMs to choose from a set of available surveillance and 

interdiction assets to detect and interdict pirates. The DMs’ decisions involve which asset to 

allocate where in the area of responsibility for the next time epoch in order to maximize the 

probability of detection (for surveillance asset allocation decisions) and minimize the 

probability of a successful pirate attack (for interdiction asset allocation decisions). 

 

The overall problem, as noted in [7], is that information and data pertaining to the operational 

environment, mission, and tasks are readily available, but the flow of high-valued 

information to the DMs requires attention such that the information accessed will provide the 

most efficient venue for DMs to understand the context of their pending decisions. In this 

paper, we evaluate the value of PARS itself in the presence of both high and low uncertainty 

pertaining to weather and intelligence. Quantifying the value of PARS contributes to the 

overall goal of delivering information of high value to the DMs in a timely manner. Correct 

evaluation of information in this context is ultimately reflected in the DMs’ quick and 

informed choice of the best COA to identify pirate vessels and prevent/impede attacks on 

merchant vessels. We also investigate the importance of knowing the COA of each DM as we 
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examine the importance of coordination among assets. 

 

Related Research 

 

The concept of value of information has been applied in a wide array of fields ranging from 

psychology to medical and machinery diagnosis to dynamic state estimation to oil-drilling 

[31, 15, 41]. Much of the literature on estimating the value of information stemmed from 

Bayesian approach to optimal experimental design [31]. In psychology, the well-known 

Planet Vuma problem [31] hinges on gathering information deemed the “most useful” in 

order to distinguish between two species. The more useful the information is calculated to be, 

the higher is its value. Based on the idea of expected utility of asking a question [36], Nelson 

[31] discusses different approaches for calculating the value of information in the context of 

the Planet Vuma problem. These include probability gain, information gain, Kullback-Leibler 

divergence, impact, Bayesian diagnosticity, and log diagnosticity [4, 12-14, 21, 23, 24, 30, 32, 

45]. Within a Bayesian decision theoretic framework, Howard [18] formalizes the expected 

value of a sample of information using the concept of pre-posterior analysis as the expected 

increase in utility by gaining access to a sample of additional observations.   

 

In the realm of medical and machinery diagnosis, value of information serves as a basis for 

selecting tests with the maximum information gain per unit cost of the test [44, 33-35, 47]. 

Performing different tests results in knowledge of different aspects of the patient’s (or 

machine’s) condition and so it becomes a primary concern when attempting to determine a 

diagnosis at minimum cost. As [22] points out, if the cost of testing is greater than the 

expected value of information, it may not be beneficial for further tests to be administered. 

Also within the medical field, Dale [8] extends cost-sensitive classification to functional 

magnetic resonance imaging (fMRI) experiments where he seeks to optimize statistical 

efficiency by comparing different rates of sampling. 

 

The value of information is used in dynamic sensor scheduling, which has been widely 

studied in the area of target tracking (e.g., [47]).  For linear Gaussian state space systems, 

one can obtain an analytic solution for the posterior distribution of the system state given the 

sensor measurements and a scheduling sequence via a Kalman filter [47].  Shakeri et al. [47] 

formulated the sensor scheduling problem subject to a fixed total budget and the cost of 

individual sensor varying inversely with its measurement variance. They obtained an optimal 

measurement schedule that minimizes the trace of a weighted sum of the estimation error 

covariance matrices of a discrete-time vector stochastic process, when the auto-correlation 

matrix of the process is given.  Sub-optimal approaches, based on information-theoretic 

criteria, have been developed for overcoming the computational intractability of determining 

the optimal sensor schedule. In the context of sensor networks, Zhao et al. [48] formulated 

the target tracking problem as a sequential Bayesian estimation problem, where the 

participants for sensor collaboration are determined by minimizing an objective function 

comprising information utility, e.g., measured in terms of entropy, Mahalanobis distance and 

the sensor usage cost. In [1], An et al employed the auction algorithm for the assignment 

problem to dynamically allocate sensors to tasks to maximize the cumulative information 

gain. Similar entropy-based information value metrics are pursued in [2, 9, 17, 20, 25, 37, 38, 

46].   

 

The concept of value of information in the context of oil exploration seeks to trade-off the 

cost of exploration and the value of information. This results in a DM weighing the cost of 

drilling, rig rates, etc. alongside risks and uncertainty associated with individual oil or gas 



fields in order to determine if exploration will result in a profit [41]. Milgrom et al. [27] 

examine the negative effects of having such valuable information in a sealed-bid auction for 

tracts of land sold for oil and gas. 
 

In more recent years, the value of information has found its way into the context of spatial 

decision making and directed graph models [6, 22].  Bhattacharjya et al. [6] present models 

that compute the value of information when a DM has multiple COAs within the decision 

space.  Krause et al. [22] approach the directed graph case by exploiting the use of local 

rewards and summing for the total reward.  Reward functions are presented in the form of 

residual and joint entropies, enabling a decision-theoretic quantification of the value of 

information.   

 

To the best of our knowledge, literature pertaining to the value of information is generally 

lacking in the operations research domain. In [11], the value of information is formalized 

within a stochastic framework, while [19] concerns itself with when information becomes 

available based upon a DM’s decision. Thornley et al. [43] consider mission-specific value of 

information by finding a quantifiable, objective performance metric for commanders to feel 

confident in a COA. 

 

Value of information, specifically in the context of operations research, is of crucial 

importance due to ever more restrictive budget constraints within the Navy and the goal of 

utility maximization. Piracy, especially off the coast of Somalia, has garnered attention within 

the last few years due to the increase in attacks [2]. In [2] the counter-piracy problem is 

formulated and solved as a stochastic control problem. In this paper, we find a measure for 

information value, similar to [43], via the PARS. By solving the stochastic control problem, 

we use a quantifiable metric known as probability of interdiction (also referred to as 

interdiction gain) to justify the effectiveness of the PARS and to contrast our solutions in the 

presence of high uncertainty. In the context of C4ISR, such a performance metric is available 

through the algorithm in [2] when the probability of interdiction is used as a reward metric 

for the asset. We use cumulative probability of interdiction over all assets as a metric for 

quantifying the value of information in the context of counter-piracy. 

 

Organization of the Paper 

 

This paper is organized as follows. In Section II, we introduce the components and 

significance of the PARS and propose a probability of interdiction metric to quantify the 

value of PARS. We also consider the impact of asset coordination on the interdiction metric. 

In Section III, the value of PARS is evaluated using a hypothetical piracy scenario and the 

results of sensitivity analysis are discussed.  Section IV concludes with our summary and 

future research directions. 
 

II. PROBLEM FORMULATION AND APPROACH 
 

Pirate Attack Risk Surface (PARS) 

 

The Pirate Attack Risk Surface is a set of heat maps that are output by the decision making 

software for naval operations discussed in [2] and is calculated using multiple pieces of 

information. A rectangular ocean area is discretized into grid of cells, wherein each cell 

consists of a value indicating the probability of a pirate attack within the cell’s geographical 

location. Each cell’s probability is calculated based on intelligence regarding pirate behavior, 



shipping routes, and METOC conditions [16]. This probability of attack results from the 

multiplication of three components: 1) the probability that pirates will be in the area of 

interest (AOI), 2) a probability field apropos of vulnerability of shipping activity in the AOI, 

and 3) the probability that a pirate attack is possible given any possible environmental 

impacts. A contour map output of PARS is shown in Figure 2. 

 

 

Figure 2 Example of a contour map of a PARS output where the AOI is off the coast of Somalia 

These surfaces serve as a visual aid for probable sites of attack and are used as input for the 

counter-piracy stochastic control model in [2]. The planning process is repeated on a typically 

12 to 24 hour cycle, wherein the aforementioned three components are subsequently updated 

resulting in a new PARS. The counter-piracy model operates on a rolling horizon planning 

assumption (e.g., 72 hours); thus the set of PARS maps are generated over a finite horizon, 

each map corresponding to a different time interval, and then regenerated upon entering the 

next time interval. 

 

Probability of Interdiction/ Interdiction Gain 
 

To derive the measure of performance used, interdiction gain, we first briefly discuss the 

interdiction formulation in [2] and then explain the metric in detail. We define a time period k, 

to be the beginning of a 12 hour duration between updates to the PARS and assume the 

current time period to be denoted by time k = 0. At k = 0, the DMs decide on an asset 

allocation for the next K periods, k = 1, 2,…, K. The DMs decide on a course of action based 

on the set of forecasted PARS maps. For our purposes, we are concerned only with 

interdiction assets, xi(k), where iIk, where  xi(k) denotes the location of an interdiction asset 

indexed by i at time epoch k, and Ik denotes the set of available interdiction assets at time 

epoch k.  Interdiction assets are able to be assigned during time periods k > 0. Note that k is 

a relative time index. 

 

At each time epoch k, each available interdiction asset xi(k) has a probability of interdicting a 

pirate in cell gG, G denoting the set of PARS grid cells in the AOI. We solve for each 12 
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hour cycle and use the previous optimization’s results as initial conditions for the succeeding 

time epoch. Interdiction assets (typically surface ships) with speed iv , are assumed to have a 

helicopter onboard where the helicopter’s speed, 
h

iv  and its launch delay time, h

it are 

considered in the interdiction probability, denoted PIi(xi(k), g). If we suppose the time to 

interdict a piracy event to be τ, the probability of interdiction is given by, 
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where dist(xi(k), g) is the Euclidian distance from cell g to the location of asset xi(k). Here, 
r(i,τ) is the distance that will be covered during τ and takes on the following values 
conditioned upon each helicopter’s required time to launch. 
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We then are able to use the cumulative interdiction probability,  

  
0

,
k

K

i i

k i I g G

CPI PI x k g
  

             (3) 

as a benchmark to evaluate the value of PARS. Our approach allows us to compare the 

probability of interdiction accumulated over the time horizon in both high and low 

uncertainty cases. The difference between the cumulative interdiction gains of two 

qualitatively different PARS maps allows us to evaluate the importance of the quality of 

PARS maps in counter-piracy operations. 

 

Asset Coordination 

 

In an ideal environment, each decision is known by each asset globally; information is easy to 

acquire and so DMs can choose a COA based on a COA already chosen by another DM. In 

[2], no assets are allowed to enter the same cell in the same time epoch and so each path 

chosen is known by all of the DMs. Here, we define a.) coordinated assets: each asset is 

aware of the paths of the remaining assets, b.) partially uncoordinated assets: some of the 

assets are aware of the paths of the remaining assets, c.) uncoordinated assets: none of the 

assets are aware of the paths of the remaining assets. When fully coordinated, the 

environment can be explored efficiently with no overlap between interdiction vessels. We 

compare the scenarios of coordinated, partially uncoordinated, versus uncoordinated assets 

using the cumulative interdiction probability as a metric for comparison. We solve the 

counter-piracy problem for one asset, and subsequently for the remaining assets to simulate 

an asset uninformed about other assets’ routes. Doing this for each asset simulates a scenario 

where there exists a complete breakdown in communication amongst DMs. Evaluating the 

cumulative probability of interdiction in each instance quantifies the importance of 

coordination amongst DMs.  

 

III. COMPUTATIONAL RESULTS 
 



Mission Scenario and Results 

 

We use the same area of interest (AOI) as in [2], where the region is discretized into a grid of 

cells corresponding to available METOC forecasts. The cells are squares of 0.8-arcdegree-

side length and merge to become a 43×51 cell grid. Here, we consider the placement of 

multiple interdiction vessels of identical capability over a finite planning horizon of three 

days. The asset capabilities input to the model are similar to those of a Ticonderoga-class 

guided missile cruiser. See Table I for the asset characteristics. Note in Table I, “H” under 

“Asset Types Carried” signifies a helicopter (or multiple helicopters) on board. 

 
  

We solve the interdiction problem for two cases: 1) PARS in the presence of high uncertainty, 

and 2) PARS in the presence of low uncertainty; we conduct a sensitivity analysis alongside 

our results and find the routes and the corresponding interdiction gains for four scenarios of 

available interdiction assets: 2, 4, 7, and 10 vessels. 

Table I: Interdiction vessel characteristics 



 
(a) Low uncertainty 

 
(b) Medium uncertainty 

 
(c) High uncertainty 

Figure 3: Degraded PARS by adding Gaussian noise to the Best Case PARS 



To capture the uncertainty aspect in PARS, we add zero-mean Gaussian noise to each 

individual cell in the PARS, and increase the variance as the forecasting time is further into 

the future. We compare two surfaces for each quantity of assets – one using the original 

PARS, and the other using a PARS with noise with a variance of (0.04)
2
 added at the current 

time epoch wherein the variance increases by a factor of two for each subsequent forecasting 

time epoch (e.g. (0.04)
2
, (0.08)

2
, (0.16)

2
, etc). This noise is added to the PARS via a moving 

window of length 6 – two 12-hour updates each day for 3 days. Due to the increasing 

variance, the signal-to-noise ratio decreases over the time horizon as shown in Table II. 

Table I: SNR (dB) for the PARS with added uncertainty 

k 1 2 3 4 5 6 

SNR 16.2872 13.9694 13.5497 8.2313 8.6664 4.9296 

Examples of degradation in the quality of PARS maps are shown in Figure 3. Assets are 

positioned uniformly such that there is no obtainable interdiction gain on day 0 before the 

first update in the PARS. 

 

Figure 4: Cumulative interdiction gain (%) for PARS  

Table II: Comparison of Interdiction Gains 

# of 

Assets 

Cumulative Probability of 

Interdiction (%) 

PARS + Noise PARS  

2 72.319 82.730 

4 107.45 163.95 

7 134.87 236.54 

10 156.63 264.46 

 

Figure 4 shows the cumulative interdiction gain as a function of the number of assets 

comparing the PARS with low uncertainty with that of high uncertainty (noise with a 

variance that increases by a factor of two for each subsequent time epoch, as mentioned 

earlier).  Summing the PARS, there are three pirates in the AOI in this hypothetical scenario, 

thus a 300% interdiction gain corresponds to successfully interdicting all three pirate attacks. 

The sensitivity analysis results for each case are shown in Table III. Results are obtained by 

averaging the results over 100 Monte Carlo runs each with the exception of when 10 



interdiction assets are available which, due to computational complexity, was averaged over 

10 Monte Carlo runs only. 

 
Figure 5: Performance degradation (%) due to PARS maps in the presence of high uncertainty 

 

 

Value of Information Analysis 

 

In order to quantify the value of PARS, we set a desired interdiction gain of 150% (equating 

to an overall 50% successful interdiction rate) over the course of 6 time epochs, or 3 days, for 

the sake of simplicity and ease of visual comparison.  As shown in Figure 4, the interdiction 

asset allocation plan with the original PARS required only four assets, where as a plan with 

highly uncertain PARS required ten assets;  this translates to a 150% increase in asset 

requirements for the same desired interdiction gain.  The difference between having a PARS 

with low uncertainty and a PARS with high uncertainty can mean using up to six assets less. 

Interpreting our results a step further, this means that having a “good” PARS can be 

extremely economical, ultimately allowing the DMs to forego the operating costs of six 

vessels. Figure 5 shows that these results are due to the rate of increase in the cumulative 

interdiction gain for PARS with high uncertainty with respect to the number of assets being 

less than that of PARS with low uncertainty. Performance degradation was calculated via 

100%H L

L

CPI CPI

CPI


 ,            (4) 

where CPIH denotes the cumulative probability of interdiction obtained when the PARS has 

high uncertainty and CPIL denotes the contrary case. Thus, for two assets, using PARS with 

high uncertainty results in approximately 12% degradation in performance. Using four assets, 

this gap widens to 34%. We see that performance is most disparate when seven assets are 

used (43%), signifying performance degradation as a consequence of adding high uncertainty 

to the forecast. Tables IV and V show the cumulative interdiction gain obtained for each time 

epoch using both the degraded and the best case PARS, respectively. 
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Table III: Interdiction Gains using the Degraded PARS 

Time k  
# of 

Assets 

1 2 3 4 5 6 

2 0 0.0284 0.1222 0.2680 0.4817 0.7231 

4 0 0.0321 0.1570 0.3477 0.6536 1.0744 

7 0 0.0369 0.1609 0.3973 0.7689 1.3486 

10 0 0.0557 0.2118 0.5058 0.9446 1.5663 

 

Table IV: Interdiction Gains using the Best Case PARS 

Time k  
# of 

Assets 

1 2 3 4 5 6 

2 0 0.0142 0.1539 0.3750 0.5746 0.8273 

4 0 0.0259 0.3038 0.7680 1.1855 1.6395 

7 0 0.0742 0.4680 1.0418 1.6841 2.3654 

10 0 0.0742 0.5311 1.1493 1.8511 2.6446 

 

Value of Coordination  
 

Using our findings from our value of information analysis, we examine coordination amongst 

four assets using the best case PARS to investigate the cumulative interdiction gain as a 

function of asset coordination. Utilizing the same locations as before when four assets were 

allocated, we found full asset coordination to be necessary in order to obtain a desired 

cumulative interdiction gain of 150%. As shown in Figure 6, lack of asset coordination 

lowers cumulative interdiction gain by 10% or more and results in a failure to obtain our 

desired gain. Coordinating interdiction strategies improve gain by as much as 22% over the 

uncoordinated case. 

 



 
Figure 6: Cumulative interdiction gain versus asset coordination for four assets. 

 

IV. CONCLUSION AND FUTURE WORK 
 

This paper considered the problem of quantifying mission-specific value of information using 

counter-piracy operations as mission context. The interdiction asset allocation algorithm in [2] 

was used to quantify the value of PARS maps by considering various levels of uncertainty in 

these maps ranging from low to high uncertainty. The experimental results demonstrate the 

importance of PARS and the degradation in solution quality in the presence of high 

uncertainty. An analysis of coordinated versus uncoordinated assets was conducted, where a 

fully coordinated asset scenario satisfied the desired gain requirement; this is commensurate 

with our intuition. 

 

Future research will shift the focus of our model and analysis to the counter-smuggling 

missions in the East Pacific and Caribbean oceans. In this environment, other variations of 

mission performance metrics are being developed to quantify the value of PARS maps.  

These include metrics such as the expected amount of drugs interdicted and expected number 

of vessels interdicted.  In addition, we will explore other measures of information value 

based on Bayesian diagnosticity, impact, information gain, and other Bayesian OED 

framework theories discussed in [31]. 
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What is the Value of Information? 
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• The Navy has identified a need to quantify 
the value of data to be delivered to 
decision makers (DMs) 

• Goal: Eliminate unnecessary information 
and unclog the information super highway 

• Allow for faster conveyance of proper 
context to the decision maker → faster, 
better informed and superior decisions 

1 – J. G. Morrison, (2011, December 1) Data to Decisions or Decisions to Data? A Human System 
Perspective on D2D, [Online].  
Available: http://www.ictas.vt.edu/cnavs/presentations/data_to_decision/4morrison.pdf. 
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No Right Context All 

• Mastering information dominance requires 
acquisition, integration, and transfer of the  

1. Right 
data/information/knowledge/wisdom 
from the  

2. Right sources in the 
3. Right context to the 
4. Right DM at the 
5. Right time for the 
6. Right purpose 

Wisdom 

Understanding 

Knowledge 

Information 

Data 

2 – A. Smirnov, (2006, January 24)  Context-Driven Decision Making in Network-Centric 
Operations: Agent-Based Intelligent Support. Russian Academy of Sciences,  
St. Petersburg, Russia. 
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• Pirates continue to increase geographic range of their attacks  

• A response to these threats requires: 

− Integration of intelligence and effective surveillance to detect and identify threats in 
order to gain situational awareness, followed by effective allocation of resources for 
interdicting the potential threats (Dynamic Resource Management Problem) 

• Pirates continue to increase geographic range of their attacks  

• A response to these threats requires: 

− Integration of intelligence and effective surveillance to detect and identify threats in 
order to gain situational awareness, followed by effective allocation of resources for 
interdicting the potential threats (Dynamic Resource Management Problem) 

• Pirates continue to increase geographic range of their attacks 

• A response to these threats requires: 

− Integration of intelligence and effective surveillance to detect and identify threats in 
order to gain situational awareness, followed by effective allocation of resources for 
interdicting the potential threats (Dynamic Resource Management problem) 

Rise in Somali Piracy 
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• Piracy has become a major international problem, costing the global economy and 
maritime security  Higher insurance rates, delivery delays, ransom payments, etc. 

 

 

 

 

Reference: Rick “Ozzie” Nelson, Scott Goossens, ‘Counter-Piracy in the Arabian Sea: Challenges and opportunities for 
GCC Action”, Gulf Analysis Paper, CSIS, May 2011 



Dynamic Resource Management for 
Counter-Piracy Operations  
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Sensors  

Information 
Processing  

Decision 
Makers 

Interdiction 

Target Type & 
Tracks  

Interdiction 
Assets  

Surveillance 

Dynamic Mission 
Environment 

Observations 

Interdiction  
Actions  

Interdiction 

• Objective: Maximize interdiction 
probability of likely pirate attacks 
over a planning horizon  

• Operational level 
− Asset positioning over time  

• Tactical level  
− Patrolling Paths  

− Visit, board, search, and seizure 
(VBSS ) decisions  

− Revisit frequency 

 

• Objective: Maximize probability of 
pirate detection over a planning 
horizon  

• Operational level 
− Which asset? 

− Where to search (Search box) ? 

• Tactical level  
− Search paths 

− Detect, identify, and track  

− Revisit frequency 

 

Surveillance 
Constraints 

• Mission environment 
(e.g., weather) 

• Asset availability 

• Coordination/ 
synchronization 

• Asset capabilities    
(e.g., range, speed,..) 

• Sensor assignment   
(e.g., Many-to-one,..) 

 



Today’s weather 

Counter-Piracy Problem in a Nutshell  
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Actual asset locations 

Pre-positioning decisions  

Impacts 
detection capability  

Impacts  
interdiction capability 

Difference between planned and  
actual asset location (Intermediate 

probability of attack suitability) 

Patrol boxes 

Forecasted weather 
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Counter-Piracy Problem in a Nutshell  
• Objective: Allocate interdiction and surveillance assets over a planning horizon to minimize 

the likelihood of successful pirate attack, including ensemble forecast uncertainties associated 
with Pirate Attack Risk Surface (PARS), asset capability, and effects of uncertain weather on 
reachable cells by each asset 
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• Objective: Allocate interdiction and surveillance assets over a planning horizon to minimize 
the likelihood of successful pirate attack, including ensemble forecast uncertainties associated 
with Pirate Attack Risk Surface (PARS), asset capability, and effects of uncertain weather on 
reachable cells by each asset 

 

 

 

Counter-Piracy Problem in a Nutshell  

Reachback 
Mission Environment 

Today’s weather 

Updated information on intelligence, detection, and interdiction events 
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Detection 
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• Current time period k corresponds to the beginning of a 12 hour duration between updates 
• The DM decides allocation for the next K periods, k=1, 2,…,K 
• xi(k) denotes interdiction assets indexed by i ϵ Ik at time epoch k 
• Ik denotes the set of available interdiction assets at time epoch k 
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Probability of Interdiction & VOI Metric 
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• g – a cell contained within G 
• G – the set of PARS grid cells 
• ti

h – helicopter launch delay time (h) 

• vi – interdiction asset’s speed (km/h) 
• vi

h – helicopter’s speed (km/h) 
• dist(xi(k), g) – Euclidean distance from 

cell g to the location of asset xi(k)  
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VOI Metric: Cumulative Probability of Interdiction 
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• CPIH – cumulative probability of interdiction obtained when the PARS has low uncertainty 
• CPIL – cumulative probability of interdiction obtained when the PARS has low uncertainty 

(4) 



Experimental Environment 
(Counter-Piracy Tool) 

10/16 

File Tools 

Longitude: 38' 32"32""E Latitude: 3' 5'49"'5 Time: 60 - 72 Hours 



Degradation in the Quality of PARS Map  
• Suppose we get probability maps for surveillance & interdiction at time k=0 for k=1,2,3, 

then for k=2,3,4 at k=1, etc. 

• Assume “good future estimate” when we are at any given time period (i.e., good estimate at 
k=1 when we are at  k=0,…) 
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Degradation in PARS Map Quality 
• Suppose we get probability maps for surveillance & interdiction at time k=0 for k=1,2,3, 

then for k=2,3,4 at k=1, etc. 

• Assume “good subsequent estimate” when we enter any given time period (i.e. good 
estimate for k=1 when we enter k=0,…) 
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VOI Analysis Using Counter-Piracy Tool 
• Objective:  Provide a quantitative assessment tool to conduct sensitivity analysis  wrt  

accuracy of PARS and model parameters 
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Decision  Support 
Tool for Counter-

Piracy  

• Model  parameters  for analysis 

− Number of assets 

− Coordinated vs. uncoordinated assets 

Asset locations from k to k+K 

Imperfect PARS Forecast Model  

PARS 

PARS Cell (value = μ) 

+ 

Noise 

k  
k+1  

k+K  

• As the forecast horizon increases, the variance of the noise added to the PARS increases 

0 

k=k+1 



2 4 7 10 

PARS 

PARS + Noise 

Value of the PARS & Performance 
Degradation 
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• # of Assets vs. Cumulative Interdiction 
Probability with PARS and with PARS + Noise 

- Noise with a variance of (0.04)2 added at the 
current time epoch and variance is increased by a 
factor of 2 for each subsequent time epoch   

- For a desired cumulative probability of 
interdiction (say 150%)  with a time horizon of 6 
days, using PARS requires only 4 assets and PARS + 
Noise requires 10 assets 

- Rate of increase in the cumulative probability of 
interdiction with PARS + Noise wrt number of 
assets is less than that with PARS 
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• # of Assets vs. Performance Degradation 
between PARS and PARS + Noise 

- Using PARS with high uncertainty results in a 12% 
degradation in solution performance with 2 assets 
and peaks in solution disparity at 7 assets (43%) 

- Degradation is more evident when there are more 
opportunities to minimize likelihood of pirate 
attack 

- Performance degradation is a major consequence 
of adding high uncertainty to the forecast 



Sensitivity Analysis of Coordinated vs. 
Uncoordinated Assets  
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# of Assets = 4  

4 Coordinated 
(COORD) 

3COORD, 
1UNCOORD 

2COORD, 
2UNCOORD 

4 Uncoordinated 
(UNCOORD) 

• Coordinated vs. Uncoordinated Assets 

- Asset coordination is necessary in order for 4 
assets to obtain a desired cumulative  probability 
of interdiction of 150% 

- Lack of asset coordination lowers cumulative 
interdiction gain by 10% or more, resulting in 
failure to obtain the desired gain 

- Coordinated interdiction strategies improve 
interdiction gain by as much as 22% over 
uncoordinated case 
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Conclusion 
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• Summary: Quantified mission-specific value of information in a 
counter-piracy mission 

• Used a dynamic interdiction asset allocation algorithm to quantify the 
value of the PARS maps considering various levels of uncertainty 

• Having a “good” PARS can be extremely economical, ultimately 

allowing the DMs to forego the operating costs of allocating 

unnecessary assets 

• Future and Current Work: Shift to a counter-smuggling mission 
in the East Pacific and Caribbean Oceans 

• Develop mission performance metrics for quantifying the value of 
PARS maps (e.g., expected amount of drugs interdicted, expected 
number of interdictions, etc.) 

• Explore a priori  measures of information value (e.g., Bayesian 
diagnosticity, impact, information gain, etc.) 


