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1. Summary 
 
This project aimed to design and optimise a novel self-healing 
(SH) advanced composite system using minimum SH agent 
(~0.02%), deposited in microscopically ordered arrays through 
ink-jet printing, to arrest cracks along interfaces between plies 
as shown in Fig.1.  Novel aspects included the method itself, 
the highly-controlled crack arrest mechanism provided by SH 
microdroplets between plies, and the ability to rapidly transfer 
this new technology into a prepreg manufacturing 
process.  Results identified the optimum size and spacing of 
microdroplets capable for crack arrest in multiaxial directions 
between plies, as well as desired manufacturing method and speed of deposition.  The approach consisted of 
depositing novel thermoplastic low-viscosity microdroplets with chemically and mechanically comparable 
properties to epoxy matrix in aerospace grade composites onto fibre reinforced epoxy prepregs before 
curing.  The SH agents remained arrested and encapsulated between epoxy plies without direct contact with 
neighboring microdroplets.  This ensured consistent integrity of the composite while preserving SH 
capability.  In addition, the spatial control offered by ink-jet printing with the four-fluid printhead assembly at 
The University of Sheffield allowed optional study of compositional variation in SH agents to optimise SH 
efficiency.  In addition, a comparison was made between the systems with discretely printed SH agents and 
fully covered plies using the same printing method.  The efficiency of discrete (hexagonal) patterns was 
higher compared to the fully printed surfaces, as the former method enabled the adjacent composite plies to 
cure without the loss in chemical adhesion. 
 
The focus of this technical report is to present the most successful results obtained by printing poly(methyl 
methacrylate) (PMMA) using Boeing accredited toughened carbon fibre epoxy prepreg Cycom977-2 as the 
substrate. In order to investigate the self-healing efficiency, damage process was employed to introduce 
appropriate amount of damage into specimens to demonstrate self-healing. Double cantilever beam (DCB) and 
short beam shear (SBS) tests have been adopted to evaluate the self-healing efficiency.  
It was shown that carefully selected printed self-healing agents increased both shear modulus and fracture 
toughness of CFRP simultaneously, and without imparting any parasitic weight, restored the properties of the 
damaged and self-healed composite to a large degree, following the post-damage heat treatment. The 
specimens with printed PMMA exhibited the highest mode I interlaminar fracture toughness (GIC) and the 
shear modulus both before and after healing cycles among the studied groups. The imparted toughening, 
stiffening and self-healing properties through the method of PMMA discrete deposition at only ~0.02% 
weight fraction represent a successful achievement from the project that was initially based on a high-risk idea 
that has not been attempted before.  The results presented in this report were recently submitted to UK Patent 
Office by The University of Sheffield under Patent No. 1312551.3. 
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2. Methods, Assumptions and Procedures 
Experimental work consisted of identifying the optimal parameters for accurate deposition of inkjet printed 
polymers, suitable thermoplastic self-healing agents for high-temperature CFRP, and selection of mechanical 
tests appropriate for inter-ply structural investigation involving a complex matrix of specimens both without 
and with printed SH agents. 

2.1 Inkjet printed composites manufacturing 
Piezoelectric inkjet printers can accurately deposit pico-litre volumes of solutions or suspensions in 
well-defined patterns. The materials and parameters defining the inkjet printing of polymers used in this work 
are presented in Table 1. 

Table 2.1 Inkjet-Printing parameters used in this study.  

Group Composition of ink Diameter of 
printhead / 
µm 

Pattern  Substrate  
Solute  wt % Solvent  

PMMA PMMA 5 DMF* 60 Hexagon 977-2 
PEG+Water PEG 5 Distilled water 60 Hexagon 977-2 
PEG+Ethanol PEG 5 Pure Ethanol 60 Hexagon 977-2 
Mn(PMMA) = 15,000; Mn(PEG) = 20,000; DMF*: N,N-Dimethylformamide 

Following the deposition of inkjet printed patterns, the composites were cured and manufactured following the 
recommended thermal cycle: 

Curing cycle for Cycom977-2 pre-preg 
① Ramp: 20℃ → 100℃ (rate: 2℃ / min) 
② Dwell: 30min 
③ Ramp: 100℃ → 177℃ (rate: 2℃/ min) 
④ Dwell: 120min 
⑤ Ramp: 177 ℃ → 20℃ (rate: 2℃/ min) 

Damage process was carried out using a tensometer to perform SBS test, to induce the ‘equivalent’ amount of 
damage to all specimens, and the healing cycle imitated the curing cycle in order to investigate the harshest 
temperature environment that the composite may be subjected to at this stage. 

2.2 Optical microscopy  
OM was used (CK40-SLP, OLYMPUS) to investigate the behaviour of PMMA dots printed on glass slide, as 
shown in Figure 2.2.1, during the various stages of thermal cycle.  

   
Fig. 2.2.1 Optical images of PMMA dots with fluorescein on glass slides under different conditions: (a) before curing 
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cycle, (b) after heating to 100° C and (c) after the complete curing cycle.  
Coffee staining effect was evident after the full cure cycle was completed, however the droplets preserved 
their geometry and the surface aspect ratio.  A similar investigation was carried out on the printed carbon 
fibre prepreg, as shown in Fig. 2.2.2. However in this case, the droplets of PMMA were not clearly observed 
following the curing cycle, indicating the reaction with epoxy during the curing process. 
 

   

Fig. 2.2.2 Optical images of PMMA dots with fluorescein on CFRP prepreg under different conditions: (a) before curing 
cycle, (b) after heating to 100° C and (c) after the complete curing cycle.   

In order to investigate this effect further, fluorescein was added to PMMA and PEG during the printing 
process to help identify the deposited droplets during the thermal cycle, as shown in Figs. 2.2.3 and 2.2.4. 
 

   
Fig. 2.2.3 Fluorescein images of PEG dots on pre-preg under different conditions: (a) before curing cycle, (b) after 

heating to 50° C and (c) after the complete curing cycle. 
 

   
Fig. 2.2.4 Fluorescein images of PMMA dots on pre-preg under different conditions: (a) before curing cycle, (b) after 

heating to 100° C and (c) after the complete curing cycle.   

From Figures 2.2.3 and 2.2.4, it can be seen that printed fluorescein within PEG and PMMA dots disappeared 
after heating. There could be two explanations: the polymer penetrated into the epoxy during the thermal cycle, 
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or the fluorescein itself reacted and evaporated during the process.  
 
This part of investigation was finalised using Contour GT (Interferometer) to image PMMA droplets printed 
on glass slide and prepreg, as shown in Figs. 2.2.5 and 2.2.6 respectively. 
 

  

Fig.2.2.5. Interferometry images of PMMA dots on glass slides under different conditions: (a) before 
curing, (b) after curing. 

 

   

Fig.2.2.6. Interferometry images of PMMA dots on prepreg under different conditions: (a) before 
curing, (b) after curing. 

 
The interferometry results suggested that the printed PMMA droplets reacted with the epoxy during the curing 
cycle, and their visibility was not as evident as on the glass slides. However, their distinct chemical 
composition guaranteed the preservation of thermoplastic ‘islands’ in the material after the heating process. 
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2.3 Mechanical Tests and Results 
In this part of the study, two standard mechanical tests were used to evaluate the structural integrity and 
self-healing efficiency of the inkjet printed engineered composite material. 
 
2.3.1 Fibre-reinforced plastic composites — Determination of apparent interlaminar shear strength by 
short-beam method. (BS EN ISO 14130:1998) 
 

Table 2.3.1 SSB method testing schema. 

 i ii iii iv 
Damaged × × √ √ 

Healed × √ × √ 
  
Each batch of test specimens was allocated one of the above four test groups. All specimens were used only 
once; ‘damaged’ group implied using SBS test to introduce the equivalent amount of damage across the group; 
‘healed’ was used to label the group of test specimens subjected to the secondary curing (healing) cycle. 
Table 2.3.2. SBS results for test group i: No induced damage and no healing cycle. 

 Slope (×103 N/mm) Maximum Load (×103 N ) τM (MPa) 
Avg. SD Avg.  SD Avg. SD 

Virgin 5.340 0.355 2.985 0.228 111.9 8.5 
5%PEG+Ethanol 5.781 0.177 2.817 0.107 105.6 4.3 
5%PEG+Water 7.093 0.239 3.590 0.105 134.6 3.9 

5%PMMA+DMF 7.147 0.082 3.118 0.081 116.9 3.0 
*SD: standard deviation 

It can be seen that samples with printed self-healing agent possessed higher shear modulus, with printed 
PMMA samples showing the highest shear modulus, indicating a synergistic mechanism between the printed 
droplets and the base material. Further, there is no significant difference among the virgin and printed samples 
regarding to the average maximum load and the average maximum interlaminar shear strength, showing 
clearly that the structural integrity of the composite has been preserved with printed additives. 

Table 2.3.3. SBS results for test group ii: No induced damage with the healing cycle. 

 Slope (×103 N/mm) Maximum Load (×103 N ) τM (MPa) 
Avg. SD Avg.  SD Avg. SD 

Virgin 5.900 0.368 3.170 0.269 118.9 10.1 
5%PEG+Ethanol 6.780 0.044 3.088 0.128 115.8 4.8 
5%PEG+Water 6.906 0.145 3.363 0.088 126.1 3.3 

5%PMMA+DMF 7.205 0.406 3.177 0.066 119.1 2.5 
 

It can be seen that the samples with printed SH agent possessed higher shear modulus than that of the virgin 
samples after the secondary heating cycle, again the highest stiffness associated with PMMA printed 
composites. Again, there is no significant difference between the virgin and self-healing agent printed samples 
regarding to the average maximum load and average maximum interlaminar shear stress values, indicating 
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that SH agents can impart beneficial properties throughout the service life of the composite. 
Comparing groups i and ii, it can be seen that the average maximum interlaminar shear strength (τM), the 
average maximum load and the average shear modulus were slightly enhanced after the healing cycle, which 
could be either caused by the printed self-healing agent or by the post curing of epoxy in the prepreg itself, or 
both. 

Table 2.3.4. SBS results for test group iii: damaged and no healing cycle. 

 Slope (×103 N/mm) Maximum Load (×103 N ) τM (MPa) 
Avg. SD Avg.  SD Avg. SD 

Virgin 4.268 0.172 2.463 0.079 92.4 3.0 
5%PEG+Ethanol 5.620 0.283 2.376 0.235 89.1 8.8 
5%PEG+Water 6.061 0.537 3.054 0.318 114.6 11.9 

5%PMMA+DMF 5.770 0.393 2.593 0.073 97.3 2.7 
 
We can see the mechanical properties of the four groups being reduced after the induced damage. The samples 
with the printed self-healing agent possessed higher shear modulus compared to the virgin samples. Further, 
no significant difference is observed regarding to the average maximum load and the average maximum 
interlaminar shear stress among the four groups, similar to the previous results. Since the same degree of 
damage process cannot be guaranteed in each test specimen, the results in some groups had a higher standard 
deviation.   

Table 2.3.5. SBS results for test group iv: both damaged and healed specimens. 

 Slope (×103 N/mm) Maximum Load (×103 N ) τM (MPa) 
Avg. SD Avg.  SD Avg. SD 

Virgin 5.046 1.011 2.520 0.406 94.5 15.2 
5%PEG+Ethanol 5.224 0.464 2.486 0.300 93.2 11.3 
5%PEG+Water 6.334 0.502 2.881 0.339 108.1 12.7 

5%PMMA+DMF 5.756 0.316 2.674 0.174 100.3 6.5 
 

After the process of damage and self-healing, it can be seen that the samples with printed SH agents were 
slightly improved compared to the virgin systems. Considering that SBS experiments were conducted with the 
aim of evaluating the structural integrity of the material with printed SH agents, we conclude that the materials’ 
properties and structural integrity have been successfully preserved and slightly enhanced both before and 
after self-healing cycle. In order to evaluate the SH efficiency, Mode I DCB (Double Cantilever Beam) test 
was performed and presented in the following sections. 
 
Table 2.3.6. Summary of SBS test results. 

  
Damage 

 
Heal 

Average value n =  5 

Slope      
(×103 N/mm) 

SD* LoadMAX    

(×103 N ) 
SD* τM (MPa) SD* 

 
Virgin  

×  ×  5.340 0.355 2.985 0.228 111.9 8.5 

×  √ 5.900 0.368 3.170 0.269 118.9 10.1 

√ ×  4.268 0.172 2.463 0.079 92.4 3.0 
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√ √ 5.046 1.011 2.520 0.406 94.5 15.2 

 
5%PEG 
+ Water  

×  ×  7.093 0.239 3.590 0.105 134.6 3.9 

×  √ 6.906 0.145 3.363 0.088 126.1 3.3 

√ ×  6.061 0.537 3.054 0.318 114.6 11.9 

√ √ 6.334 0.502 2.881 0.339 108.1 12.7 

 
5%PEG 

+ 
Ethanol  

×  ×  5.781 0.177 2.817 0.107 105.6 4.3 

×  √ 6.780 0.044 3.088 0.127 115.8 4.8 

√ ×  5.620 0.283 2.376 0.235 89.1 8.8 

√ √ 5.224 0.464 2.486 0.300 93.2 11.3 

 
5%PM
MA + 
DMF 

×  ×  7.147 0.082 3.118 0.081 116.9 3.0 

×  √ 7.205 0.406 3.177 0.066 119.1 2.5 

√ ×  5.770 0.393 2.593 0.073 97.3 2.7 

√ √ 5.756 0.316 2.674 0.174 100.3 6.5 

 
2.3.2 Fibre-reinforced plastic composites — Determination of mode I interlaminar fracture toughness, 

GIC, for unidirectionally reinforced materials. (BS ISO 15024:2001) 

According to the standard, there are several important GIc values of particular points as explained below: 
1) NL point – the point of deviation from linearity on the load versus extension trace;  
2) 5 % / MAX point – the point which occurs first on the loading the specimen between: 

a)  The point of 5 % increase in compliance (C 5 %) from its initial value (C0); 
b)  The maximum load point.  

3) PROP points – points of discrete delamination length increments beyond the tip of the insert or starter 
crack tip marked on the load-extension trace, points where the crack has been arrested being excluded. 

 

 
 

Fig. 2.3.1 Load-displacement curve for a DCB Mode I test showing initiation from the resulting mode I 
precrack followed by crack propagation and unloading. 
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2.3.2.1 DCB Mode I test results 
The summary of all results is presented in Fig. 2.3.2 in the form of average values across all groups before and 
after damage and self-healing. 
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Fig. 2.3.2 GIC comparisons for NL point, 5% / MAX point and avg. PROP point before and after healing cycle. The 
connector line shows a large degree of the recovered portion (self-healing efficiency) of the original propagation GIC 

value (printed PMMA sample compared to the unprinted virgin sample after damage and self-healing). 

From Figure 2.3.2, we can see the average GIc values of NL, 5% / MAX and avg. PROP points of PMMA 
printed specimens are higher than that of the virgin and PEG printed specimens, both before and after healing 
cycles, indicating that the printed PMMA enhanced the interlaminar fracture toughness of specimens. The 
fracture toughness of the system was recovered almost to the virgin value with the assistance of discretely 
printed PMMA between the plies, as shown with the connecting line.  

3. Conclusions 
The fracture toughness results, obtained by the fully destructive DCB Mode I interlaminar test, showed 
approximately double values both before and after self-healing for the printed PMMA material in CFRP 
composites. As the indication of self-healing efficiency, when the value for PMMA printed system after the 
healing cycle is compared to the virgin material before the healing cycle, it can be seen that the original 
properties of the virgin material have been recovered to a large degree (~90%). Strong toughening and 
self-healing capability of the system was achieved due to the unique ability of the selected thermoplastic 
polymer to react with the epoxy resin in carbon fibre reinforced composites, and by enabling the discrete 
deposition of the SH agent, and thereby retaining (or enhancing) the composite’s original structural properties. 
Considering that the composite system used in this study is already toughened and hardened to comply with 
the stringent requirements for aerospace composites, the imparted toughening, stiffening and self-healing 
properties through the method of PMMA discrete deposition at ~0.02% weight fraction represent a very 
successful achievement from the project that was initially based on a high-risk idea that has not been 
attempted before. Furthermore, the manufacturing of these composites can be automatically scaled up without 
causing any disruption to the existing composites supply chain, and without a need to develop new equipment. 
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