New Features of HYCOM

Alan J. Wallcraft

Naval Research Laboratory

16th Layered Ocean Model Workshop

May 23, 2013
New Features of HYCOM

Naval Research Laboratory, 1 Stennis Space Ctr, Stennis Space Center, MS, 39529

Mass Conservation - I

• Mass conservation is important for climate studies
 ○ It is a powerful debugging tool even for shorter time scales
• Many ocean models are Bousinessq
 ○ Density differences are neglected except in terms multiplied by g
 ○ Implies conservation of volume, not mass
 ◦ Still want, and can get, tracer conservation
• HYCOM is not Bousinessq, so it should conserve mass
 ○ Except that it assumes the non-steric SSH is a small fraction of the total depth
 ◦ Includes steric effects, such as mean SSH rise due to thermal expansion, but does not exactly conserve either mass or volume
 ◦ Not satisfactory for coastal domains
 ○ Replaces dp with dp' nearly everywhere
Mass Conservation - II

• HYCOM’s reputation for non-conservation is partially due to using dp’ in mean calculations
 ◦ Much better conservation properties when correctly using dp in region-wide means
 ◦ HYCOM source code uses dp’ for means, i.e. this is a long standing “bug”

• New option, btrmas=1, for exact mass conservation
 ◦ From Remy Baraille at SHOM
 ◦ Removes the dp’ “equals” dp approximation
 ◦ Note that dp’ is still the prognostic variable
 ◦ Still dp’ in restart and archive files
 ◦ Currently, btrmas=1 is less stable than btrmas=0
 ◦ Still working on making it more stable

• As a test, 0.72° Global HYCOM was spun-up for 5 years with typical atmospheric forcing and then all forcing was removed
 ◦ During “spin down” there should be no change to the total heat and salt, i.e. to the mean T and S
Spin Down Test of Conservation - I

GLBT0.72, spin-down, Potential Temperature

GLBT0.72, spin-down, Salinity
Spin Down Test of Conservation - II

GLBT0.72, spin-down, Potential Temperature

GLBT0.72, spin-down, Salinity
Spin Down Test of Conservation - III

GLBT0.72, spin-down, Potential Temperature

GLBT0.72, spin-down, Salinity
Robert-Asselin Time Filter

• One potential source of non-conservation is the RA filter used to stabilize the leapfrog time step scheme
 ◦ Williams (2009) proposed a modified filter that is more conservative and more accurate
 ◦ However, it is not applicable to models with time varying layers than must filter \(h \) and \(hC \) consistently while maintaining non-negative fields
• Leclair and Madec (2009) showed that RA is:
 ◦ Conservative without surface forcing
 ◦ As demonstrated numerically by spin-down case
 ◦ Can be made conservative if surface forcing terms are calculated at half time steps
 ◦ Implies no time splitting from forcing
 ◦ Explicitly remove forcing from RA filter
• HYCOM is not currently conservative with surface forcing
 ◦ Started testing Leclair’s approach
Bit-for-Bit Multi-CPU Reproducability

- Repeating a single processor run:
 - Produces identical results
- Repeating a multi-processor run:
 - Produces different results
 - Using either OpenMP or MPI
 - e.g. fastest global sum is non-reproducible
 - Unless programmer explicitly avoids non-reproducible operations
 - May need to avoid some compiler options
- Two levels of reproducability
 - On the same number of processors
 - Some scalable libraries provide this
 - On any number of processors
 - Only “safe” option for code maintenance
 - Always requires careful programming
 - Can be slower
 - Should be required for operational ocean prediction models
 - Is implemented by HYCOM
Are Two HYCOM Runs Identical? - I

- The only way to confirm bit-for-bit identity is to compare binary fields
- Could compare binary archive and/or restart files
 - But these don’t tell you where any differences came from
- P-MICOM used “named pipes” to compare arrays between MASTER and SLAVE model runs while they were in progress
 - A named pipe is a special Unix file providing a FIFO capability via a shared memory buffer
 - Can read and write to it just like a normal file
- SLAVE writes an array to the pipe, MASTER reads the array and compares it to its own version
 - Usually MASTER runs on one processor and SLAVE on multiple processors
 - Only limitation is that MASTER and SLAVE must be running under the same Unix image
 - May be difficult to arrange for MPI on a cluster
Are Two HYCOM Runs Identical? - II

- HYCOM includes a named pipe based comparitor
 - Similar to P-MICOM, but easier to use
 - Calls to compare or compareall in source code:
 - Can trigger a comparison of arrays at run time, between two HYCOMs via the named pipe
 - Can invoke other run-time debugging options
- A new option is to compile with the OCEANS2 macro
 - Runs two instances of HYCOM in the same executable
 - Each on a different number of MPI tasks
 - Calls to compare or compareall in source code:
 - Will trigger a comparison of arrays at run time via MPI send/recv
 - Easier to use than named pipes and only requires MPI
 - Works for OpenMP with MPI, but same number of threads used by both HYCOMs
 - Does not currently work in coupled models
Tides in HYCOM - I

- Body forcing for 8 largest components
 - With (optional) nodal corrections
 - Implemented in HYCOM by NCEP
- Boundary forcing for Flather or Browning-Kreiss ports
 - Implemented by various groups in local versions of HYCOM
 - Now in standard version
 - 8 largest components specified as complex amplitudes at each boundary point using unmodified extract_HC program from OSU’s OTPSnc or OTPS2 package
 - Allows for curvilinear grid
 - With (optional) nodal corrections
 - Tidal forcing under floating ice shelves requires 1147 ports for Global 1/12° domain
 - Port implementation updated to allocate memory at run time and to make many fewer MPI calls for better MPI performance
Tides in HYCOM - II

- Linear tidal drag based on bottom roughness
 - Applied to near-bottom tidal velocity or to depth averaged tidal velocity
 - Tensor drag for depth averaged case only
 - Use a lagged 49-hour filter as the non-tidal velocity
 - Convolution of a 21 hour Savitzky-Golay smoother and a 24.842 hour boxcar filter
 - Passes 0.02% of semi-diurnal and 3.2% of diurnal (1.2% of total) tides
 - Replaces a lagged 25-hour average
 - Better band pass and better diurnal phase
 - Limit drag’s e-folding time for stability

- Self Attraction and Loading
 - “Scalar” approximation:
 - SAL treated as a fraction of non-steric SSH
 - Constant, or spacially varying, fraction
 - Input SAL complex amplitude fields from a file
 - With or without a “scalar” SAL
 - Iterate SAL to convergence
Spacially Varying Self Attraction and Loading

TPXO8 atlas M2 Amplitude: SAL/TIDE

GLB10.08
d1 0.0025
0 to 0.278
Self Attraction and Loading Comparison

![Graph showing Global Percentile: RMS M2 SSH error vs TPXO](image)

- Barotropic Global 1/12° M2-only simulations
 - Twin cases that differ only in Self Attraction and Loading
- The percentage of the globe (Y) where model - TPXO8atlas SSH RMS is less than X m
 - Note the long tail with the median (50%), for the with-SAL cases, between 3 cm and 5 cm
 - Median is typically a more robust statistic than mean or global RMS
Tides in HYCOM - III

- Several tide-specific diagnostic programs:
 - hycom_tidal_foreman
 - Foreman tidal analysis on HYCOM .a file
 - HYCOM's 4096-word blocking allows strip-mined transpose from \((x,y,t)\) to \((t,x,y)\)
 - hycom_calcSAL
 - Calculate SAL on uniform cylindrical global grid
 - hycom_tidal_rms
 - RMS difference between two sets of tides
 - hycom_tidal_ap2ri and hycom_tidal_ri2ap
 - Amp,Phase to/from Real,Imaginary tidal components

- Tidal analysis enabling output:
 - HYCOM SSH has mass and steric anomalies
 - Steric SSH can optionally be output
 - Steric anomaly plus long term SSH mean
 - Explicitly “filters” external tides
 - Get internal tides from Foreman tidal analysis
 - Non-steric SSH from difference
 - Largely external tides
HYCOM and Sea Ice

- Two-way coupling to LANL’s CICE sea ice model, regional and global domains
 - HYCOM exports:
 - SST, SSS, SSH
 - Surface Currents
 - Available Freeze/Melt Heat Flux
 - CICE exports:
 - Ice Concentration
 - Ice-Ocean Stress
 - Actual Freeze/Melt Heat/Salt/Mass Flux
 - Solar Radiation at Ice Base
 - Coupling via the Earth System Modeling Framework
 - ESMF version 4.0.0rp2
 - Plan to migrate to NUOPC Layer on top of ESMF version 6.X.0r
- Coupled to CICE version 4.0
 - Version 4.1 was released in May, 2010
 - Plan to skip 4.1 and implement the “next release”, due later this year
Coming Soon

• Wave forcing
 ◦ Stokes Drift Current (SDC)
 ◦ Wave-to-Ocean Momentum Flux (WOMF)
 ◦ Bottom Orbital Wave Current (OWC)

• Wetting and Drying
 ◦ Made possible by mass conservation option
 ◦ Code from Remy Baraille at SHOM is already in HYCOM but needs more testing

• Fully region-independent
 ◦ Compile once, run on any region and any number of processors
 ◦ Run-time memory allocation, less memory used
 ◦ Reduces performance
 · Compilers make fewer optimizations
 · Prototype is 5% slower
 ◦ Needed for full ESMF compliance
 ◦ Single executable, multiple components each running on separate cpus
 ◦ HYCOM arrays currently on all cpus