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FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG for sponsoring this issue.
It is interesting and informative to reflect back over 25 years of software 
development. Twenty-five years ago the Software Crisis was raging and there 
were many engaged in trying to convert software code production from art to 
engineering science. The DoD was actively funding the pursuit of a solution. 
The term Software Crisis was first coined at a NATO Software Engineering 
Conference in 1968. It was the result of dramatic increases in computing 
power outpacing the ability of developers to produce working software. It is 
no wonder the DoD was interested in improving the odds of software being 
successful; at the time, approximately one in eight finished software projects 
were considered successful. It was this DoD effort to improve software de-
velopment that originally funded the creation of CrossTalk as an informa-
tion exchange forum. 

Watts Humphrey published the CMM® 25 years ago in 1988 and as a 
book, “Managing the Software Process” the following year. This was the 
beginning of a lot of great work on software process improvement. CMM 
would later be followed by other great works by Watts Humphrey such as 
Team Software Process (TSP) and Personal Software Process (PSP). All 
along the way, CrossTalk has been there covering the transformation of 
the software industry from crisis to manageable and predictable software de-
velopment. CrossTalk has published articles about many types of process 
improvement, some of which have been successful and others not so much. 
Many of us have witnessed firsthand this transformation of the software in-
dustry. We have seen the transformation from very limited process control to 
process control being the rule, not the exception. We have seen the progres-
sion from CMM to the CMMI®.

Today we continue to strive to improve quality and predictability while at 
the same time reducing cost. Unlike 25 years ago, we now have data and 
processes that support controlled predictable high-quality software develop-
ment. We have all probably participated in the debates about what amount 
of process improvement/control is enough. As the Software Maintenance 
Group Director, I don’t know the ultimate answer to the question; however we 
continue to pursue improved software predictability, quality and price.  
This issue of CrossTalk is focused on just how things have changed over 
the last 25 years. I hope you enjoy the perspectives provided in this issue  
of CrossTalk.

Karl Rogers
Software Maintenance Group Director  
309th Software Maintenance Group

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and Trademark  
Office by Carnegie Mellon University
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David A. Cook, Ph.D., Stephen F. Austin State University
Abstract. Since its initial issue, CrossTalk has helped guide software develop-
ment throughout the DoD. As CrossTalk celebrates its 25th anniversary, it is 
educational to see how much software has changed and evolved over the lifetime 
of CrossTalk—and where the future might be leading us. This article discusses 
several of the forces that have shaped software and developmental languages over 
the last 25 years and also tries to see where the future will be taking us.

and Software—Past, 
Present and Future

The Era of CrossTalk—The Early Days 

The Quantity of Programming Languages
Twenty-five years ago, compilers and languages proliferated. 

There were many reasons for the creation of a new program-
ming language [4], and the result was that by the 1980s, more 
than 2,000 programming languages existed [5]. Often compa-
nies or projects created a new language because their proposed 
software needed a combination of features not found in an 
existing language. Because the machines (and storage) of the 
time were limited, trying to add additional features to a language 
that already had features they might not need would simply 
increase compile time. Back in the 1980s it was not unusual 
for compile time to run to minutes per line! Adding new features 
to existing languages simply made compile time worse. It was 
more attractive to start fresh—and develop a language that had 
only the exact features needed for a project. 

By the time CrossTalk came along, it was reasonably well 
recognized in the DoD that a minimal set of languages would 
make software maintenance easier but allow more transfer of 
knowledge and reuse of code throughout the DoD. Simply put, 
it is not cost efficient to maintain systems in thousands of lan-
guages, nor is it wise to have a software development workforce 
that is segmented by knowledge of so many niche languages. 

While it was recognized that such a minimal set of lan-
guages needed to include some legacy languages (JOVIAL, 
CMS, Fortran, COBOL), the DoD also wanted to develop a 
language that it hoped would meet everybody’s programming 
needs. During the infancy of CrossTalk, Ada was developed 
and heavily promoted by the DoD as a language that would 
unify software development needs. For numerous reasons 
(many political), Ada never became the huge success that the 
DoD envisioned. Commercial languages that dominate today’s 
software development market include Java and C (and the 
descendants of C, such as C++ and C#). To understand the 
forces driving language design and language selection, it helps 
to examine a programming language from the perspective of 
what it provides to the developer.

The Quality of Programming Languages
Early high-level languages provided “machine transparency” 

to the developer. Without having to know and master such con-
cepts as word size, memory size, how many registers were avail-
able, etc., the developer could spend less time concentrating on 
“what platform the solution will be implemented on” and more 
time on just understanding the problem. A “good” programming 
language let the programmer focus on the problem, rather than 
the hardware—but at the same time, provided enough features 
to permit the majority of general-purpose software tasks to be 
easily accomplished. 

The earliest compilers were adequate for basic generalized 
programming needs. They provided the developer with a way 
to abstract themselves yet one step further away from the 
machine. In essence, the compilers were a tool that provided 
input to another tool (the assembler), which, in turn interfaced 
with the hardware. 

A Twenty-Five Year Perspective

CrossTalk

In the Beginning: Pre-CrossTalk
Although 25 years is a short span of time, it is actually a very 

long time in terms of software evolution. Twenty-Five years is 
over one-third the entire life span of computers—after all, the 
ENIAC only dates from 1946 [1]. 

One could also argue that some of the most important chang-
es in computers and software occurred in the last 25 years—af-
ter all, the commercialization of the Internet did not begin until 
the mid 1990s. Standardization of TCP/IP itself did not begin 
until the 1980s [2]. The replacement of the large mainframe 
computers with desktop “microcomputers” did not happen until 
the late 1980s. Of course, lots of software development was 
accomplished prior to the existence of CrossTalk. In the early 
days of software development, however, it was normal for devel-
opers to need intimate knowledge of the target hardware. 

Back in the 1950s and even into the 1960s, machine code 
was used for many applications—and the only tools available were 
assemblers. Even when working with assembly language (which 
was much simpler to understand than machine code), developers 
had to have extensive knowledge of the hardware that the final 
software would be deployed upon. The tools that were available 
during these early days were relatively simplistic. The developer 
was closely tied to not only a machine, but occasionally tied to a 
particular model and configuration. The interface between the de-
veloper and the hardware was direct—and hard to learn and mas-
ter. The developer had to understand not just the problem space, 

but also had to be a master of the 
hardware. At best, an assembler 
abstracted away some of the 
hardware, but not all. Developers 
still were tied to hardware—and 
had to understand it to develop 
any code [3].

The	
  Hardware	
  
(CPU	
  and	
  Storage)	
  

Assembler	
  

Figure 1 – Adding a tool to 
abstract away part of the 
actual computer
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One of the driving forces behind software development has 
been, oddly enough, a hardware force—Moore’s Law [6]. Moore’s 
Law (Gordon Moore was one of the co-founders of Intel) was 
that the number of components of an integrated circuit doubles 
about every two years. The law (more of an observation) has 
proven to be uncannily accurate over the last 50 years. And the 
law has been expanded to cover the capabilities of many digital 
electronic devices that are strongly linked to Moore’s Law: 
processing speed, memory capacity, disk capacity, and even the 
number and size of pixels. Because this law says that every-
thing doubles every two years, then the capacity of computers 
(in terms of speed, memory, and storage) is exponential. From 
Moore’s Law comes what I refer to as Cook’s Observation of 
Unwanted Space—every CPU cycle and byte of storage will 
eventually become used. Back in the 1960s, the Titan mis-
sile used less than 2,000 lines of code. The F-35 Joint Strike 
Fighter uses around 25 million [7]. 

The Recent Past and the Present

Software of Today
How is it possible that computer speed, memory, and storage 

are doubling every two years, but we are continuing to use main-
stream languages (such as Java and C++) to develop modern 
software systems that demand more and more capabilities? We 
manage to accomplish this by continually updating just the lan-
guage, but by continuing to create and update extensive libraries 
and templates to assist us with coding. Granted, we continue to 
update modern languages (Java is up to Version 7, Update 15, 
while C++ is now at C++11, with revisions planned ahead for 
C++14 and C++17). These changes, however, are evolutionary, 
not revolutionary. It is pretty much a guarantee that C++ code 
that runs today will still run with the latest version of the compiler 
in 2017. And no language is currently on the horizon to displace 
either Java or C++ from their dominant positions. 

Instead, rather than develop newer and newer languages, we 
now extend our current software capabilities by writing support 
libraries and “importable” code (templates, generics) to extend 
the capabilities of our languages. We are adding additional tools 
(libraries) to support the compiler (another tool) to eventually/
probably be converted to assembly language and then executed 
on the target machine. 

Back in the 1970s and 1980s, the lack of the Internet made 
it difficult to share languages. Languages came into existence, 
were used for select projects, and disappeared in relative 
isolation. Languages tended to belong to a single project, or a 

Figure 2 – Adding 
one more level be-
tween the developer 
and the hardware

single company. In the present, however, we can easily share 
languages and libraries. And because so many needed lan-
guage features are common throughout much of the develop-
ment community, new ideas for language features are easily 
and quickly shared. We can easily add standardized features 
(typically by including a new library or adding features to existing 
libraries) to languages that are standardized. Our extensibility is 
now managed by a mutually agreed upon standardization of lan-
guages. Rather than writing a new language, we have enough 
spare capability to add the libraries and compiler features to let 
the existing languages evolve. 
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Coupled with the ability to “expand” languages through the 
use of libraries, we also have several other forces shaping how 
we develop software. These factors will have a tremendous ef-
fect on the software development of tomorrow. 

The Near Future – 
Forces That Will Affect How We Develop Software

Distributed Computing
In the 1990s, we viewed distributed processing and parallel 

processing as the wave of the future. While both predictions 
have somewhat become true, it is not in a way that we ever en-
visioned 25 years ago. When CrossTalk first started publishing, 
20 to 30 pound laptops were about as “portable” as comput-
ers could be. Back in the 1960s, when Star Trek first debuted, 
Star Fleet ensigns walked around the ship carrying PADDs, or 
Portable Access Display Devices. These devices, which seemed 
to be portable computers with access to the “Computer” were 
obviously a pipe dream. Now, as ultra books, full-fledged and 
high-powered laptops, smart phones and tablets abound we 
“distribute” computing  and require software that equally distrib-
utes tasks as necessary. Mainstream languages now have ex-
tensions or specialized frameworks to allow developing software 
that runs on multiple platforms (from the large to the small). 

Storage Issues
In the near future, several trends are going to affect how we 

develop software. The first is data storage. In the 1960s and 
70s, the storage medium of choice was (as any addict of late-
night really old science fiction movies can tell you) magnetic 
tape (for large data storage) and punched card (for individual 
programs). By the 1980s, floppy disks (8”, 5 ¼” and later 3 ½”) 
had become the medium of choice for individuals, while disk 

Figure 3 – using Librar-
ies and Tools to further 
distance developers from 
the hardware
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storage was the standard for large data stores. By the 1990s, 
individual developers were using CD and DVDs for storage. By 
the 2000s, most developers had embraced flash storage with 
capacities up to 32GB being common. In all of the above ex-
amples, the devices for individual storage were “personal” under 
the total control of the developer. Now, however, cloud storage is 
becoming the standard. It is possible to obtain totally free cloud 
storage ranging from 5GB to 50GB. The side effect of this easy 
to obtain and easy to use (and extremely portable) storage is 
that the possession and protection of code and individual data is 
no longer under the developer’s control. 

Security Issues
Even before 9/11, military applications were routinely devel-

oped with a high level of security in the actual developed applica-
tion. The events of 9/11 made security an integral part of almost 
all DoD system and development processes. With distributed 
computing (using smart phones, laptops and tables) and the 
use of cloud storage, DoD applications require specialized and 
higher levels of security during development. They also require a 
language (and operating system and network) that permits the 
applications to run with a relatively high degree of security. 

In the 1980s and 1990s, software was developed mostly 
onsite, and typically run from a dedicated (and protected) client. 
Now, however, software development, execution of the appli-
cations, and code and data security are no longer necessarily 
centralized. When you combine the potential for terrorism and 
the potential for catastrophic failure of storage, applications 
will require unprecedented levels of security and redundancy. 
This has not been primarily a software issue in the past (it was 
handled by the operating system, network, and even manual 
processes). However, as redundancy and security will become 
more and more of a requirement for all levels of software in the 
future, I expect to see many security features become part of 
mainstream programming languages. 

Trend To Graphical Languages or Graphical Front-Ends
Since the early 1950s, we have tried to use graphical meth-

ods to capture requirements and develop systems. We have 
tried flowcharts, State Transition Diagrams, Data Flow Diagrams, 
and the Unified Modeling Language. All work to help, but none 

are full-fledged enough to actually capture a full set of require-
ments for a large-scale system and produce executable code. 
Some (such as UML) come close. 

In some areas, there do exist graphical interfaces that can create 
a complete executable system. For example, in the field of Model-
ing and Simulation, the language Arena (among others) allows an 
experienced user to capture requirements, develop the model, and 
execute the simulation under a variety of constraints [8].

The Not-So-Near Future
Back in 1997, I was privileged to attend the ACM (Association 

of Computing Machinery) 50th Anniversary celebration, in San 
Jose. While there, a group of luminaries was present, and each 
was asked to briefly speak for 10 minutes or so on “What The Fu-
ture Holds.” I remember little about who spoke, or what they said, 
except for one speaker (whose name I cannot remember). He 
said, “10 years ago, we did not see the Internet coming, so who 
are we to predict the future?” I feel the same way. Things that 
we never envisioned as possible are now real. I can be standing 
in the middle of a cornfield in Nebraska, and given a decent 4G 
signal, have accessible to me almost all recorded history. 

In the 1960s, when Star Trek had tablets disguised as 
PADDs, and cell phones and Bluetooth earpieces disguised as 
communicators, we could not comprehend a future with such 
wonderful devices. Now, I can wear a small device in my ear, tap 
it, and simply say, “Siri, please tell me the weather in London.” I 
get results within seconds. The boundaries between normal life 
and computer usage are almost non-existent. Cars, appliances, 
even shoes are integrated in the ever-expanding computer-
driven daily life. 

I feel that software will continue to follow two separate paths—
large-scale and non-traditional. Large-scale traditional software 
development (like much of the software developed within the 
DoD) will evolve slowly. Granted, I used Fortran in the 1960s, and 
now use C++, but the process is almost the same. Requirements, 
analysis, design, implementation, testing, maintenance—some 
things will probably not change for a long, long time. Niche soft-
ware will come and go. A few new languages will be developed 
for specialized applications. It will be very difficult to create a new 
language that can overcome the developmental inertia that C++ 
and Java now hold. This language might continue to evolve (such 
as C# or Objective-C),  but look at the staying power of Fortran. 
It was released commercially in 1957, and still maintains a strong 
“foot in the door” for many engineering applications. It appears 
than once a language becomes mainstream it remains a develop-
ment tool for years and years to come. 

Conclusions and Inescapable Facts
The average reader of CrossTalk is probably not the aver-

age developer of software. If you read CrossTalk, you probably 
work on large-scale or real-time systems. These systems are 
hard! We are always on the cutting edge of technology, trying to 
do what has never been done before. 

I cannot say it any better than Fred Brooks said back in 1986, 
when he wrote the classic article, “No Silver Bullet—Essence 
and Accidents of Software Engineering [9].” 
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Figure 4 – Adding a Graphical Interface – even more removed from hardware, 
wherever it is, and wherever your storage is!
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In it, he said, “I believe the hard part of building software to be 
the specification, design, and testing of this conceptual construct, 
not the labor of representing it and testing the fidelity of the rep-
resentation. We still make syntax errors, to be sure; but they are 
fuzz compared with the conceptual errors in most systems.”

If this is true, building software will always be hard. There is 
inherently no silver bullet.

Let us consider the inherent properties of this irreducible 
essence of modern software systems: complexity, conformity, 
changeability, and invisibility.

Twenty five years later, software is still hard. Software is still 
complex; still has to conform to bizarre and antiquated inter-
faces; still requires constant maintenance and updating; and still 
is essentially invisible, in spite of the graphical tools and process 
we try to use. And this is not necessarily bad. Using my iPhone 
to connect to a microprocessor in my shoes so that I can track 
my daily aerobic exercise history should be invisible—in fact, I 
want it seamless and thought-free.

But still, how do we create and provide this seamless integra-
tion between computers and every facet of our life? How about 
the really large-scale integration—the aircraft, spaceships, and 
weapons of tomorrow? Brooks, in the Mythical Man Month 
anniversary edition (where both the original article and his 
article “No Silver Bullet Refired” can be found) brings forth that 
perhaps methodologies are the silver bullet. The more advanced 
and larger the eventual software application, the more important 
it will be to have a process to manage the inherent complexity, 
conformity, changeability and invisibility.

And, as far as I can clearly see, therein lies the future. Process-
es are important—because of the magnitude of the effort. As the 
effort gets bigger, the more we need to rely on a process to guide 
us to completion. Back in the 1980s, when CrossTalk started 
publication, our computer systems were not exactly small, but they 
were smaller. For the mid 2010s? Double the CPU speed about 
10 times. Then, also double available memory and storage capac-
ity about the same number of times. And now fill up the computer 
with enough software to consume every clock cycle and byte. It is 
too big to even comprehend, so you better have a serious process 
to make it all fit together because without a process to man-
age the complexity you are not going to be able to get anything 
to work. In fact, you probably would not even be able to gather 
enough requirements to start development.

Large-scale projects require large-scale processes, which 
require relatively strict adherence to process standards. The 
languages we use are just a supporting role in the software 
systems we create. Software of the future is a combination of 
languages, tools, libraries, and most importantly, a process for 
putting it all together. 

As we reflect on CrossTalk’s 25 years of publication, I think 
that I can confidently say that CrossTalk has covered the is-
sues and trends that got us to where we are now. As a frequent 
contributor and reviewer, I can also say that CrossTalk is 
already preparing us for the future! 

To learn more about the DHS Office of Cybersecurity 
and Communications, go to www.dhs.gov/cybercareers. 
To find out how to apply for a vacant position, please go 
to USAJOBS at www.usajobs.gov or visit us at 
www.DHS.gov; follow the link Find Career 
Opportunities, and then select Cybersecurity under 
Featured Mission Areas.
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Abstract. The security risks associated with software and its development 
processes have been recognized for 40 years or more. But only in the past quarter 
century have efforts to understand and address the root causes of system security 
vulnerabilities evolved and coalesced into systematic efforts to improve software 
security assurance across government and leading industry sectors. Along with 
these programs have arisen efforts to reshape the software engineering profes-
sion, and to establish a robust software security technology and services industry. 

This article provides a capsule history of the most significant of the software 
assurance efforts of the past 25 years, organized by the main problems they have 
striven—and continue to strive—to correct. At the end of the article, a number of 
more extensive, detailed software assurance landscapes are recommended to the 
reader, to complement and elaborate upon the information presented here.

A Twenty-Five 
Year Perspective

amounts of software that had previously operated only stand-
alone or on private networks) with the global undertaking to 
examine and correct Y2K errors in the vast installed base of 
commercial and privately-produced software code. People were 
looking harder at their software than ever before, and what they 
found was not reassuring.

One result of the recognition that most software contained 
entirely too many exploitable errors and flaws was a deeper in-
vestigation into the root causes of the problem and, once identi-
fied, into the means to correct them. As a result, the late 1990s 
onward saw a growing ferment of commercial, academic, and 
government activity, including research, policy, process improve-
ment, and propaganda—all falling under the rubric of “application 
security” or “software assurance.” 

By 2005, the President’s Information Technology Advisory 
Committee was able to neatly summarize the twin security 
dilemmas that plague modern software:

“Today, as with cancer, vulnerable software can be invaded 
and modified to cause damage to previously healthy software, 
and infected software can replicate itself and be carried across 
networks to cause damage in other systems.... Vulnerabilities in 
software that are introduced by mistake or poor practices are 
a serious problem today. In the future, the Nation may face an 
even more challenging problem as adversaries—both foreign 
and domestic—become increasingly sophisticated in their ability 
to insert malicious code into critical software [4].”

The ability to exploit software’s vulnerabilities to compromise 
its availability and the confidentiality and integrity of the informa-
tion it handles, and the ability to exploit vulnerabilities in SDLC 
processes to intentionally subvert the functionality produced by 
those processes (by tampering with intended logic or implanting 
malicious code) continue to provide the impetus for all of today’s 
software and software supply chain security assurance efforts. 
The rest of this article describes a representative sampling of 
such efforts over the past 25 years.

Exploitation of Software Vulnerabilities
The National Bureau of Standards published one of the first 

major taxonomies of operating system security vulnerabilities 
in 1976. Of the seven categories of vulnerabilities it identified, 
five constituted software vulnerabilities—(1) inadequate input/
parameter validation, (2) incorrect input/parameter validation, 
(3) bounds checking errors, (4) race conditions, and (5) other 
exploitable logic errors [3]. The other two vulnerability categories 
were information flow-related. 

By the mid-1990s, researchers recognized the need to 
clearly delineate software security from information security 
concerns, and several proposed taxonomies categorizing and 
characterizing software vulnerabilities were published by the 
Naval Research Laboratory, [5] Purdue University [6], the Open 
Web Application Security Project (OWASP) [7], and The MITRE 
Corporation [8]. 

In parallel with these efforts to “taxonomize” software vulner-
abilities arose attempts to characterize techniques for exploit-
ing software vulnerabilities, and tools and techniques such as 
attack trees [9], attack patterns [10], and threat modeling [11] 

Background
In 1974, a vulnerability analysis of the Multics multilevel 

secure operating system highlighted the potential of software 
design flaws and coding errors to be exploited as a means to 
compromise the security of the Multics system [1]. The report 
also discussed the potential for malicious insiders and external 
penetrators to exploit the lack of security awareness in Software 
Development Life Cycle (SDLC) processes and the absence 
of security protections for code development and distribution 
mechanisms to surreptitiously access and subvert the code 
prior to deployment. These process-level weaknesses were true 
not just for Multics, but for all of the software that made up the 
DoD’s World Wide Military Command and Control System. 

The 1974 report may be the first formal documentation of the 
direct correlations between (1) errors and flaws in a system’s 
software and the vulnerability of that system, and (2) the lack 
of security controls in SDLC processes and the potential for 
malicious subversion of the software that results. However, the 
report’s matter-of-fact tone suggests both problems were likely 
already well-recognized by then. And so the twin concerns that 
continue to drive virtually all software security assurance efforts 
to this day were already documented by 1974. 

Over the next 20 years or so, any focus on improving soft-
ware-level security assurance was limited to software-intensive 
systems with very high-confidence requirements used in the 
DoD, the Department of Energy, and the intelligence community 
(and in some of their non-U.S. counterparts abroad), e.g., the 
ballistic missile defense software developed under the Strategic 
Defense Initiative (SDI), and software used in high-assurance 
cryptographic systems, operating system kernels, and cross-do-
main solutions. Not until the mid-1990s did the broader security 
implications of the poor quality of most software explode into 
the broader consciousness. This awareness came thanks to the 
coincidence of the rise of universal Internet connectivity and 
the World Wide Web (and with it the exposure of increasing 
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emerged to help developers characterize the attacks and exploi-
tations that were most likely to target their software, and their 
likely outcomes. 

Meanwhile, the typical timeframe between a vendor’s discov-
ery of a new vulnerability in its commercial software product and 
its ability to develop and release a fix, or “patch,” to mitigate that 
vulnerability shrank from months to weeks to days to virtually 
nothing. This “zero-day vulnerability” problem, which had only 
been speculated about at the start of the millennium, was com-
monplace reality by the end of its first decade. In a struggle to 
maintain even tenuous control over the situation, both the soft-
ware industry and the government began demanding exclusive 
rights to information about vulnerabilities discovered by their own 
and third-party “security researchers.” In 2005, the first known 
sale of a vulnerability occurred. An ex-employee of the NSA 
sold information about an exploitable Linux flaw on an exclusive 
basis to the U.S. government; the alleged price: $80,000. Today, 
vendors routinely offer bounties for exclusive information about 
vulnerabilities in their products (Google reportedly spent upward 
of $460,000 in the first two years of its Vulnerability Reward 
Program). Buyers are motivated by the desire to keep news of 
vulnerabilities quiet long enough for patches to be released and 
applied, while many researchers seek to turn vulnerability-selling 
into a profitable industry. Some even market subscriptions to 
vendors whose software is affected. Others focus on the lucrative 
government market for vulnerabilities that can be exploited in 
information operations or cyber espionage [12].

Attacks targeting or exploiting software bugs, and the variety 
and capability of malicious logic have increased exponentially 
with the proliferation of network-connected software-intensive 
systems, services, and applications, including embedded systems. 
These risks plague not only the embedded software and micro-
code in military weapon systems, but in industrial control systems, 
networking devices, medical devices, onboard vehicle and avionic 
diagnostic systems, global positioning systems, mobile communi-
cations devices, consumer electronics, and an growing number of 
“smart” appliances in homes and workplaces. Many such systems 
are expected to operate continuously and cannot tolerate opera-
tional disruptions. A growing number are peripatetic, with no fixed 
location and only intermittent wireless connectivity. As a result, all 
are poor candidates for the traditional “push” approach to “just in 
time” software patching and updating.

At the same time, with miniaturization, hardware has also 
become so powerful that the lines between embedded soft-
ware, firmware, and “fused-in” hardware logic have increasingly 
blurred. Researchers have also demonstrated the ability to 
load malicious firmware into information and communications 
technology (ICT) devices in order to subvert their operation. For 
example, a Columbia University research team installed mali-
cious firmware in an HP LaserJet printer, then used it to illicitly 
forward documents from the print queue, and also to physi-
cally damage the printer [13]. Indeed, the problem of malicious 
firmware was explicitly documented by Scott Borg, the Director 
of the U.S. Cyber Consequences Unit and the Internet Security 
Alliance, in a 2008 strategy paper for the White House [14].

The emergence of post-manufacture reprogrammable inte-
grated circuits in the 1990s obscured these distinctions even 
further, by expanding the threats to hardware logic beyond its 

fabrication and manufacturing processes. While all integrated 
circuits (ICs) are vulnerable to subversion during design and 
manufacture, field-programmable gate arrays (FPGAs) extend 
the attacker’s window of opportunity, because their logic can 
be maliciously altered after manufacture. As long ago as 1999, 
researchers identified techniques for implanting, and resulting 
effects of, “FPGA viruses” [15], and demonstrated the ability to 
alter the bitstream used to reprogram the FPGA to insert mali-
cious logic into its main memory [16]. A few years later, 2007, 
researchers at University of Illinois at Urbana-Champaign proved 
the feasibility of maliciously modifying non-reprogrammable IC 
logic to add post-deployment-exploitable “hardware Trojans” and 
“kill switches” [17]. 

In 2012, the Defense Advanced Research Projects Agency 
(DARPA) initiated its Vetting Commodity Information Technol-
ogy (IT) Software and Firmware program “to look for innovative, 
large-scale approaches” for verifying that the software and 
firmware embedded in commodity IT devices purchased by DoD 
are “free of hidden backdoors and malicious functionality” [18]. 
In addition, software code analysis tool vendors such as Gram-
matech are expanding their products to support inspection of 
firmware for presence of vulnerabilities and malicious logic.

The need to expand the definition of “software” to include 
firmware and hardware logic reinforces the needs to also ex-
pand the focus of “software assurance” to address management 
of security risks in the supply chains for commercial software 
and hardware, as consumers—in DoD and beyond—continue 
to increase their reliance on COTS software, and reduce the 
amount of custom-development that allows them full lifecycle 
visibility and control over how their logic-bearing products are 
built and distributed.

Inadequate SDLC Processes and Technologies
In 1985, Canadian computer scientist David Lorge Parnas 

felt compelled to resign his position with the Strategic Defense 
Initiative Organization (SDIO) Panel on Computing in Support 
of Battle Management. In his letter of resignation he explained 
why he could no longer in good conscience associate himself 
with the SDI software development effort [19]. Given what was 
at stake—preventing a nuclear holocaust—SDI software could 
not afford to be less than 100 percent dependable. And 100 
percent dependable software was (and still is) an impossibil-
ity. SDI software was so unprecedentedly huge and complex, 
Parnas explained, and its development methodology was so 
problematic, that any attempt to build assurably trustworthy SDI 
software was doomed to fail. Much of the fault lay in the limita-
tions of conventional software development approaches—limita-
tions that could not be overcome by the also-deficient emerging 
techniques of artificial intelligence, automatic programming, 
and formal methods. Parnas’ letter provided the impetus for the 
SDIO to reconsider how its software would be developed. In 
1990 two SDIO researchers published the Trusted Software 
Development Methodology (TSDM)—arguably the world’s first 
secure SDLC methodology [20].

After TSDM, a number of “secure SDLC methodologies” were 
published. The most widely discussed of these is Microsoft’s 
Trustworthy Computing Security Development Lifecycle (SDL) 
[21]. Others of note include John Viega’s Comprehensive Light-
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weight Application Security Process [22] and Gary McGraw’s 
Seven Touch Points [23]. More recently, the BITS Financial 
Services Roundtable published a Software Assurance Frame-
work [24]. In addition, a number of efforts have been under-
taken to define a maturity model specific to software assurance 
processes; these include the software elements of the Systems 
Security Engineering Capability Maturity Model (SSE-CMM) 
[25], the Trusted Capability Maturity Model [26], the Federal 
Aviation Administration safety and security extensions to inte-
grated capability maturity models [27], OWASP Open Software 
Assurance Maturity Model [28], and the Cigital/Fortify Building 
Security In Maturity Model [29].

The majority of SDLC security enhancements involve secure 
coding (also referred to as secure programming), the goal of which 
is to prevent avoidable code-level vulnerabilities, and security code 
review and software security testing, the goal of which is to detect 
design- and implementation-level vulnerabilities not avoided earlier 
in the SDLC. Secure coding requires inclusions of certain logic 
such as input validation of all parameters and explicit security-
aware exception handling, avoidance of coding constructs and 
program calls associated with security vulnerabilities (e.g., printf in C 
and C++), use of type-safe and taintable programming languages, 
compilers that impose bounds checking, and “safe” libraries. 
Techniques for secure coding have been extensively documented 
in books, papers, and Web sites on the topic since the begin-
ning of this century, and the Carnegie Mellon University Software 
Engineering Institute (CMU SEI) Computer Emergency Response 
Team’s Secure Coding Initiative began publishing secure coding 
standards for C/C++ and Java in 2008 [30].

Other SDLC security enhancements have focused on protect-
ing development artifacts both pre- and post-deployment. This 
includes secure software configuration management (SCM), 
with supporting secure SCM systems, and application of cryp-
tographic integrity mechanisms to software executables prior to 
distribution, to name a few.

Subverted SDLC Processes and Malicious Logic
Outside of DoD, the primary motivation behind defining 

security-enhanced SDLC processes has been preventing avoid-
able but non-malicious vulnerabilities in software. But inten-
tional subversion of software is a more potentially devastating 
problem. The shortcomings of SDLC processes for building DoD 
software, whether in the U.S. or offshore, and their exploitability 
to subvert or sabotage that software, have been repeatedly 
documented by the General Accountability Office [31]. 

Information on subversions by intentional malicious logic 
inclusions involving DoD or intelligence community software 
or developers is, unsurprisingly, virtually always classified. In 
other organizations, it also remains highly sensitive, for obvious 
reasons that if the SDLC vulnerabilities exploited and methods 
used to do so were widely known, they would provide other 
rogue developers (both inside and outside of software teams) 
with tried-and-true methods to copy. Because of this secrecy, it 
is difficult to provide examples of actual malicious code subver-
sions. The fact that there is so much concern over the possibility 
is thought by many to prove the fact that such subversions have, 
in fact, occurred…and often. But coming up with unclassified 
examples is well-nigh impossible. 

One of the most persistent examples has the dubious distinc-
tion of never having been authoritatively corroborated by any of 
the alleged participants. But it continues to stand as an “Emperor’s 
New Clothes” type of object lesson, so it’s worth mentioning here. 
The story goes that in 1982 a software time bomb was planted by 
agents of the U.S. Central Intelligence Agency in the software of a 
Canadian natural gas pipeline controller product. This subversion 
was performed in anticipation of that product falling into the hands 
of Soviet agents. The goal was to use the subverted software to 
sabotage the Trans Siberian gas pipeline (on which the controller 
was expected to be installed) in a manner so spectacular that it not 
only destroyed the pipeline, but also lead the Soviets to mistrust 
all the other sensitive Western technologies they had obtained 
through their industrial espionage program over the previous sev-
eral years [32]. Less spectacular malware subversions in the private 
sector have led to prison terms for perpetrators such as Michael 
Don Skillern and Jeffrey Howard Gibson [33].

Given such examples (and, one suspects, many more in the 
classified literature), it is not surprising that prevention of sub-
version via malicious code has been at least as potent a driver 
for DoD’s software assurance initiatives (and, more recently, 
its software supply chain risk management efforts) as avoiding 
software vulnerabilities. In 2007, NSA undertook a project to 
define guidelines focused specifically on adapting the SDLC to 
eliminate opportunities for pre-deployment malicious inclusions 
in software [34].

Non-functional Security Analysis and  
Testing of Software

Until the late 1980s, with the exception of code with very 
high confidence requirements (cryptographic code, multilevel 
secure trusted computing base code, etc.), security testing of 
software meant testing the functional correctness of software-
implemented network-, system- and application-level security 
controls (e.g., authentication, access control, data encryption). 
If the software belonged to a system that handled classified 
data, some amount of penetration testing would be performed 
as part of system certification, focused on attempts to esca-
late privileges and inappropriately leak or steal sensitive data. 
Even the security analyses required for attaining higher levels 
of assurance under the Trusted Computer Security Evaluation 
Criteria and the Common Criteria focused on security function 
correctness and information flow vulnerabilities. To this day, the 
Common Criteria requires no security analysis to find exploitable 
code-level vulnerabilities or malicious logic.

One exception has been the expansion of fault tolerance, or 
resilience, testing to observation of executing code’s behavior 
under the stressful conditions associated not only with unin-
tentional faults but with intentional attempts to exploit software 
errors or induce failures (in the software itself, or the execution 
environment or infrastructure components on which it depends). 
Starting in the 1990s, researchers at University of Wisconsin at 
Madison took the lead in this kind of stress testing when they 
began a 20-year investigation into use of fuzzing as a means of 
testing software’s ability to withstand denial of service attacks 
that targeted its weaknesses and exploited its flaws [35].

The 1990s also brought a growing awareness of software-
level vulnerabilities in Web applications and other Web-facing 
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software. Publication of the OWASP Top 10 persuaded many 
software developers and buyers that they needed a cost-
effective way to verify that their software could keep attackers 
out while still providing legitimate users with a conduit to the 
Web. The means they focused on were security code reviews 
(via static analysis to find known undesirable patterns in source 
code) and vulnerability scans (mainly of COTS software). Unfor-
tunately, neither technique has proven very useful for detecting 
byzantine security faults or embedded malicious logic [36]. 

Software security testing techniques and tools over the past 
decade have vastly improved in terms of increased automation, 
improved accuracy with regard to minimizing “false positives” and 
“false negatives,” and standardization and interoperability of out-
puts via efforts such as MITRE’s Making Security Measurable and 
the future promise of software assurance ecosystems [37].

But while individual testing techniques and (semi)integrated 
software security testing toolsets have evolved quickly in sophis-
tication and accuracy since the early 1990s [38], methodologies 
for software security testing are still rudimentary. There is still no 
software security counterpart of the network security integrated 
“situational awareness” view. Nor does there appear to be much 
research to conceive a “wholistic” strategy for choosing exactly 
the right combination of complementary techniques and tools to 
achieve maximally deep and comprehensive software security 
analysis and test coverage that remain flexible enough to adapt to 
the particular software technologies and program architecture of 
the test subject, are usable by testing teams of varying skills and 
knowledge, and feasible given varying available amounts of time 
and budget. Lack of such a strategic testing methodology means 
that anything more than automated vulnerability scanning remains 
too time consuming and costly for all but the most “critical” and 
“high confidence” software…the very software that, because it is 
considered critical or high confidence, is the most likely to have 
been engineered with caution under controlled conditions, and is 
therefore in less need of extensive security testing.

Software Intellectual Property:  
Piracy, Theft, and Tampering

From the 1980s onward the single greatest “security” 
concern of software vendors has been the protection of their 
intellectual property (IP). DoD too is concerned with protecting 
software IP, though for different reasons.

Vendors’ main concern has been piracy—the unauthorized 
copying and distribution of licensed software. DoD, on the other 
hand, is most concerned about adversaries gaining access to 
the IP inherent in source code of their critical software, either 
via reverse engineering from binaries or direct source code 
theft, as a step towards producing tampered, malicious versions, 
or studying its operation and vulnerabilities to better target or 
counter the systems in which it is used (e.g., weapon systems), 
or to obtain code on which to base comparable capabilities for 
their own use (in essence, piracy). 

Piracy is a major concern to vendors because of the revenue 
loss it represents. In the 1980s, dozens of vendors rushed out 
hardware “dongles” for mandatory co-installation on comput-
ers on which their software was installed. The dongles ensured 
that the software could run only on the system for which it was 
licensed, and to which dongle was attached. This meant the 

code would not operate if copied to another system. The prob-
lem was that enterprise users had a legitimate need for backup 
copies of software as part of continuity of operations planning. 
And like any other small item, dongles were easy to misplace. 
So in the face of customer complaints, by the mid-1990s, most 
vendors had abandoned the devices in favor of digital rights 
management controls that accomplished essentially the same 
protections, and is still used by many software vendors today 
[39]. Over the past decade, the software industry has launched 
numerous anti-piracy initiatives and campaigns, individually and 
via their industry trade associations [40].

Protection against executable software reverse engineering 
led DoD, in December 2001, to establish its Software Protection 
Initiative (SPI). SPI develops and deploys intellectual property 
protections within national security system software to prevent 
post-deployment reverse engineering and reconnaissance, 
misuse, and abuse by adversaries [41]. Since its inception, 
the SPI has sponsored much of the significant research and 
development of technologies for software IP protection (e.g., 
anti-reverse engineering), software integrity protection (e.g., 
tamper-proofing), and software anti-counterfeiting. 

Preventing source code theft is a problem for both vendors and 
government software projects. It requires both secure configura-
tion management and effective cybersecurity protections for the 
computing and networking infrastructure relied on by software 
teams. Google discovered this to its great consternation in 2009, 
when Internet-based intruders stole the source code of the pass-
word management system used in most Google Web services, 
including Gmail. The method by which the intruders got access 
to the code reads like Web Application Insecurity 101: a Google 
China employee clicked on a link in a Microsoft Messenger mes-
sage that redirected him to a malicious Web site. From there, the 
intruders accessed and took control of his computer, and a few 
short hops later, found and took control of the software repository 
in which the development team at Google headquarters stored 
the password management system code [42].

Doing Something About It: Software Assurance 
Initiatives and Public-Private Partnerships

In 1998 Microsoft, the world’s largest software vendor, could 
no longer keep up with the exponential increase in reported 
vulnerabilities in its operating system and Web products. The 
company set up an internal security task force to investigate 
the vulnerabilities’ root causes, then following the task force’s 
recommendations, established product line security initiatives 
and “pushes” from 1999-2004 that ultimately coalesced into 
the Microsoft Trustworthy Software Development program. Two 
significant artifacts of the program were mandated company-
wide and widely published for adoption by third-party suppliers 
to Microsoft (and anyone else who cared to adopt of them)—
the “STRIDE/DREAD” threat modeling methodology and the 
SDL methodology. While other software vendors also adopted 
software assurance measures in the same timeframe (e.g., by 
the early 2000s Oracle Corporation had committed to a fairly 
rigorous software assurance regime), few of the others were as 
forthcoming or influential as Microsoft. 

Seeing the world’s leading software vendor change its modus 
operandi in so public a manner was an important factor in 
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increasing software buyers’ awareness of the need for more 
secure software products. The OWASP Top 10 was another. 
Soon, organizations were rushing to discover whether their Web 
applications harbored any of the Top 10—and to demand that 
their software vendors do the same. This engendered a new 
industry of semi-automated tools for static security analysis of 
source code, and automated scanners for finding vulnerabilities 
in (mainly Web) application executables. 

In the mid-2000s, consortia software vendors (often led by 
Microsoft), software security tool vendors, and corporate software 
users seemed to spring up every few months, including the Web 
Application Security Consortium in 2004, the Secure Software 
Forum and Application Security Industry Consortium in 2005, 
and SAFECode in 2007. 2007 also saw Concurrent Technologies 
Corp. announce the short-lived Software Assurance Consortium.

The financial services sector has also been active in its 
pursuit and promotion of software assurance in the context 
of payment and banking application security. The Visa USA 
Cardholder Information Security Program Payment Application 
Best Practices expanded and evolved into the Payment Card 
Industry Security Standards Council’s Application Data Security 
Standard, now a de facto standard across the financial services 
industry worldwide. In the U.S., the BITS Financial Services 
Roundtable has undertaken a Software Security and Patch 
Management Initiative and Product Certification Program and 
produced a Software Security and Patch Management Toolkit 
and Software Assurance Framework for use by its members and 
the broader financial services community.

In the public sector, the Defense Information Systems Agency 
(DISA) may have been the first since the SDIO to take on the 
challenge of identifying and promoting methods, techniques, and 
supporting tools for secure software development. The three-
year Application Security Project began in 2002 as a means 
of reducing the likelihood of OWASP Top 10 vulnerabilities in 
DoD Web technology-based application systems. The project’s 
broad agenda included (1) producing developer guidance based 
on recognized full-SDLC best practices for secure application 
development; (2) assembling a portable, automated application 
security testing toolkit and supporting methodology with which 
it could offer an application vulnerability assessment service to 
DoD software programs; (3) defining a “reference set” of security 
requirements for DoD developers to leverage in their application 
specifications. By the end of 2004, however, DISA shifted its 
focus away from attempts to proactively improve the processes 
by which DoD software was built to reactively assessing the 
security of DoD software. This shift was reflected in the move of 
the Project to DISA’s Field Security Operation, which reinterpreted 
the content of the Project’s deliverables into a single Application 
Security and Development Security Technical Implementation 
Guide (STIG) [43] and supporting checklist. It was left up to soft-
ware project managers to figure out how to ensure their teams 
developed software that could pass the STIG checks. 

Elsewhere in DoD, security of mission critical software and 
risks posed by the increasing offshoring of that software were 
driving new initiatives. In December 1999, the Defense Science 
Board (DSB) suggested that the Assistant Secretary of Defense 
(ASD) for Command, Control, Communications, and Intelligence 
“develop and promulgate an Essential System Software Assur-

ance Program” [44]. It took the ASD for Networks and Information 
Integration (NII) nearly four years to do just that: In June 2003, 
the DoD Software Assurance Initiative undertook to establish 
methods for evaluating and measuring assurance risks associated 
with commercial software, including accurate detection of the 
software’s pedigree and provenance. In 2004, ASD(NII) joined 
with the Office of the Under Secretary of Defense for Acquisition, 
Technology and Logistics to form a Software Assurance Tiger 
Team for strategizing how DoD and broader Federal govern-
ment would reduce its exposure to software assurance risks. The 
Tiger Team enlisted industry partners via the National Defense 
Industrial Association (NDIA), Aerospace Industries Association, 
Government Electronics and Information Technology Association, 
and Object Management Group. 

The Software Assurance Initiative soon reached broad con-
sensus on the impracticality of relying on pedigree and prov-
enance to justify confidence in acquired software. This triggered 
a shift in their philosophy: all commercial software was to be 
considered potentially vulnerable and malicious, and engineering 
techniques had to be adopted to render DoD systems resilient 
against its destructive effects. Thus, the Initiative recast itself as 
the DoD System Assurance Program and, with the assistance 
of NDIA, developed Engineering for System Assurance [45] 
(1st edition, 2006; 2nd edition, 2008), which was expanded and 
adopted as a NATO engineering standard in 2010 [46].

In 2005, NSA established its Center for Assured Software 
(CAS) as the focal point for software assurance issues in the 
defense intelligence community (and in broader DoD). CAS 
collaborates closely with the DHS/DoD/NIST co-sponsored 
Software Assurance working groups and fora. CAS also influ-
ences, and in some case leads, development of DoD software 
assurance-related standards and policy, research, and evaluation 
processes, and strives to push the state of the art in software 
analysis tools and assessment methods. In 2009, the CAS 
undertook an Assurance Development Processes strategic 
initiative to establish trustworthy best-practice-based software 
development processes across DoD and the intelligence com-
munity. For several years, NSA also ran a Code Assessment 
Methodology Project to evaluate the security of source code to 
be used in high-assurance, critical DoD systems.

More recently, DoD’s software assurance concerns have 
turned to the problems of securing the software supply 
chain, as a component of the larger Comprehensive National 
Cybersecurity Initiative (CNCI) ICT Supply Chain Risk Manage-
ment (SCRM) Initiative 11, which is described—together with 
broader DoD and other Federal government ICT SCRM activi-
ties and programs—in the DoD Information Assurance Technol-
ogy Analysis Center (IATAC) 2009 state of the art report on 
ICT SCRM [47].

In 2003, in parallel with DoD’s efforts, DHS was assigned 
responsibility for responding to the National Strategy to Secure 
Cyberspace’s call for establishment of a national program to 
“reduce and remediate software vulnerabilities” and for facilitat-
ing “a national public-private effort to promulgate best practices 
and methodologies that promote integrity, security, and reli-
ability in software code development, including processes and 
procedures that diminish the possibilities of erroneous code, 
malicious code, or trap doors” being introduced into code under 
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development. These responsibilities led, a year later, to the DHS 
Software Assurance Program. Coordinated with and comple-
menting the efforts of DoD and the NIST Software Assurance 
Metrics and Tools Evaluation program (largely funded by DHS), 
the main thrusts of the DHS Program have been to publish 
secure SDLC information and guidance, promote security in 
software practitioner education and training, software assur-
ance professional certification, and standardization of software 
assurance-related taxonomies, tool outputs, and metrics, as well 
as general awareness-raising. As with DoD, the Program also 
more recently shifted its focus to address security risks in the 
commercial and open source software supply chains. 

Taking on the DSB’s challenge that computer science aca-
demic curricula were “inadequate in terms of stressing practices 
for quality and security, or inculcating developers with a defen-
sive mindset” [48], DHS made software assurance education 
and training one of its key thrusts from its inception. In 2006 it 
published a software assurance “common body of knowledge” 
for use in developing university curricula and courseware [49]. 
By 2010, the Program could boast of the Institute of Electrical 
and Electronics Engineers Computer Society’s recognition of 
the Master of Software Assurance Reference Curriculum col-
laboratively developed by researchers and educators at several 
universities under DHS sponsorship [50]. IATAC’s 2007 state 
of the report, Software Security Assurance [51] lists numer-
ous examples of universities with dedicated graduate-level 
teaching of software assurance, advanced degrees in soft-
ware assurance-related disciplines, software security research 
projects and labs, as well as professional training vendors with 
secure software development offerings, and emerging (now 
established) professional certifications for developers and proj-
ect managers in the discipline of software security assurance 
and secure programming—most notably the Certified Software 
Security Lifecycle Professional administered by the International 
Information Systems Security Certification Consortium and the 
SANS Software Security Institute’s Secure Programming Skills 
Assessment and Certified Application Security Professional 
certification. While the education/training and certification land-
scape described in the IATAC report has shifted somewhat in 
the subsequent six years, it remains generally representative.

Unlike DoD System Assurance’s limited public partnerships, 
DHS’s outreach is literally global, encompassing U.S. federal, 
state, and local and allied government users and producers 
of software, software and software security tool vendors, and 
academia [52]. The Program’s main outreach mechanisms 
are its semi-annual Software Assurance Forums and more-
frequent working group meetings (co-sponsored with DoD 
and NIST). The driving philosophy behind DHS efforts is that 
a general move towards more secure software worldwide will 
benefit federal government and DHS-protected infrastructure 
sectors in particular. DoD benefits from DHS’s more global 
approach through active co-sponsorship of and participation 
in DHS-spearheaded endeavors. The efforts of DoD and DHS 
have also inspired comparable undertakings by allied govern-
ments. For example, in 2011, the United Kingdom established 
its own Trustworthy Software Initiative in response to 2010’s 
National Security Strategy of Cybersecurity [53], which iden-
tified lack of secure, dependable, resilient software as a critical 

risk to the UK’s cybersecurity posture. And NATO published 
Engineering Methods and Tools for Software Safety and 
Security in 2009 [54].

A number of significant software assurance research initia-
tives are ongoing in the U.S. and abroad, especially in Europe, 
including the Network of Excellence on Engineering Secure Fu-
ture Internet Software Services and Systems project sponsored 
by the European Commission’s Seventh Framework Programme 
for Research (FP7) [53].

Conclusion
It has often been claimed that we already know how to build 

secure software. If this is true, why don’t we just do it? But no 
matter how much lip service they pay to wanting software that 
has fewer vulnerabilities and is less susceptible to malicious 
inclusions, most suppliers and consumers still make their 
how-to-build and what-to-buy decisions based on cost, or on 
a “value proposition” that boils down to how fast innovations 
can be turned into available product, and cost. Few buyers are 
willing to wait longer and pay more so software can undergo 
the disciplined engineering needed to assure its trustworthi-
ness and dependability. Nor are they willing to forego desirable 
innovations just because the level of security risk they pose is 
not (and possibly cannot) be known. Nor will suppliers willingly 
invest in and enforce software assurance measures that few 
customers demand.

But the continuing, and indeed growing, reliance on COTS 
and open source software means that, to succeed in the long 
term, software assurance efforts cannot remain limited to the 
small subset of software deemed “high consequence” or “trust-
ed.” It is impossible to predict which of today’s “general purpose” 
software products will end up in tomorrow’s high consequence, 
trusted systems, just as it was impossible to predict in 1988 that 
Microsoft Excel and Internet Explorer (to name two examples) 
would, in spite of their persistent, myriad vulnerabilities and sus-
ceptibility to malicious insertions, emerge as vital components of 
mission critical national security systems. 

Instead of attempting to second guess which software needs 
to be trustworthy and dependable, software assurance should 
be applied systematically and comprehensively to all software. 
For this to happen, future software assurance efforts need to 
finally take on the elephant in the room: the need to change the 
psychology of the suppliers and consumers. Awareness cam-
paigns and polite suggestions of software assurance content for 
post-graduate academic software engineering curricula attempt 
to persuade and reeducate developers and consumers long 
after their bad habits have been formed, and are thus far too 
little far too late. A “software assurance mentality” needs to be 
inculcated during the very earliest years in which future develop-
ers and users encounter software and begin to understand how 
it works and its value to them. Software (and machine logic) 
are nearly universal today, and are only going to become more 
integral to every aspect of daily life by the time the next genera-
tion of developers and users reach working age. For this reason, 
tomorrow’s developers and users need to be taught from early 
childhood that threats to the security of software and logic-
bearing devices are threats to their own personal privacy, health, 
safety, financial security, and, ultimately, happiness.
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Other Attempts to Characterize the  
Software Assurance Landscape

This article has only touched on highlights of the last 25 years 
of software security assurance initiatives and trends. There 
have been several earlier efforts to depict the software assur-
ance landscape in varying levels of detail. Interested readers are 
encouraged to take a look at: 

•	 Goertzel, Karen Mercedes, et al. Software Security  
	 Assurance (see reference 51). 

•	 Davis, Noopur. Secure Software Development Life  
	 Cycle Processes: A Technology Scouting Report. Technical  
	 Note CMU/SEI-2005-TN-024, December 2005  
	 <http://www.sei.cmu.edu/reports/05tn024.pdf>

•	 Jayaram, K.R., and Aditya P. Mathur. Software Engineering  
	 for Secure Software—State of the Art: A Survey. Purdue  
	 University Center for Education and Research in  
	 Information Assurance and Security and Software  
	 Engineering Research Center Technical Report 2005-67,  
	 19 September 2005 <http://www.cerias.purdue.edu/ 
	 assets/pdf/bibtex_archive/2005-67.pdf>

•	 DHS. Software Assurance Landscape. Preliminary Draft,  
	 28 August 2006 <https://www.owasp.org/images/6/6c/ 
	 Software_Assurance_Landscape_-_Preliminary_Draft_1.doc>

•	 Graff, Mark D. Secure Coding: The State of the Practice,  
	 2001 <http://markgraff.com/mg_writings/SC_2001_ 
	 public.pdf>

•	 Essafi, Mehrez, et al. Towards a Comprehensive View of  
	 Secure Software Engineering. Proceedings of the  
	 International Conference on Emerging Security  
	 Information, Systems, and Technologies (SecureWare  
	 2007), Valencia, Spain, 14-20 October 2007  
	 <http://www.researchgate.net/publication/4292729_ 
	 Towards_a_Comprehensive_View_of_Secure_Software_ 
	 Engineering/file/79e4150bb0ce96e522.pdf>
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Abstract. There are many elements to a project … requirements, schedule, cost, 
quality, human resources, communications, risk, procurement, and… Every project 
is complex and extremely difficult to manage to successful completion, even those 
considered “small.” The majority of the life of a project occurs during its execution. 
Although the execution phase is preponderant, there does not seem to be much 
emphasis on it. The literature, the training, professional meetings, and conferences 
do not commit proportionate energy to methods and techniques to prepare project 
managers for monitoring and reporting performance. Neither do these venues for 
knowledge transference bring focus to addressing performance measures and 
indicators, or using them for controlling the project. This paper examines the asser-
tion and proposes the application of earned value management and its extension, 
earned schedule, as a way forward.1

Is Something Missing 
From Project  
Management?

ment, which opened our eyes and minds to the concept of natural 
variation. If you have never heard of the experiment, I highly rec-
ommend doing a bit of research; it will be well worth your time.

Along with the increased focus on quality came Deming’s 
idea of “profound knowledge.” Profound knowledge could never 
be achieved with “job hopping” managers and employees. Dr. 
Deming espoused that deep understanding of the company 
and its products only comes from years of experience and 
progression within the organization. Deming insisted that quality 
improvement required having complete understanding of the 
process by which the products of the business were made. Dr. 
Deming, in his characteristically blunt style, acerbically denigrat-
ing management, most likely would have said it this way, “How 
can you improve if you do not know what you are doing?”

Other extremely notable influences to the quality revolution in 
the U.S. came from Joseph Juran and Philip Crosby. Juran focused 
on the education and training of management and the human rela-
tions problem of resistance to change. The “Pareto principle,”2 was 
introduced to the vocabulary of quality due to the work of Juran. 
Philip Crosby’s book, Quality is Free, made, unequivocally, the busi-
ness case for quality and the improvements it offered [1]. Succinctly 
stated, the investment and implementation of a good quality system 
will pay for itself many times over. Crosby also put forth the Quality 
Management Maturity Grid, which represents the characteristics of 
the quality system using five evolutionary stages: (1) uncertainty, 
(2) awakening, (3) enlightenment, (4) wisdom, and (5) certainty. By 
utilizing the grid, businesses have a template for understanding and 
improving their quality system.

	
Quality Culture

The startling success of Japanese business, coupled to the 
loss of market share along with project failures in the U.S., cre-
ated the impetus for dramatic change. The terminology describ-
ing this abrupt departure from present business practice and 
culture is “paradigm shift.” These words have become common-
place and are integral to the jargon of those involved in process 
and quality improvement today. 

Out of the desperate desire to improve and the recognition 
of quality as the pathway came the creation of the SEI in 1984 
and the first Project Management Body of Knowledge (PM-
BOK® Guide)3 in 1987. To heighten the emphasis for embrac-
ing the culture of quality, the U.S. government in 1987 created 
the national award for performance excellence, the Malcolm 
Baldridge National Quality Award.4 The award was intended 
to incentivize and recognize U.S. businesses for achieving 
world-class quality. To receive the award a company must show 
excellence in seven areas of performance: (1) leadership, 
(2) strategic planning, (3) customer focus, (4) measurement, 
analysis, and knowledge management, (5) workforce focus, (6) 
process management, and (7) demonstrable results.

Possibly the most recognized contribution of the SEI to im-
proving the software development process and product quality 
was the creation of the CMM®. Through Watts Humphrey’s initial 
work [2], the CMM evolved from the adaptation of Crosby’s 
Quality Management Maturity Grid to a staged improvement 
approach for software development [3]. The CMM is character-
ized by five levels of process maturity: (1) initial, (2) managed, 

Introduction
Over the last 30 years, from about 1980 until the present, 

there has been a significant evolution in software development, 
quality systems and project management. The foundation for 
this advancement in practice is strongly connected to a few 
devoted quality experts and world events occurring more than 
70 years ago. 

After World War II the U.S. was the predominant industrial na-
tion in the world. The U.S. produced. The world consumed. The 
quality of the U.S. products was of little concern; they would sell 
regardless. This economic position was held until about 1970 
after which the market for U.S. products declined. 

Beginning with the post war reconstruction, Japan’s business 
leaders learned and adopted manufacturing practices the U.S. 
utilized during and prior to WWII. Most notably, the Japanese 
were taught the methods of quality by W. Edwards Deming. As 
Deming had prophesied to Japan’s leaders, economic growth 
came from their dedicated use of the techniques he had learned 
from Walter Shewhart at Bell Laboratories. 

During the 1980s Japan’s automobile industry began to 
make noticeable inroads into the U.S. market. Their success was 
an alarming wake-up to U.S. manufacturers, who recognized 
that they truly had serious competition. Thus began the quality 
revolution in the United States. 

No longer was quality perceived as an expendable portion of 
the production process, largely ignored. During this period, Dem-
ing videos and seminars were commonplace. Every industry was 
determined to improve their operation and business practices 
using the methods and practices of Dr. Deming. With pervasive 
emphasis, the methods of statistical process control and continu-
ous improvement were taught to managers and workers alike. For 
those of you who are old enough to have experienced that quality 
training, I am certain you will recall vividly the “Red Bead” experi-
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(3) defined, (4) quantitatively managed, and (5) optimizing. The 
CMM provided software organizations a template for improve-
ment that could be objectively assessed. Evidence supports the 
assertion that software projects performed by organizations 
attaining maturity levels 4 and 5 are significantly more likely 
to deliver products that satisfy the requirements of the cus-
tomer [4]. Although the SEI focused its efforts toward military 
software, primarily U.S. Air Force systems, the CMM5 came to be 
used extensively by commercial software companies, as well. 

The PMBOK, now in its fourth edition, is the recognized em-
bodiment of the knowledge and practice of project management 
[5]. Professional project management is presented as activities 
for nine knowledge areas6 occurring over the five life-phases7 of 
the project process. The quality improvement view of the Project 
Management Institute (PMI®) is that by standardizing the meth-
ods in the PMBOK and certifying managers through the Project 
Management Professional (PMP) examination, improvement in 
project results can be expected. That is, by increasing the num-
ber of project managers knowledgeable of the best practices, 
a growing percentage of projects should complete with good 
quality, on time and within budget.

Both the SEI and PMI have the same objective of institution-
alizing quality in organization, process, and product. However, in 
comparing the two approaches it is observed that an organiza-
tion utilizing the PMI method would likely be rated, at best, as 
maturity level 3 (defined) of the five levels defined for the CMM. 
The CMM makes a distinction between desirable characteristics 
for projects and organizations, whereas it is not so clear in the 
PMBOK. Depending upon how organizations approach using 
the PMBOK, there may not be company policy for managing its 
projects. If management methodology is inconsistent and not 
tailored to the application from the standard for the organization, 
the best the company could be rated is CMM level 2 (managed).

The more significant difference is the aspiration for each of 
the two approaches. The CMM seeks continuous improvement, 
whereas the PMBOK with the PMP certification is limited to the 
improvement offered by standardization. The CMM approach at 
level 4 seeks evidence of management’s use of data for project 
control and process improvement. Also, this maturity level 
requires a quality system that prevents defects from propagating 
through the process. At level 5, the application of statistical pro-
cess control is utilized to understand process changes intended 
to reduce the natural variation in the organization’s processes 
[6]. Achievement of levels 4 and 5 leads to the application and 
the long term benefits of knowledge management.8

The PMBOK mentions the use of data and measures for 
performance reports and has a brief discussion of Earned Value 
Management (EVM) as a method for project control.9 Further-
more, the PMBOK alludes to having and using project perfor-
mance data and quality measures, but there is little verbiage 
compelling a project manager or his/her organization to be data 
driven.10 Without performance measures and indicators, man-
agement decisions come solely from experience and intuition. 
Does it not make sense for managers to be as well informed 
as possible concerning their project’s performance? And does 
it not also seem reasonable that better informed decisions 
increase the probability of a successful project outcome?

Similarly, making systemic improvement has little basis when 
measures and indicators are not ingrained in the organizational 
culture. How is it known an improvement is needed? And, after 
a change is introduced, how can management know if improve-
ment is achieved when there is no or scanty evidence of how 
the present process performs or of the quality of its products? 
Likewise, when measurement and analysis is not common 
practice, there is low need for the application of knowledge 
management for improving project planning and understanding 
long term process improvement and performance drift.

	
Improving the Practice

The message to this point should be obvious: the PMBOK 
establishes a standard for good practice, but does not promote 
a culture of continuous improvement. Unlike the CMM, there is 
no assessment to see if the best practices of the PMBOK are 
implemented and performed well. Without having an under-
standing of whether or not best practices are used, how can 
success or failure of a project be evaluated? How can the 
organization improve its methods and policy, thereby providing 
an environment where projects are delivered successfully, waste 
is reduced, and business flourishes?

The methodology intended to fill this void is the Organi-
zational Project Management Maturity Model (OPM3). The 
project management model for improvement was issued 
initially in October 2003 and was later updated in December 
2008 to align with the fourth edition of the PMBOK. OPM3 is 
a best practice standard for assessing and developing project 
management capability. It is an approach for understanding 
project management behavior and bringing focus to areas of 
performance needing improvement. 

OPM3 is meant to serve the field of project management in a 
similar manner to the CMM for software process improvement. 
The improvement stages ascribed to OPM3 are (1) Standard-
ize, (2) Measure, (3) Control, and (4) Continuously Improve. The 
process characterization for each of these four stages is very 
much the same as those for the software model. Initially, the 
organizational processes are standardized. Once standardization 
is in place, measurement of the process can proceed. Having 
measures in place, controlling and subsequently improving the 
process become possible. 

The OPM3 project domain framework identifies nine process 
areas that show correspondence between PMBOK processes 
and OPM3 best practices [7]. Of the 44 PMBOK processes 
within the nine areas, only four directly relate to project execu-
tion: schedule control, cost control, quality control, and risk 
monitoring and control. 

From the viewpoint that execution utilizes the most project 
resources over the longest phase of the project, it would seem 
appropriate that the methods and tools for these important 
control processes would be discussed in detail. Although 
Measure is an important stage in the OPM3 approach to im-
provement, there is minimal guidance for what constitutes its 
successful achievement. OPM3 does describe the character-
istics of measures, but to progress and advance to the Control 
and Continuously Improve stages something more specific 
would be helpful.
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The Way Forward
To emphasize the importance of measures, the quotations of 

Lord Kelvin are often used. One especially makes the point:
“In physical science the first essential step in the direction of 

learning any subject is to find principles of numerical reckoning 
and practicable methods for measuring some quality connected 
with it. I often say that when you can measure what you are 
speaking about, and express it in numbers, you know something 
about it; but when you cannot measure it, when you cannot 
express it in numbers, your knowledge is of a meager and un-
satisfactory kind; it may be the beginning of knowledge, but you 
have scarcely in your thoughts advanced to the state of Science, 
whatever the matter may be [8].”

Although Lord Kelvin is addressing his comments toward the 
hard sciences, such as physics and chemistry, his point is equally 
applicable to project management. When a project manager 
does not have objective measures of performance for cost and 
schedule, he/she cannot react intelligently and, consequently, 
has little chance of guiding the project to successful comple-
tion. Under these circumstances, the manager has only his/her 
personal knowledge and intuition as a basis for action.

As discussed earlier, EVM is mentioned only briefly in the PM-
BOK as a “Tool and Technique” for controlling cost and schedule 
performance. Furthermore, OPM3 identifies the performance 
measures and indicators from EVM as merely an approach to be 
considered for satisfying the Measure stage of project manage-
ment improvement. Unquestionably, the power and usefulness 
of the earned value methodology has not been exploited to the 
degree it should be. Therefore, it becomes arguable that the 
lack of emphasis from these two principal documents, regarding 
EVM, has slowed the advancement of the project management 
profession to the “state of Science.”

When the performance of a project is known in qualitative 
terms, we can say we know something about it. However, in 
general, the qualitative description is not enough information 
for analysis and management action. Only when performance 
is described by objective measures can project managers truly 
gain deeper understanding and formulate reasoned tactics for 
improving the opportunity for success. 

EVM is more than 40 years old; a well-defined project man-
agement methodology, which has the capability to provide the 
quantitative measures to advance project management to the 
level of science. It is supported by standards [9,10], textbooks11, 
an improvement model [11], training12, certifications for both 
individuals13, as well as organizations14, and automation applica-
tions are readily available from several vendors15. As all of the 
footnotes associated with the previous sentence attest, EVM is 
a well-developed technology with considerable infrastructure. 
EVM, in fact, is approximately 20 years older than the PMBOK 
and possibly more mature in its application. 

The known capability and availability of the management 
method lead us to the question, “Why is not the use of EVM 
more prevalent?” The reasons cannot be stated with cer-
tainty, but the following is offered as a rational summation for 
consideration. In its beginnings, EVM was imposed on defense 
contractors performing development of major weapon systems. 
In the late 1960s and throughout the 1970s, the creation of 

custom EVM systems for each application was not a simple 
matter. The computing capability to connect time accounting, 
the project schedule, earned value (work accomplished), and 
actual costs was expensive to develop. EVM was in its infancy, 
as was the necessary computing technology to make its use 
practicable. The early EVM systems were very likely cumber-
some to use and not that accurate either. All of these things 
created the prevailing reputation that EVM is terribly complex, 
difficult to do, overly burdensome to employees and manag-
ers, and expensive to create and implement. When this is the 
perception, the likelihood of employing EVM is very low. It is 
contended that this attitude persists and is prevalent within the 
project management community today. 

This negative reputation for EVM, however, is not the pres-
ent circumstance, at all. As expressed earlier, there is consider-
able support available. EVM can be implemented and applied 
without undue difficulty. Possibly the most troublesome hurdle 
to implementation is the reporting of earned value; i.e., assess-
ment of project accomplishment. Disciplined reporting is a 
difficult transition to make for most, people and organizations, 
as well. However, once reporting becomes a commonplace 
expectation, an environment of transparency and accountabil-
ity is created for everyone involved. Both characteristics are 
most assuredly desirable outcomes. Certainly there are more 
implementation hurdles, but generally, these pertain to the 
need or desire for having a sophisticated, or even a certified 
EVM system.

Of significant importance is the realization that the elements 
prescribed by the PMBOK to prepare the project for execu-
tion are the necessary ingredients for applying EVM; i.e., Work 
Breakdown Structure, estimates of task cost and duration, task 
sequencing, and creation of the schedule. The additional step of 
aggregating the information into the Performance Measurement 
Baseline16 creates the necessary reference for EVM perfor-
mance analysis. The key point from this discussion is that, when 
the accepted project management guidance is utilized, taking 
the next step to employ EVM is not an overwhelming under-
taking. Conversely, when employing EVM is the organization’s 
standard method of project control and reporting, it encourages 
and re-enforces PMBOK guidance and OPM3 best practice. 
Also, once implemented, EVM greatly facilitates improvement to 
project management practice, and thereby promotes achieve-
ment of the higher levels of OPM3: Measure, Control, and 
Continuous Improvement.

EVM has a primary focus on the cost aspect of projects, 
but does have indicators for assessing schedule performance. 
However, these schedule indicators are limited in usefulness 
due to their flawed behavior for late performing projects. To 
overcome this deficiency, Earned Schedule (ES) was created 
in 2003 [12]. ES extends EVM and provides reliable analysis 
of the schedule performance.

Together, EVM and ES provide incredible capability for mea-
suring and analyzing project performance. With the employment 
of EVM project managers can assess present cost performance 
status, forecast final cost, and determine performance neces-
sary to meet the cost objective. In an analogous manner, the ap-
plication of ES provides the ability to perform schedule analysis; 
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i.e., report status, forecast completion, and determine the future 
performance required to achieve the desired completion date. 
Additionally, ES introduces a new concept, schedule adherence. 
The measure of schedule adherence increases understanding 
of how the project is being performed. The concept yields the 
ability to analyze critical path performance, identify constraints, 
impediments, and potential areas of rework. Furthermore, when 
project performance is poor, ES used with EVM gives project 
managers the ability to develop tactics for recovery. It should be 
clear from this discussion that the numerical methods inher-
ent with EVM and ES provide the ingredients to propel project 
management to the “state of science.” 

Beyond the application to monitoring and controlling the 
project in its execution phase, the numerical data contribute to 
creating a project archive. The execution history, aggregated 
with other project documents, form a complete project record. 
The assembly of formalized project records further promotes 
making the data useful for the planning of new projects and for 
analysis of improvement initiatives. As a natural consequence, 
without emphasis, the organization will gravitate to the employ-
ment of knowledge management.

Through the use of EVM with ES, the argument is made that 
project performance will improve as well as the organizational 
practice. The numerical evidence of performance with the ac-
companying analysis capability, as a result of their application, 
provides primary input to the achievement of the higher levels 
of OPM3. Performance measures are available for stage 2 
(Measure). Analysis of the measures and derived indicators yield 
methods of project control necessary to achieve stage 3 (Con-
trol), and the application of knowledge management facilitates 
the accomplishment of stage 4, Continuous Improvement.

A quantum advance for project management is readily avail-
able through the implementation of EVM and its ES extension. 

Summary
Quality in the 1980s became the driving force for product 

and process improvement. The approach for achieving quality is 
derived from the initial work of Walter Shewhart, with subse-
quent evolutions contributed by Deming, Juran, and Crosby. 
Building on the significant work of these men, Humphrey and 
the SEI formalized the quality system for organizational applica-
tion to software development. Subsequently, PMI adapted the 
ideas and concepts from the SEI to project management. 

The embodiment of quality for project management is the 
collection of best practices included in the PMBOK, while the 
methodology for improvement of the practice is contained in 
OPM3. The observation is made that EVM and ES are not suf-
ficiently emphasized by the two PMI documents. Implement-
ing EVM and ES is encouraged and shown to reinforce good 
practice and support quality. The stated expectation from the 
application of EVM along with ES is improvement in project 
performance, while advancing and maturing organizational 
behavior. The proposition is made that the application of the 
system of measures and analysis methods from EVM and ES 
advances project management to the “state of science.” And 
ultimately, achieving this state leads to knowledge manage-
ment and continuous improvement. 

Disclaimer:
CMM® and CMMI® are registered in the U.S. Patent and 
Trademark Office by Carnegie Mellon University.

This last fall in my conversations with the CrossTalk staff while 
finalizing an article for the November-December 2012 issue, I was 
asked if I would be interested in submitting an article for the 25th 
anniversary of CrossTalk. “Of course!” I replied. I am certain all 
of the other authors in this historic issue feel as I do …very flat-
tered to have been asked. 

Possibly some of the long-time followers of CrossTalk recall 
my name, but I doubt most of today’s readers have any knowledge 
of me. As a bit of history, I began submitting articles for Cross-
Talk publication in 1999. From then through 2012, seventeen 
articles were published. This is my eighteenth.

I have published 45 articles in nine other journals, including an 
international highly refereed publication. The process CrossTalk 
uses to first qualify the article and then improve it is by far the 
most thorough and toughest of any of the journals with which I 
have experience. I vividly recall many of the telephone conversa-
tions concerning reconciling reviewer comments with then pub-
lisher, Beth Starrett. She had Bulldog tenacity for getting it right.…
As angry as we would sometimes become with each other, the 
process proved time and again to greatly improve my article.

Over the years Beth, the article coordinator, Nicole Kentta, 
and I became friends. There were several times during the STSC 
conferences I would join Nicole, Beth and her family for dinner …
wonderful experiences, which I cherish in my memories. Thank you 
Beth for your friendship and all of the work you did making my 
writing efforts better.

For this issue, I struggled with what I might submit. I believe my 
choice is in keeping with the “roots” of CrossTalk; i.e., software 
process improvement. The topic of my article is consistent with my 
previous publications and is at the heart of improvement …perfor-
mance measurement.

Beth said to me many times, “Your article gives me a headache!” My 
articles generally had mathematics which she did not enjoy. Possibly, 
Beth will enjoy this article and hopefully you will, as well. It has no 
mathematics. Nevertheless, I believe its message is important.

 -Walt Lipke

Thank You 
CrossTalk!
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a.	 What function points are
b.	 What SNAP is
c.	 Why SNAP may be important
d.	 How the beta test was conducted
e.	 What the results were
f.	 Areas for future research

Review of the Related Literature
IFPUG is the largest software metric association in the world, 

with more than 1,000 members and affiliates in 24 countries. 
The non-profit International Software Benchmark Standards 
Group (ISBSG) has become the largest source of benchmark 
data, with more than 5,000 projects available. New benchmarks 
are being added at a rate of perhaps 500 projects per year. All 
of the ISBSG data is based on function point metrics [3].

IFPUG maintains arguably the most widely used functional 
software sizing metric in the world, the IFPUG “function point” 
(in this paper, we will always refer to the unadjusted function 
point). The IFPUG Counting Practices Manual [4] is one stan-
dard for measuring functional requirements, and is recognized 
by the ISO. 

ISO/IEC 20926:2009 specifies the set of definitions, rules 
and steps for applying the IFPUG Functional Size Measurement 
method. ISO/IEC 20926:2009 is conformant with all mandatory 
provisions of ISO/IEC 14143-1:2007. It can be applied to all 
functional domains and is fully convertible to prior editions of IF-
PUG sizing methods. … ISO/IEC 20926:2009 can be applied 
by anyone requiring a measurement of functional size. Persons 
experienced with the method will find ISO/IEC 20926:2009 to 
be a useful reference [5].

A function point is like a “chunk” of software. It is similar 
in concept to a “square foot” of house size, a “kilometer” of 
distance, a “gallon” of gasoline, or a “degree Kelvin” of tempera-
ture. According to IFPUG’s Counting Practices Manual, function 
points are assigned to different components of software ac-
cording to the user’s viewpoint (rather than the programmer’s 
viewpoint). IFPUG recognizes five different types of software 
components, listed in the table below, that are basically mea-
sures of the data flow and storage through the software. Also 
listed are their relative sizes in terms of function points and 
based on their complexity levels.

Charley Tichenor

Abstract. Sizing software requirements is an essential best practice in software 
project management for forecasting the work effort required for software develop-
ment projects (and other related metrics). Arguably, the currently most accurate 
software metric for measuring the size of software is the International Function 
Point Users Group (IFPUG) “function point,” which has the ISO standard ISO/
IEC 20926:2009. Function points basically measure the size of the data flow and 
storage through the software, which we define in this paper as “functional” require-
ments. But function points do not measure other software requirements, which also 
require work effort resources. IFPUG has recently completed a successful beta 
test of a new method to assess the size of other, “nonfunctional” requirements, 
which when used in conjunction with function points should further increase the 
accuracy of software forecasting. The authors believe that this Software Non-func-
tional Assessment Process v. 2.0 (SNAP) is ready to enter industry and academia 
for initial practice and further research.

A New Software 
Metric to  
Complement  
Function Points
The Software Non-functional 
Assessment Process (SNAP)

Introduction
Forecasting the cost to produce software has been trans-

formed from an art into largely a science through a methodology 
called function point analysis. Function point analysis basically 
quantifies the volume of data flow and storage through the soft-
ware application; based on this measurement the cost required 
to develop the software can be quantitatively forecast. Years 
of experience with function points has shown it to be a robust 
methodology [1]. Yet, one wonders if a complementary software 
metric could be developed and used along with function points 
so that data flow and storage, and other aspects of the software 
that function points do not consider can be measured. Combin-
ing these measurements should improve the quality of software 
development cost forecasting (and other software metrics). 

One proposed complementary metric is from SNAP.  IFPUG, 
through its Non-functional Sizing Standards Committee, SNAP 
Project Team, developed a procedure for SNAP and wrote the 
SNAP “Assessment Practices Manual,” now in version 2.1 [2]. 
During August and September 2012, the SNAP team conducted 
a beta test to measure how well SNAP 2.0 correlated with work 
effort. This beta test was successful, and the purpose of this 
paper is to share the results of this beta test. We will discuss:

 Low Average High 
External Input 3 4 6 
External Output 4 5 7 
External Inquiry 3 4 6 
Internal Logical File 7 10 15 
External Interface File 5 7 10 

 

For example, an input screen process for entering data into 
an application might be measured as a low complexity external 
input worth three function points, and a high complexity external 
interface file is counted as 10 function points. The IFPUG 
Counting Practices Manual has repeatable standards for how 
to count function points and determining whether a component 
has low, average, or high complexity.

Table 1
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Here is how we can use function points for forecasting the 
cost to develop software. First, as an analogy, suppose that a 
customer wants to build a new house in a certain community. 
Suppose further that a typical house in that community is built 
at a cost averaging $300 per square foot. If the customer wants 
a new house of 1,000 square feet, then a good estimate of its 
cost will be about $300,000. Suppose we are considering build-
ing a new software application. Before we start building it we 
want to forecast its cost. A qualified function point analyst starts 
by examining the software’s data requirements. Then, using the 
standards in the IFPUG Counting Practices Manual, the analyst 
counts each instance of the components in Table 1 that are 
anticipated to be in the software, and then totals their values for 
the final function point count. (adapted from [6]).

This function point size correlates with development cost. The 
original paper showing that function point size correlates with 
development cost was published in 1977 by Dr. Allan Albrecht 
in his paper “Measuring Application Development Productivity 
[7].” This paper was the publication of the results of his research 
team’s development of the initial version of the function point 
methodology at IBM. The team correlated function point size of 
various IBM applications with their corresponding work effort, 
and found the correlation to be statistically significant. Since the 
publication of this paper, numerous organizations have devel-
oped function point-based software productivity models to help 
them forecast software development costs. Some companies 
have compiled large amounts of such data from government, 
industry, and other sources, and built commercial software 
estimation tools which use function points and other produc-
tivity indicators (such as software language used, skill of the 
programming team, project management tools used, etc.) to help 
clients forecast their software development costs. 

Now we can forecast the cost to develop this software. Sup-
pose that the function point analyst identified the software’s 
components from Table 1 and counted a total of 1,000 function 
points. Suppose further that a typical application of this type is 
built at a cost averaging $300 per function point. A good esti-
mate of its total development cost is therefore about $300,000. 

A reading of the IFPUG Counting Practices Manual indicates 
that function points are basically a measure of the size of the 
data flow and storage through the software. For this paper, we 
define these software requirements as “functional” require-
ments. The cost estimate of $300,000 for developing 1,000 
function points of software is based on data flow and storage 
size—the functional requirements for the software. 

Let us return to our house cost forecasting analogy. A new 
house of 1,000 square feet in size in this Community should 
typically cost about $300,000, but the particular house design 
this customer wants is a little different than “typical.” Suppose 
that this customer also wants to add hardwood floors (instead of 
typically carpeted floors), a wood-burning fireplace, a refrigera-
tor with an extra large freezer, and extensive wiring to support 
a special home entertainment system. We improve the cost 
estimate for this house by factoring in the additional costs of 
these extras. 

Now, suppose we want our software cost estimate to factor 
in software requirements which are not included as functional 
requirements in the IFPUG Counting Practices Manual. Let us 
consider certain requirements within the following categories 
and their subcategories. These are from the SNAP Assessment 
Practices Manual (refer to Table 2). 

In this paper, we define these kinds of software requirements 
as “non-functional” requirements because they are not included 
in the ISO standard function point methodology in the IFPUG 
Counting Practices Manual yet require additional work effort 
to develop. We want to assess the size of these non-functional 
requirements for applications. We also want to know if non-
functional size statistically correlates to the corresponding 
work effort—like function points do. This was the fundamental 
paradigm of the SNAP beta test.

We want to base the beta test analytics on statistical meth-
ods. We include the notions of random sampling, regression 
models, the F test, p-values, the Runs test, and the Spearman 
test. Basic Statistics books (for example, [8]) treat these. The 
next paragraphs will discuss the intended testing analytics.

For the beta test, random sampling means that we collect 
SNAP sizes from a wide variety of applications across the world. 
As much as possible with the resources we have, we want to 
have a sample that represents the software development industry.

Regression is a way to find the correlation between two 
variables. In this beta test, we want to determine if there is cor-
relation between the SNAP sizes of the applications and their 
corresponding work efforts. We believe that as the SNAP size 
increases, the work effort to build those SNAP sizes should also 
steadily increase.

Statisticians often look for several indicators to measure the 
degree of strength of the relationship within a set of two vari-
ables, in this case, the SNAP size and corresponding work ef-
fort. If there is causation, then one indicator (in this case) would 
be the degree to which SNAP size accounts for the amount of 

Data Operations Technical Environment 
Data entry validations Multiple platforms 
Extensive logical and mathematical operations Database technology 
Data formatting Batch process 
Internal data movement  
Delivering added value to users by data 
configuration 

 

Interface Design Architecture 
User interface methods Mission critical/real time systems 
Help methods Component based software 
Multiple input methods Multiple input/output interfaces 
Multiple output methods  
 

Table 2
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Table 3

work effort. This is measured by the r2 statistic. For example 
(assuming causation), if our data’s r2 is measured to be .75, then 
we conclude that SNAP size accounts for 75% of the reason for 
the work effort.

Another statistic is the associated p-value for this, also called 
“Significance F” in Excel. The p-value is the probability that we 
are wrong in concluding that SNAP size is correlated to work 
effort. If the p-value is .05, then we are 5% sure that we are 
wrong in concluding such a correlation, or put another way, we 
are 95% sure that we have statistical significance.

There are some technical assumptions in the standard regres-
sion process. One is that the data points are randomly scattered 
about the regression line. We can test for this using the Runs 
test, and we are comfortable that the model passes the Runs 
test if its p-value is below .05.

We also want to test for correlation using the Spearman test. 
This is a nonparametric test for rank correlation and makes no 
technical assumptions about the distribution of the data, other 
than it is randomly scattered about the regression line. This is a 
“worst case scenario” test we use should we have doubts about 
the validity of the standard regression test.

The final statistical test is for compliance with Benford’s 
Law. Benford’s Law is an interesting statistical test. Software 
development is a human stimulus and response activity. Part of 
the overall stimulus for developing software is the need for the 
non-functional requirements. The response is the number of 
SNAP points generated. If this occurs, then we can look at the 
leading digits of the SNAP size. For example, if the SNAP size is 
483, then we would consider the leading digit of “4.” Benford’s 
Law says that in these stimulus and response situations, the 
distribution of the leading digits is logarithmic, as in the table 
below, i.e., 30.1% of the SNAP sizes should start with the num-
ber “1,” 17.6% of the sizes should start with “2,” and so forth until 
we should measure “9” as the leading digit in about 4.6% of the 
SNAP sizes [9].

First Digit Percentage of 
Occurrences 

1 31.10% 
2 17.60% 
3 12.50% 
4 9.70% 
5 7.90% 
6 6.70% 
7 5.80% 
8 5.10% 
9 4.60% 

 

This compliance with Benford’s Law happens with function 
points. A study presented at the 2009 Fourth International Soft-
ware Measurement & Analysis conference [10] showed that for 
a large internationally collected sample of function point counts 
(more than 3,000 function point counts from ISBSG, Victoria, 
Australia), their leading digits followed the distribution predicted 
by Benford’s Law almost exactly.

Although the SNAP sample will be much smaller, we hope to 
see good convergence towards Benford’s Law.
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Leading Digit Data Used with Kind Permission of ISBSG  (ISBSG.org) 

Predicted by Benford's Law Actuals from ISBSG Data 

Research Design and Methodology
The purpose of this beta test was to repeat and extend the 

spirit of Dr. Allan Albrecht’s statistical analysis of the early 
function point methodology for the SNAP methodology. Dr. 
Albrecht’s research showed that software size measured in 
function points correlated with work effort for the applications 
tested. In a similar manner, based on data collected from the 
beta test, our research will hopefully determine the degree to 
which SNAP sizes correlate with corresponding work effort. 
Here is our research design and methodology.

Use version 2.0 of the SNAP manual as the basic reference.
Develop a standard SNAP data collection spreadsheet, 

largely based on last year’s spreadsheet. This new spreadsheet 
had four worksheets: 

1.	“Basic Instructions” worksheet, which provides detailed 
instructions for data collection for the SNAP counter.

2.	“Application Data” worksheet, for entering descriptive data.
3.	“SNAP Counting Sheet,” for entering the SNAP points. This 

worksheet permits the SNAP counter to enter only basic data per 
SNAP item, such as “DETs,” “FTRs,” “person-hours,” and other 
data described by the SNAP training. The worksheet then auto-
matically calculates SNAP points. All calculation cells are locked.

4.	“Recap” worksheet, which automatically totals the SNAP 
sizes and work effort. 

Issue a call for volunteer SNAP counters, and train them. This 
training will be done both using written materials (primarily the 
SNAP Assessment Practices Manual) and by telephone. The 
counters will choose the applications to size. Hopefully, this call 
for volunteers will result in a wide variety of countries repre-
sented and application types chosen.

Conduct all SNAP sizing at the application boundary level—
“application boundary” as defined in the IFPUG Counting 
Practices Manual.

Collect at least 30 applications’ worth of SNAP sizes with 
corresponding work effort in person-hours. This is to hopefully 
ensure a statistically large sample size. 

Figure 1
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If corresponding function point and work effort data can also be 
collected, then so much the better. This permits additional research. 
However, such function point counting data is considered optional.

Collect application descriptive data such as types of applications, 
types of industry, types of software, etc. This data may be used to 
help improve correlations. However, maintain source confidentiality.

Conduct the beta test throughout August and early September 
2012. During the beta test, after counters finish with individual 
application SNAP sizings, they are to email their data collection 
spreadsheets to IFPUG. These data sheets will be then “cleaned” 
of any source information to maintain confidentiality, and then will 
be forwarded to one of several members of the SNAP team who 
will perform a “quality control” of the data collection.

 As the SNAP data pass “quality control,” they will be then 
forwarded on for statistical analysis.

The beta test analytics will consist of trying to determine the 
degree of statistical significance using the following tests. First, 
we will test the data plotting the SNAP sizes of the applica-
tions on the x-axis as the independent variables, and the effort 
expended on the y-axis as the dependent variables. We will use 
simple linear regression, and especially look at the r2, what Excel 
calls “Significance F” (which is the p-value of the corresponding 
F test), and the p-values of the coefficients of the regression 
line. We will check for the appropriateness of testing for regres-
sion using regression through the origin. We will conduct the 
Runs test and Spearman test, and also test for convergence to 
Benford’s Law. We will also experiment with changing weighting 
factors and other aspects of SNAP to try to both improve cor-
relation and its degree of realism.

Presentation and Analysis of Data
We collected data from a wide variety of applications. This 

ensured that the sample was as close to random as reasonably 
possible. We had SNAP sizes for 58 applications usable for the 
part of the test correlating SNAP sizes with work effort, and an 
additional 14 SNAP sizes usable for the Benford’s Law test (but 
did not have work effort data). 

Data was collected from the following countries: Brazil, China, 
France, India, Italy, Mexico, Poland, Spain, UK, and the USA. We 
collected data from the following industries: Aerospace, Auto-
motive, Banking, Government, Fast Moving Consumer Goods, 
Financial Services, Insurance, Manufacturing, Systems Integra-
tors and Consulting, Telecommunication, and Utilities.

After reviewing the data, 58 data points (representing 58 soft-
ware applications) had sufficient SNAP size and work effort data 
for further analysis. The first statistical test was a simple linear 
regression analysis for 58 applications with the SNAP sizes on 
the x-axis, and the corresponding work efforts in person-hours on 
the y-axis. The graph below shows the results of this regression. 
NOTE: the actual work effort hours are not shown on the y-axis 
of the forthcoming graphs; we do not want to imply that the pro-
ductivity rate found in this beta test should necessarily be used as 
a benchmark—we feel that this is premature at this point.

The r2 for this analysis is .33, which basically means that 33% 
of the reason for the work effort was due to the SNAP size.

A closer analysis of the graph (and Excel regression tables) 
shows that the trendline crosses the effort axis at about 100 

person hours. In theory, this means that if there were zero SNAP 
points, then the corresponding work effort should be about 100 
person hours. This is not reasonable–if there are zero SNAP 
points then the work effort should also be zero. Therefore, we up-
grade the analysis and use a standard technique called “regres-
sion through the origin.” This forces the trendline through (0,0). 
This improves the common sense test and increases the r2 to .41. 

In reviewing the raw data, three applications contained large 
quantities of Help features. These applications had productivity 
rates, according to the current version of the model, that were 
roughly 10 times higher than the other 55 applications. This 
led us to believe that we may need to reformulate the Help 
Methods (subcategory 2.2) portion of the SNAP manual. This is 
an area for future research, so we removed these three applica-
tions from the data set. This improved the r2 from .41 to .66. We 
later removed seven other applications that counted some Help 
features, to maintain consistency.

Also, we changed the weighing factors for subcategory 1.5 
“Delivering Value Added to Users through Data Configuration” 

Figure 2

Figure 3
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by changing the weights for low, average, and high from 3-4-6 
to 6-8-12. This improved the model’s r2 to .89, with a corre-
sponding Significance F of 1.7 * 10-23.

To test the requirement that the data points in this model 
must be randomly scattered about the regression line, we 
conducted the Runs test. There were 19 runs in the data, which 
compares favorably with the theoretically optimal 19.96 runs.

We ran the Spearman test for rank correlation. This test pro-
duced a rank correlation of .85, with an associated confidence 
of statistical significance of greater than 99% (p-value <.0001).

The final results of this analysis are on the following viewgraph 
(refer to Figure 4).

We tested the final version of the results for compliance with 
Benford’s Law. In terms of software development, Benford’s 
Law says that the leading digits in a large portfolio of SNAP 
sizes should be distributed as in Table 3, repeated below. For 
example, in a large number of SNAP sizes, about 30.10% of the 
SNAP sizes should have a leading digit of “1,” such as sizes of 
15, 139, or 1,728.

Figure 4:  
n = 48  r2 = .89 Significance F = 1.7 * 10-23 Spearman = .85 Runs = pass

Figure 5

First Digit Percentage of 
Occurrences 

1 31.10% 
2 17.60% 
3 12.50% 
4 9.70% 
5 7.90% 
6 6.70% 
7 5.80% 
8 5.10% 
9 4.60% 

 
Table 3

Figure 5 shows the SNAP leading digit distribution from the 
beta test. We used 65 SNAP sizes for this analysis. In general, 
Benford’s Law seems to converge rather slowly, i.e., it requires 
a very large sample size to “pure out.” This SNAP sample size 
is much smaller than the ISBSG sample size, so the degree of 
compliance is markedly less; however, we appear to be converg-
ing nicely. 

Conclusions
We believe that the SNAP Assessment Practices Manual 2.0 

has passed the beta test. 
a.	The test was based on very good sampling techniques
b.	The data points are randomly scattered about the 	

	 regression line, as shown by the Runs test
c.	The regression r2 for 48 projects was .89
d.	The Spearman test correlation was .85
e.	We are over 99% sure that both tests are  

	 statistically significant
f.	The distribution of the first digits of 65 SNAP sizes is 	

	 converging nicely towards Benford’s Law

We recommend that the SNAP procedure (with the excep-
tion of Help Methods subcategory 2.2) is ready for use by the 
industry, and is ready for further research.

IFPUG has formed a Non-functional Sizing Standards Com-
mittee, similar to the Functional Sizing Standards Committee. 
This committee will continue to develop the SNAP process, en-
courage SNAP research, develop SNAP training, and maintain 
the SNAP Assessment Practices Manual. 

 
Areas For Future Research

One possible source of data collection error during the beta 
test was the experience of the SNAP counters. This was their first 
use of the SNAP Assessment Practices Manual 2.0. Consistency 
has been tested for function point counters with very favorable 
results. Repeat similar consistency tests for SNAP counters after 
there is much SNAP counting experience in the field.

Continue to experiment with reasonably varying the values 
of the factors for each subcategory’s low, average, and high 
complexity weights to improve the correlation between SNAP 
sizes and work effort.

Continue to research the Help Methods, subcategory 2.2.	
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After a statistically large number of applications have 
been counted for both function points and SNAP points, 
conduct research to determine if function points and 
SNAP points can be combined into a single metric, which 
correlates to the combined work effort to develop both. Try 
to combine them like real numbers can be combined with 
imaginary numbers to produce the complex numbers; try 
other ideas.

Using a large sample from the ISBSG database, function 
point counts were tested for compliance with Benford’s 
Law. This almost perfect compliance gave good statistical 
indication for the soundness of the underlying mathemati-
cal structure of function points. After completing a larger 
number of SNAP sizings (probably over 100), continue 
repeating this research by testing SNAP sizes for compli-
ance with Benford’s Law.

Comments:
This paper is written on behalf of the IFPUG SNAP team. 

The team developed the SNAP process and published the 
130 page “Software Non-functional Assessment Process 
(SNAP) Assessment Practices Manual,” now in version 2.1. 
The team conducted the version 2.0 beta test to include its re-
search design, the call for SNAP assessors, their training, and 
analysis of the test results. The team also developed a two-day 
workshop to introduce the Assessment Practices Manual at 
the seventh International Software Measurement & Analysis 
conference in Phoenix, AZ in October 2012.

The SNAP Project Manager and IFPUG Board Member is 
Christine Green. The IFPUG Non-functional Sizing Stan-
dards Committee Chair is Talmon Ben-Cnaan. Other SNAP 
team members were Wendy Bloomfield, Steve Chizar, Peter 
R. Hill, Kathy Lamoureaux, Abinash Sahoo, Joanna Soles, 
Roopali Thapar, Luc Vangrunderbeeck, Jalaja Venkat, and 
Charlene Zhao.



CrossTalk—July/August 2013     27

25th Anniversary issue

1. Introduction
This paper addresses one of the most fundamental aspects 

of waste in many large defense programs creating physical 
systems: the massive waste of engineering labor and time. 

It is useful to first review how efficient modern car devel-
opment is. A typical new car program rigidly adheres to the 
following phases: 1) First develop all needed components and 
subsystems (engines, gearboxes, radios, seats, etc.) based on 
the latest competitive technology and marketing need, and test 
and validate them thoroughly, preferably in several combinations 
of sizes, shapes and features, to the level of maturity such that 
they will be ready for use in new cars. Once all modules are 
ready to be integrated, and only then: 2) Perform the car design 
which is a relatively routine problem of trading off the physical 
module locations, sizes and shapes to fit the styling envelope, 
performance requirements, vehicle mass and size, powering 
tradeoffs, etc. Such a design effort has no unknown unknowns, 
thus no big risks. While requiring towering engineering com-
petence and experience, it remains a fundamentally engineer-
ing design: trade-offs and selections of parameters within 
finite trade space until all requirements are satisfied and some 
desired performance optimum is reached. Using this approach 
Toyota completed the Prius car design with new hybrid modules, 
in nine months from the end of styling to the beginning of error 
free production—a feat unmatched by any competitor, faster by a 
factor of 2 to 3 then the next best in class [1]. 

In contrast, many large complex defense programs in the last 
decades are contracted “for the entire job” including concept 
development; co-mingled research, development and design; 
starting with numerous low-Technology Readiness level (TRL)1 
items. This is usually driven by the perception that cutting-edge 

Bohdan W. Oppenheim, Loyola Marymount University

Abstract. This paper presents arguments for why defense programs creating 
physical systems should clearly separate three developmental phases from each 
other: research, development and design. Research is to be performed first by small 
teams of scientists addressing the “unknown unknowns” and maturing fundamen-
tal science from TRL of 1 to about 3. Next, development of physical modules is to 
be performed by small and highly specialized engineers. Finally, the system-level 
design should focus on efficient trading off the module locations, sizes and shapes 
versus system performance, mass, power requirements, etc. The design with all 
modules mature and available is equivalent to a car design: to be performed by 
competent engineers but quite well established. A small cohesive and co-located 
Program Management team with excellent Systems Engineers and Architects, led 
by a permanent Program Manager/ Chief Engineer should manage all program 
phases, assuring smooth transitions between the expert teams and phases. The 
small weight penalty which may result from the above approach is compensated by 
orders of magnitude larger savings due to shorter program schedule and optimized 
engineering effort. Examples are cited. 

Improving 
Affordability 
Separating Research from Development 
and from Design in Complex Programs

Typical Program (A) versus Proposed Program (B) 

technology is more appealing to stakehold-
ers; and the rarely-justified hope that system 
and technology development can be accom-
plished in parallel [2]. 

Starting a large program with very low TRLs 
and then pursuing research, development and 
design mixed together under a massive con-
tract is a major source of waste, if not the only 
one [3]. In effect we pay for a standing army of 
expensive engineers trying to look busy while 
small groups of “developmental” engineers 
frantically try to mature the TRLs. This is illus-
trated symbolically in Figure 1 A, with the large 
shaded box symbolizing the entire program 
effort (or cost) and the four boxes inside it 
denoting the various inefficient R&D efforts. It 
is only after the R&D tasks are completed, that 
the design increases in intensity. A number 
of aerospace programs notorious for terrible 
performance followed this pattern, starting 
with minimal TRL’s of one or two, e.g., NPOES 
[4] and JSF [2]. Numerous other examples are 
available on the Government Accountability 
Office webpages.
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What is worse, the work on the low TRLs is often performed 
by engineers rather than scientists, using brute-force ap-
proach of endless and costly iterations rather than elegant and 
advanced science methods of rapid trade space exploration 
and set based design (see Section 2). Starting a large system 
development with low TRLs causes excessive schedules lasting 
10-15-20 years—several times too long when compared to 
equivalent commercial programs, and costing tens or hundreds 
of billions of dollars—an order of magnitude too much. The 
real victim is the war fighter who cannot use the system when 
needed. In addition to huge original budgets, many programs 
suffer from major cost growth, and some have to be terminated. 
Overall, the total cost growth of recent poorly performing de-
fense programs was $295 billion. This practice is in violation of 
the intent of the Defense Acquisition Logistics: [5] which clearly 
states that system design should start only after Milestone B, 
that is after all needed TRLs are quite mature and ready for 
integration. And this is precisely how commercial companies 
handle the development at a small fraction of the average  
defense program cost. 

The history of defense and NASA programs offers plenty of 
examples of successful programs that reinforce the proposed 
approach, as follows. The Manhattan project which was one of 
the most difficult programs in human civilization had an efficient 
research phase during which mathematicians performing hand 
calculations (before computers!) proved that the nuclear chain 
reaction would not burn the earth’s atmosphere. Once the 
research was completed, the weapon development and design 
were completed in weeks. The nuclear submarine project [6] 
started not with the submarine design but with research on 
compact nuclear reactors. Once solved efficiently, the develop-
ment of the nuclear plant and the submarine vessel proceeded 
predictably and efficiently. The early U.S. space program 
demonstrated similar advantages [7]. Iridium, one of the techni-
cally most successful space programs, is forever a prominent 
example of technical (if not marketing) efficiency [8].

This article submits that we can adopt a lot of commercial de-
velopment practices to aerospace programs without sacrificing 
anything of value, and vastly reduce program schedule and cost, 
bringing weapons to the war fighter faster and more affordable. 
The recommended good-sense process is described in Section 
2. In Section 3 we discuss the desired management of the en-
tire program, and in Section 4 we identify potential weaknesses 
and strengths of the approach in the defense environment. 

The present approach has been based on several Lean En-
ablers described in [9, 10] and also listed on the web [11].

2. Ideal Sequence: Research-Development-Design
Occasionally, a set of common words evolve into an idiom 

which, with frequent use, becomes a paradigm and can be very 
difficult to eliminate. The words “research and development” 
seem to be an inseparable pair in this category. This may have 
been justified in earlier decades of simpler systems. Now when 
the system complexity is vastly higher, and the research phase 
needs a dedicated scientific approach, the term has become 
destructive, costing billions of dollars in inefficient programs. 
Our task is to clearly untangle three development phases from 

each other: research using fundamental science, engineering 
development of modules, and engineering design, as follows 
(see Fig. 1 B): 

The role of research teams is to develop each immature 
technology to 3 from TRL of 0-1, ending with a demonstration 
of technical feasibility and validation of the technology. This work 
phase is driven by global competition: “we need to develop bet-
ter products, with better technologies all the time”. If the technol-
ogy is challenging, involving significant unknown unknowns, a 
cost-plus contract may be justified for this phase. But it is critical 
that the work be done by a very small team (a few individuals is 
usually sufficient) of highly competent researchers with doctor-
ates in sciences, the love of learning from scholarly journals, 
and the inner drive to succeed. Each small team should be 
contracted independently of others, because their areas of ex-
pertise do not usually overlap. These folks are rarely engineers. 
Aerospace design engineers are not needed on these teams 
therefore large defense programs cannot be justified for this 
phase; in fact such programs are the opposite of what is needed 
here. The teams should be protected from defense bureaucracy 
that would only slow the progress. Even though this phase may 
be open-ended and contracted cost-plus, the small size of the 
team(s) assures a modest budget and good progress. Modern 
science offers a rich body of knowledge on how to make such 
open-ended challenges efficient and even predictable, using 
set-based studies [12] trade space exploration [13], and opti-
mized iterations [14]. Since the expenditures are small, a vast 
bureaucratic oversight should not be needed. If the teams are 
properly selected for their towering scientific competence, and 
not sabotaged by bureaucracy, rapid progress can be achieved 
in schedules lasting from months to a few years. For example, 
the research phase of the Manhattan project, one of the most 
difficult programs ever undertaken, took only one year [15]. 

Development. For each module under development, if and 
only if the research phase is successful (having achieved TRL 
of at least 3), a new contract should then be issued to a small 
focused team of developmental engineers. These engineers are 
different from scientists and from design engineers and must not 
be confused with them. The task for a team of developmental 
engineers is to mature the given TRL from 3 to the mature vali-
dated module of hardware, software or a combination, ready to be 
integrated into a later design. Since this phase has no unknown 
unknowns, there is no justification for any cost plus work, and the 
work should be predictable and plannable, with a fixed price and 
reasonable schedule. Ideally, each module should be packaged 
into several shape and size combinations, to make subsequent 
design(s) easier and to promote reusability. The added cost of 
multiple packaging is a small fraction of the module development 
effort but has big payoff due to module reusability. The software 
should also be created with long-term general reusability in mind. 
This phase calls for solid skills and specialized experience in de-
signing the given module(s). An expert in physical system design 
may be needed on each team to formulate requirements for the 
module, which would be consistent with subsequent system de-
sign. The requirements should address environmental constraints, 
use scenarios, top-level interfaces with other subsystems/mod-
ules, top-level tradeoffs, and best applicable standards. 
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System Design. At this time all mature modules should be 
available for integration. The remaining system design phase 
involves “routine” tradeoffs between system performance, mass, 
strength, size, shape, power, years in service, reliability, etc. This 
is where we need a broad spectrum of system-level engi-
neers and a “systems engineering factory”. The system design 
engineers should efficiently tradeoff the above parameters 
and select and move the modules around until all constraints 
are satisfied. This work, even though calling for a high caliber 
engineering competence, is fairly standard; this is what system 
design engineers do for a living. There should be no unknown 
unknowns left at this phase. All high-level technical risks should 
have been handled in the prior research or development phases. 
As such, a system-level contract must be contracted as fixed 
price and reasonably priced and scheduled, based more on 
commercial program estimates than the bloated defense pro-
grams of recent years. Any bidding company who says that they 
cannot bid a reasonable price in this situation, when all modules 
are already available, and the top-level requirements are stable 
should be excluded from consideration for incompetence. 

Practically all carmakers follow the described research-devel-
opment-design sequence, with the best in class demonstrating 
an amazing overall efficiency. 

3. Systems Engineering and Architecting,  
and Program Management

Ideally, the three phases: research, development, and design 
should be contracted separately, each to the most qualified 
teams available for the given phase. Yet, there must be an over-
all management of the program from the beginning to the end. 
The following approach is recommended, following [9, 10]. 

From the program inception, there should be a single and 
small integrated program management team performing techni-
cal management (concept development and systems engineer-
ing and architecting), as well as business management (project 
management, risk management, acquisition, contract monitoring, 
program monitoring, and supporting functions). This should be 
a small cohesive co-located team handling the entire program 
from concept development to Milestone A. Next, the manage-
ment team should contract and manage first the research 
phase, then the development phase to Milestone B, followed 
by the design phase and system integration to Milestone C, 
including system level verification and validation. The program 
management should also continue into the operational program 
phases of transition, operations and logistics, and disposal. This 
management team should be characterized by the following:

•	 Co-located minimum-size team. All people should be 
highly experienced in the system domain. The team must 
have total responsibility, authority, and accountability for 
both technical and business success of the entire program. 

•	 The contract should call for managing the entire pro-
gram during the entire lifecycle.

•	 There must be a single leader (called “Program Manag-
er” or “Chief Engineer”) who is not subject to military rota-
tions, who is the person dedicated to unconditional pro-
gram success, and who has personal stake in the success 
(accountability for failure and high reward for success). 

This excellent leader should be competent in program 
management, systems engineering, domain engineering.

•	 Effective team approach: single, co-located, cohesive, 
and well-integrated team2. 

The management team should manage the following phases 
of the program:

1.	Capture stable system-level customer-need requirements 
and scenarios of operations (the fewer requirements the better). 
If these top-level requirements are not stable the program must 
not be allowed to proceed under any circumstances as this will 
guarantee budget raptures and risk total failure.

2.	Perform enough concept development and system archi-
tecting to identify all low TRL (high risk) items, and the overall 
concept configuration. One year is regarded as plenty of time 
for a competent team to perform a comprehensive concept de-
velopment and architecting in response to stable and wise top-
level requirements. Modern approaches such as Model Based 
Systems Engineering [16], or Vienna Development Method 
[17] may be used in this phase, although the actual approach 
should be left up to the team and the contract should not be too 
prescriptive; otherwise it may slow the progress and introduce 
unnecessary bureaucracy. 

3.	Research contracts: Then, for each low TRL item, issue a 
Request For Proposal (RFP) and source select a small team, 
paying attention primarily to the past scholarly successes and 
credibility of the teams (illustrated in Fig. 1 B symbolically by 
four small “research boxes” denoting, say, four needed research 
topics). All such small contracts for maturation of TRLs should 
be issued in parallel. Large defense contractors are badly suited 
for this phase as they tend to activate a large “standing army”—
precisely what we are trying to avoid. Monitor all projects in this 
research phase and wait until all low TRLs reach the level of at 
least 3. If even one research team fails to achieve success do 
not proceed to the next phase, as this will introduce unaccept-
able risk to the overall program. Depending on the case, this 
phase should not last more than one to a few years maximum. 
The guiding environment should be maximally patterned after 
best available research studies, e.g. a federal research labora-
tory, a research university, an FFRDC, DARPA, etc.

4.	Development contracts: Once all research teams achieve 
success (TRL of 3), issue the next phase RFPs in parallel to 
seek proposals from small expert development teams who can 
demonstrate past success and current readiness to perform 
the development of each needed module. Typically, the differ-
ent modules will use completely different teams as the modules 
have little in common (the four boxes denoted “development” 
in Fig. 1 A). Since these teams will not have any unknown 
unknowns, these contracts must be fixed price, and the price 
should be guided by best commercial programs, with some 
reasonable overhead for handling military security and external 
management. 

5.	Design phase: when all modules have been developed, veri-
fied and validated, and are totally ready for system integration, 
issue an RFP for a larger contract to perform system design and 
integration, (denoted as “Design” in Fig. 1 A). This program will 
need engineers from all domain subsystems, as well as compe-
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tent system-level engineers representing all relevant branches 
of engineering. This single contract should have a reasonably 
short schedule and fixed budget because all modules have been 
already created. (This is like a car design to use available en-
gines, gearboxes, seats, radios, etc.) This phase should perform 
formal system-level systems engineering and program manage-
ment, including integration, verification and validation. This phase 
is essentially a routine engineering system level design even for 
a new weapon or space systems, and must be treated as such, 
rather than as a bloated multi-year full R&D program. There 
should be practically no development but plenty of best design 
activities. Contractually, passing the buck between the different 
parties involved in phases 1-5 must be avoided, demanding that 
a green light into the next phase is contingent upon the ac-
ceptance of the previous phase. Coordination and communica-
tion opportunities throughout the program stakeholders and life 
cycle should be maximized.

6.	Keep the contractor in phase (5) and the program  
manager fully accountable for the entire program technical  
and business success. 

The above approach offers the following significant  
advantages:

a.	Each project in each phase is manned in an optimized way, 
assigning only the experts and managers needed. We eliminate 
the “standing army” of thousands of highly paid engineers and 
managers for many years of “looking busy” while only a few 
individuals are truly needed. The cost of issuing one massive 
contract that mixes research, development and design is sym-
bolically illustrated by the shaded area in Fig. 1 A. In contrast, 
separated and optimized research, development and design are 
like the small shaded areas in Fig. 1 B. Clearly the cost and time 
of the latter are significantly smaller than the former. 

b.	The folks best suited for each phase are used: systems 
engineers and architects for the concept phase, scholars for the 
research phase, developmental engineers for the development 
of modules, and design engineers for the remaining low-risk 
design phase. We eliminate the present practice of asking engi-
neers to address scholarly challenges for which they are poorly 
suited and which they attack by massive and costly iterations. 

c.	Lower risk: the program split into these phases automati-
cally assures healthy milestones. If even one phase fails to 
deliver, the program can be stopped and the phase re-bid with 
minimum waste in overall schedule and treasure.

d.	The approach is much closer to the well-proven commercial 
practice, which costs one to two orders of magnitude less than 
the recent defense programs.

e.	The shorter overall schedule is conducive to more stable re-
quirements and the absence of technology changes during the 
program, the two aspects that have destroyed many a massive 
long defense program. Of course, the stability of customer-level 
need and use scenario requirements should be pursued by all 
means, as unstable requirements can destroy any long program. 

4. The Mass Penalty
A careful reader no doubt noticed one technical deficiency of 

the above approach: namely that the modules predesigned for 

the design phase have to be used “as is”, even if each is available 
in several size and shape combinations. The typical argument for 
contracting the entire program and all of its phases to a single 
contractor is based on the hypothesis that the contractor can then 
develop and optimize each module for minimum mass and best 
system layout. Theoretically there might be a merit in this argument. 
However, economics destroys it immediately, as follows: engineer-
ing labor rather than system weight is the most expensive item in 
large complex programs. Using pre-designed modules may carry 
a small weight penalty (which should be small indeed if the teams 
developing the modules understand the module use in the system 
of interest – not an unreasonable expectation), perhaps at worst re-
quiring the system to be lifted into space by a slightly larger vehicle 
than what might be needed otherwise. For example, having to use 
a larger-size lift vehicle into space may cost an extra $50-$100 
million dollars (a generous estimate), while the proposed approach 
will save billions if not tens of billions of dollars in much shorter 
program schedules. In addition, the proposed approach delivers 
the capability to the warfighter years ahead of traditional multi-year 
programs. It is simply common sense that this is a vastly better 
approach. Commercial programs understand it very well. Time for 
defense programs to do the same. 

5. Summary
The proposed approach to complex weapon system develop-

ment is based on clear separation of the program into research, 
then development, and finally design phases. Each phase should 
be performed using separate optimum-size teams of special-
ized experts, all coordinated by an efficient co-located small 
management team. The approach offers vast improvements over 
the current practice of one huge all-inclusive program lasting 
10 to 20 years, costing a treasure, and wasting up to 90% of 
the cost or more because most engineers have really little to do 
most of the time, while a few are frantically trying to mature the 
TRL of selected modules using brute force iterations. Examples 
of poorly performing programs that started with low TRL have 
been cited. Examples have also been provided of successful 
programs that clearly separated research from development and 
from design. 

The proposed approach has been practiced in the commer-
cial world for tens of years. Thanks to it, we can buy a car for 
$20,000 rather than the billions it would cost to develop the car 
using the current defense contracting paradigm. The possible 
small added cost due to larger weight is compensated by orders 
of magnitude lower cost of engineering labor. The approach will 
yield higher affordability and faster availability to the warfighter. 
The approach is totally consistent with the Integrated Defense 
Acquisition Technology and Logistics Lifecycle Management 
Framework. Nothing in the present defense acquisition policy 
precludes the approach. Even the Program Objective Memo-
randum budget formulation [18] for defense programs which 
requires that military services perform program acquisition 
planning several years in advance could be adopted to handle 
the proposed program organization. A pilot program is recom-
mended to follow the proposed approach. It has the potential 
to significantly cut the budget, schedule and bring the needed 
system into operations in a fraction of the current programs. 
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significant. Some estimates have it consuming more than 60% 
of the time and cost of the process.3

Our experience at IDT shows that using virtual test envi-
ronments with automated testing using Automated Test and 
Re-Test (ATRT) can help reduce testing infrastructure cost for 
testing areas such as interoperability, system testing, functional 
testing, component and unit testing. Additional benefits of 
automated testing in a virtualized environment include a more 
reliable system, improved testing quality, and reduced test effort 
and schedule. A more reliable system results from improved 
performance testing, improved load/stress testing, and improved 
system development life cycle through automated testing. The 
quality of the test effort is improved through better regression 
testing, build verification testing, multi-platform compatibility 
tests, and easier ability to reproduce software problems. Test 
procedure development, test execution, test result analysis, 
documentation and status of problems are also activities ben-
efiting from automated testing. 

ATRT in a virtual test environment can provide a stable, scal-
able, affordable and accessible automated testing infrastructure 
that extends across one or many server farms, across one or 
many System(s) Under Test (SUTs) and works with a common 
set of cloud computing concepts to support a broad virtualized 
enterprise automated test environment. This specific testing 
setup allows the use of virtualization in a specialized way to 
reduce the need for purchasing, storing and maintaining various 
expensive test environment hardware and software. Proper vir-
tualization setup provides a multi-user access automated testing 
solution that allows users to implement and reuse ATRT, along 
with all testing artifacts, on a provisioning basis. Additionally all 
related automated testing activities and processes, i.e. test case 
and requirements import; requirements traceability, automated 
test creation and execution, and defect tracking take place in 
this virtualized environment. 

Combining ATRT test efficiency with the hardware cost 
savings implementing in a virtualized/cloud environment, the 
resulting estimated savings are tremendous. For example 20 
Virtual Machines (VMs) fit on 1 server in our virtual environment 
example – allowing for huge savings in the test environment, 
i.e. in this case a 20 to 1 cost savings. Additionally, in the virtual 
environment, the SUT VM can be located anywhere on a con-
nected network and does not need to be located physically in 
the same VM as the testing VM. 

Examples of automated software testing in a virtualized test 
environment include: 

1.	Automatic provisioning of a virtualized automated test 
environment 

2.	Automatic provisioning of the entire automated testing 
lifecycle for any type of SUTs 

3.	Continuous integration using virtualized environments

Sections 2.0 through 4.0 provide technical overviews of the 
various embodiments of the present ATRT/Virtual Test Environ-
ment (VTE) implementation. 

Elfriede Dustin, IDT
Tim Schauer, IDT

Abstract. Using automated testing in a virtual test environment can reduce  
the time and effort required to complete test execution and data analysis,  
significantly reduce test suite costs, and at the same time increase the  
thoroughness of system testing.

Efficiencies of  
Virtualization in 
Test and Evaluation 

Section 1: Introduction
NIST produced a report in 2002 titled, “The Economic Im-

pacts of Inadequate Infrastructure for Software Testing.”1 This 
report “estimates the economic costs of faulty software in the 
U.S. to range in the tens of billions of dollars per year and have 
been estimated to represent approximately just less than 1% of 
the nation’s gross domestic product.” The report goes on to state 
that “based on the software developer and user surveys, the na-
tional annual costs of an inadequate infrastructure for software 
testing is estimated to range from $22.2 to $59.5 billion.” 

Also in 2004 the Chief of Naval Operations (CNO) Guidance 
included direction to the Commander, Operational Test and Eval-
uation Force (COMOPTEVFOR) to lead a collaborative effort 
among Navy, OSD, and contractors to reduce the costs of Test & 
Evaluation (T&E) by 20%. In developing a response to the CNO 
Guidance for 2004, COMOPTEVFOR surveyed programs and 
included the following as T&E cost drivers:

•	 Redundant testing
•	 Significantly increased levels of regression testing  

	 driven by technology insertion
•	 Increasing complexity of computer software testing, to  

	 include systems of systems
•	 Interoperability testing and certification
Based on the COMOPTEVFOR findings, more effective ap-

proaches for testing are needed to be able to meet the CNO 
Guidance to reduce T&E by 20%. 

A GAO Report to the Congressional Committees dated June 
2012, describes that “recent defense acquisitions have experi-
enced from 30% to 100% growth in software code over time.”2

With the increased size and complexity of systems of systems 
testing, requirements for unique / duplicate test facilities and 
test-beds for major Navy product areas, software testing is 
rapidly becoming the “very longest and most expensive pole in 
the tent” when it comes to fielding new capabilities. Because 
of many reasons including organizational boundaries, lagging 
technologies, unique requirements, and testing methodologies, 
the testing of new capabilities being fielded has become a sig-
nificant cost and time element of the process and without some 
form of change to the current process, could become even more 
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Section 2: Automatic Provisioning of a Virtualized 
Automated Test Environment 

As shown in Figure 1, the virtualized setup allows for a stable, 
scalable automated testing infrastructure that extends to one 
or many SUTs or one to many automated testing tool installa-
tions (in this example ATRT). This virtualized test environment 
setup is a highly scalable solution whether a user needs to run 
10 or 10000s of tests connecting to N number of SUT displays 
and servers over days or weeks and whether the user needs to 
analyze 100s of test outcomes or 10000s or more. 

In order to support a virtualized automated test environment, 
it is critical the automated testing solution itself be scalable. For 
example, the ATRT technology allows for N number of concur-
rent tests to run or N number of serial tests, depending on the 
test type required. All of the tests and test outcomes are stored 
in the ATRT database/repository for access by any subscriber 
(or user) of the ATRT virtualized environment. A subscriber/user 
can be a developer or tester or anyone on the program with 
ATRT user access privileges.

This virtualized test environment example setup supports 
live migration of machines; load balancing; easy movement of 
machines to different servers without network interruption and 
allows any upgraded VM to run on any server. As a result, it is 
also important that in a virtualized environment an automated 
testing solution is not only scalable but portable. ATRT can test 
systems independent of OS or platform so it is able to support 
applications running on both Windows and Linux providing flex-
ibility to migrate machines without the constraint of the OS the 
automated test solution can support.

Additionally, an automated testing tool should be selected 
that does not need to be installed on the SUT. ATRT is an 
example of a solution that does not need to be installed on the 
SUT and instead is communicating with the SUT via a VNC 
Server or the RDP protocol which transmits the SUT images 
back to the tester to the ATRT client. Few tools exist that do not 
need to be installed on the SUT. The typical automated testing 
tool needs to be installed on the SUT so it can link to the GUI 
coding libraries to get the object properties of the GUI widgets 
and/or pull information out of the Operating System’s window 
manager in order to create an automated test baseline. Installing 
an automated testing tool on the SUT however is generally not 
desired, because 1) the installation modifies the system environ-
ment (the testing system environment should be identical to the 
production system environment) and 2) it does not lend itself to 
cloud computing because of the additional tool installation on 
each SUT.

In this VTE the SUT VM can be located anywhere on a con-
nected network and does not need to be located physically in 
the same VM as the ATRT VM. This allows for tremendous flex-
ibility, for example multiple ATRT VMs can run in the VTE con-
necting to 100s of SUT VMs. However, in the typical automated 
testing setup where the tool needs to be installed on the same 
machine as the SUT, a 1 : 1 setup is required, i.e. 1 Automated 
Testing tool for each 1 SUT, negating some of the savings 
expected in a VTE.

Figure # 1: Top-Level Block Diagram of the Automated Provisioning of the 
ATRT virtualized Test Environment

Section 3: Automatic Provisioning of the Entire 
Automated Testing Lifecycle for any Type of SUTs

One or many users can access a VTE one at a time or 
concurrently with any device such as a laptop, iPad, iPhone, etc. 
with nothing installed on their device but a network connection 
enabling the capability to login to an IP address to connect to 
the ATRT virtual environment. 

Users can then request one or more instances of a VM along 
with the automated testing tool. The automated provisioning 
meets a user’s changing needs without the users being required 
to make any software modification on their end as required to 
conduct the automated test. The VTE in this example can spawn 
an instance of ATRT which then allows the user to access any 
automated testing artifact and execute the automated testing 
lifecycle. The user can then conduct any activity that is part of 
the automated testing lifecycle, i.e. create an automated test 
case, reuse or troubleshoot an existing automated test case cre-
ated by any user, import requirements, produce a requirements 
traceability report. The VTE provides any additional features 
and capabilities required to support the SQA process and help 
improve Quality, such as Unit Testing and Code Coverage.

Exemplary features of this process include:
•	 Developers update the code on the development VMs
•	 Developers check in their code into Version Control
•	 Build Server conducts automated nightly checkouts
•	 Build Server compiles and packages a new build  

	 for deployment
•	 Nightly automated tests are run
•	 Users are notified of the automated test outcome
•	 Build Server deploys the new build to the QA nodes
•	 Testers access the QA nodes and create and/or run 	

	 their automated tests
•	 Testers, Developers, and all users conduct the  

	 automated testing lifecycle activities and maintain  
	 all ATRT test artifacts in the virtual environment
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Using the virtualized test environment a single engineer may 
control an entire test of complex systems with only his/her iPad, 
laptop, etc. and only requires access to the network.

Section 4: Continuous Integration Using Virtual-
ized Environments 

Continuous integration is an industry adapted software 
engineering best practice in which any change to the code or 
environment is tested and reported on as soon as feasible. In 
most cases this involves nightly software builds and nightly au-
tomated test runs to allow for quick look reporting on any newly 
introduced issues. Virtualized test environments play a major role 
in this best practice. 

The development environment that makes this possible is one 
of a virtualized environment combined with both regular work-
stations and laptop computers networked together. 

1.	Developers first review the system level requirements 
and create a set of automated tests. Code is locally edited / 
compiled/linked and then checked in to a virtualized version 
control repository, such as SVN. From here other developers can 
check out both updated code off of the trunk or from code from 
specific branches to support different build.

2.	Upon code checkin, a continuous build server, such as the 
Hudson Continuous Build virtual server is triggered to start a 
complete build/check/test/report cycle. Hudson will perform 
the following tasks:

a.	Update the latest code from SVN
b.	Compile the code and check for compile errors
c.	Link the code, check for any link errors
d.	Perform source code style checks and copyright checks

Figure 2. Continuous Integration Environment Example

e.	Start a series of both internal and external 
regression tests:

i.	 Internal regression tests will execute auto-
mated tests to verify key use case tests to verify 
results are as expected and also ensure that code 
that was updated has not adversely affected the 
existing functionality.

ii.	External regression testing can then utilize 
any automated testing capability on another virtu-
alized node to perform tests as an end user would 
be expected to do (i.e. through a GUI interface). 
Each test can then analyze hundreds of system 
level requirements. Each requirement may itself 
be verified hundreds to thousands of times. Exter-
nal regression testing again compares its results 
against a known good set of results.	

3.	The internal and external testing results are 
then reported back to the Hudson server. Upon 
completion of successful internal and external 
regression testing, the Hudson server continues 
to now build an installer package that will be 
available to the end user at fielded locations. Ad-
ditionally, key statistics are gathered on the entire 
process and saved for later retrieval.

4.	Finally, Hudson provides the developer with 
reports on the entire sequence of testing. The 

NOTES
1.	 See <http://www.nist.gov/director/planning/upload/report02-3.pdf>
2.	 <http://gao.gov/assets/600/591608.pdf>
3.	 Hailpern and Santhanam, 2002 (The cost of providing [the assurance that a software 
program will perform satisfactorily in terms of its functional and nonfunctional specifica-
tions within the expected deployment environments] via appropriate debugging, testing, and 
verification activities can easily range from 50 to 75 percent of the total development).

developer can then use the results of the testing to make ap-
propriate code changes.

Section 5: Summary
Using automated testing in a virtual test environment we have 

been able to demonstrate the ability to reduce the time and 
effort required to complete test execution and data analysis, sig-
nificantly reduce test suite costs, and at the same time increase 
the thoroughness of system testing. An increase in software 
testing thoroughness equates to a reduction of defects found in 
the field and reduced total ownership cost. Automated testing 
in a virtualized test environment will also enable much earlier 
identification of integration and interoperability characteristics 
of any software products that must interact with other systems. 
Identification of software specific integration characteristics in 
products in-stride with software development cycles enables the 
identification of issues to also be decoupled from the delivery of 
the final hardware configuration.
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Elfriede Dustin is Director of Solutions at IDT where 
she works on developing new ideas and discovering 
new approaches to the requirements based automated 
software testing challenge. Software development is 
still an art and that makes automated software testing a 
special challenge. IDT (www.idtus.com) strives to meet 
that challenge by producing a reusable automated test-
ing framework that includes reusable automated testing 
components, starting with requirements through the en-
tire software testing lifecycle to defect closure. Elfriede 
has a B.S. in Computer Science with over 20 years of 
IT experience, implementing effective testing strategies, 
both on Government and commercial programs. She  
has implemented automated testing methodologies 
and testing strategies as an Internal SQA Consultant at 
Symantec, worked as an Asst. Director for Integrated 
Testing at the IRS Modernization Efforts, implemented 
testing strategies and built test teams as a QA Direc-
tor for BNA Software, and was the QA Manager for the 
Coast Guard MOISE program.

She is the author and co-author of 6 books related to 
Software Testing, i.e. author of the book “Effective Soft-
ware Testing” and lead author of “Automated Software 
Testing” and “Quality Web Systems,” and co-authored 
the book “The Art of Software Security Testing,” together 
with Chris Wysopal, Lucas Nelson, Dino D’ai Zovi, which 
was published by Symantec Press, Nov 2006.

Together with IDT CEO Bernie Gauf and IDT FSO and 
Sys Admin Guru Thom Garrett she wrote her latest book 
“Implementing Automated Software Testing.”

E-mail: edustin@idtus.com
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Tim Schauer graduated from the University of 
Wisconsin-Madison in 1985 with a Bacholor 
of Science degree in Physics and a B.S. in 
Astro-physics. He received his commission in 
the US Navy and worked as both the weapons 
officer and communications officer on the 
USS Shenandoah. After the Navy, Mr. Schauer 
worked on Tactical Software for the SPY-
1A Phased Array radar at the Naval Surface 
Weapons Center in Dahlgren, VA. He then 
became testing lead and lab manager for the 
SeaWolf Class / BSY-2 integration facility in 
Moorestown, NJ. Later, he worked as senior 
logistics analyst for US Pacific Command at 
Camp Smith, Hawaii. 

Tim Schauer has been working with Virtual 
Servers since first being introduced to them at 
Pacific Command (PACOM) in the late 1990’s. 
He continued to develop virtual systems while 
working at the San Diego Data Center for the 
County of San Diego and Children’s Hospital 
of Los Angeles. He has virtualized over 90% of 
the Beaufort County, South Carolina, library’s 
IT system, greatly reducing cost while increas-
ing productivity. Finally, Tim is currently working 
on virtualizing a US Navy Tactical Weapons 
System to facilitate ongoing ATRT automated 
testing at the IDT facilities in Arlington, VA.

E-mail: tschauer@idtus.com
Phone: 843-473-5465

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required). 
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and 

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta 
mountains with many recreational opportunities available. 

 

Send resumes to:
309SMXG.SODO@hill.af.mil 

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development 
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GFIRST 2013
25-30 August 2013
Grapevine, TX
http://www.us-cert.gov/GFIRST

AUTOTESTCON 2013
16-19 August 2013
Schaumburg, IL
http://www.autotestcon.com

APCOSEC 2013
9-11 September 2013
Yokohama, Japan
http://www.incose.org/newsevents/events/details.aspx?id=190

Defense Systems Acquisition Management Course
16-20 September 2013
Kansas City, MO
http://www.ndia.org/meetings/302E/Pages/default.aspx

Software and Supply Chain Assurance Forum
17-19 September 2013
McLean, VA
https://buildsecurityin.us-cert.gov/swa

(ISC)2 Security Congress 2013
24-27 September 2013
Chicago, IL
https://www.isc2.org/congress2013/default.aspx

World Congress on Engineering and Computer Science
23-25 October 2013
San Francisco, CA
http://www.conferencealerts.com/show-event?id=112271

16th Annual Systems Engineering Conference
28-31 October 2013
Arlington, VA
http://www.ndia.org/meetings/4870/Pages/default.aspx

OWASP AppSec USA 2013
18-21 November 2013
New York, NY
http://www.sourcesecurity.com/events/free-event-listing/owasp-
appsec-usa-2013.html

Upcoming Events
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To subscribe to CrossTalk, visit  
www.crosstalkonline.org and click  
on the subscribe button.

SUBSCRIBE TODAY!
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Just a few weeks ago, I was notified that my 
article submission for the 25th Anniversary Edi-
tion of CrossTalk was accepted—so some-
where in this issue, there is my scholarly article 
about how we have progressed over the last 
25 years. However, this BackTalk column is a 
fitting end to the issue. It is more about where 
we have digressed since 1988. After all, in 
retrospect, it is easy to see where we made the 
right choices. It is where we made the wrong 
choices that few people wish to elaborate on. 

In 1988, I was the proud owner of a really 
high-quality video tape recorder, chocked full 
of awesome features, complete with stereo 
recording. It had a digital channel selector, 
and could program up to 12 (that is right – 
TWELVE!) future recordings. A high-quality 
electronics manufacturer, Sony, made it. And it 
was a Betamax. Arguably, a better product than 
VHS—it had stereo and higher quality video—
but it was a losing battle.

Of course, I had a “backup” format for the 
movies that I found really important—ones that 
I paid money to buy, so that I could have a 
high-quality movie that I could watch over and 
over, for years and years to come. Yes, I owned 
a LaserDisc. I had LaserDiscs of “The Wall” and 
“Rocky Horror Picture Show.”	

Back in 1991, I graduated from Texas A&M 
with my Ph.D. I took not one but two courses 
on parallel algorithms and parallel sorting. It 
was not a question of, “if we would be convert-
ed to parallel processing by 2010.” It was more 
of a question of, “what kind of parallel architec-
ture would we all be using?” Choices included 
the mesh, the cube, and the butterfly, just to 
name a few. Granted, we now use multi-core, 
multi-threaded machines, but few programmers 
really know how to write code to truly take 
advantage of parallelism. Instead of large-
scale parallelism, we now do parallelism “in the 
small”—nothing at all like what we envisioned 
back in the early 1990s.

Also in the early 1990s we thought that by 
2000, there would really be only one pro-
gramming language used in the DoD, right? 
Heck, I was a member of the Ada Government 
Advisory Group (a.k.a. the Ada GAG—a horrible 
acronym if there ever was one).

In the mid 1990s, I was convinced that the 
3.5” floppy disk was eventually going to disap-
pear – the thin floppy was incapable of holding 
enough information – so I made sure to back 
up everything I had on the one medium that we 
just knew would be around for years and years 
to come—the Iomega Zip Drive.

By the year 2000 came along we decided 
that the “single programming language” idea 
was never going to work, so we decided to 
agree on a common operating system instead. I 
was on the working committee for the Defense 
Information Infrastructure Common Operating 
Environment (DIICOE). Bet you have not heard 
of DIICOE in a while either, have you?

Even though I am the epitome of a die-hard 
Mac user, for about 15 years, I used another 
OS. What did I switch to? Linux, of course. 
In the 1990s, we just knew that by the early 
2000s, Linux would be the predominant oper-
ating system for both home and office. 

Speaking of the Apple Macintosh, who would 
have predicted that both Macs and PCs would 
share the same chips? Over the years, I learned 
and then taught 6800/68000 assembly lan-
guage, and also mastered the Power PC (PPC) 
architecture. Now, my Mac runs on an Intel, and 
using a virtual machine interface, it boots either 
OS X, Windows 7 or Windows 8. 

I only represent one lowly software engi-
neer—and the list of projects, technologies and 
initiatives I have been on that are obsolete and 
no longer part of the DoD is really long. One 
could argue spectacularly long. So, this means I 
have been a failure, right?

Well … no, to put it bluntly. In fact, almost 
everything I have listed above actually contrib-

uted to progress in engineering and comput-
ing science. Ada is still used, and some of 
the features it heralded became part of other, 
newer languages. Parallel processing is still a 
critical component of supercomputing. In fact, 
it appears that Moore’s Law might apply to the 
number of processors in a system. DIICOE 
helped us standardize some critical components 
of embedded operating systems, and helped 
standardize some real-time operating system. 
The Un*x OS is not extremely popular for home 
computing, yet it runs a lot of servers, supercom-
puters, and large-scale systems. It is also the 
basis for the Mac OSX operating system. 

What about the 68000 and PPC architec-
tures? They are used in high-speed embed-
ded systems. The LaserDisc? The DVD simply 
eclipsed it—higher capacity, smaller size, 
cheaper technology, and better quality video. 
Same with the Zip drive. It was great for its 
brief time, but the non-moving technology 
(and eventual greater capacity) of the USB 
drive sounded its death knell. These were not 
failures, just technologies that were eclipsed by 
better technology. There is no shame in having 
worked on a once cutting-edge technology that 
becomes obsolete. 

That is just the way progress is. Two 
steps forward, one step back. Every great 
new technology we have today is based on 
something that preceded it. You cannot judge 
progress by the number of technologies that 
have failed and been replaced. You can only 
say “What we have now is better than what 
we had yesterday.” 

Learn, improve, discard, and move on. I would 
bet that every decent developer or software 
engineer could point (usually with pride) to some 
project they worked on that has been made ob-
solete by the steamroller of progress. And every 
one of us has learned from the experience.

Progress marches on. 
Just like CrossTalk. 
Happy 25th Anniversary!

David A. Cook
Stephen F. Austin State University
cookda@sfasu.edu

Twenty-five Years of 
the Wrong Choices!

To subscribe to CrossTalk, visit  
www.crosstalkonline.org and click  
on the subscribe button.

SUBSCRIBE TODAY!
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Exciting  
and Stable 
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35, New Workloads 
Coming Soon
 �Ground Theater  
Air Control System
 �Human Engineering 
Development

 
Employee 
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location, 
Location, 
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League  
Baseball Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing, 
Water Skiing, ATV Trails, Hiking

Contact Us:
Email: 309SMXG.SODO@hill.af.mil 

Phone: (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup
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