

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2013 2. REPORT TYPE

3. DATES COVERED
 00-07-2013 to 00-08-2013

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 26,
Number 4. July/August 2013

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave Bldg 1238,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—July/August 2013

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Lynne Wade
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF);
and the U.S. Department of Homeland Defense (DHS). USN
co-sponsor: Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National Cyber Security
Division in the National Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

CrossTalk and Software—Past, Present and Future:
A Twenty-Five Year Perspective
As CrossTalk celebrates its 25th anniversary, it is educational to see how
much software has changed and evolved over the lifetime of CrossTalk
by David A. Cook, Ph.D.

Twenty-Five Years of Software Security Assurance
Only in the past quarter century have efforts to understand and address
the root causes of system security vulnerabilities evolved and coalesced
into systematic efforts to improve software security assurance across
government and leading industry sectors.
by Karen Mercedes Goertzel

Is Something Missing From Project Management?
The literature, the training, professional meetings, and conferences do not
commit proportionate energy to methods and techniques to prepare project
managers for monitoring and reporting performance.
by Walt Lipke

A New Software Metric to Complement Function Points:
The Software Non-functional Assessment Process (SNAP)
IFPUG has recently completed a successful beta test of a new method
to assess the size of nonfunctional requirements, which when used in
conjunction with function points should further increase the accuracy of
software forecasting.
by Charley Tichenor

Improving Affordability: Separating Research from Development
and from Design in Complex Programs
Defense programs creating physical systems should clearly separate three
developmental phases from each other: research, development and design.
by Bohdan W. Oppenheim

Efficiencies of Virtualization in Test and Evaluation
Using automated testing in a virtual test environment can reduce the
time and effort required to complete test execution and data analysis,
significantly reduce test suite costs, and at the same time increase the
thoroughness of system testing.
by Elfriede Dustin and Tim Schauer

8

4

16

21

27

32

25th Anniversary Issue

Departments

Cover Design by
Kent Bingham

	 3	 From the Sponsor

	36	 Upcoming Events

	39	 BackTalk

CrossTalk—July/August 2013 3

FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG for sponsoring this issue.
It is interesting and informative to reflect back over 25 years of software
development. Twenty-five years ago the Software Crisis was raging and there
were many engaged in trying to convert software code production from art to
engineering science. The DoD was actively funding the pursuit of a solution.
The term Software Crisis was first coined at a NATO Software Engineering
Conference in 1968. It was the result of dramatic increases in computing
power outpacing the ability of developers to produce working software. It is
no wonder the DoD was interested in improving the odds of software being
successful; at the time, approximately one in eight finished software projects
were considered successful. It was this DoD effort to improve software de-
velopment that originally funded the creation of CrossTalk as an informa-
tion exchange forum.

Watts Humphrey published the CMM® 25 years ago in 1988 and as a
book, “Managing the Software Process” the following year. This was the
beginning of a lot of great work on software process improvement. CMM
would later be followed by other great works by Watts Humphrey such as
Team Software Process (TSP) and Personal Software Process (PSP). All
along the way, CrossTalk has been there covering the transformation of
the software industry from crisis to manageable and predictable software de-
velopment. CrossTalk has published articles about many types of process
improvement, some of which have been successful and others not so much.
Many of us have witnessed firsthand this transformation of the software in-
dustry. We have seen the transformation from very limited process control to
process control being the rule, not the exception. We have seen the progres-
sion from CMM to the CMMI®.

Today we continue to strive to improve quality and predictability while at
the same time reducing cost. Unlike 25 years ago, we now have data and
processes that support controlled predictable high-quality software develop-
ment. We have all probably participated in the debates about what amount
of process improvement/control is enough. As the Software Maintenance
Group Director, I don’t know the ultimate answer to the question; however we
continue to pursue improved software predictability, quality and price.
This issue of CrossTalk is focused on just how things have changed over
the last 25 years. I hope you enjoy the perspectives provided in this issue
of CrossTalk.

Karl Rogers
Software Maintenance Group Director  
309th Software Maintenance Group

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University

4 CrossTalk—July/August 2013

25th Anniversary issue

David A. Cook, Ph.D., Stephen F. Austin State University
Abstract. Since its initial issue, CrossTalk has helped guide software develop-
ment throughout the DoD. As CrossTalk celebrates its 25th anniversary, it is
educational to see how much software has changed and evolved over the lifetime
of CrossTalk—and where the future might be leading us. This article discusses
several of the forces that have shaped software and developmental languages over
the last 25 years and also tries to see where the future will be taking us.

and Software—Past,
Present and Future

The Era of CrossTalk—The Early Days

The Quantity of Programming Languages
Twenty-five years ago, compilers and languages proliferated.

There were many reasons for the creation of a new program-
ming language [4], and the result was that by the 1980s, more
than 2,000 programming languages existed [5]. Often compa-
nies or projects created a new language because their proposed
software needed a combination of features not found in an
existing language. Because the machines (and storage) of the
time were limited, trying to add additional features to a language
that already had features they might not need would simply
increase compile time. Back in the 1980s it was not unusual
for compile time to run to minutes per line! Adding new features
to existing languages simply made compile time worse. It was
more attractive to start fresh—and develop a language that had
only the exact features needed for a project.

By the time CrossTalk came along, it was reasonably well
recognized in the DoD that a minimal set of languages would
make software maintenance easier but allow more transfer of
knowledge and reuse of code throughout the DoD. Simply put,
it is not cost efficient to maintain systems in thousands of lan-
guages, nor is it wise to have a software development workforce
that is segmented by knowledge of so many niche languages.

While it was recognized that such a minimal set of lan-
guages needed to include some legacy languages (JOVIAL,
CMS, Fortran, COBOL), the DoD also wanted to develop a
language that it hoped would meet everybody’s programming
needs. During the infancy of CrossTalk, Ada was developed
and heavily promoted by the DoD as a language that would
unify software development needs. For numerous reasons
(many political), Ada never became the huge success that the
DoD envisioned. Commercial languages that dominate today’s
software development market include Java and C (and the
descendants of C, such as C++ and C#). To understand the
forces driving language design and language selection, it helps
to examine a programming language from the perspective of
what it provides to the developer.

The Quality of Programming Languages
Early high-level languages provided “machine transparency”

to the developer. Without having to know and master such con-
cepts as word size, memory size, how many registers were avail-
able, etc., the developer could spend less time concentrating on
“what platform the solution will be implemented on” and more
time on just understanding the problem. A “good” programming
language let the programmer focus on the problem, rather than
the hardware—but at the same time, provided enough features
to permit the majority of general-purpose software tasks to be
easily accomplished.

The earliest compilers were adequate for basic generalized
programming needs. They provided the developer with a way
to abstract themselves yet one step further away from the
machine. In essence, the compilers were a tool that provided
input to another tool (the assembler), which, in turn interfaced
with the hardware.

A Twenty-Five Year Perspective

CrossTalk

In the Beginning: Pre-CrossTalk
Although 25 years is a short span of time, it is actually a very

long time in terms of software evolution. Twenty-Five years is
over one-third the entire life span of computers—after all, the
ENIAC only dates from 1946 [1].

One could also argue that some of the most important chang-
es in computers and software occurred in the last 25 years—af-
ter all, the commercialization of the Internet did not begin until
the mid 1990s. Standardization of TCP/IP itself did not begin
until the 1980s [2]. The replacement of the large mainframe
computers with desktop “microcomputers” did not happen until
the late 1980s. Of course, lots of software development was
accomplished prior to the existence of CrossTalk. In the early
days of software development, however, it was normal for devel-
opers to need intimate knowledge of the target hardware.

Back in the 1950s and even into the 1960s, machine code
was used for many applications—and the only tools available were
assemblers. Even when working with assembly language (which
was much simpler to understand than machine code), developers
had to have extensive knowledge of the hardware that the final
software would be deployed upon. The tools that were available
during these early days were relatively simplistic. The developer
was closely tied to not only a machine, but occasionally tied to a
particular model and configuration. The interface between the de-
veloper and the hardware was direct—and hard to learn and mas-
ter. The developer had to understand not just the problem space,

but also had to be a master of the
hardware. At best, an assembler
abstracted away some of the
hardware, but not all. Developers
still were tied to hardware—and
had to understand it to develop
any code [3].

The	
 Hardware	

(CPU	
 and	
 Storage)	

Assembler	

Figure 1 – Adding a tool to
abstract away part of the
actual computer

CrossTalk—July/August 2013 5

25th Anniversary issue

The	
 Hardware	

(CPU	
 and	
 Storage)	

Assembler	
 Compiler	

One of the driving forces behind software development has
been, oddly enough, a hardware force—Moore’s Law [6]. Moore’s
Law (Gordon Moore was one of the co-founders of Intel) was
that the number of components of an integrated circuit doubles
about every two years. The law (more of an observation) has
proven to be uncannily accurate over the last 50 years. And the
law has been expanded to cover the capabilities of many digital
electronic devices that are strongly linked to Moore’s Law:
processing speed, memory capacity, disk capacity, and even the
number and size of pixels. Because this law says that every-
thing doubles every two years, then the capacity of computers
(in terms of speed, memory, and storage) is exponential. From
Moore’s Law comes what I refer to as Cook’s Observation of
Unwanted Space—every CPU cycle and byte of storage will
eventually become used. Back in the 1960s, the Titan mis-
sile used less than 2,000 lines of code. The F-35 Joint Strike
Fighter uses around 25 million [7].

The Recent Past and the Present

Software of Today
How is it possible that computer speed, memory, and storage

are doubling every two years, but we are continuing to use main-
stream languages (such as Java and C++) to develop modern
software systems that demand more and more capabilities? We
manage to accomplish this by continually updating just the lan-
guage, but by continuing to create and update extensive libraries
and templates to assist us with coding. Granted, we continue to
update modern languages (Java is up to Version 7, Update 15,
while C++ is now at C++11, with revisions planned ahead for
C++14 and C++17). These changes, however, are evolutionary,
not revolutionary. It is pretty much a guarantee that C++ code
that runs today will still run with the latest version of the compiler
in 2017. And no language is currently on the horizon to displace
either Java or C++ from their dominant positions.

Instead, rather than develop newer and newer languages, we
now extend our current software capabilities by writing support
libraries and “importable” code (templates, generics) to extend
the capabilities of our languages. We are adding additional tools
(libraries) to support the compiler (another tool) to eventually/
probably be converted to assembly language and then executed
on the target machine.

Back in the 1970s and 1980s, the lack of the Internet made
it difficult to share languages. Languages came into existence,
were used for select projects, and disappeared in relative
isolation. Languages tended to belong to a single project, or a

Figure 2 – Adding
one more level be-
tween the developer
and the hardware

single company. In the present, however, we can easily share
languages and libraries. And because so many needed lan-
guage features are common throughout much of the develop-
ment community, new ideas for language features are easily
and quickly shared. We can easily add standardized features
(typically by including a new library or adding features to existing
libraries) to languages that are standardized. Our extensibility is
now managed by a mutually agreed upon standardization of lan-
guages. Rather than writing a new language, we have enough
spare capability to add the libraries and compiler features to let
the existing languages evolve.

The	
 Hardware	

(CPU	
 and	
 Storage)	

Assembler	
 Compiler	

Libraries	

and	
 Tools	

Coupled with the ability to “expand” languages through the
use of libraries, we also have several other forces shaping how
we develop software. These factors will have a tremendous ef-
fect on the software development of tomorrow.

The Near Future –
Forces That Will Affect How We Develop Software

Distributed Computing
In the 1990s, we viewed distributed processing and parallel

processing as the wave of the future. While both predictions
have somewhat become true, it is not in a way that we ever en-
visioned 25 years ago. When CrossTalk first started publishing,
20 to 30 pound laptops were about as “portable” as comput-
ers could be. Back in the 1960s, when Star Trek first debuted,
Star Fleet ensigns walked around the ship carrying PADDs, or
Portable Access Display Devices. These devices, which seemed
to be portable computers with access to the “Computer” were
obviously a pipe dream. Now, as ultra books, full-fledged and
high-powered laptops, smart phones and tablets abound we
“distribute” computing and require software that equally distrib-
utes tasks as necessary. Mainstream languages now have ex-
tensions or specialized frameworks to allow developing software
that runs on multiple platforms (from the large to the small).

Storage Issues
In the near future, several trends are going to affect how we

develop software. The first is data storage. In the 1960s and
70s, the storage medium of choice was (as any addict of late-
night really old science fiction movies can tell you) magnetic
tape (for large data storage) and punched card (for individual
programs). By the 1980s, floppy disks (8”, 5 ¼” and later 3 ½”)
had become the medium of choice for individuals, while disk

Figure 3 – using Librar-
ies and Tools to further
distance developers from
the hardware

6 CrossTalk—July/August 2013

25th Anniversary issue

storage was the standard for large data stores. By the 1990s,
individual developers were using CD and DVDs for storage. By
the 2000s, most developers had embraced flash storage with
capacities up to 32GB being common. In all of the above ex-
amples, the devices for individual storage were “personal” under
the total control of the developer. Now, however, cloud storage is
becoming the standard. It is possible to obtain totally free cloud
storage ranging from 5GB to 50GB. The side effect of this easy
to obtain and easy to use (and extremely portable) storage is
that the possession and protection of code and individual data is
no longer under the developer’s control.

Security Issues
Even before 9/11, military applications were routinely devel-

oped with a high level of security in the actual developed applica-
tion. The events of 9/11 made security an integral part of almost
all DoD system and development processes. With distributed
computing (using smart phones, laptops and tables) and the
use of cloud storage, DoD applications require specialized and
higher levels of security during development. They also require a
language (and operating system and network) that permits the
applications to run with a relatively high degree of security.

In the 1980s and 1990s, software was developed mostly
onsite, and typically run from a dedicated (and protected) client.
Now, however, software development, execution of the appli-
cations, and code and data security are no longer necessarily
centralized. When you combine the potential for terrorism and
the potential for catastrophic failure of storage, applications
will require unprecedented levels of security and redundancy.
This has not been primarily a software issue in the past (it was
handled by the operating system, network, and even manual
processes). However, as redundancy and security will become
more and more of a requirement for all levels of software in the
future, I expect to see many security features become part of
mainstream programming languages.

Trend To Graphical Languages or Graphical Front-Ends
Since the early 1950s, we have tried to use graphical meth-

ods to capture requirements and develop systems. We have
tried flowcharts, State Transition Diagrams, Data Flow Diagrams,
and the Unified Modeling Language. All work to help, but none

are full-fledged enough to actually capture a full set of require-
ments for a large-scale system and produce executable code.
Some (such as UML) come close.

In some areas, there do exist graphical interfaces that can create
a complete executable system. For example, in the field of Model-
ing and Simulation, the language Arena (among others) allows an
experienced user to capture requirements, develop the model, and
execute the simulation under a variety of constraints [8].

The Not-So-Near Future
Back in 1997, I was privileged to attend the ACM (Association

of Computing Machinery) 50th Anniversary celebration, in San
Jose. While there, a group of luminaries was present, and each
was asked to briefly speak for 10 minutes or so on “What The Fu-
ture Holds.” I remember little about who spoke, or what they said,
except for one speaker (whose name I cannot remember). He
said, “10 years ago, we did not see the Internet coming, so who
are we to predict the future?” I feel the same way. Things that
we never envisioned as possible are now real. I can be standing
in the middle of a cornfield in Nebraska, and given a decent 4G
signal, have accessible to me almost all recorded history.

In the 1960s, when Star Trek had tablets disguised as
PADDs, and cell phones and Bluetooth earpieces disguised as
communicators, we could not comprehend a future with such
wonderful devices. Now, I can wear a small device in my ear, tap
it, and simply say, “Siri, please tell me the weather in London.” I
get results within seconds. The boundaries between normal life
and computer usage are almost non-existent. Cars, appliances,
even shoes are integrated in the ever-expanding computer-
driven daily life.

I feel that software will continue to follow two separate paths—
large-scale and non-traditional. Large-scale traditional software
development (like much of the software developed within the
DoD) will evolve slowly. Granted, I used Fortran in the 1960s, and
now use C++, but the process is almost the same. Requirements,
analysis, design, implementation, testing, maintenance—some
things will probably not change for a long, long time. Niche soft-
ware will come and go. A few new languages will be developed
for specialized applications. It will be very difficult to create a new
language that can overcome the developmental inertia that C++
and Java now hold. This language might continue to evolve (such
as C# or Objective-C), but look at the staying power of Fortran.
It was released commercially in 1957, and still maintains a strong
“foot in the door” for many engineering applications. It appears
than once a language becomes mainstream it remains a develop-
ment tool for years and years to come.

Conclusions and Inescapable Facts
The average reader of CrossTalk is probably not the aver-

age developer of software. If you read CrossTalk, you probably
work on large-scale or real-time systems. These systems are
hard! We are always on the cutting edge of technology, trying to
do what has never been done before.

I cannot say it any better than Fred Brooks said back in 1986,
when he wrote the classic article, “No Silver Bullet—Essence
and Accidents of Software Engineering [9].”

Assembler	
 Compiler	

Libraries	

and	
 Tools	

Storage	

(Loca7on	

Unknown)	

Hardware	

(Distributed)	
 Storage	

(Loca7on	

Unknown)	

Storage	

(Loca7on	

Unknown)	

Storage	

(Loca7on	

Unknown)	

Hardware	

(Distributed)	
 Hardware	

(Distributed)	
 Hardware	

(Distributed)	

Graphical	

Tools	

Figure 4 – Adding a Graphical Interface – even more removed from hardware,
wherever it is, and wherever your storage is!

CrossTalk—July/August 2013 7

25th Anniversary issue

David Cook is Associate Professor of Computer Science at
Stephen F. Austin State University. He served 23 years in the
Air Force, teaching computer science and software engineer-
ing at both the USAF Academy and AFIT. He also worked as
a consultant to the STSC for 16 years. His fields of interest
are software engineering, software quality, and verification and
validation of large-scale modeling and simulations. His Ph.D. (in
computer science) is from Texas A&M. He has been a columnist
and contributing author for CrossTalk for almost all of its 25
years of publication.

E-mail: cookda@sfasu.edu
Phone: 936-468-2508

ABOUT THE AUTHOR

REFERENCES
1.	 Bellis, Mary. The History of the ENIAC Computer. February 24, 2013.
	 <http://inventors.about.com/od/estartinventions/a/Eniac.htm>.
2.	 Leiner, Barry et. al. “www.internetsociety.org.” October 2012. Brief History of the Internet. February 18,
	 2013. <http://www.internetsociety.org/internet/what-internet/history-internet/brief-history-internet>.
3.	 Cook. “Evolution of Programming Languages and Why a Language is Not Enough to Solve Our Problems.”
	 Crosstalk, the Journal of Defense Software Engineering 12.12 (1999): 7-12.
4.	 Schorsch, Thomas and David Cook. “Evolutionary Trends in Programming Languages.” CrossTalk, the
	 Journal of Defense Software Engineering 16.2 (2003): 4-9.
5.	 Kinnersley, William. The Language List. 1991. February 13, 2013.
	 <http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm>.
6.	 Shankland, Stephen. Moore’s Law: the rule that really matters in tech. October 2012. February 20, 2013.
	 <http://news.cnet.com/8301-11386_3-57526581-76/moores-law-the-rule-that-really-matters-in-tech/>.
7.	 Venlet, VADM David. “Selected Acquisiton Report F-35.” Department of Defense, n.d.
8.	 Kelton, David W. et. al. Simualtion with Arena. New York: McGraw-Hill, 2003.
9.	 Brooks, Frederick. Mythical Man Month, Anniversary Edition. Boston: Addison-Wesley, 1995.

In it, he said, “I believe the hard part of building software to be
the specification, design, and testing of this conceptual construct,
not the labor of representing it and testing the fidelity of the rep-
resentation. We still make syntax errors, to be sure; but they are
fuzz compared with the conceptual errors in most systems.”

If this is true, building software will always be hard. There is
inherently no silver bullet.

Let us consider the inherent properties of this irreducible
essence of modern software systems: complexity, conformity,
changeability, and invisibility.

Twenty five years later, software is still hard. Software is still
complex; still has to conform to bizarre and antiquated inter-
faces; still requires constant maintenance and updating; and still
is essentially invisible, in spite of the graphical tools and process
we try to use. And this is not necessarily bad. Using my iPhone
to connect to a microprocessor in my shoes so that I can track
my daily aerobic exercise history should be invisible—in fact, I
want it seamless and thought-free.

But still, how do we create and provide this seamless integra-
tion between computers and every facet of our life? How about
the really large-scale integration—the aircraft, spaceships, and
weapons of tomorrow? Brooks, in the Mythical Man Month
anniversary edition (where both the original article and his
article “No Silver Bullet Refired” can be found) brings forth that
perhaps methodologies are the silver bullet. The more advanced
and larger the eventual software application, the more important
it will be to have a process to manage the inherent complexity,
conformity, changeability and invisibility.

And, as far as I can clearly see, therein lies the future. Process-
es are important—because of the magnitude of the effort. As the
effort gets bigger, the more we need to rely on a process to guide
us to completion. Back in the 1980s, when CrossTalk started
publication, our computer systems were not exactly small, but they
were smaller. For the mid 2010s? Double the CPU speed about
10 times. Then, also double available memory and storage capac-
ity about the same number of times. And now fill up the computer
with enough software to consume every clock cycle and byte. It is
too big to even comprehend, so you better have a serious process
to make it all fit together because without a process to man-
age the complexity you are not going to be able to get anything
to work. In fact, you probably would not even be able to gather
enough requirements to start development.

Large-scale projects require large-scale processes, which
require relatively strict adherence to process standards. The
languages we use are just a supporting role in the software
systems we create. Software of the future is a combination of
languages, tools, libraries, and most importantly, a process for
putting it all together.

As we reflect on CrossTalk’s 25 years of publication, I think
that I can confidently say that CrossTalk has covered the is-
sues and trends that got us to where we are now. As a frequent
contributor and reviewer, I can also say that CrossTalk is
already preparing us for the future!

To learn more about the DHS Office of Cybersecurity
and Communications, go to www.dhs.gov/cybercareers.
To find out how to apply for a vacant position, please go
to USAJOBS at www.usajobs.gov or visit us at
www.DHS.gov; follow the link Find Career
Opportunities, and then select Cybersecurity under
Featured Mission Areas.

8 CrossTalk—July/August 2013

25th Anniversary issue

Karen Mercedes Goertzel, Booz Allen Hamilton

Abstract. The security risks associated with software and its development
processes have been recognized for 40 years or more. But only in the past quarter
century have efforts to understand and address the root causes of system security
vulnerabilities evolved and coalesced into systematic efforts to improve software
security assurance across government and leading industry sectors. Along with
these programs have arisen efforts to reshape the software engineering profes-
sion, and to establish a robust software security technology and services industry.

This article provides a capsule history of the most significant of the software
assurance efforts of the past 25 years, organized by the main problems they have
striven—and continue to strive—to correct. At the end of the article, a number of
more extensive, detailed software assurance landscapes are recommended to the
reader, to complement and elaborate upon the information presented here.

A Twenty-Five
Year Perspective

amounts of software that had previously operated only stand-
alone or on private networks) with the global undertaking to
examine and correct Y2K errors in the vast installed base of
commercial and privately-produced software code. People were
looking harder at their software than ever before, and what they
found was not reassuring.

One result of the recognition that most software contained
entirely too many exploitable errors and flaws was a deeper in-
vestigation into the root causes of the problem and, once identi-
fied, into the means to correct them. As a result, the late 1990s
onward saw a growing ferment of commercial, academic, and
government activity, including research, policy, process improve-
ment, and propaganda—all falling under the rubric of “application
security” or “software assurance.”

By 2005, the President’s Information Technology Advisory
Committee was able to neatly summarize the twin security
dilemmas that plague modern software:

“Today, as with cancer, vulnerable software can be invaded
and modified to cause damage to previously healthy software,
and infected software can replicate itself and be carried across
networks to cause damage in other systems.... Vulnerabilities in
software that are introduced by mistake or poor practices are
a serious problem today. In the future, the Nation may face an
even more challenging problem as adversaries—both foreign
and domestic—become increasingly sophisticated in their ability
to insert malicious code into critical software [4].”

The ability to exploit software’s vulnerabilities to compromise
its availability and the confidentiality and integrity of the informa-
tion it handles, and the ability to exploit vulnerabilities in SDLC
processes to intentionally subvert the functionality produced by
those processes (by tampering with intended logic or implanting
malicious code) continue to provide the impetus for all of today’s
software and software supply chain security assurance efforts.
The rest of this article describes a representative sampling of
such efforts over the past 25 years.

Exploitation of Software Vulnerabilities
The National Bureau of Standards published one of the first

major taxonomies of operating system security vulnerabilities
in 1976. Of the seven categories of vulnerabilities it identified,
five constituted software vulnerabilities—(1) inadequate input/
parameter validation, (2) incorrect input/parameter validation,
(3) bounds checking errors, (4) race conditions, and (5) other
exploitable logic errors [3]. The other two vulnerability categories
were information flow-related.

By the mid-1990s, researchers recognized the need to
clearly delineate software security from information security
concerns, and several proposed taxonomies categorizing and
characterizing software vulnerabilities were published by the
Naval Research Laboratory, [5] Purdue University [6], the Open
Web Application Security Project (OWASP) [7], and The MITRE
Corporation [8].

In parallel with these efforts to “taxonomize” software vulner-
abilities arose attempts to characterize techniques for exploit-
ing software vulnerabilities, and tools and techniques such as
attack trees [9], attack patterns [10], and threat modeling [11]

Background
In 1974, a vulnerability analysis of the Multics multilevel

secure operating system highlighted the potential of software
design flaws and coding errors to be exploited as a means to
compromise the security of the Multics system [1]. The report
also discussed the potential for malicious insiders and external
penetrators to exploit the lack of security awareness in Software
Development Life Cycle (SDLC) processes and the absence
of security protections for code development and distribution
mechanisms to surreptitiously access and subvert the code
prior to deployment. These process-level weaknesses were true
not just for Multics, but for all of the software that made up the
DoD’s World Wide Military Command and Control System.

The 1974 report may be the first formal documentation of the
direct correlations between (1) errors and flaws in a system’s
software and the vulnerability of that system, and (2) the lack
of security controls in SDLC processes and the potential for
malicious subversion of the software that results. However, the
report’s matter-of-fact tone suggests both problems were likely
already well-recognized by then. And so the twin concerns that
continue to drive virtually all software security assurance efforts
to this day were already documented by 1974.

Over the next 20 years or so, any focus on improving soft-
ware-level security assurance was limited to software-intensive
systems with very high-confidence requirements used in the
DoD, the Department of Energy, and the intelligence community
(and in some of their non-U.S. counterparts abroad), e.g., the
ballistic missile defense software developed under the Strategic
Defense Initiative (SDI), and software used in high-assurance
cryptographic systems, operating system kernels, and cross-do-
main solutions. Not until the mid-1990s did the broader security
implications of the poor quality of most software explode into
the broader consciousness. This awareness came thanks to the
coincidence of the rise of universal Internet connectivity and
the World Wide Web (and with it the exposure of increasing

CrossTalk—July/August 2013 9

25th Anniversary issue

emerged to help developers characterize the attacks and exploi-
tations that were most likely to target their software, and their
likely outcomes.

Meanwhile, the typical timeframe between a vendor’s discov-
ery of a new vulnerability in its commercial software product and
its ability to develop and release a fix, or “patch,” to mitigate that
vulnerability shrank from months to weeks to days to virtually
nothing. This “zero-day vulnerability” problem, which had only
been speculated about at the start of the millennium, was com-
monplace reality by the end of its first decade. In a struggle to
maintain even tenuous control over the situation, both the soft-
ware industry and the government began demanding exclusive
rights to information about vulnerabilities discovered by their own
and third-party “security researchers.” In 2005, the first known
sale of a vulnerability occurred. An ex-employee of the NSA
sold information about an exploitable Linux flaw on an exclusive
basis to the U.S. government; the alleged price: $80,000. Today,
vendors routinely offer bounties for exclusive information about
vulnerabilities in their products (Google reportedly spent upward
of $460,000 in the first two years of its Vulnerability Reward
Program). Buyers are motivated by the desire to keep news of
vulnerabilities quiet long enough for patches to be released and
applied, while many researchers seek to turn vulnerability-selling
into a profitable industry. Some even market subscriptions to
vendors whose software is affected. Others focus on the lucrative
government market for vulnerabilities that can be exploited in
information operations or cyber espionage [12].

Attacks targeting or exploiting software bugs, and the variety
and capability of malicious logic have increased exponentially
with the proliferation of network-connected software-intensive
systems, services, and applications, including embedded systems.
These risks plague not only the embedded software and micro-
code in military weapon systems, but in industrial control systems,
networking devices, medical devices, onboard vehicle and avionic
diagnostic systems, global positioning systems, mobile communi-
cations devices, consumer electronics, and an growing number of
“smart” appliances in homes and workplaces. Many such systems
are expected to operate continuously and cannot tolerate opera-
tional disruptions. A growing number are peripatetic, with no fixed
location and only intermittent wireless connectivity. As a result, all
are poor candidates for the traditional “push” approach to “just in
time” software patching and updating.

At the same time, with miniaturization, hardware has also
become so powerful that the lines between embedded soft-
ware, firmware, and “fused-in” hardware logic have increasingly
blurred. Researchers have also demonstrated the ability to
load malicious firmware into information and communications
technology (ICT) devices in order to subvert their operation. For
example, a Columbia University research team installed mali-
cious firmware in an HP LaserJet printer, then used it to illicitly
forward documents from the print queue, and also to physi-
cally damage the printer [13]. Indeed, the problem of malicious
firmware was explicitly documented by Scott Borg, the Director
of the U.S. Cyber Consequences Unit and the Internet Security
Alliance, in a 2008 strategy paper for the White House [14].

The emergence of post-manufacture reprogrammable inte-
grated circuits in the 1990s obscured these distinctions even
further, by expanding the threats to hardware logic beyond its

fabrication and manufacturing processes. While all integrated
circuits (ICs) are vulnerable to subversion during design and
manufacture, field-programmable gate arrays (FPGAs) extend
the attacker’s window of opportunity, because their logic can
be maliciously altered after manufacture. As long ago as 1999,
researchers identified techniques for implanting, and resulting
effects of, “FPGA viruses” [15], and demonstrated the ability to
alter the bitstream used to reprogram the FPGA to insert mali-
cious logic into its main memory [16]. A few years later, 2007,
researchers at University of Illinois at Urbana-Champaign proved
the feasibility of maliciously modifying non-reprogrammable IC
logic to add post-deployment-exploitable “hardware Trojans” and
“kill switches” [17].

In 2012, the Defense Advanced Research Projects Agency
(DARPA) initiated its Vetting Commodity Information Technol-
ogy (IT) Software and Firmware program “to look for innovative,
large-scale approaches” for verifying that the software and
firmware embedded in commodity IT devices purchased by DoD
are “free of hidden backdoors and malicious functionality” [18].
In addition, software code analysis tool vendors such as Gram-
matech are expanding their products to support inspection of
firmware for presence of vulnerabilities and malicious logic.

The need to expand the definition of “software” to include
firmware and hardware logic reinforces the needs to also ex-
pand the focus of “software assurance” to address management
of security risks in the supply chains for commercial software
and hardware, as consumers—in DoD and beyond—continue
to increase their reliance on COTS software, and reduce the
amount of custom-development that allows them full lifecycle
visibility and control over how their logic-bearing products are
built and distributed.

Inadequate SDLC Processes and Technologies
In 1985, Canadian computer scientist David Lorge Parnas

felt compelled to resign his position with the Strategic Defense
Initiative Organization (SDIO) Panel on Computing in Support
of Battle Management. In his letter of resignation he explained
why he could no longer in good conscience associate himself
with the SDI software development effort [19]. Given what was
at stake—preventing a nuclear holocaust—SDI software could
not afford to be less than 100 percent dependable. And 100
percent dependable software was (and still is) an impossibil-
ity. SDI software was so unprecedentedly huge and complex,
Parnas explained, and its development methodology was so
problematic, that any attempt to build assurably trustworthy SDI
software was doomed to fail. Much of the fault lay in the limita-
tions of conventional software development approaches—limita-
tions that could not be overcome by the also-deficient emerging
techniques of artificial intelligence, automatic programming,
and formal methods. Parnas’ letter provided the impetus for the
SDIO to reconsider how its software would be developed. In
1990 two SDIO researchers published the Trusted Software
Development Methodology (TSDM)—arguably the world’s first
secure SDLC methodology [20].

After TSDM, a number of “secure SDLC methodologies” were
published. The most widely discussed of these is Microsoft’s
Trustworthy Computing Security Development Lifecycle (SDL)
[21]. Others of note include John Viega’s Comprehensive Light-

10 CrossTalk—July/August 2013

25th Anniversary issue

weight Application Security Process [22] and Gary McGraw’s
Seven Touch Points [23]. More recently, the BITS Financial
Services Roundtable published a Software Assurance Frame-
work [24]. In addition, a number of efforts have been under-
taken to define a maturity model specific to software assurance
processes; these include the software elements of the Systems
Security Engineering Capability Maturity Model (SSE-CMM)
[25], the Trusted Capability Maturity Model [26], the Federal
Aviation Administration safety and security extensions to inte-
grated capability maturity models [27], OWASP Open Software
Assurance Maturity Model [28], and the Cigital/Fortify Building
Security In Maturity Model [29].

The majority of SDLC security enhancements involve secure
coding (also referred to as secure programming), the goal of which
is to prevent avoidable code-level vulnerabilities, and security code
review and software security testing, the goal of which is to detect
design- and implementation-level vulnerabilities not avoided earlier
in the SDLC. Secure coding requires inclusions of certain logic
such as input validation of all parameters and explicit security-
aware exception handling, avoidance of coding constructs and
program calls associated with security vulnerabilities (e.g., printf in C
and C++), use of type-safe and taintable programming languages,
compilers that impose bounds checking, and “safe” libraries.
Techniques for secure coding have been extensively documented
in books, papers, and Web sites on the topic since the begin-
ning of this century, and the Carnegie Mellon University Software
Engineering Institute (CMU SEI) Computer Emergency Response
Team’s Secure Coding Initiative began publishing secure coding
standards for C/C++ and Java in 2008 [30].

Other SDLC security enhancements have focused on protect-
ing development artifacts both pre- and post-deployment. This
includes secure software configuration management (SCM),
with supporting secure SCM systems, and application of cryp-
tographic integrity mechanisms to software executables prior to
distribution, to name a few.

Subverted SDLC Processes and Malicious Logic
Outside of DoD, the primary motivation behind defining

security-enhanced SDLC processes has been preventing avoid-
able but non-malicious vulnerabilities in software. But inten-
tional subversion of software is a more potentially devastating
problem. The shortcomings of SDLC processes for building DoD
software, whether in the U.S. or offshore, and their exploitability
to subvert or sabotage that software, have been repeatedly
documented by the General Accountability Office [31].

Information on subversions by intentional malicious logic
inclusions involving DoD or intelligence community software
or developers is, unsurprisingly, virtually always classified. In
other organizations, it also remains highly sensitive, for obvious
reasons that if the SDLC vulnerabilities exploited and methods
used to do so were widely known, they would provide other
rogue developers (both inside and outside of software teams)
with tried-and-true methods to copy. Because of this secrecy, it
is difficult to provide examples of actual malicious code subver-
sions. The fact that there is so much concern over the possibility
is thought by many to prove the fact that such subversions have,
in fact, occurred…and often. But coming up with unclassified
examples is well-nigh impossible.

One of the most persistent examples has the dubious distinc-
tion of never having been authoritatively corroborated by any of
the alleged participants. But it continues to stand as an “Emperor’s
New Clothes” type of object lesson, so it’s worth mentioning here.
The story goes that in 1982 a software time bomb was planted by
agents of the U.S. Central Intelligence Agency in the software of a
Canadian natural gas pipeline controller product. This subversion
was performed in anticipation of that product falling into the hands
of Soviet agents. The goal was to use the subverted software to
sabotage the Trans Siberian gas pipeline (on which the controller
was expected to be installed) in a manner so spectacular that it not
only destroyed the pipeline, but also lead the Soviets to mistrust
all the other sensitive Western technologies they had obtained
through their industrial espionage program over the previous sev-
eral years [32]. Less spectacular malware subversions in the private
sector have led to prison terms for perpetrators such as Michael
Don Skillern and Jeffrey Howard Gibson [33].

Given such examples (and, one suspects, many more in the
classified literature), it is not surprising that prevention of sub-
version via malicious code has been at least as potent a driver
for DoD’s software assurance initiatives (and, more recently,
its software supply chain risk management efforts) as avoiding
software vulnerabilities. In 2007, NSA undertook a project to
define guidelines focused specifically on adapting the SDLC to
eliminate opportunities for pre-deployment malicious inclusions
in software [34].

Non-functional Security Analysis and
Testing of Software

Until the late 1980s, with the exception of code with very
high confidence requirements (cryptographic code, multilevel
secure trusted computing base code, etc.), security testing of
software meant testing the functional correctness of software-
implemented network-, system- and application-level security
controls (e.g., authentication, access control, data encryption).
If the software belonged to a system that handled classified
data, some amount of penetration testing would be performed
as part of system certification, focused on attempts to esca-
late privileges and inappropriately leak or steal sensitive data.
Even the security analyses required for attaining higher levels
of assurance under the Trusted Computer Security Evaluation
Criteria and the Common Criteria focused on security function
correctness and information flow vulnerabilities. To this day, the
Common Criteria requires no security analysis to find exploitable
code-level vulnerabilities or malicious logic.

One exception has been the expansion of fault tolerance, or
resilience, testing to observation of executing code’s behavior
under the stressful conditions associated not only with unin-
tentional faults but with intentional attempts to exploit software
errors or induce failures (in the software itself, or the execution
environment or infrastructure components on which it depends).
Starting in the 1990s, researchers at University of Wisconsin at
Madison took the lead in this kind of stress testing when they
began a 20-year investigation into use of fuzzing as a means of
testing software’s ability to withstand denial of service attacks
that targeted its weaknesses and exploited its flaws [35].

The 1990s also brought a growing awareness of software-
level vulnerabilities in Web applications and other Web-facing

CrossTalk—July/August 2013 11

25th Anniversary issue

software. Publication of the OWASP Top 10 persuaded many
software developers and buyers that they needed a cost-
effective way to verify that their software could keep attackers
out while still providing legitimate users with a conduit to the
Web. The means they focused on were security code reviews
(via static analysis to find known undesirable patterns in source
code) and vulnerability scans (mainly of COTS software). Unfor-
tunately, neither technique has proven very useful for detecting
byzantine security faults or embedded malicious logic [36].

Software security testing techniques and tools over the past
decade have vastly improved in terms of increased automation,
improved accuracy with regard to minimizing “false positives” and
“false negatives,” and standardization and interoperability of out-
puts via efforts such as MITRE’s Making Security Measurable and
the future promise of software assurance ecosystems [37].

But while individual testing techniques and (semi)integrated
software security testing toolsets have evolved quickly in sophis-
tication and accuracy since the early 1990s [38], methodologies
for software security testing are still rudimentary. There is still no
software security counterpart of the network security integrated
“situational awareness” view. Nor does there appear to be much
research to conceive a “wholistic” strategy for choosing exactly
the right combination of complementary techniques and tools to
achieve maximally deep and comprehensive software security
analysis and test coverage that remain flexible enough to adapt to
the particular software technologies and program architecture of
the test subject, are usable by testing teams of varying skills and
knowledge, and feasible given varying available amounts of time
and budget. Lack of such a strategic testing methodology means
that anything more than automated vulnerability scanning remains
too time consuming and costly for all but the most “critical” and
“high confidence” software…the very software that, because it is
considered critical or high confidence, is the most likely to have
been engineered with caution under controlled conditions, and is
therefore in less need of extensive security testing.

Software Intellectual Property:
Piracy, Theft, and Tampering

From the 1980s onward the single greatest “security”
concern of software vendors has been the protection of their
intellectual property (IP). DoD too is concerned with protecting
software IP, though for different reasons.

Vendors’ main concern has been piracy—the unauthorized
copying and distribution of licensed software. DoD, on the other
hand, is most concerned about adversaries gaining access to
the IP inherent in source code of their critical software, either
via reverse engineering from binaries or direct source code
theft, as a step towards producing tampered, malicious versions,
or studying its operation and vulnerabilities to better target or
counter the systems in which it is used (e.g., weapon systems),
or to obtain code on which to base comparable capabilities for
their own use (in essence, piracy).

Piracy is a major concern to vendors because of the revenue
loss it represents. In the 1980s, dozens of vendors rushed out
hardware “dongles” for mandatory co-installation on comput-
ers on which their software was installed. The dongles ensured
that the software could run only on the system for which it was
licensed, and to which dongle was attached. This meant the

code would not operate if copied to another system. The prob-
lem was that enterprise users had a legitimate need for backup
copies of software as part of continuity of operations planning.
And like any other small item, dongles were easy to misplace.
So in the face of customer complaints, by the mid-1990s, most
vendors had abandoned the devices in favor of digital rights
management controls that accomplished essentially the same
protections, and is still used by many software vendors today
[39]. Over the past decade, the software industry has launched
numerous anti-piracy initiatives and campaigns, individually and
via their industry trade associations [40].

Protection against executable software reverse engineering
led DoD, in December 2001, to establish its Software Protection
Initiative (SPI). SPI develops and deploys intellectual property
protections within national security system software to prevent
post-deployment reverse engineering and reconnaissance,
misuse, and abuse by adversaries [41]. Since its inception,
the SPI has sponsored much of the significant research and
development of technologies for software IP protection (e.g.,
anti-reverse engineering), software integrity protection (e.g.,
tamper-proofing), and software anti-counterfeiting.

Preventing source code theft is a problem for both vendors and
government software projects. It requires both secure configura-
tion management and effective cybersecurity protections for the
computing and networking infrastructure relied on by software
teams. Google discovered this to its great consternation in 2009,
when Internet-based intruders stole the source code of the pass-
word management system used in most Google Web services,
including Gmail. The method by which the intruders got access
to the code reads like Web Application Insecurity 101: a Google
China employee clicked on a link in a Microsoft Messenger mes-
sage that redirected him to a malicious Web site. From there, the
intruders accessed and took control of his computer, and a few
short hops later, found and took control of the software repository
in which the development team at Google headquarters stored
the password management system code [42].

Doing Something About It: Software Assurance
Initiatives and Public-Private Partnerships

In 1998 Microsoft, the world’s largest software vendor, could
no longer keep up with the exponential increase in reported
vulnerabilities in its operating system and Web products. The
company set up an internal security task force to investigate
the vulnerabilities’ root causes, then following the task force’s
recommendations, established product line security initiatives
and “pushes” from 1999-2004 that ultimately coalesced into
the Microsoft Trustworthy Software Development program. Two
significant artifacts of the program were mandated company-
wide and widely published for adoption by third-party suppliers
to Microsoft (and anyone else who cared to adopt of them)—
the “STRIDE/DREAD” threat modeling methodology and the
SDL methodology. While other software vendors also adopted
software assurance measures in the same timeframe (e.g., by
the early 2000s Oracle Corporation had committed to a fairly
rigorous software assurance regime), few of the others were as
forthcoming or influential as Microsoft.

Seeing the world’s leading software vendor change its modus
operandi in so public a manner was an important factor in

12 CrossTalk—July/August 2013

25th Anniversary issue

increasing software buyers’ awareness of the need for more
secure software products. The OWASP Top 10 was another.
Soon, organizations were rushing to discover whether their Web
applications harbored any of the Top 10—and to demand that
their software vendors do the same. This engendered a new
industry of semi-automated tools for static security analysis of
source code, and automated scanners for finding vulnerabilities
in (mainly Web) application executables.

In the mid-2000s, consortia software vendors (often led by
Microsoft), software security tool vendors, and corporate software
users seemed to spring up every few months, including the Web
Application Security Consortium in 2004, the Secure Software
Forum and Application Security Industry Consortium in 2005,
and SAFECode in 2007. 2007 also saw Concurrent Technologies
Corp. announce the short-lived Software Assurance Consortium.

The financial services sector has also been active in its
pursuit and promotion of software assurance in the context
of payment and banking application security. The Visa USA
Cardholder Information Security Program Payment Application
Best Practices expanded and evolved into the Payment Card
Industry Security Standards Council’s Application Data Security
Standard, now a de facto standard across the financial services
industry worldwide. In the U.S., the BITS Financial Services
Roundtable has undertaken a Software Security and Patch
Management Initiative and Product Certification Program and
produced a Software Security and Patch Management Toolkit
and Software Assurance Framework for use by its members and
the broader financial services community.

In the public sector, the Defense Information Systems Agency
(DISA) may have been the first since the SDIO to take on the
challenge of identifying and promoting methods, techniques, and
supporting tools for secure software development. The three-
year Application Security Project began in 2002 as a means
of reducing the likelihood of OWASP Top 10 vulnerabilities in
DoD Web technology-based application systems. The project’s
broad agenda included (1) producing developer guidance based
on recognized full-SDLC best practices for secure application
development; (2) assembling a portable, automated application
security testing toolkit and supporting methodology with which
it could offer an application vulnerability assessment service to
DoD software programs; (3) defining a “reference set” of security
requirements for DoD developers to leverage in their application
specifications. By the end of 2004, however, DISA shifted its
focus away from attempts to proactively improve the processes
by which DoD software was built to reactively assessing the
security of DoD software. This shift was reflected in the move of
the Project to DISA’s Field Security Operation, which reinterpreted
the content of the Project’s deliverables into a single Application
Security and Development Security Technical Implementation
Guide (STIG) [43] and supporting checklist. It was left up to soft-
ware project managers to figure out how to ensure their teams
developed software that could pass the STIG checks.

Elsewhere in DoD, security of mission critical software and
risks posed by the increasing offshoring of that software were
driving new initiatives. In December 1999, the Defense Science
Board (DSB) suggested that the Assistant Secretary of Defense
(ASD) for Command, Control, Communications, and Intelligence
“develop and promulgate an Essential System Software Assur-

ance Program” [44]. It took the ASD for Networks and Information
Integration (NII) nearly four years to do just that: In June 2003,
the DoD Software Assurance Initiative undertook to establish
methods for evaluating and measuring assurance risks associated
with commercial software, including accurate detection of the
software’s pedigree and provenance. In 2004, ASD(NII) joined
with the Office of the Under Secretary of Defense for Acquisition,
Technology and Logistics to form a Software Assurance Tiger
Team for strategizing how DoD and broader Federal govern-
ment would reduce its exposure to software assurance risks. The
Tiger Team enlisted industry partners via the National Defense
Industrial Association (NDIA), Aerospace Industries Association,
Government Electronics and Information Technology Association,
and Object Management Group.

The Software Assurance Initiative soon reached broad con-
sensus on the impracticality of relying on pedigree and prov-
enance to justify confidence in acquired software. This triggered
a shift in their philosophy: all commercial software was to be
considered potentially vulnerable and malicious, and engineering
techniques had to be adopted to render DoD systems resilient
against its destructive effects. Thus, the Initiative recast itself as
the DoD System Assurance Program and, with the assistance
of NDIA, developed Engineering for System Assurance [45]
(1st edition, 2006; 2nd edition, 2008), which was expanded and
adopted as a NATO engineering standard in 2010 [46].

In 2005, NSA established its Center for Assured Software
(CAS) as the focal point for software assurance issues in the
defense intelligence community (and in broader DoD). CAS
collaborates closely with the DHS/DoD/NIST co-sponsored
Software Assurance working groups and fora. CAS also influ-
ences, and in some case leads, development of DoD software
assurance-related standards and policy, research, and evaluation
processes, and strives to push the state of the art in software
analysis tools and assessment methods. In 2009, the CAS
undertook an Assurance Development Processes strategic
initiative to establish trustworthy best-practice-based software
development processes across DoD and the intelligence com-
munity. For several years, NSA also ran a Code Assessment
Methodology Project to evaluate the security of source code to
be used in high-assurance, critical DoD systems.

More recently, DoD’s software assurance concerns have
turned to the problems of securing the software supply
chain, as a component of the larger Comprehensive National
Cybersecurity Initiative (CNCI) ICT Supply Chain Risk Manage-
ment (SCRM) Initiative 11, which is described—together with
broader DoD and other Federal government ICT SCRM activi-
ties and programs—in the DoD Information Assurance Technol-
ogy Analysis Center (IATAC) 2009 state of the art report on
ICT SCRM [47].

In 2003, in parallel with DoD’s efforts, DHS was assigned
responsibility for responding to the National Strategy to Secure
Cyberspace’s call for establishment of a national program to
“reduce and remediate software vulnerabilities” and for facilitat-
ing “a national public-private effort to promulgate best practices
and methodologies that promote integrity, security, and reli-
ability in software code development, including processes and
procedures that diminish the possibilities of erroneous code,
malicious code, or trap doors” being introduced into code under

CrossTalk—July/August 2013 13

25th Anniversary issue

development. These responsibilities led, a year later, to the DHS
Software Assurance Program. Coordinated with and comple-
menting the efforts of DoD and the NIST Software Assurance
Metrics and Tools Evaluation program (largely funded by DHS),
the main thrusts of the DHS Program have been to publish
secure SDLC information and guidance, promote security in
software practitioner education and training, software assur-
ance professional certification, and standardization of software
assurance-related taxonomies, tool outputs, and metrics, as well
as general awareness-raising. As with DoD, the Program also
more recently shifted its focus to address security risks in the
commercial and open source software supply chains.

Taking on the DSB’s challenge that computer science aca-
demic curricula were “inadequate in terms of stressing practices
for quality and security, or inculcating developers with a defen-
sive mindset” [48], DHS made software assurance education
and training one of its key thrusts from its inception. In 2006 it
published a software assurance “common body of knowledge”
for use in developing university curricula and courseware [49].
By 2010, the Program could boast of the Institute of Electrical
and Electronics Engineers Computer Society’s recognition of
the Master of Software Assurance Reference Curriculum col-
laboratively developed by researchers and educators at several
universities under DHS sponsorship [50]. IATAC’s 2007 state
of the report, Software Security Assurance [51] lists numer-
ous examples of universities with dedicated graduate-level
teaching of software assurance, advanced degrees in soft-
ware assurance-related disciplines, software security research
projects and labs, as well as professional training vendors with
secure software development offerings, and emerging (now
established) professional certifications for developers and proj-
ect managers in the discipline of software security assurance
and secure programming—most notably the Certified Software
Security Lifecycle Professional administered by the International
Information Systems Security Certification Consortium and the
SANS Software Security Institute’s Secure Programming Skills
Assessment and Certified Application Security Professional
certification. While the education/training and certification land-
scape described in the IATAC report has shifted somewhat in
the subsequent six years, it remains generally representative.

Unlike DoD System Assurance’s limited public partnerships,
DHS’s outreach is literally global, encompassing U.S. federal,
state, and local and allied government users and producers
of software, software and software security tool vendors, and
academia [52]. The Program’s main outreach mechanisms
are its semi-annual Software Assurance Forums and more-
frequent working group meetings (co-sponsored with DoD
and NIST). The driving philosophy behind DHS efforts is that
a general move towards more secure software worldwide will
benefit federal government and DHS-protected infrastructure
sectors in particular. DoD benefits from DHS’s more global
approach through active co-sponsorship of and participation
in DHS-spearheaded endeavors. The efforts of DoD and DHS
have also inspired comparable undertakings by allied govern-
ments. For example, in 2011, the United Kingdom established
its own Trustworthy Software Initiative in response to 2010’s
National Security Strategy of Cybersecurity [53], which iden-
tified lack of secure, dependable, resilient software as a critical

risk to the UK’s cybersecurity posture. And NATO published
Engineering Methods and Tools for Software Safety and
Security in 2009 [54].

A number of significant software assurance research initia-
tives are ongoing in the U.S. and abroad, especially in Europe,
including the Network of Excellence on Engineering Secure Fu-
ture Internet Software Services and Systems project sponsored
by the European Commission’s Seventh Framework Programme
for Research (FP7) [53].

Conclusion
It has often been claimed that we already know how to build

secure software. If this is true, why don’t we just do it? But no
matter how much lip service they pay to wanting software that
has fewer vulnerabilities and is less susceptible to malicious
inclusions, most suppliers and consumers still make their
how-to-build and what-to-buy decisions based on cost, or on
a “value proposition” that boils down to how fast innovations
can be turned into available product, and cost. Few buyers are
willing to wait longer and pay more so software can undergo
the disciplined engineering needed to assure its trustworthi-
ness and dependability. Nor are they willing to forego desirable
innovations just because the level of security risk they pose is
not (and possibly cannot) be known. Nor will suppliers willingly
invest in and enforce software assurance measures that few
customers demand.

But the continuing, and indeed growing, reliance on COTS
and open source software means that, to succeed in the long
term, software assurance efforts cannot remain limited to the
small subset of software deemed “high consequence” or “trust-
ed.” It is impossible to predict which of today’s “general purpose”
software products will end up in tomorrow’s high consequence,
trusted systems, just as it was impossible to predict in 1988 that
Microsoft Excel and Internet Explorer (to name two examples)
would, in spite of their persistent, myriad vulnerabilities and sus-
ceptibility to malicious insertions, emerge as vital components of
mission critical national security systems.

Instead of attempting to second guess which software needs
to be trustworthy and dependable, software assurance should
be applied systematically and comprehensively to all software.
For this to happen, future software assurance efforts need to
finally take on the elephant in the room: the need to change the
psychology of the suppliers and consumers. Awareness cam-
paigns and polite suggestions of software assurance content for
post-graduate academic software engineering curricula attempt
to persuade and reeducate developers and consumers long
after their bad habits have been formed, and are thus far too
little far too late. A “software assurance mentality” needs to be
inculcated during the very earliest years in which future develop-
ers and users encounter software and begin to understand how
it works and its value to them. Software (and machine logic)
are nearly universal today, and are only going to become more
integral to every aspect of daily life by the time the next genera-
tion of developers and users reach working age. For this reason,
tomorrow’s developers and users need to be taught from early
childhood that threats to the security of software and logic-
bearing devices are threats to their own personal privacy, health,
safety, financial security, and, ultimately, happiness.

14 CrossTalk—July/August 2013

25th Anniversary issue

Karen Mercedes Goertzel, CISSP, is an expert in applica-
tion security and software and hardware assurance, the
insider threat to information systems, assured informa-
tion sharing, emerging cybersecurity technologies, and
ICT supply chain risk management. She has performed
in-depth research and analysis and policy and guidance
development for customers in the U.S. financial and ICT
industries, DoD, the intelligence community, Department
of State, NIST, IRS, and other civilian government agen-
cies in the U.S., the UK, NATO, Australia, and Canada.

7710 Random Run Lane—Suite 103
Falls Church, VA 22042-7769
703-698-7454
goertzel_karen@bah.com

ABOUT THE AUTHOR

Other Attempts to Characterize the
Software Assurance Landscape

This article has only touched on highlights of the last 25 years
of software security assurance initiatives and trends. There
have been several earlier efforts to depict the software assur-
ance landscape in varying levels of detail. Interested readers are
encouraged to take a look at:

•	 Goertzel, Karen Mercedes, et al. Software Security
	 Assurance (see reference 51).

•	 Davis, Noopur. Secure Software Development Life
	 Cycle Processes: A Technology Scouting Report. Technical
	 Note CMU/SEI-2005-TN-024, December 2005
	 <http://www.sei.cmu.edu/reports/05tn024.pdf>

•	 Jayaram, K.R., and Aditya P. Mathur. Software Engineering
	 for Secure Software—State of the Art: A Survey. Purdue
	 University Center for Education and Research in
	 Information Assurance and Security and Software
	 Engineering Research Center Technical Report 2005-67,
	 19 September 2005 <http://www.cerias.purdue.edu/
	 assets/pdf/bibtex_archive/2005-67.pdf>

•	 DHS. Software Assurance Landscape. Preliminary Draft,
	 28 August 2006 <https://www.owasp.org/images/6/6c/
	 Software_Assurance_Landscape_-_Preliminary_Draft_1.doc>

•	 Graff, Mark D. Secure Coding: The State of the Practice,
	 2001 <http://markgraff.com/mg_writings/SC_2001_
	 public.pdf>

•	 Essafi, Mehrez, et al. Towards a Comprehensive View of
	 Secure Software Engineering. Proceedings of the
	 International Conference on Emerging Security
	 Information, Systems, and Technologies (SecureWare
	 2007), Valencia, Spain, 14-20 October 2007
	 <http://www.researchgate.net/publication/4292729_
	 Towards_a_Comprehensive_View_of_Secure_Software_
	 Engineering/file/79e4150bb0ce96e522.pdf>

ADDITIONAL SUGGESTED READING

REFERENCES

(Contact the author to request a comprehensive list of published
books on software security assurance.)

1.	 DHS/US-CERT. Build Security In Web portal. <https://buildsecurityin.us-cert.gov>
2.	 David A. Wheeler’s Personal Home Page. <http://www.dwheeler.com>
3.	 CMU SEI. Insider Threats in the Software Development Lifecycle,
	 23 February 2011 <http://www.cert.org/archive/pdf/sepg500.pdf>
4.	 Fedchak, Elaine, et al. Software Project Management for Software Assurance. Data
	 and Analysis Center for Software (DACS) Report Number 347617 (Rome, NY:
	 DACS, 30 September 2007) <http://www.thedacs.com/get_pdf/DACS-347617.pdf>
5.	 International Journal of Secure Software Engineering
	 <http://www.igi-global.com/journal/international-journal-secure-software-engineering/1159>

1.	 Karger, Paul A., and Roger R. Schell, Multics Security Evaluation: Vulnerability Analysis.
	 U.S. Air Force Electronics Systems Division Report ESD-TR-74-193, Volume II, June 1974.
	 <http://seclab.cs.ucdavis.edu/projects/history/papers/karg74.pdf>
2.	 Abbot, Robert P., The RISOS [Research into Secure Operating Systems] Project: Security
	 Analysis and Enhancements of Computer Operating Systems. National Bureau of
	 Standards Interagency Report Number NBSIR 76-1041, 1976.
3.	 The Karger/Schell Multics analysis in 1974 had also identified buffer and stack overflow
	 errors and lack of adequate input validation as the system’s most significant, proven-
	 exploitable vulnerabilities. More than a decade later, in 1988, a buffer overflow in the
	 Berkeley Unix finger daemon was exploited by Robert Tappan Morris to launch the world’s
	 first Internet worm. 25 years on, the 2011 Veracode State of Software Security Report
	 found that exploitable buffer overflows and memory management issues were still the
	 most prevalent vulnerabilities in commercial software. Plus ça change, plus c’est la même chose.
4.	 PITAC. Report to the President on Cyber Security: A Crisis of Prioritization, February 2005.
	 <http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf>
5.	 Landwehr, Carl E., et al. “A Taxonomy of Computer Program Security Flaws, with
	 Examples”. Naval Research Laboratory Center for High Assurance Computer Systems
	 technical report NRL/FR/5542-93-9591, 19 November 1993.
	 <http://chacs.nrl.navy.mil/publications/CHACS/1994/1994landwehr-acmcs.pdf;>
6.	 Du, Wenliang, and Aditya Mathur, “Categorization of Software Errors That Led to Security
	 Breaches”. Proceedings of the National Information Systems Security Conference, 1998.
	 <http://www.cis.syr.edu/~wedu/Research/paper/nissc98.ps;>
7.	 Open Web Application Security Project (OWASP). “Top Ten Most Critical Web Application
	 Security Vulnerabilities”, 2002 (and revised several times since then).
	 <https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project>
8.	 The Common Weakness Enumeration (CWE) <http://cwe.mitre.org/> is a standard
	 dictionary of “root causes” at the specification, design, and implementation levels of
	 exploitable software security vulnerabilities, such as those listed (along with system and
	 network vulnerabilities) in MITRE’s Common Vulnerabilities and Exposures
	 (CVE; <http://cve.mitre.org>). In 2012 CWE was adopted by the International
	 Telecommunications Union (ITU) as Recommendation X.1524 : Common weakness
	 enumeration. <http://www.itu.int/rec/T-REC-X.1524-201203-I/en>
9.	 Schneier, Bruce. “Attack Trees”. Dr. Dobb’s Journal, December 1999.
	 <http://www.schneier.com/paper-attacktrees-ddj-ft.html>
10.	Moore, Andrew P., et al. “Attack Modeling for Information Security and Survivability”.
	 CMU/SEI-2001-TN-001, March 2001. <http://www.cert.org/archive/pdf/01tn001.pdf>.
	 The culmination of attack pattern-definition attempts is MITRE’s Common Attack Pattern
	 Enumeration and Classification (see <http://capec.mitre.org/>), a standardized list of the
	 most common techniques for exploiting the vulnerabilities that can result from CWEs.
11.	 Howard, Michael, and David LeBlanc. Chapter 2, “Security Design by Threat Modeling”.
	 Writing Secure Code. (Redmond, WA: Microsoft Press, 2002).
12.	Gonsalves, Antone. “The Shadowy World of Selling Software Bugs, and How It Makes
	 Us all Less Safe”. readwrite hack, 4 October 2012. <http://readwrite.com/2012/10/04/
	 the-shadowy-world-of-selling-software-bugs-and-how-it-makes-us-all-less-safe>
13.	Rashid, Fahmida. “Researchers Hijack Printer Using Malicious Firmware Update”. eWeek,
	 29 November 2011.

CrossTalk—July/August 2013 15

25th Anniversary issue

14.	Borg, Scott. “Securing the Supply Chain for Electronic Equipment:
	 A Strategy and Framework”. Whitepaper developed for the White
	 House by the Internet Security Alliance, November 2008.
15.	Hadži, Ilija, et al. “FPGA Viruses”. University of Pennsylvania
	 Department of Computer and Information Science Technical
	 Report No. MS-CIS-99-06, January 1999. <http://www.cis.
	 upenn.edu/~jms/papers/fpgavirus.pdf>
16.	Torres, Lionel, et al. “Security and FPGA: Analysis and Trends”.
	 Deliverable SP1 for the ICT for Emerging Regions Project of
	 France’s Agence Nationale de Recherche, 31 January 2007.
	 < http://www.lirmm.fr/~w3mic/ANR/PDF/D1.pdf >
17.	 King, Samuel T., et al. “Designing and Implementing Malicious
	 Hardware”. Proceedings of the First USENIX Workshop on Large-
	 Scale Exploits and Emergent Threats. San Francisco, CA, 15 April
	 2008. < http://static.usenix.org/events/leet08/tech/full_papers/
	 king/king.pdf http://www.whitehouse.gov/files/documents/cyber/
	 ISA - Securing the Supply Chain for Electronic Equipment.pdf>
18.	DARPA Press Release. “New DARPA Program Seeks to Reveal
� Backdoors and Other Hidden Malicious Functionality in Commercial
	 IT Devices”. 30 November 2012.
19.	Later published under the title “Software Aspects of Strategic
	 Defense Systems”. Communications of the ACM [Association for
	 Computing Machinery], Vol. 28 No. 12, December 1985.
	 <http://klabs.org/richcontent/software_content/papers/
	 parnas_acm_85.pdf>
20.	Watson, John, and Edward Amoroso. “A Trusted Software
	 Development Methodology”. Proceedings of the 13th National
	 Computer Security Conference, Volume II. Washington, D.C.,
	 1990. TSDM was later renamed Trusted Software Methodology.
21.	Lipner, Steven B. “The Trustworthy Computing Security Develop
	 ment Lifecycle”. Proceedings of the 20th Annual Computer Security
	 Applications Conference, Tucson, AZ, 6-10 December 2004.
22.	Viega, John. “Security in the Software Development Lifecycle”.
	 IBM developerWorks, 15 October 2004. <http://www.ibm.com/
	 developerworks/rational/library/content/RationalEdge/oct04/
	 viega/viega.pdf>
23.	McGraw, Gary. “The Seven Touch Points of Secure Software”.
	 Dr. Dobb’s Journal, 1 September 2005. <http://www.drdobbs.
	 com/the-7-touchpoints-of-secure-software/184415391>
24.	BITS Financial Services Roundtable. Software Assurance Frame
	 work. January 2012. <http://www.bits.org/publications/
	 security/BITSSoftwareAssurance0112.pdf>
25.	SSE-CMM Project. Systems Security Engineering Capability
	 Maturity Model, Version 1.0. 21 October 1996.
26.	DHS. Section D.5. Security in the Software Lifecycle, Draft
	 Version 1.2, August 2006. <http://www.cert.org/books/secure
	 swe/SecuritySL.pdf> Note that this book was significantly
	 revised and republished by DHS in 2008 as Enhancing the
	 Development Lifecycle to Produce Secure Software.
27.	 Ibrahim, Linda, et al. “Safety and Security Extensions for
	 Integrated Capability Maturity Models”, September 2004.
	 <http://www.faa.gov/about/office_org/headquarters_offices/
	 aio/library/media/SafetyandSecurityExt-FINAL-web.pdf>
28.	Version 1 of OpenSAMM was released in 2008. See OWASP’s
	 OpenSAMM Web pages and the OpenSAMM Web site. <http://
	 www.opensamm.org> <https://www.owasp.org/index.php/
	 Category:Software_Assurance_Maturity_Model>
29.	Version 1 of the BSIMM was published in 2009. The current version
	 is Version 4. See the BSIMM Web site. <http://bsimm.com/>
30.	CMU SEI Secure Coding Standards Web page.
	 <http://www.cert.org/secure-coding/scstandards.html>

31.	Government Accountability Office (GAO). DoD Information
	 Security: Serious Weaknesses Continue to Place Defense
	 Operations at Risk. GAO/AIMD-99-107, August 1999. <http://
	 www.gao.gov/products/AIMD-99-107>. GAO. Defense Acquisi
	 tions: Knowledge of Software Suppliers Needed to Manage Risk.
	 GAO-04-678, May 2004. <http://www.gao.gov/new.items/
	 d04678.pdf>. GAO. Offshoring of Services: an Overview of the
	 Issues. GAO-06-5, November 2005. <http://www.gao.gov/new.
	 items/d065.pdf>
32.	Murdoch, Steven. “Destructive Activism: The Double-Edged
	 Sword of Digital Tactics”. Joyce, Mary, editor, Digital Activism De
	 coded: The New Mechanics of Change (New York, NY: Inter
	 national Debate Education Association, 2010). Also Weiss, Gus W.,
	 “Duping the Soviets: The Farewell Dossier”. Studies in
	 Intelligence, Volume 29 Number 5, 1996. <https://www.cia.gov/
	 library/center-for-the-study-of-intelligence/kent-csi/vol39no5/
	 pdf/v39i5a14p.pdf>
33.	Gabrielson, Bruce, Karen Mercedes Goertzel, et al. Appendix E,
	 “Real World Insider Abuse Cases”. The Insider Threat to Informa
	 tion Systems [Unclassified, For Official Use Only, U.S. Government
	 and Contractors Only]. (Herndon, VA: IATAC, 10 October 2008).
34.	NSA. Guidance for Addressing Malicious Code Risk, 10
	 September 2007. <http://www.nsa.gov/ia/_files/Guidance_For_
	 Addressing_Malicious_Code_Risk.pdf>
35.	Miller, Barton P., et al. “An Empirical Study of the Reliability of
	 UNIX Utilities”. Communications of the ACM, Volume 33 Number
	 12, December 1990. <ftp://ftp.cs.wisc.edu/paradyn/technical_
	 papers/fuzz.pdf>; University of Wisconsin-Madison Fuzz
	 Testing of Application Reliability Web page. <http://pages.
	 cs.wisc.edu/~bart/fuzz/fuzz.html>
36.	The annual Underhanded C Code Contest is designed to illustrate
	 how ineffective code reviews are for finding malicious inclusions
	 in code. Contest submissions must be malicious while maintain
	 ing “plausible deniability”, i.e., their malicious logic must by
	 definition not be detectable through static analysis. See
	 <http://underhanded.xcott.com/>
37.	 Such as KDM Analytics’ Software Assurance Ecosystem, <http://
	 www.kdmanalytics.com/swa/ecosystem.php>, and Object
	 Management Group’s Software Assurance Ecosystem, < http://
	 sysa.omg.org/docs/SwA Ecosystem/Assurance Ecosystem.ppt>.
38.	Information on the wide range of tools available can be found
	 on the DHS Build Security In Web portal, <https://buildsecuri
	 tyin.us-cert.gov/>, the NIST Software Assurance Metrics and
	 Tools Evaluation portal, <http://samate.nist.gov/>, and in
	 Goertzel, Karen Mercedes, et al. Vulnerability Assessment
	 (Herndon, VA: IATAC, May 2011), <http://iac.dtic.mil/iatac/
	 download/vulnerability_assessment.pdf>. Outsourcing to expert
	 service providers such as Veracode and Aspect Security may be
	 an alternative to doing one’s own security analyses and tests.
39.	Belovich, Steve, Ph.D. “IT Security History and Architecture—Part
	 5 of 6”. Infosec Island, 24 August 2010. <http://infosecisland.
	 com/blogview/6931-IT-Security-History-and-Architecture-Part-
	 5-of-6.html>
40.	The most noteworthy are those of the Business Software
	 Alliance, Software and Information Industry Association,
	 Entertainment and Leisure Software Publishers Association,
	 Information Technology and Innovation Foundation, Federation
	 Against Software Theft, Entertainment Software Association,
	 Content Delivery and Storage Association, and the Association
	 for Copyright of Computer Software. See: Section 4.7.27,
	 “Anti-Piracy Initiatives”. Goertzel, Karen Mercedes, et al. Security
	 Risk Management in the Off-the-Shelf (OTS) Information and
	 Communications Technology (ICT) Supply Chain: a State-of-the-
	 Art Report [U.S. Government and Contractors Only] (Herndon,
	 VA: IATAC, 17 August 2010).

41.	Hughes, Jeff, and Martin R. Stytz. “Advancing Software Security:
	 the Software Protection Initiative”. <http://www.preemptive.
	 com/documentation/SPI_software_Protection_Initative.pdf>
42.	Markoff, John. “Cyberattack on Google Said to Hit Password
	 System”. The New York Times, 19 April 2010.
	 <http://www.nytimes.com/2010/04/20/technology/20google.html>
43.	DISA. Application Security and Development STIG. <http://iase.
	 disa.mil/stigs/app_security/app_sec/app_sec.html>
44.	Defense Science Board (DSB). Final Report of the Defense
	 Science Board Task Force on Globalization and Security
	 (especially Annex IV), December 1999. <http://www.acq.osd.mil/
	 dsb/reports/globalization.pdf>
45.	DoD System Assurance Working Group and NDIA. Engineering for
	 System Assurance, Version 1.0, 2008. <http://www.acq.osd.mil/
	 sse/docs/SA-Guidebook-v1-Oct2008.pdf>
46.	NATO Standard AEP-67. Engineering for System Assurance in
	 NATO Programmes, First Edition, 4 February 2010
	 <http://nsa.nato.int/nsa/zpublic/ap/aep-67(1)e.pdf>
47.	 Op. cit. Goertzel, et al. Security Risk Management in the OTS ICT
	 Supply Chain.
48.	DSB. Final Report of the Task Force on Mission Impact of Foreign
	 Influence on DoD Software, September 2007. <http://www.
	 cyber.st.dhs.gov/docs/Defense Science Board Task Force—Report
	 on Mission Impact of Foreign Influence on DoD Software (2007).pdf>
49.	DHS Software Assurance Common Body of Knowledge/Principles
	 Organization Web page. <https://buildsecurityin.us-cert.gov/bsi/
	 dhs/927-BSI.html>
50.	IEEE Computer Society. “Computer Society Recognizes Master of
	 Software Assurance Curriculum”. Press release dated 8
	 December 2010. <http://www.computer.org/portal/web/
	 pressroom/20101213MSWA> and CMU SEI Software Assurance
	 Curriculum Web page. <http://www.cert.org/mswa/> Also DHS
	 Software Assurance Curriculum Project Web page.
	 <https://buildsecurityin.us-cert.gov/bsi/1165-BSI.html>
51.	Goertzel, Karen Mercedes, et al. Software Security Assurance
	 (Herndon, VA: IATAC, 31 July 2007). <http://iac.dtic.mil/csiac/
	 download/security.pdf>. Note that in April/May 2013, DoD tasked
	 the Defense Technical Information Center’s Cyber Security
	 Information Analysis Center (the successor to IATAC) to produce
	 an update of this report, which is expected to be published
	 in late 2013.
52.	A number of other defense and civil agencies are also committed
	 to improving software security assurance. For example, Part 10
	 Chapter 8 of the Internal Revenue Service Manual includes a
	 section entitled “Secure Application Development”.
	 <http://www.irs.gov/irm/part10/irm_10-008-006.html>
53.	Her Majesty’s Government Cabinet Office. Cyber Security
	 Strategy, 2010 (revised November 2011). <http://www.cabinetoffice.
	 gov.uk/resource-library/cyber-security-strategy>
54.	Broy, Manfred, et al., editors. Engineering Methods and Tools for
	 Software Safety and Security. NATO Science for Peace and
	 Security Series D: Information and Communication Security, Volume
	 22 (Amsterdam, The Netherlands: IOS Press, 2009).
55.	Network of Excellence on Engineering Secure Future Internet
	 Software Services and Systems Web page.
	 <http://www.nessos-project.eu/>

16 CrossTalk—July/August 2013

25th Anniversary issue

Walt Lipke, PMI - Oklahoma City Chapter

Abstract. There are many elements to a project … requirements, schedule, cost,
quality, human resources, communications, risk, procurement, and… Every project
is complex and extremely difficult to manage to successful completion, even those
considered “small.” The majority of the life of a project occurs during its execution.
Although the execution phase is preponderant, there does not seem to be much
emphasis on it. The literature, the training, professional meetings, and conferences
do not commit proportionate energy to methods and techniques to prepare project
managers for monitoring and reporting performance. Neither do these venues for
knowledge transference bring focus to addressing performance measures and
indicators, or using them for controlling the project. This paper examines the asser-
tion and proposes the application of earned value management and its extension,
earned schedule, as a way forward.1

Is Something Missing
From Project
Management?

ment, which opened our eyes and minds to the concept of natural
variation. If you have never heard of the experiment, I highly rec-
ommend doing a bit of research; it will be well worth your time.

Along with the increased focus on quality came Deming’s
idea of “profound knowledge.” Profound knowledge could never
be achieved with “job hopping” managers and employees. Dr.
Deming espoused that deep understanding of the company
and its products only comes from years of experience and
progression within the organization. Deming insisted that quality
improvement required having complete understanding of the
process by which the products of the business were made. Dr.
Deming, in his characteristically blunt style, acerbically denigrat-
ing management, most likely would have said it this way, “How
can you improve if you do not know what you are doing?”

Other extremely notable influences to the quality revolution in
the U.S. came from Joseph Juran and Philip Crosby. Juran focused
on the education and training of management and the human rela-
tions problem of resistance to change. The “Pareto principle,”2 was
introduced to the vocabulary of quality due to the work of Juran.
Philip Crosby’s book, Quality is Free, made, unequivocally, the busi-
ness case for quality and the improvements it offered [1]. Succinctly
stated, the investment and implementation of a good quality system
will pay for itself many times over. Crosby also put forth the Quality
Management Maturity Grid, which represents the characteristics of
the quality system using five evolutionary stages: (1) uncertainty,
(2) awakening, (3) enlightenment, (4) wisdom, and (5) certainty. By
utilizing the grid, businesses have a template for understanding and
improving their quality system.

	
Quality Culture

The startling success of Japanese business, coupled to the
loss of market share along with project failures in the U.S., cre-
ated the impetus for dramatic change. The terminology describ-
ing this abrupt departure from present business practice and
culture is “paradigm shift.” These words have become common-
place and are integral to the jargon of those involved in process
and quality improvement today.

Out of the desperate desire to improve and the recognition
of quality as the pathway came the creation of the SEI in 1984
and the first Project Management Body of Knowledge (PM-
BOK® Guide)3 in 1987. To heighten the emphasis for embrac-
ing the culture of quality, the U.S. government in 1987 created
the national award for performance excellence, the Malcolm
Baldridge National Quality Award.4 The award was intended
to incentivize and recognize U.S. businesses for achieving
world-class quality. To receive the award a company must show
excellence in seven areas of performance: (1) leadership,
(2) strategic planning, (3) customer focus, (4) measurement,
analysis, and knowledge management, (5) workforce focus, (6)
process management, and (7) demonstrable results.

Possibly the most recognized contribution of the SEI to im-
proving the software development process and product quality
was the creation of the CMM®. Through Watts Humphrey’s initial
work [2], the CMM evolved from the adaptation of Crosby’s
Quality Management Maturity Grid to a staged improvement
approach for software development [3]. The CMM is character-
ized by five levels of process maturity: (1) initial, (2) managed,

Introduction
Over the last 30 years, from about 1980 until the present,

there has been a significant evolution in software development,
quality systems and project management. The foundation for
this advancement in practice is strongly connected to a few
devoted quality experts and world events occurring more than
70 years ago.

After World War II the U.S. was the predominant industrial na-
tion in the world. The U.S. produced. The world consumed. The
quality of the U.S. products was of little concern; they would sell
regardless. This economic position was held until about 1970
after which the market for U.S. products declined.

Beginning with the post war reconstruction, Japan’s business
leaders learned and adopted manufacturing practices the U.S.
utilized during and prior to WWII. Most notably, the Japanese
were taught the methods of quality by W. Edwards Deming. As
Deming had prophesied to Japan’s leaders, economic growth
came from their dedicated use of the techniques he had learned
from Walter Shewhart at Bell Laboratories.

During the 1980s Japan’s automobile industry began to
make noticeable inroads into the U.S. market. Their success was
an alarming wake-up to U.S. manufacturers, who recognized
that they truly had serious competition. Thus began the quality
revolution in the United States.

No longer was quality perceived as an expendable portion of
the production process, largely ignored. During this period, Dem-
ing videos and seminars were commonplace. Every industry was
determined to improve their operation and business practices
using the methods and practices of Dr. Deming. With pervasive
emphasis, the methods of statistical process control and continu-
ous improvement were taught to managers and workers alike. For
those of you who are old enough to have experienced that quality
training, I am certain you will recall vividly the “Red Bead” experi-

CrossTalk—July/August 2013 17

25th Anniversary issue

(3) defined, (4) quantitatively managed, and (5) optimizing. The
CMM provided software organizations a template for improve-
ment that could be objectively assessed. Evidence supports the
assertion that software projects performed by organizations
attaining maturity levels 4 and 5 are significantly more likely
to deliver products that satisfy the requirements of the cus-
tomer [4]. Although the SEI focused its efforts toward military
software, primarily U.S. Air Force systems, the CMM5 came to be
used extensively by commercial software companies, as well.

The PMBOK, now in its fourth edition, is the recognized em-
bodiment of the knowledge and practice of project management
[5]. Professional project management is presented as activities
for nine knowledge areas6 occurring over the five life-phases7 of
the project process. The quality improvement view of the Project
Management Institute (PMI®) is that by standardizing the meth-
ods in the PMBOK and certifying managers through the Project
Management Professional (PMP) examination, improvement in
project results can be expected. That is, by increasing the num-
ber of project managers knowledgeable of the best practices,
a growing percentage of projects should complete with good
quality, on time and within budget.

Both the SEI and PMI have the same objective of institution-
alizing quality in organization, process, and product. However, in
comparing the two approaches it is observed that an organiza-
tion utilizing the PMI method would likely be rated, at best, as
maturity level 3 (defined) of the five levels defined for the CMM.
The CMM makes a distinction between desirable characteristics
for projects and organizations, whereas it is not so clear in the
PMBOK. Depending upon how organizations approach using
the PMBOK, there may not be company policy for managing its
projects. If management methodology is inconsistent and not
tailored to the application from the standard for the organization,
the best the company could be rated is CMM level 2 (managed).

The more significant difference is the aspiration for each of
the two approaches. The CMM seeks continuous improvement,
whereas the PMBOK with the PMP certification is limited to the
improvement offered by standardization. The CMM approach at
level 4 seeks evidence of management’s use of data for project
control and process improvement. Also, this maturity level
requires a quality system that prevents defects from propagating
through the process. At level 5, the application of statistical pro-
cess control is utilized to understand process changes intended
to reduce the natural variation in the organization’s processes
[6]. Achievement of levels 4 and 5 leads to the application and
the long term benefits of knowledge management.8

The PMBOK mentions the use of data and measures for
performance reports and has a brief discussion of Earned Value
Management (EVM) as a method for project control.9 Further-
more, the PMBOK alludes to having and using project perfor-
mance data and quality measures, but there is little verbiage
compelling a project manager or his/her organization to be data
driven.10 Without performance measures and indicators, man-
agement decisions come solely from experience and intuition.
Does it not make sense for managers to be as well informed
as possible concerning their project’s performance? And does
it not also seem reasonable that better informed decisions
increase the probability of a successful project outcome?

Similarly, making systemic improvement has little basis when
measures and indicators are not ingrained in the organizational
culture. How is it known an improvement is needed? And, after
a change is introduced, how can management know if improve-
ment is achieved when there is no or scanty evidence of how
the present process performs or of the quality of its products?
Likewise, when measurement and analysis is not common
practice, there is low need for the application of knowledge
management for improving project planning and understanding
long term process improvement and performance drift.

	
Improving the Practice

The message to this point should be obvious: the PMBOK
establishes a standard for good practice, but does not promote
a culture of continuous improvement. Unlike the CMM, there is
no assessment to see if the best practices of the PMBOK are
implemented and performed well. Without having an under-
standing of whether or not best practices are used, how can
success or failure of a project be evaluated? How can the
organization improve its methods and policy, thereby providing
an environment where projects are delivered successfully, waste
is reduced, and business flourishes?

The methodology intended to fill this void is the Organi-
zational Project Management Maturity Model (OPM3). The
project management model for improvement was issued
initially in October 2003 and was later updated in December
2008 to align with the fourth edition of the PMBOK. OPM3 is
a best practice standard for assessing and developing project
management capability. It is an approach for understanding
project management behavior and bringing focus to areas of
performance needing improvement.

OPM3 is meant to serve the field of project management in a
similar manner to the CMM for software process improvement.
The improvement stages ascribed to OPM3 are (1) Standard-
ize, (2) Measure, (3) Control, and (4) Continuously Improve. The
process characterization for each of these four stages is very
much the same as those for the software model. Initially, the
organizational processes are standardized. Once standardization
is in place, measurement of the process can proceed. Having
measures in place, controlling and subsequently improving the
process become possible.

The OPM3 project domain framework identifies nine process
areas that show correspondence between PMBOK processes
and OPM3 best practices [7]. Of the 44 PMBOK processes
within the nine areas, only four directly relate to project execu-
tion: schedule control, cost control, quality control, and risk
monitoring and control.

From the viewpoint that execution utilizes the most project
resources over the longest phase of the project, it would seem
appropriate that the methods and tools for these important
control processes would be discussed in detail. Although
Measure is an important stage in the OPM3 approach to im-
provement, there is minimal guidance for what constitutes its
successful achievement. OPM3 does describe the character-
istics of measures, but to progress and advance to the Control
and Continuously Improve stages something more specific
would be helpful.

18 CrossTalk—July/August 2013

25th Anniversary issue

The Way Forward
To emphasize the importance of measures, the quotations of

Lord Kelvin are often used. One especially makes the point:
“In physical science the first essential step in the direction of

learning any subject is to find principles of numerical reckoning
and practicable methods for measuring some quality connected
with it. I often say that when you can measure what you are
speaking about, and express it in numbers, you know something
about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and un-
satisfactory kind; it may be the beginning of knowledge, but you
have scarcely in your thoughts advanced to the state of Science,
whatever the matter may be [8].”

Although Lord Kelvin is addressing his comments toward the
hard sciences, such as physics and chemistry, his point is equally
applicable to project management. When a project manager
does not have objective measures of performance for cost and
schedule, he/she cannot react intelligently and, consequently,
has little chance of guiding the project to successful comple-
tion. Under these circumstances, the manager has only his/her
personal knowledge and intuition as a basis for action.

As discussed earlier, EVM is mentioned only briefly in the PM-
BOK as a “Tool and Technique” for controlling cost and schedule
performance. Furthermore, OPM3 identifies the performance
measures and indicators from EVM as merely an approach to be
considered for satisfying the Measure stage of project manage-
ment improvement. Unquestionably, the power and usefulness
of the earned value methodology has not been exploited to the
degree it should be. Therefore, it becomes arguable that the
lack of emphasis from these two principal documents, regarding
EVM, has slowed the advancement of the project management
profession to the “state of Science.”

When the performance of a project is known in qualitative
terms, we can say we know something about it. However, in
general, the qualitative description is not enough information
for analysis and management action. Only when performance
is described by objective measures can project managers truly
gain deeper understanding and formulate reasoned tactics for
improving the opportunity for success.

EVM is more than 40 years old; a well-defined project man-
agement methodology, which has the capability to provide the
quantitative measures to advance project management to the
level of science. It is supported by standards [9,10], textbooks11,
an improvement model [11], training12, certifications for both
individuals13, as well as organizations14, and automation applica-
tions are readily available from several vendors15. As all of the
footnotes associated with the previous sentence attest, EVM is
a well-developed technology with considerable infrastructure.
EVM, in fact, is approximately 20 years older than the PMBOK
and possibly more mature in its application.

The known capability and availability of the management
method lead us to the question, “Why is not the use of EVM
more prevalent?” The reasons cannot be stated with cer-
tainty, but the following is offered as a rational summation for
consideration. In its beginnings, EVM was imposed on defense
contractors performing development of major weapon systems.
In the late 1960s and throughout the 1970s, the creation of

custom EVM systems for each application was not a simple
matter. The computing capability to connect time accounting,
the project schedule, earned value (work accomplished), and
actual costs was expensive to develop. EVM was in its infancy,
as was the necessary computing technology to make its use
practicable. The early EVM systems were very likely cumber-
some to use and not that accurate either. All of these things
created the prevailing reputation that EVM is terribly complex,
difficult to do, overly burdensome to employees and manag-
ers, and expensive to create and implement. When this is the
perception, the likelihood of employing EVM is very low. It is
contended that this attitude persists and is prevalent within the
project management community today.

This negative reputation for EVM, however, is not the pres-
ent circumstance, at all. As expressed earlier, there is consider-
able support available. EVM can be implemented and applied
without undue difficulty. Possibly the most troublesome hurdle
to implementation is the reporting of earned value; i.e., assess-
ment of project accomplishment. Disciplined reporting is a
difficult transition to make for most, people and organizations,
as well. However, once reporting becomes a commonplace
expectation, an environment of transparency and accountabil-
ity is created for everyone involved. Both characteristics are
most assuredly desirable outcomes. Certainly there are more
implementation hurdles, but generally, these pertain to the
need or desire for having a sophisticated, or even a certified
EVM system.

Of significant importance is the realization that the elements
prescribed by the PMBOK to prepare the project for execu-
tion are the necessary ingredients for applying EVM; i.e., Work
Breakdown Structure, estimates of task cost and duration, task
sequencing, and creation of the schedule. The additional step of
aggregating the information into the Performance Measurement
Baseline16 creates the necessary reference for EVM perfor-
mance analysis. The key point from this discussion is that, when
the accepted project management guidance is utilized, taking
the next step to employ EVM is not an overwhelming under-
taking. Conversely, when employing EVM is the organization’s
standard method of project control and reporting, it encourages
and re-enforces PMBOK guidance and OPM3 best practice.
Also, once implemented, EVM greatly facilitates improvement to
project management practice, and thereby promotes achieve-
ment of the higher levels of OPM3: Measure, Control, and
Continuous Improvement.

EVM has a primary focus on the cost aspect of projects,
but does have indicators for assessing schedule performance.
However, these schedule indicators are limited in usefulness
due to their flawed behavior for late performing projects. To
overcome this deficiency, Earned Schedule (ES) was created
in 2003 [12]. ES extends EVM and provides reliable analysis
of the schedule performance.

Together, EVM and ES provide incredible capability for mea-
suring and analyzing project performance. With the employment
of EVM project managers can assess present cost performance
status, forecast final cost, and determine performance neces-
sary to meet the cost objective. In an analogous manner, the ap-
plication of ES provides the ability to perform schedule analysis;

CrossTalk—July/August 2013 19

25th Anniversary issue

i.e., report status, forecast completion, and determine the future
performance required to achieve the desired completion date.
Additionally, ES introduces a new concept, schedule adherence.
The measure of schedule adherence increases understanding
of how the project is being performed. The concept yields the
ability to analyze critical path performance, identify constraints,
impediments, and potential areas of rework. Furthermore, when
project performance is poor, ES used with EVM gives project
managers the ability to develop tactics for recovery. It should be
clear from this discussion that the numerical methods inher-
ent with EVM and ES provide the ingredients to propel project
management to the “state of science.”

Beyond the application to monitoring and controlling the
project in its execution phase, the numerical data contribute to
creating a project archive. The execution history, aggregated
with other project documents, form a complete project record.
The assembly of formalized project records further promotes
making the data useful for the planning of new projects and for
analysis of improvement initiatives. As a natural consequence,
without emphasis, the organization will gravitate to the employ-
ment of knowledge management.

Through the use of EVM with ES, the argument is made that
project performance will improve as well as the organizational
practice. The numerical evidence of performance with the ac-
companying analysis capability, as a result of their application,
provides primary input to the achievement of the higher levels
of OPM3. Performance measures are available for stage 2
(Measure). Analysis of the measures and derived indicators yield
methods of project control necessary to achieve stage 3 (Con-
trol), and the application of knowledge management facilitates
the accomplishment of stage 4, Continuous Improvement.

A quantum advance for project management is readily avail-
able through the implementation of EVM and its ES extension.

Summary
Quality in the 1980s became the driving force for product

and process improvement. The approach for achieving quality is
derived from the initial work of Walter Shewhart, with subse-
quent evolutions contributed by Deming, Juran, and Crosby.
Building on the significant work of these men, Humphrey and
the SEI formalized the quality system for organizational applica-
tion to software development. Subsequently, PMI adapted the
ideas and concepts from the SEI to project management.

The embodiment of quality for project management is the
collection of best practices included in the PMBOK, while the
methodology for improvement of the practice is contained in
OPM3. The observation is made that EVM and ES are not suf-
ficiently emphasized by the two PMI documents. Implement-
ing EVM and ES is encouraged and shown to reinforce good
practice and support quality. The stated expectation from the
application of EVM along with ES is improvement in project
performance, while advancing and maturing organizational
behavior. The proposition is made that the application of the
system of measures and analysis methods from EVM and ES
advances project management to the “state of science.” And
ultimately, achieving this state leads to knowledge manage-
ment and continuous improvement.

Disclaimer:
CMM® and CMMI® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

This last fall in my conversations with the CrossTalk staff while
finalizing an article for the November-December 2012 issue, I was
asked if I would be interested in submitting an article for the 25th
anniversary of CrossTalk. “Of course!” I replied. I am certain all
of the other authors in this historic issue feel as I do …very flat-
tered to have been asked.

Possibly some of the long-time followers of CrossTalk recall
my name, but I doubt most of today’s readers have any knowledge
of me. As a bit of history, I began submitting articles for Cross-
Talk publication in 1999. From then through 2012, seventeen
articles were published. This is my eighteenth.

I have published 45 articles in nine other journals, including an
international highly refereed publication. The process CrossTalk
uses to first qualify the article and then improve it is by far the
most thorough and toughest of any of the journals with which I
have experience. I vividly recall many of the telephone conversa-
tions concerning reconciling reviewer comments with then pub-
lisher, Beth Starrett. She had Bulldog tenacity for getting it right.…
As angry as we would sometimes become with each other, the
process proved time and again to greatly improve my article.

Over the years Beth, the article coordinator, Nicole Kentta,
and I became friends. There were several times during the STSC
conferences I would join Nicole, Beth and her family for dinner …
wonderful experiences, which I cherish in my memories. Thank you
Beth for your friendship and all of the work you did making my
writing efforts better.

For this issue, I struggled with what I might submit. I believe my
choice is in keeping with the “roots” of CrossTalk; i.e., software
process improvement. The topic of my article is consistent with my
previous publications and is at the heart of improvement …perfor-
mance measurement.

Beth said to me many times, “Your article gives me a headache!” My
articles generally had mathematics which she did not enjoy. Possibly,
Beth will enjoy this article and hopefully you will, as well. It has no
mathematics. Nevertheless, I believe its message is important.

 -Walt Lipke

Thank You
CrossTalk!

20 CrossTalk—July/August 2013

25th Anniversary issue

Walt Lipke retired in 2005 as deputy chief
of the Software Division at Tinker Air Force
Base. He has over 35 years of experience
in the development, maintenance, and
management of software for automated
testing of avionics. During his tenure, the
division achieved several software process
improvement milestones, including the cov-
eted SEI/IEEE award for Software Process
Achievement. Mr. Lipke has published sev-
eral articles and presented at conferences,
internationally, on the benefits of software
process improvement and the application
of earned value management and statisti-
cal methods to software projects. He is the
creator of the technique Earned Schedule,
which extracts schedule information from
earned value data. Mr. Lipke is a graduate of
the USA DoD course for Program Manag-
ers. He is a professional engineer with a
master’s degree in physics, and is a member
of the physics honor society, Sigma Pi
Sigma (SPS). Lipke achieved distinguished
academic honors with the selection to Phi
Kappa Phi (FKF). During 2007 Mr. Lipke
received the PMI Metrics Specific Inter-
est Group Scholar Award. Also in 2007,
he received the PMI Eric Jenett Award for
Project Management Excellence for his
leadership role and contribution to project
management resulting from his creation of
the Earned Schedule method. Mr. Lipke was
recently selected for the 2010 Who’s Who
in the World.

E-mail: waltlipke@cox.net
Phone: 405-364-1594

ABOUT THE AUTHOR REFERENCES

NOTES

1.	 Crosby, Philip B. Quality is Free, Penguin Books, New York 1979
2.	 Humphrey, Watts S. Managing the Software Process, Addison-Wesley, New York 1989
3.	 Paulk, Mark C., Weber, Curtis, Chrissis. The Capability Maturity Model: Guidelines for Improving the Software
	 Process, Addison-Wesley, Boston 1995
4.	 Goldenson, Dennis R., Gibson, Ferguson. “Evidence About the Benefits of CMMI,” SEPG 2004
	 <http://www.sei.cmu.edu/library/assets/evidence.pdf>
5.	 ANSI/PMI 99-001-2008, A Guide to the Project Management Body of Knowledge, PMI, Newtown Square, PA 2008
6.	 Pitt, Hy. SPC for the Rest of Us, Addison-Wesley, Reading, MA 1994
7.	 Northrop, J. Alan. Every Organization Can Implement OPM3, Triple Constraint Inc., Marion, IA 2007
8.	 vLord Kelvin quote is from <http://zapatopi.net/kelvin/quotes/>, October 2010
9.	 Earned Value Management Systems, ANSI/EIA 748-B, Arlington, VA June 2007
10.	Practice Standard for Earned Value Management, PMI, Newtown Square, PA 2005
11.	 Stratton, Ray W. The Earned Value Management Maturity Model, Management Concepts, Vienna, VA 2006
12.	Lipke, Walt. “Schedule Is Different,” The Measurable News, March 2003, 10-15
13.	Lipke, Walter H. Earned Schedule, Lulu Publishing, Raleigh, NC 2009

1.	 This article was originally published in PM World Today online journal (December 2010). The article is no longer 	
	 accessible as the journal ceased publication with its last issue in March 2012.
2.	 Pareto principle: eighty percent of the problems come from twenty percent of the causes.
3.	 For brevity, PMBOK Guide is shortened to PMBOK hereafter.
4.	 The Malcolm Baldridge Award has its basis in the The Malcolm Baldridge National Quality Improvement Act of 1987.
5.	 Although the CMM has evolved to the CMMI, only the former is referenced for the purpose of this paper.
6.	 Knowledge areas: integration, scope, time, cost, quality, human resource, risk, procurement
7.	 Project phases: initiation, planning, executing, monitoring & controlling, closing
8.	 Knowledge management is the deliberate effort of an enterprise to gather, organize, refine, and disseminate knowledge, 	
	 tacit and explicit, concerning its practices, processes and products for the purposes of retention and transference.
9.	 Reference PMBOK 7.3.2 (Control Costs: Tools and Techniques)
10.	Reference PMBOK 4.4.1.2 (Performance Reports), 10.5.3 (Report Performance: Outputs)
11.	 Several text books are available. One I highly recommend is Project Management Using Earned Value, Humphreys & 	
	 Associates, Inc., Orange, CA 2002.
12.	Very good training is readily available. The following sources are well respected: Humphreys & Associates, 		
	 Performance Management Associates, and Management Technologies. A good analysis course is available from 	
	 Project Management Training Institute.
13.	For individuals, the certification process to obtain the credential of Earned Value Professionalä is administered by 	
	 the Association for the Advancement of Cost Engineering International.
14.	For organizations, The Defense Contracts Management Agency certifies compliance to the requirements of the 	
	 ANSI/EIA 748-B standard
15.	A few sources for EVM tools are: Deltek, Dekker, Primavera, Artemis, ProTrack, ProjectFlightDeck, EVEngine, and 	
	 Microsoft Project.
16.	The PMB is the time phased budget plan used as the reference for project performance analysis.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Legacy System Software Sustainment
Jan/Feb 2014 Issue

Submission Deadline: Aug 10, 2013

Mitigating Risks of Counterfeit and Tainted Components
Mar/Apr 2014 Issue

Submission Deadline: Oct 10, 2013

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

CrossTalk—July/August 2013 21

25th Anniversary issue

a.	 What function points are
b.	 What SNAP is
c.	 Why SNAP may be important
d.	 How the beta test was conducted
e.	 What the results were
f.	 Areas for future research

Review of the Related Literature
IFPUG is the largest software metric association in the world,

with more than 1,000 members and affiliates in 24 countries.
The non-profit International Software Benchmark Standards
Group (ISBSG) has become the largest source of benchmark
data, with more than 5,000 projects available. New benchmarks
are being added at a rate of perhaps 500 projects per year. All
of the ISBSG data is based on function point metrics [3].

IFPUG maintains arguably the most widely used functional
software sizing metric in the world, the IFPUG “function point”
(in this paper, we will always refer to the unadjusted function
point). The IFPUG Counting Practices Manual [4] is one stan-
dard for measuring functional requirements, and is recognized
by the ISO.

ISO/IEC 20926:2009 specifies the set of definitions, rules
and steps for applying the IFPUG Functional Size Measurement
method. ISO/IEC 20926:2009 is conformant with all mandatory
provisions of ISO/IEC 14143-1:2007. It can be applied to all
functional domains and is fully convertible to prior editions of IF-
PUG sizing methods. … ISO/IEC 20926:2009 can be applied
by anyone requiring a measurement of functional size. Persons
experienced with the method will find ISO/IEC 20926:2009 to
be a useful reference [5].

A function point is like a “chunk” of software. It is similar
in concept to a “square foot” of house size, a “kilometer” of
distance, a “gallon” of gasoline, or a “degree Kelvin” of tempera-
ture. According to IFPUG’s Counting Practices Manual, function
points are assigned to different components of software ac-
cording to the user’s viewpoint (rather than the programmer’s
viewpoint). IFPUG recognizes five different types of software
components, listed in the table below, that are basically mea-
sures of the data flow and storage through the software. Also
listed are their relative sizes in terms of function points and
based on their complexity levels.

Charley Tichenor

Abstract. Sizing software requirements is an essential best practice in software
project management for forecasting the work effort required for software develop-
ment projects (and other related metrics). Arguably, the currently most accurate
software metric for measuring the size of software is the International Function
Point Users Group (IFPUG) “function point,” which has the ISO standard ISO/
IEC 20926:2009. Function points basically measure the size of the data flow and
storage through the software, which we define in this paper as “functional” require-
ments. But function points do not measure other software requirements, which also
require work effort resources. IFPUG has recently completed a successful beta
test of a new method to assess the size of other, “nonfunctional” requirements,
which when used in conjunction with function points should further increase the
accuracy of software forecasting. The authors believe that this Software Non-func-
tional Assessment Process v. 2.0 (SNAP) is ready to enter industry and academia
for initial practice and further research.

A New Software
Metric to
Complement
Function Points
The Software Non-functional
Assessment Process (SNAP)

Introduction
Forecasting the cost to produce software has been trans-

formed from an art into largely a science through a methodology
called function point analysis. Function point analysis basically
quantifies the volume of data flow and storage through the soft-
ware application; based on this measurement the cost required
to develop the software can be quantitatively forecast. Years
of experience with function points has shown it to be a robust
methodology [1]. Yet, one wonders if a complementary software
metric could be developed and used along with function points
so that data flow and storage, and other aspects of the software
that function points do not consider can be measured. Combin-
ing these measurements should improve the quality of software
development cost forecasting (and other software metrics).

One proposed complementary metric is from SNAP. IFPUG,
through its Non-functional Sizing Standards Committee, SNAP
Project Team, developed a procedure for SNAP and wrote the
SNAP “Assessment Practices Manual,” now in version 2.1 [2].
During August and September 2012, the SNAP team conducted
a beta test to measure how well SNAP 2.0 correlated with work
effort. This beta test was successful, and the purpose of this
paper is to share the results of this beta test. We will discuss:

 Low Average High
External Input 3 4 6
External Output 4 5 7
External Inquiry 3 4 6
Internal Logical File 7 10 15
External Interface File 5 7 10

For example, an input screen process for entering data into
an application might be measured as a low complexity external
input worth three function points, and a high complexity external
interface file is counted as 10 function points. The IFPUG
Counting Practices Manual has repeatable standards for how
to count function points and determining whether a component
has low, average, or high complexity.

Table 1

22 CrossTalk—July/August 2013

25th Anniversary issue

Here is how we can use function points for forecasting the
cost to develop software. First, as an analogy, suppose that a
customer wants to build a new house in a certain community.
Suppose further that a typical house in that community is built
at a cost averaging $300 per square foot. If the customer wants
a new house of 1,000 square feet, then a good estimate of its
cost will be about $300,000. Suppose we are considering build-
ing a new software application. Before we start building it we
want to forecast its cost. A qualified function point analyst starts
by examining the software’s data requirements. Then, using the
standards in the IFPUG Counting Practices Manual, the analyst
counts each instance of the components in Table 1 that are
anticipated to be in the software, and then totals their values for
the final function point count. (adapted from [6]).

This function point size correlates with development cost. The
original paper showing that function point size correlates with
development cost was published in 1977 by Dr. Allan Albrecht
in his paper “Measuring Application Development Productivity
[7].” This paper was the publication of the results of his research
team’s development of the initial version of the function point
methodology at IBM. The team correlated function point size of
various IBM applications with their corresponding work effort,
and found the correlation to be statistically significant. Since the
publication of this paper, numerous organizations have devel-
oped function point-based software productivity models to help
them forecast software development costs. Some companies
have compiled large amounts of such data from government,
industry, and other sources, and built commercial software
estimation tools which use function points and other produc-
tivity indicators (such as software language used, skill of the
programming team, project management tools used, etc.) to help
clients forecast their software development costs.

Now we can forecast the cost to develop this software. Sup-
pose that the function point analyst identified the software’s
components from Table 1 and counted a total of 1,000 function
points. Suppose further that a typical application of this type is
built at a cost averaging $300 per function point. A good esti-
mate of its total development cost is therefore about $300,000.

A reading of the IFPUG Counting Practices Manual indicates
that function points are basically a measure of the size of the
data flow and storage through the software. For this paper, we
define these software requirements as “functional” require-
ments. The cost estimate of $300,000 for developing 1,000
function points of software is based on data flow and storage
size—the functional requirements for the software.

Let us return to our house cost forecasting analogy. A new
house of 1,000 square feet in size in this Community should
typically cost about $300,000, but the particular house design
this customer wants is a little different than “typical.” Suppose
that this customer also wants to add hardwood floors (instead of
typically carpeted floors), a wood-burning fireplace, a refrigera-
tor with an extra large freezer, and extensive wiring to support
a special home entertainment system. We improve the cost
estimate for this house by factoring in the additional costs of
these extras.

Now, suppose we want our software cost estimate to factor
in software requirements which are not included as functional
requirements in the IFPUG Counting Practices Manual. Let us
consider certain requirements within the following categories
and their subcategories. These are from the SNAP Assessment
Practices Manual (refer to Table 2).

In this paper, we define these kinds of software requirements
as “non-functional” requirements because they are not included
in the ISO standard function point methodology in the IFPUG
Counting Practices Manual yet require additional work effort
to develop. We want to assess the size of these non-functional
requirements for applications. We also want to know if non-
functional size statistically correlates to the corresponding
work effort—like function points do. This was the fundamental
paradigm of the SNAP beta test.

We want to base the beta test analytics on statistical meth-
ods. We include the notions of random sampling, regression
models, the F test, p-values, the Runs test, and the Spearman
test. Basic Statistics books (for example, [8]) treat these. The
next paragraphs will discuss the intended testing analytics.

For the beta test, random sampling means that we collect
SNAP sizes from a wide variety of applications across the world.
As much as possible with the resources we have, we want to
have a sample that represents the software development industry.

Regression is a way to find the correlation between two
variables. In this beta test, we want to determine if there is cor-
relation between the SNAP sizes of the applications and their
corresponding work efforts. We believe that as the SNAP size
increases, the work effort to build those SNAP sizes should also
steadily increase.

Statisticians often look for several indicators to measure the
degree of strength of the relationship within a set of two vari-
ables, in this case, the SNAP size and corresponding work ef-
fort. If there is causation, then one indicator (in this case) would
be the degree to which SNAP size accounts for the amount of

Data Operations Technical Environment
Data entry validations Multiple platforms
Extensive logical and mathematical operations Database technology
Data formatting Batch process
Internal data movement
Delivering added value to users by data
configuration

Interface Design Architecture
User interface methods Mission critical/real time systems
Help methods Component based software
Multiple input methods Multiple input/output interfaces
Multiple output methods

Table 2

CrossTalk—July/August 2013 23

25th Anniversary issue

Table 3

work effort. This is measured by the r2 statistic. For example
(assuming causation), if our data’s r2 is measured to be .75, then
we conclude that SNAP size accounts for 75% of the reason for
the work effort.

Another statistic is the associated p-value for this, also called
“Significance F” in Excel. The p-value is the probability that we
are wrong in concluding that SNAP size is correlated to work
effort. If the p-value is .05, then we are 5% sure that we are
wrong in concluding such a correlation, or put another way, we
are 95% sure that we have statistical significance.

There are some technical assumptions in the standard regres-
sion process. One is that the data points are randomly scattered
about the regression line. We can test for this using the Runs
test, and we are comfortable that the model passes the Runs
test if its p-value is below .05.

We also want to test for correlation using the Spearman test.
This is a nonparametric test for rank correlation and makes no
technical assumptions about the distribution of the data, other
than it is randomly scattered about the regression line. This is a
“worst case scenario” test we use should we have doubts about
the validity of the standard regression test.

The final statistical test is for compliance with Benford’s
Law. Benford’s Law is an interesting statistical test. Software
development is a human stimulus and response activity. Part of
the overall stimulus for developing software is the need for the
non-functional requirements. The response is the number of
SNAP points generated. If this occurs, then we can look at the
leading digits of the SNAP size. For example, if the SNAP size is
483, then we would consider the leading digit of “4.” Benford’s
Law says that in these stimulus and response situations, the
distribution of the leading digits is logarithmic, as in the table
below, i.e., 30.1% of the SNAP sizes should start with the num-
ber “1,” 17.6% of the sizes should start with “2,” and so forth until
we should measure “9” as the leading digit in about 4.6% of the
SNAP sizes [9].

First Digit Percentage of
Occurrences

1 31.10%
2 17.60%
3 12.50%
4 9.70%
5 7.90%
6 6.70%
7 5.80%
8 5.10%
9 4.60%

This compliance with Benford’s Law happens with function
points. A study presented at the 2009 Fourth International Soft-
ware Measurement & Analysis conference [10] showed that for
a large internationally collected sample of function point counts
(more than 3,000 function point counts from ISBSG, Victoria,
Australia), their leading digits followed the distribution predicted
by Benford’s Law almost exactly.

Although the SNAP sample will be much smaller, we hope to
see good convergence towards Benford’s Law.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9

Pr
op

or
tio

n
of

 O
cc

ur
re

nc
es

First Digit of Function Point Count

ISBSG FUNCTION POINT COUNT LEADING DIGIT V. PREDICTED BY BENFORD'S LAW
Leading Digit Data Used with Kind Permission of ISBSG (ISBSG.org)

Predicted by Benford's Law Actuals from ISBSG Data

Research Design and Methodology
The purpose of this beta test was to repeat and extend the

spirit of Dr. Allan Albrecht’s statistical analysis of the early
function point methodology for the SNAP methodology. Dr.
Albrecht’s research showed that software size measured in
function points correlated with work effort for the applications
tested. In a similar manner, based on data collected from the
beta test, our research will hopefully determine the degree to
which SNAP sizes correlate with corresponding work effort.
Here is our research design and methodology.

Use version 2.0 of the SNAP manual as the basic reference.
Develop a standard SNAP data collection spreadsheet,

largely based on last year’s spreadsheet. This new spreadsheet
had four worksheets:

1.	“Basic Instructions” worksheet, which provides detailed
instructions for data collection for the SNAP counter.

2.	“Application Data” worksheet, for entering descriptive data.
3.	“SNAP Counting Sheet,” for entering the SNAP points. This

worksheet permits the SNAP counter to enter only basic data per
SNAP item, such as “DETs,” “FTRs,” “person-hours,” and other
data described by the SNAP training. The worksheet then auto-
matically calculates SNAP points. All calculation cells are locked.

4.	“Recap” worksheet, which automatically totals the SNAP
sizes and work effort.

Issue a call for volunteer SNAP counters, and train them. This
training will be done both using written materials (primarily the
SNAP Assessment Practices Manual) and by telephone. The
counters will choose the applications to size. Hopefully, this call
for volunteers will result in a wide variety of countries repre-
sented and application types chosen.

Conduct all SNAP sizing at the application boundary level—
“application boundary” as defined in the IFPUG Counting
Practices Manual.

Collect at least 30 applications’ worth of SNAP sizes with
corresponding work effort in person-hours. This is to hopefully
ensure a statistically large sample size.

Figure 1

24 CrossTalk—July/August 2013

25th Anniversary issue

If corresponding function point and work effort data can also be
collected, then so much the better. This permits additional research.
However, such function point counting data is considered optional.

Collect application descriptive data such as types of applications,
types of industry, types of software, etc. This data may be used to
help improve correlations. However, maintain source confidentiality.

Conduct the beta test throughout August and early September
2012. During the beta test, after counters finish with individual
application SNAP sizings, they are to email their data collection
spreadsheets to IFPUG. These data sheets will be then “cleaned”
of any source information to maintain confidentiality, and then will
be forwarded to one of several members of the SNAP team who
will perform a “quality control” of the data collection.

 As the SNAP data pass “quality control,” they will be then
forwarded on for statistical analysis.

The beta test analytics will consist of trying to determine the
degree of statistical significance using the following tests. First,
we will test the data plotting the SNAP sizes of the applica-
tions on the x-axis as the independent variables, and the effort
expended on the y-axis as the dependent variables. We will use
simple linear regression, and especially look at the r2, what Excel
calls “Significance F” (which is the p-value of the corresponding
F test), and the p-values of the coefficients of the regression
line. We will check for the appropriateness of testing for regres-
sion using regression through the origin. We will conduct the
Runs test and Spearman test, and also test for convergence to
Benford’s Law. We will also experiment with changing weighting
factors and other aspects of SNAP to try to both improve cor-
relation and its degree of realism.

Presentation and Analysis of Data
We collected data from a wide variety of applications. This

ensured that the sample was as close to random as reasonably
possible. We had SNAP sizes for 58 applications usable for the
part of the test correlating SNAP sizes with work effort, and an
additional 14 SNAP sizes usable for the Benford’s Law test (but
did not have work effort data).

Data was collected from the following countries: Brazil, China,
France, India, Italy, Mexico, Poland, Spain, UK, and the USA. We
collected data from the following industries: Aerospace, Auto-
motive, Banking, Government, Fast Moving Consumer Goods,
Financial Services, Insurance, Manufacturing, Systems Integra-
tors and Consulting, Telecommunication, and Utilities.

After reviewing the data, 58 data points (representing 58 soft-
ware applications) had sufficient SNAP size and work effort data
for further analysis. The first statistical test was a simple linear
regression analysis for 58 applications with the SNAP sizes on
the x-axis, and the corresponding work efforts in person-hours on
the y-axis. The graph below shows the results of this regression.
NOTE: the actual work effort hours are not shown on the y-axis
of the forthcoming graphs; we do not want to imply that the pro-
ductivity rate found in this beta test should necessarily be used as
a benchmark—we feel that this is premature at this point.

The r2 for this analysis is .33, which basically means that 33%
of the reason for the work effort was due to the SNAP size.

A closer analysis of the graph (and Excel regression tables)
shows that the trendline crosses the effort axis at about 100

person hours. In theory, this means that if there were zero SNAP
points, then the corresponding work effort should be about 100
person hours. This is not reasonable–if there are zero SNAP
points then the work effort should also be zero. Therefore, we up-
grade the analysis and use a standard technique called “regres-
sion through the origin.” This forces the trendline through (0,0).
This improves the common sense test and increases the r2 to .41.

In reviewing the raw data, three applications contained large
quantities of Help features. These applications had productivity
rates, according to the current version of the model, that were
roughly 10 times higher than the other 55 applications. This
led us to believe that we may need to reformulate the Help
Methods (subcategory 2.2) portion of the SNAP manual. This is
an area for future research, so we removed these three applica-
tions from the data set. This improved the r2 from .41 to .66. We
later removed seven other applications that counted some Help
features, to maintain consistency.

Also, we changed the weighing factors for subcategory 1.5
“Delivering Value Added to Users through Data Configuration”

Figure 2

Figure 3

CrossTalk—July/August 2013 25

25th Anniversary issue

by changing the weights for low, average, and high from 3-4-6
to 6-8-12. This improved the model’s r2 to .89, with a corre-
sponding Significance F of 1.7 * 10-23.

To test the requirement that the data points in this model
must be randomly scattered about the regression line, we
conducted the Runs test. There were 19 runs in the data, which
compares favorably with the theoretically optimal 19.96 runs.

We ran the Spearman test for rank correlation. This test pro-
duced a rank correlation of .85, with an associated confidence
of statistical significance of greater than 99% (p-value <.0001).

The final results of this analysis are on the following viewgraph
(refer to Figure 4).

We tested the final version of the results for compliance with
Benford’s Law. In terms of software development, Benford’s
Law says that the leading digits in a large portfolio of SNAP
sizes should be distributed as in Table 3, repeated below. For
example, in a large number of SNAP sizes, about 30.10% of the
SNAP sizes should have a leading digit of “1,” such as sizes of
15, 139, or 1,728.

Figure 4:
n = 48 r2 = .89 Significance F = 1.7 * 10-23 Spearman = .85 Runs = pass

Figure 5

First Digit Percentage of
Occurrences

1 31.10%
2 17.60%
3 12.50%
4 9.70%
5 7.90%
6 6.70%
7 5.80%
8 5.10%
9 4.60%

Table 3

Figure 5 shows the SNAP leading digit distribution from the
beta test. We used 65 SNAP sizes for this analysis. In general,
Benford’s Law seems to converge rather slowly, i.e., it requires
a very large sample size to “pure out.” This SNAP sample size
is much smaller than the ISBSG sample size, so the degree of
compliance is markedly less; however, we appear to be converg-
ing nicely.

Conclusions
We believe that the SNAP Assessment Practices Manual 2.0

has passed the beta test.
a.	The test was based on very good sampling techniques
b.	The data points are randomly scattered about the 	

	 regression line, as shown by the Runs test
c.	The regression r2 for 48 projects was .89
d.	The Spearman test correlation was .85
e.	We are over 99% sure that both tests are

	 statistically significant
f.	The distribution of the first digits of 65 SNAP sizes is 	

	 converging nicely towards Benford’s Law

We recommend that the SNAP procedure (with the excep-
tion of Help Methods subcategory 2.2) is ready for use by the
industry, and is ready for further research.

IFPUG has formed a Non-functional Sizing Standards Com-
mittee, similar to the Functional Sizing Standards Committee.
This committee will continue to develop the SNAP process, en-
courage SNAP research, develop SNAP training, and maintain
the SNAP Assessment Practices Manual.

Areas For Future Research

One possible source of data collection error during the beta
test was the experience of the SNAP counters. This was their first
use of the SNAP Assessment Practices Manual 2.0. Consistency
has been tested for function point counters with very favorable
results. Repeat similar consistency tests for SNAP counters after
there is much SNAP counting experience in the field.

Continue to experiment with reasonably varying the values
of the factors for each subcategory’s low, average, and high
complexity weights to improve the correlation between SNAP
sizes and work effort.

Continue to research the Help Methods, subcategory 2.2.	

26 CrossTalk—July/August 2013

25th Anniversary issue

Charley Tichenor is the newest mem-
ber of the SNAP team, joining in the
Fall of 2011 and serving primarily as
the team’s Statistician. He has been
a member of IFPUG since 1991, and
was certified as a Certified Function
Point Specialist in 1994 and 1997. He
has a Bachelor of Science Degree in
Business Administration from the Ohio
State University, a Master of Business
Administration degree from Virginia
Tech, and a Ph.D. in Business from
Berne University.

Phone: 703-901-3033
E-mail: charles.tichenor@dsca.mil

ABOUT THE AUTHOR

REFERENCES
1.	 Jones, Capers, “Sizing Up Software,” Scientific American, a division of Nature 			
	 America, Inc., December 1998.
2.	 International Function Point Users Group (IFPUG), Software Non-functional
	 Assessment Process Manual, (now in version 2.1), Princeton Junction, New Jersey,
	 USA 08550, 2012.
3.	 Jones, Capers, “Software Sizing During Requirements Analysis,” Modern Analyst,
	 retrieved November 5, 2012 from <http://www.modernanalyst.com/Resources/
	 Articles/tabid/115/articleType/ArticleView/articleId/512/Software-Sizing-During-
	 Requirements-Analysis.aspx>, copyright 2008 by Capers Jones & Associates LLC;
	 all rights reserved.
4.	 International Function Point Users Group (IFPUG), Counting Practices Manual (now
	 in version 4.3), Princeton Junction, New Jersey, USA 08550, 2009.
5.	 ISO. “ISO/ IEC 20926:2009 Software and Systems Engineering -- Software
	 Measurement -- IFPUG Functional Size Measurement Method 2009,” retrieved
	 November 5, 2012 from <http://www.iso.org/iso/fr/iso_catalogue/catalogue_tc/
	 catalogue_detail.htm?csnumber=51717>.
6.	 Dekkers, Carol, “Musings About Software Development,” retrieved November 5,
	 2012 from <http://caroldekkers.blogspot.com/>, 2008.
7.	 Albrecht, Allan, “Measuring Application Development Productivity,” IBM, 1977.
8.	 Walpole, R. E., & Myers, R., Probability and Statistics for Engineers and Scientists
	 Third Edition, New York, New York, Macmillan Publishing Company, a division of
	 Macmillan, Inc., 1985.
9.	 Davis, Bobby, & Tichenor, Charley, “The Applicability of Benford’s Law to the
	 Buying Behavior of Foreign Military Sales Customers,” Global Journal of Business
	 Research, The Institute for Business and Finance Research, (volume 2, 2008).
10.	Tichenor, Charley, “Why Function Point Counts Comply with Benford’s Law,”
	 presented at the Fourth International Software Measurement & Analysis
	 conference, Chicago, IL, 2009.

After a statistically large number of applications have
been counted for both function points and SNAP points,
conduct research to determine if function points and
SNAP points can be combined into a single metric, which
correlates to the combined work effort to develop both. Try
to combine them like real numbers can be combined with
imaginary numbers to produce the complex numbers; try
other ideas.

Using a large sample from the ISBSG database, function
point counts were tested for compliance with Benford’s
Law. This almost perfect compliance gave good statistical
indication for the soundness of the underlying mathemati-
cal structure of function points. After completing a larger
number of SNAP sizings (probably over 100), continue
repeating this research by testing SNAP sizes for compli-
ance with Benford’s Law.

Comments:
This paper is written on behalf of the IFPUG SNAP team.

The team developed the SNAP process and published the
130 page “Software Non-functional Assessment Process
(SNAP) Assessment Practices Manual,” now in version 2.1.
The team conducted the version 2.0 beta test to include its re-
search design, the call for SNAP assessors, their training, and
analysis of the test results. The team also developed a two-day
workshop to introduce the Assessment Practices Manual at
the seventh International Software Measurement & Analysis
conference in Phoenix, AZ in October 2012.

The SNAP Project Manager and IFPUG Board Member is
Christine Green. The IFPUG Non-functional Sizing Stan-
dards Committee Chair is Talmon Ben-Cnaan. Other SNAP
team members were Wendy Bloomfield, Steve Chizar, Peter
R. Hill, Kathy Lamoureaux, Abinash Sahoo, Joanna Soles,
Roopali Thapar, Luc Vangrunderbeeck, Jalaja Venkat, and
Charlene Zhao.

CrossTalk—July/August 2013 27

25th Anniversary issue

1. Introduction
This paper addresses one of the most fundamental aspects

of waste in many large defense programs creating physical
systems: the massive waste of engineering labor and time.

It is useful to first review how efficient modern car devel-
opment is. A typical new car program rigidly adheres to the
following phases: 1) First develop all needed components and
subsystems (engines, gearboxes, radios, seats, etc.) based on
the latest competitive technology and marketing need, and test
and validate them thoroughly, preferably in several combinations
of sizes, shapes and features, to the level of maturity such that
they will be ready for use in new cars. Once all modules are
ready to be integrated, and only then: 2) Perform the car design
which is a relatively routine problem of trading off the physical
module locations, sizes and shapes to fit the styling envelope,
performance requirements, vehicle mass and size, powering
tradeoffs, etc. Such a design effort has no unknown unknowns,
thus no big risks. While requiring towering engineering com-
petence and experience, it remains a fundamentally engineer-
ing design: trade-offs and selections of parameters within
finite trade space until all requirements are satisfied and some
desired performance optimum is reached. Using this approach
Toyota completed the Prius car design with new hybrid modules,
in nine months from the end of styling to the beginning of error
free production—a feat unmatched by any competitor, faster by a
factor of 2 to 3 then the next best in class [1].

In contrast, many large complex defense programs in the last
decades are contracted “for the entire job” including concept
development; co-mingled research, development and design;
starting with numerous low-Technology Readiness level (TRL)1
items. This is usually driven by the perception that cutting-edge

Bohdan W. Oppenheim, Loyola Marymount University

Abstract. This paper presents arguments for why defense programs creating
physical systems should clearly separate three developmental phases from each
other: research, development and design. Research is to be performed first by small
teams of scientists addressing the “unknown unknowns” and maturing fundamen-
tal science from TRL of 1 to about 3. Next, development of physical modules is to
be performed by small and highly specialized engineers. Finally, the system-level
design should focus on efficient trading off the module locations, sizes and shapes
versus system performance, mass, power requirements, etc. The design with all
modules mature and available is equivalent to a car design: to be performed by
competent engineers but quite well established. A small cohesive and co-located
Program Management team with excellent Systems Engineers and Architects, led
by a permanent Program Manager/ Chief Engineer should manage all program
phases, assuring smooth transitions between the expert teams and phases. The
small weight penalty which may result from the above approach is compensated by
orders of magnitude larger savings due to shorter program schedule and optimized
engineering effort. Examples are cited.

Improving
Affordability
Separating Research from Development
and from Design in Complex Programs

Typical Program (A) versus Proposed Program (B)

technology is more appealing to stakehold-
ers; and the rarely-justified hope that system
and technology development can be accom-
plished in parallel [2].

Starting a large program with very low TRLs
and then pursuing research, development and
design mixed together under a massive con-
tract is a major source of waste, if not the only
one [3]. In effect we pay for a standing army of
expensive engineers trying to look busy while
small groups of “developmental” engineers
frantically try to mature the TRLs. This is illus-
trated symbolically in Figure 1 A, with the large
shaded box symbolizing the entire program
effort (or cost) and the four boxes inside it
denoting the various inefficient R&D efforts. It
is only after the R&D tasks are completed, that
the design increases in intensity. A number
of aerospace programs notorious for terrible
performance followed this pattern, starting
with minimal TRL’s of one or two, e.g., NPOES
[4] and JSF [2]. Numerous other examples are
available on the Government Accountability
Office webpages.

28 CrossTalk—July/August 2013

25th Anniversary issue

What is worse, the work on the low TRLs is often performed
by engineers rather than scientists, using brute-force ap-
proach of endless and costly iterations rather than elegant and
advanced science methods of rapid trade space exploration
and set based design (see Section 2). Starting a large system
development with low TRLs causes excessive schedules lasting
10-15-20 years—several times too long when compared to
equivalent commercial programs, and costing tens or hundreds
of billions of dollars—an order of magnitude too much. The
real victim is the war fighter who cannot use the system when
needed. In addition to huge original budgets, many programs
suffer from major cost growth, and some have to be terminated.
Overall, the total cost growth of recent poorly performing de-
fense programs was $295 billion. This practice is in violation of
the intent of the Defense Acquisition Logistics: [5] which clearly
states that system design should start only after Milestone B,
that is after all needed TRLs are quite mature and ready for
integration. And this is precisely how commercial companies
handle the development at a small fraction of the average
defense program cost.

The history of defense and NASA programs offers plenty of
examples of successful programs that reinforce the proposed
approach, as follows. The Manhattan project which was one of
the most difficult programs in human civilization had an efficient
research phase during which mathematicians performing hand
calculations (before computers!) proved that the nuclear chain
reaction would not burn the earth’s atmosphere. Once the
research was completed, the weapon development and design
were completed in weeks. The nuclear submarine project [6]
started not with the submarine design but with research on
compact nuclear reactors. Once solved efficiently, the develop-
ment of the nuclear plant and the submarine vessel proceeded
predictably and efficiently. The early U.S. space program
demonstrated similar advantages [7]. Iridium, one of the techni-
cally most successful space programs, is forever a prominent
example of technical (if not marketing) efficiency [8].

This article submits that we can adopt a lot of commercial de-
velopment practices to aerospace programs without sacrificing
anything of value, and vastly reduce program schedule and cost,
bringing weapons to the war fighter faster and more affordable.
The recommended good-sense process is described in Section
2. In Section 3 we discuss the desired management of the en-
tire program, and in Section 4 we identify potential weaknesses
and strengths of the approach in the defense environment.

The present approach has been based on several Lean En-
ablers described in [9, 10] and also listed on the web [11].

2. Ideal Sequence: Research-Development-Design
Occasionally, a set of common words evolve into an idiom

which, with frequent use, becomes a paradigm and can be very
difficult to eliminate. The words “research and development”
seem to be an inseparable pair in this category. This may have
been justified in earlier decades of simpler systems. Now when
the system complexity is vastly higher, and the research phase
needs a dedicated scientific approach, the term has become
destructive, costing billions of dollars in inefficient programs.
Our task is to clearly untangle three development phases from

each other: research using fundamental science, engineering
development of modules, and engineering design, as follows
(see Fig. 1 B):

The role of research teams is to develop each immature
technology to 3 from TRL of 0-1, ending with a demonstration
of technical feasibility and validation of the technology. This work
phase is driven by global competition: “we need to develop bet-
ter products, with better technologies all the time”. If the technol-
ogy is challenging, involving significant unknown unknowns, a
cost-plus contract may be justified for this phase. But it is critical
that the work be done by a very small team (a few individuals is
usually sufficient) of highly competent researchers with doctor-
ates in sciences, the love of learning from scholarly journals,
and the inner drive to succeed. Each small team should be
contracted independently of others, because their areas of ex-
pertise do not usually overlap. These folks are rarely engineers.
Aerospace design engineers are not needed on these teams
therefore large defense programs cannot be justified for this
phase; in fact such programs are the opposite of what is needed
here. The teams should be protected from defense bureaucracy
that would only slow the progress. Even though this phase may
be open-ended and contracted cost-plus, the small size of the
team(s) assures a modest budget and good progress. Modern
science offers a rich body of knowledge on how to make such
open-ended challenges efficient and even predictable, using
set-based studies [12] trade space exploration [13], and opti-
mized iterations [14]. Since the expenditures are small, a vast
bureaucratic oversight should not be needed. If the teams are
properly selected for their towering scientific competence, and
not sabotaged by bureaucracy, rapid progress can be achieved
in schedules lasting from months to a few years. For example,
the research phase of the Manhattan project, one of the most
difficult programs ever undertaken, took only one year [15].

Development. For each module under development, if and
only if the research phase is successful (having achieved TRL
of at least 3), a new contract should then be issued to a small
focused team of developmental engineers. These engineers are
different from scientists and from design engineers and must not
be confused with them. The task for a team of developmental
engineers is to mature the given TRL from 3 to the mature vali-
dated module of hardware, software or a combination, ready to be
integrated into a later design. Since this phase has no unknown
unknowns, there is no justification for any cost plus work, and the
work should be predictable and plannable, with a fixed price and
reasonable schedule. Ideally, each module should be packaged
into several shape and size combinations, to make subsequent
design(s) easier and to promote reusability. The added cost of
multiple packaging is a small fraction of the module development
effort but has big payoff due to module reusability. The software
should also be created with long-term general reusability in mind.
This phase calls for solid skills and specialized experience in de-
signing the given module(s). An expert in physical system design
may be needed on each team to formulate requirements for the
module, which would be consistent with subsequent system de-
sign. The requirements should address environmental constraints,
use scenarios, top-level interfaces with other subsystems/mod-
ules, top-level tradeoffs, and best applicable standards.

CrossTalk—July/August 2013 29

25th Anniversary issue

System Design. At this time all mature modules should be
available for integration. The remaining system design phase
involves “routine” tradeoffs between system performance, mass,
strength, size, shape, power, years in service, reliability, etc. This
is where we need a broad spectrum of system-level engi-
neers and a “systems engineering factory”. The system design
engineers should efficiently tradeoff the above parameters
and select and move the modules around until all constraints
are satisfied. This work, even though calling for a high caliber
engineering competence, is fairly standard; this is what system
design engineers do for a living. There should be no unknown
unknowns left at this phase. All high-level technical risks should
have been handled in the prior research or development phases.
As such, a system-level contract must be contracted as fixed
price and reasonably priced and scheduled, based more on
commercial program estimates than the bloated defense pro-
grams of recent years. Any bidding company who says that they
cannot bid a reasonable price in this situation, when all modules
are already available, and the top-level requirements are stable
should be excluded from consideration for incompetence.

Practically all carmakers follow the described research-devel-
opment-design sequence, with the best in class demonstrating
an amazing overall efficiency.

3. Systems Engineering and Architecting,
and Program Management

Ideally, the three phases: research, development, and design
should be contracted separately, each to the most qualified
teams available for the given phase. Yet, there must be an over-
all management of the program from the beginning to the end.
The following approach is recommended, following [9, 10].

From the program inception, there should be a single and
small integrated program management team performing techni-
cal management (concept development and systems engineer-
ing and architecting), as well as business management (project
management, risk management, acquisition, contract monitoring,
program monitoring, and supporting functions). This should be
a small cohesive co-located team handling the entire program
from concept development to Milestone A. Next, the manage-
ment team should contract and manage first the research
phase, then the development phase to Milestone B, followed
by the design phase and system integration to Milestone C,
including system level verification and validation. The program
management should also continue into the operational program
phases of transition, operations and logistics, and disposal. This
management team should be characterized by the following:

•	 Co-located minimum-size team. All people should be
highly experienced in the system domain. The team must
have total responsibility, authority, and accountability for
both technical and business success of the entire program.

•	 The contract should call for managing the entire pro-
gram during the entire lifecycle.

•	 There must be a single leader (called “Program Manag-
er” or “Chief Engineer”) who is not subject to military rota-
tions, who is the person dedicated to unconditional pro-
gram success, and who has personal stake in the success
(accountability for failure and high reward for success).

This excellent leader should be competent in program
management, systems engineering, domain engineering.

•	 Effective team approach: single, co-located, cohesive,
and well-integrated team2.

The management team should manage the following phases
of the program:

1.	Capture stable system-level customer-need requirements
and scenarios of operations (the fewer requirements the better).
If these top-level requirements are not stable the program must
not be allowed to proceed under any circumstances as this will
guarantee budget raptures and risk total failure.

2.	Perform enough concept development and system archi-
tecting to identify all low TRL (high risk) items, and the overall
concept configuration. One year is regarded as plenty of time
for a competent team to perform a comprehensive concept de-
velopment and architecting in response to stable and wise top-
level requirements. Modern approaches such as Model Based
Systems Engineering [16], or Vienna Development Method
[17] may be used in this phase, although the actual approach
should be left up to the team and the contract should not be too
prescriptive; otherwise it may slow the progress and introduce
unnecessary bureaucracy.

3.	Research contracts: Then, for each low TRL item, issue a
Request For Proposal (RFP) and source select a small team,
paying attention primarily to the past scholarly successes and
credibility of the teams (illustrated in Fig. 1 B symbolically by
four small “research boxes” denoting, say, four needed research
topics). All such small contracts for maturation of TRLs should
be issued in parallel. Large defense contractors are badly suited
for this phase as they tend to activate a large “standing army”—
precisely what we are trying to avoid. Monitor all projects in this
research phase and wait until all low TRLs reach the level of at
least 3. If even one research team fails to achieve success do
not proceed to the next phase, as this will introduce unaccept-
able risk to the overall program. Depending on the case, this
phase should not last more than one to a few years maximum.
The guiding environment should be maximally patterned after
best available research studies, e.g. a federal research labora-
tory, a research university, an FFRDC, DARPA, etc.

4.	Development contracts: Once all research teams achieve
success (TRL of 3), issue the next phase RFPs in parallel to
seek proposals from small expert development teams who can
demonstrate past success and current readiness to perform
the development of each needed module. Typically, the differ-
ent modules will use completely different teams as the modules
have little in common (the four boxes denoted “development”
in Fig. 1 A). Since these teams will not have any unknown
unknowns, these contracts must be fixed price, and the price
should be guided by best commercial programs, with some
reasonable overhead for handling military security and external
management.

5.	Design phase: when all modules have been developed, veri-
fied and validated, and are totally ready for system integration,
issue an RFP for a larger contract to perform system design and
integration, (denoted as “Design” in Fig. 1 A). This program will
need engineers from all domain subsystems, as well as compe-

30 CrossTalk—July/August 2013

25th Anniversary issue

tent system-level engineers representing all relevant branches
of engineering. This single contract should have a reasonably
short schedule and fixed budget because all modules have been
already created. (This is like a car design to use available en-
gines, gearboxes, seats, radios, etc.) This phase should perform
formal system-level systems engineering and program manage-
ment, including integration, verification and validation. This phase
is essentially a routine engineering system level design even for
a new weapon or space systems, and must be treated as such,
rather than as a bloated multi-year full R&D program. There
should be practically no development but plenty of best design
activities. Contractually, passing the buck between the different
parties involved in phases 1-5 must be avoided, demanding that
a green light into the next phase is contingent upon the ac-
ceptance of the previous phase. Coordination and communica-
tion opportunities throughout the program stakeholders and life
cycle should be maximized.

6.	Keep the contractor in phase (5) and the program
manager fully accountable for the entire program technical
and business success.

The above approach offers the following significant
advantages:

a.	Each project in each phase is manned in an optimized way,
assigning only the experts and managers needed. We eliminate
the “standing army” of thousands of highly paid engineers and
managers for many years of “looking busy” while only a few
individuals are truly needed. The cost of issuing one massive
contract that mixes research, development and design is sym-
bolically illustrated by the shaded area in Fig. 1 A. In contrast,
separated and optimized research, development and design are
like the small shaded areas in Fig. 1 B. Clearly the cost and time
of the latter are significantly smaller than the former.

b.	The folks best suited for each phase are used: systems
engineers and architects for the concept phase, scholars for the
research phase, developmental engineers for the development
of modules, and design engineers for the remaining low-risk
design phase. We eliminate the present practice of asking engi-
neers to address scholarly challenges for which they are poorly
suited and which they attack by massive and costly iterations.

c.	Lower risk: the program split into these phases automati-
cally assures healthy milestones. If even one phase fails to
deliver, the program can be stopped and the phase re-bid with
minimum waste in overall schedule and treasure.

d.	The approach is much closer to the well-proven commercial
practice, which costs one to two orders of magnitude less than
the recent defense programs.

e.	The shorter overall schedule is conducive to more stable re-
quirements and the absence of technology changes during the
program, the two aspects that have destroyed many a massive
long defense program. Of course, the stability of customer-level
need and use scenario requirements should be pursued by all
means, as unstable requirements can destroy any long program.

4. The Mass Penalty
A careful reader no doubt noticed one technical deficiency of

the above approach: namely that the modules predesigned for

the design phase have to be used “as is”, even if each is available
in several size and shape combinations. The typical argument for
contracting the entire program and all of its phases to a single
contractor is based on the hypothesis that the contractor can then
develop and optimize each module for minimum mass and best
system layout. Theoretically there might be a merit in this argument.
However, economics destroys it immediately, as follows: engineer-
ing labor rather than system weight is the most expensive item in
large complex programs. Using pre-designed modules may carry
a small weight penalty (which should be small indeed if the teams
developing the modules understand the module use in the system
of interest – not an unreasonable expectation), perhaps at worst re-
quiring the system to be lifted into space by a slightly larger vehicle
than what might be needed otherwise. For example, having to use
a larger-size lift vehicle into space may cost an extra $50-$100
million dollars (a generous estimate), while the proposed approach
will save billions if not tens of billions of dollars in much shorter
program schedules. In addition, the proposed approach delivers
the capability to the warfighter years ahead of traditional multi-year
programs. It is simply common sense that this is a vastly better
approach. Commercial programs understand it very well. Time for
defense programs to do the same.

5. Summary
The proposed approach to complex weapon system develop-

ment is based on clear separation of the program into research,
then development, and finally design phases. Each phase should
be performed using separate optimum-size teams of special-
ized experts, all coordinated by an efficient co-located small
management team. The approach offers vast improvements over
the current practice of one huge all-inclusive program lasting
10 to 20 years, costing a treasure, and wasting up to 90% of
the cost or more because most engineers have really little to do
most of the time, while a few are frantically trying to mature the
TRL of selected modules using brute force iterations. Examples
of poorly performing programs that started with low TRL have
been cited. Examples have also been provided of successful
programs that clearly separated research from development and
from design.

The proposed approach has been practiced in the commer-
cial world for tens of years. Thanks to it, we can buy a car for
$20,000 rather than the billions it would cost to develop the car
using the current defense contracting paradigm. The possible
small added cost due to larger weight is compensated by orders
of magnitude lower cost of engineering labor. The approach will
yield higher affordability and faster availability to the warfighter.
The approach is totally consistent with the Integrated Defense
Acquisition Technology and Logistics Lifecycle Management
Framework. Nothing in the present defense acquisition policy
precludes the approach. Even the Program Objective Memo-
randum budget formulation [18] for defense programs which
requires that military services perform program acquisition
planning several years in advance could be adopted to handle
the proposed program organization. A pilot program is recom-
mended to follow the proposed approach. It has the potential
to significantly cut the budget, schedule and bring the needed
system into operations in a fraction of the current programs.

CrossTalk—July/August 2013 31

25th Anniversary issue

Bohdan “Bo” W. Oppenheim is a Professor
of Systems Engineering at LMU. He is the
founder and Co-Chair of the Lean Systems
Engineering Working Group of INCOSE,
co-leader of the effort developing Lean
Enablers for Systems Engineering, author
of Lean for Systems Engineering with Lean
Enablers for Systems Engineering (Wiley,
2011) and the second author of the The
Guide to Lean Enablers for Managing Engi-
neering Programs (INCOSE, PMI, MIT LAI,
2012) . His engineering degrees include
Ph.D., Southampton, U.K.; Naval Architect,
MIT; MS, Stevens Institute of Technology;
and B.S. (equiv.) from Warsaw University
of Technology in Aeronautics. His credits
include five books, 20 journal publications,
$2.5 million in externally funded grants, and
a 30-year industrial and consulting experi-
ence spanning naval, space, software and
mechanical engineering. He is the recipi-
ent of 2011 Shingo Award, 2013 Shingo
Award, 2010 INCOSE Best Product Award,
2011 Fulbright Award, and 2008 LACES
Best Teacher Award.

Office: 310-338-2825
Home: 310-450-5713
E-mail: bohdan.oppenheim@lmu.edu

ABOUT THE AUTHOR REFERENCES

NOTES

1.	 M. J. Morgan, and J. K. Liker, Toyota Product Development System,
	 Productivity Press, 2006.
2.	 GAO, Assessments of Selected Weapon Programs, GAO - 08 - 467SP, 2008
3.	 A. B. Carter, The Under Secretary of Defense, Acquisition, Technology and Logistics,
	 Memorandum for Acquisition Professionals, June 28, 2010.
4.	 T. Hall, NPOESS Lessons Evaluation, ATR-2011(5558)-1, The Aerospace Corporation,
	 El Segundo, CA, December 2010
5.	 Integrated Defense Acquisition Technology and Logistics Lifecycle Management
	 Framework, DAU, <http://spacese.spacegrant.org/uploads/Project%20Life%20Cycle/
	 DAU_wallChart.pdf>, accessed 09-25-2012
6.	 T. Rockwell, The Rickover Effect: The Inside Story of How Adm. Hyman Rickover Built the
	 Nuclear Navy, John Wiley & Sons; 1995
7.	 S.B. Johnson, The Secret of Apollo, Systems Management in American and European
	 Space Programs, John Hopkins, New Series in NASA History, 2002.
8.	 R. Leopold, The Iridium Story: An Engineer’s Eclectic Journey, Minta Martin Lecture, MIT
	 Department of Aeronautics and Astronautics, Apr. 23, 2004.
9.	 J. Oehmen, Ed., The Guide to Lean Enablers for Managing Engineering Programs, PMI-
	 INCOSE-MIT LAI, 2012
10.	B.W. Oppenheim, Lean for Systems Engineering with Lean Enablers for Systems
	 Engineering, John Wiley & Sons, 2011
11.	 INCOSE LSE WG, Lean Systems Engineering Working Group website, 2012, <http://
	 www.incose.org/practice/techactivities/wg/leansewg>.
12.	D. K. Sobek II, A. C. Ward, and J. K. Liker, Toyota’s Principles of Set - Based Concurrent
	 Engineering, Sloan Management Review, Vol. 40, No. 2, Winter, 1999; pp. 67 - 83.
13.	E. M. Murman, Lean Aerospace Engineering, Littlewood Lecture AIAA - 2008 - 4, Jan.
	 2008.
14.	J. Warmkessel, Lean Engineering, Lean Aerospace Initiative, MIT, <http://lean.mit.edu>,
	 2002.
15.	R. Rhodes, The Making of the Atomic Bomb, Simon & Schuster , 1986
16.	MBSE, INCOSE, 2012, <http://mbse.gfse.de/>
17.	 VDM, 2012, <http://en.wikipedia.org/wiki/Vienna_Development_Method>
18.	POM: <https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=79420a26-7a89-
	 4e94-aad2-6d5d61bb7511>, last accessed Oct. 22, 2012.

1.	 For a description of TRLs see <http://esto.nasa.gov/files/TRL_definitions.pdf>, last
	 accessed 9-23-2012.
2.	 Dividing this effort to more than one company (not unusual in mindless contracting
	 focused on “spreading the wealth”) is just as effective as cutting a person’s brain into
	 pieces, distributing the pieces and asking them to coordinate together- a suicidal
	 proposition for program efficiency. The earlier GPS program suffered from it, burning
	 budget and schedule on Interface Control Documents written by the 45 or so
	 disjointed teams.

32 CrossTalk—July/August 2013

25th Anniversary issue

significant. Some estimates have it consuming more than 60%
of the time and cost of the process.3

Our experience at IDT shows that using virtual test envi-
ronments with automated testing using Automated Test and
Re-Test (ATRT) can help reduce testing infrastructure cost for
testing areas such as interoperability, system testing, functional
testing, component and unit testing. Additional benefits of
automated testing in a virtualized environment include a more
reliable system, improved testing quality, and reduced test effort
and schedule. A more reliable system results from improved
performance testing, improved load/stress testing, and improved
system development life cycle through automated testing. The
quality of the test effort is improved through better regression
testing, build verification testing, multi-platform compatibility
tests, and easier ability to reproduce software problems. Test
procedure development, test execution, test result analysis,
documentation and status of problems are also activities ben-
efiting from automated testing.

ATRT in a virtual test environment can provide a stable, scal-
able, affordable and accessible automated testing infrastructure
that extends across one or many server farms, across one or
many System(s) Under Test (SUTs) and works with a common
set of cloud computing concepts to support a broad virtualized
enterprise automated test environment. This specific testing
setup allows the use of virtualization in a specialized way to
reduce the need for purchasing, storing and maintaining various
expensive test environment hardware and software. Proper vir-
tualization setup provides a multi-user access automated testing
solution that allows users to implement and reuse ATRT, along
with all testing artifacts, on a provisioning basis. Additionally all
related automated testing activities and processes, i.e. test case
and requirements import; requirements traceability, automated
test creation and execution, and defect tracking take place in
this virtualized environment.

Combining ATRT test efficiency with the hardware cost
savings implementing in a virtualized/cloud environment, the
resulting estimated savings are tremendous. For example 20
Virtual Machines (VMs) fit on 1 server in our virtual environment
example – allowing for huge savings in the test environment,
i.e. in this case a 20 to 1 cost savings. Additionally, in the virtual
environment, the SUT VM can be located anywhere on a con-
nected network and does not need to be located physically in
the same VM as the testing VM.

Examples of automated software testing in a virtualized test
environment include:

1.	Automatic provisioning of a virtualized automated test
environment

2.	Automatic provisioning of the entire automated testing
lifecycle for any type of SUTs

3.	Continuous integration using virtualized environments

Sections 2.0 through 4.0 provide technical overviews of the
various embodiments of the present ATRT/Virtual Test Environ-
ment (VTE) implementation.

Elfriede Dustin, IDT
Tim Schauer, IDT

Abstract. Using automated testing in a virtual test environment can reduce
the time and effort required to complete test execution and data analysis,
significantly reduce test suite costs, and at the same time increase the
thoroughness of system testing.

Efficiencies of
Virtualization in
Test and Evaluation

Section 1: Introduction
NIST produced a report in 2002 titled, “The Economic Im-

pacts of Inadequate Infrastructure for Software Testing.”1 This
report “estimates the economic costs of faulty software in the
U.S. to range in the tens of billions of dollars per year and have
been estimated to represent approximately just less than 1% of
the nation’s gross domestic product.” The report goes on to state
that “based on the software developer and user surveys, the na-
tional annual costs of an inadequate infrastructure for software
testing is estimated to range from $22.2 to $59.5 billion.”

Also in 2004 the Chief of Naval Operations (CNO) Guidance
included direction to the Commander, Operational Test and Eval-
uation Force (COMOPTEVFOR) to lead a collaborative effort
among Navy, OSD, and contractors to reduce the costs of Test &
Evaluation (T&E) by 20%. In developing a response to the CNO
Guidance for 2004, COMOPTEVFOR surveyed programs and
included the following as T&E cost drivers:

•	 Redundant testing
•	 Significantly increased levels of regression testing

	 driven by technology insertion
•	 Increasing complexity of computer software testing, to

	 include systems of systems
•	 Interoperability testing and certification
Based on the COMOPTEVFOR findings, more effective ap-

proaches for testing are needed to be able to meet the CNO
Guidance to reduce T&E by 20%.

A GAO Report to the Congressional Committees dated June
2012, describes that “recent defense acquisitions have experi-
enced from 30% to 100% growth in software code over time.”2

With the increased size and complexity of systems of systems
testing, requirements for unique / duplicate test facilities and
test-beds for major Navy product areas, software testing is
rapidly becoming the “very longest and most expensive pole in
the tent” when it comes to fielding new capabilities. Because
of many reasons including organizational boundaries, lagging
technologies, unique requirements, and testing methodologies,
the testing of new capabilities being fielded has become a sig-
nificant cost and time element of the process and without some
form of change to the current process, could become even more

CrossTalk—July/August 2013 33

25th Anniversary issue

Section 2: Automatic Provisioning of a Virtualized
Automated Test Environment

As shown in Figure 1, the virtualized setup allows for a stable,
scalable automated testing infrastructure that extends to one
or many SUTs or one to many automated testing tool installa-
tions (in this example ATRT). This virtualized test environment
setup is a highly scalable solution whether a user needs to run
10 or 10000s of tests connecting to N number of SUT displays
and servers over days or weeks and whether the user needs to
analyze 100s of test outcomes or 10000s or more.

In order to support a virtualized automated test environment,
it is critical the automated testing solution itself be scalable. For
example, the ATRT technology allows for N number of concur-
rent tests to run or N number of serial tests, depending on the
test type required. All of the tests and test outcomes are stored
in the ATRT database/repository for access by any subscriber
(or user) of the ATRT virtualized environment. A subscriber/user
can be a developer or tester or anyone on the program with
ATRT user access privileges.

This virtualized test environment example setup supports
live migration of machines; load balancing; easy movement of
machines to different servers without network interruption and
allows any upgraded VM to run on any server. As a result, it is
also important that in a virtualized environment an automated
testing solution is not only scalable but portable. ATRT can test
systems independent of OS or platform so it is able to support
applications running on both Windows and Linux providing flex-
ibility to migrate machines without the constraint of the OS the
automated test solution can support.

Additionally, an automated testing tool should be selected
that does not need to be installed on the SUT. ATRT is an
example of a solution that does not need to be installed on the
SUT and instead is communicating with the SUT via a VNC
Server or the RDP protocol which transmits the SUT images
back to the tester to the ATRT client. Few tools exist that do not
need to be installed on the SUT. The typical automated testing
tool needs to be installed on the SUT so it can link to the GUI
coding libraries to get the object properties of the GUI widgets
and/or pull information out of the Operating System’s window
manager in order to create an automated test baseline. Installing
an automated testing tool on the SUT however is generally not
desired, because 1) the installation modifies the system environ-
ment (the testing system environment should be identical to the
production system environment) and 2) it does not lend itself to
cloud computing because of the additional tool installation on
each SUT.

In this VTE the SUT VM can be located anywhere on a con-
nected network and does not need to be located physically in
the same VM as the ATRT VM. This allows for tremendous flex-
ibility, for example multiple ATRT VMs can run in the VTE con-
necting to 100s of SUT VMs. However, in the typical automated
testing setup where the tool needs to be installed on the same
machine as the SUT, a 1 : 1 setup is required, i.e. 1 Automated
Testing tool for each 1 SUT, negating some of the savings
expected in a VTE.

Figure # 1: Top-Level Block Diagram of the Automated Provisioning of the
ATRT virtualized Test Environment

Section 3: Automatic Provisioning of the Entire
Automated Testing Lifecycle for any Type of SUTs

One or many users can access a VTE one at a time or
concurrently with any device such as a laptop, iPad, iPhone, etc.
with nothing installed on their device but a network connection
enabling the capability to login to an IP address to connect to
the ATRT virtual environment.

Users can then request one or more instances of a VM along
with the automated testing tool. The automated provisioning
meets a user’s changing needs without the users being required
to make any software modification on their end as required to
conduct the automated test. The VTE in this example can spawn
an instance of ATRT which then allows the user to access any
automated testing artifact and execute the automated testing
lifecycle. The user can then conduct any activity that is part of
the automated testing lifecycle, i.e. create an automated test
case, reuse or troubleshoot an existing automated test case cre-
ated by any user, import requirements, produce a requirements
traceability report. The VTE provides any additional features
and capabilities required to support the SQA process and help
improve Quality, such as Unit Testing and Code Coverage.

Exemplary features of this process include:
•	 Developers update the code on the development VMs
•	 Developers check in their code into Version Control
•	 Build Server conducts automated nightly checkouts
•	 Build Server compiles and packages a new build

	 for deployment
•	 Nightly automated tests are run
•	 Users are notified of the automated test outcome
•	 Build Server deploys the new build to the QA nodes
•	 Testers access the QA nodes and create and/or run 	

	 their automated tests
•	 Testers, Developers, and all users conduct the

	 automated testing lifecycle activities and maintain
	 all ATRT test artifacts in the virtual environment

34 CrossTalk—July/August 2013

25th Anniversary issue

Using the virtualized test environment a single engineer may
control an entire test of complex systems with only his/her iPad,
laptop, etc. and only requires access to the network.

Section 4: Continuous Integration Using Virtual-
ized Environments

Continuous integration is an industry adapted software
engineering best practice in which any change to the code or
environment is tested and reported on as soon as feasible. In
most cases this involves nightly software builds and nightly au-
tomated test runs to allow for quick look reporting on any newly
introduced issues. Virtualized test environments play a major role
in this best practice.

The development environment that makes this possible is one
of a virtualized environment combined with both regular work-
stations and laptop computers networked together.

1.	Developers first review the system level requirements
and create a set of automated tests. Code is locally edited /
compiled/linked and then checked in to a virtualized version
control repository, such as SVN. From here other developers can
check out both updated code off of the trunk or from code from
specific branches to support different build.

2.	Upon code checkin, a continuous build server, such as the
Hudson Continuous Build virtual server is triggered to start a
complete build/check/test/report cycle. Hudson will perform
the following tasks:

a.	Update the latest code from SVN
b.	Compile the code and check for compile errors
c.	Link the code, check for any link errors
d.	Perform source code style checks and copyright checks

Figure 2. Continuous Integration Environment Example

e.	Start a series of both internal and external
regression tests:

i.	 Internal regression tests will execute auto-
mated tests to verify key use case tests to verify
results are as expected and also ensure that code
that was updated has not adversely affected the
existing functionality.

ii.	External regression testing can then utilize
any automated testing capability on another virtu-
alized node to perform tests as an end user would
be expected to do (i.e. through a GUI interface).
Each test can then analyze hundreds of system
level requirements. Each requirement may itself
be verified hundreds to thousands of times. Exter-
nal regression testing again compares its results
against a known good set of results.	

3.	The internal and external testing results are
then reported back to the Hudson server. Upon
completion of successful internal and external
regression testing, the Hudson server continues
to now build an installer package that will be
available to the end user at fielded locations. Ad-
ditionally, key statistics are gathered on the entire
process and saved for later retrieval.

4.	Finally, Hudson provides the developer with
reports on the entire sequence of testing. The

NOTES
1.	 See <http://www.nist.gov/director/planning/upload/report02-3.pdf>
2.	 <http://gao.gov/assets/600/591608.pdf>
3.	 Hailpern and Santhanam, 2002 (The cost of providing [the assurance that a software
program will perform satisfactorily in terms of its functional and nonfunctional specifica-
tions within the expected deployment environments] via appropriate debugging, testing, and
verification activities can easily range from 50 to 75 percent of the total development).

developer can then use the results of the testing to make ap-
propriate code changes.

Section 5: Summary
Using automated testing in a virtual test environment we have

been able to demonstrate the ability to reduce the time and
effort required to complete test execution and data analysis, sig-
nificantly reduce test suite costs, and at the same time increase
the thoroughness of system testing. An increase in software
testing thoroughness equates to a reduction of defects found in
the field and reduced total ownership cost. Automated testing
in a virtualized test environment will also enable much earlier
identification of integration and interoperability characteristics
of any software products that must interact with other systems.
Identification of software specific integration characteristics in
products in-stride with software development cycles enables the
identification of issues to also be decoupled from the delivery of
the final hardware configuration.

CrossTalk—July/August 2013 35

25th Anniversary issue

Elfriede Dustin is Director of Solutions at IDT where
she works on developing new ideas and discovering
new approaches to the requirements based automated
software testing challenge. Software development is
still an art and that makes automated software testing a
special challenge. IDT (www.idtus.com) strives to meet
that challenge by producing a reusable automated test-
ing framework that includes reusable automated testing
components, starting with requirements through the en-
tire software testing lifecycle to defect closure. Elfriede
has a B.S. in Computer Science with over 20 years of
IT experience, implementing effective testing strategies,
both on Government and commercial programs. She
has implemented automated testing methodologies
and testing strategies as an Internal SQA Consultant at
Symantec, worked as an Asst. Director for Integrated
Testing at the IRS Modernization Efforts, implemented
testing strategies and built test teams as a QA Direc-
tor for BNA Software, and was the QA Manager for the
Coast Guard MOISE program.

She is the author and co-author of 6 books related to
Software Testing, i.e. author of the book “Effective Soft-
ware Testing” and lead author of “Automated Software
Testing” and “Quality Web Systems,” and co-authored
the book “The Art of Software Security Testing,” together
with Chris Wysopal, Lucas Nelson, Dino D’ai Zovi, which
was published by Symantec Press, Nov 2006.

Together with IDT CEO Bernie Gauf and IDT FSO and
Sys Admin Guru Thom Garrett she wrote her latest book
“Implementing Automated Software Testing.”

E-mail: edustin@idtus.com

ABOUT THE AUTHORS
Tim Schauer graduated from the University of
Wisconsin-Madison in 1985 with a Bacholor
of Science degree in Physics and a B.S. in
Astro-physics. He received his commission in
the US Navy and worked as both the weapons
officer and communications officer on the
USS Shenandoah. After the Navy, Mr. Schauer
worked on Tactical Software for the SPY-
1A Phased Array radar at the Naval Surface
Weapons Center in Dahlgren, VA. He then
became testing lead and lab manager for the
SeaWolf Class / BSY-2 integration facility in
Moorestown, NJ. Later, he worked as senior
logistics analyst for US Pacific Command at
Camp Smith, Hawaii.

Tim Schauer has been working with Virtual
Servers since first being introduced to them at
Pacific Command (PACOM) in the late 1990’s.
He continued to develop virtual systems while
working at the San Diego Data Center for the
County of San Diego and Children’s Hospital
of Los Angeles. He has virtualized over 90% of
the Beaufort County, South Carolina, library’s
IT system, greatly reducing cost while increas-
ing productivity. Finally, Tim is currently working
on virtualizing a US Navy Tactical Weapons
System to facilitate ongoing ATRT automated
testing at the IDT facilities in Arlington, VA.

E-mail: tschauer@idtus.com
Phone: 843-473-5465

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

36 CrossTalk—July/August 2013

upcoming events

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

CrossTalk—July/August 2013 37

upcoming events

GFIRST 2013
25-30 August 2013
Grapevine, TX
http://www.us-cert.gov/GFIRST

AUTOTESTCON 2013
16-19 August 2013
Schaumburg, IL
http://www.autotestcon.com

APCOSEC 2013
9-11 September 2013
Yokohama, Japan
http://www.incose.org/newsevents/events/details.aspx?id=190

Defense Systems Acquisition Management Course
16-20 September 2013
Kansas City, MO
http://www.ndia.org/meetings/302E/Pages/default.aspx

Software and Supply Chain Assurance Forum
17-19 September 2013
McLean, VA
https://buildsecurityin.us-cert.gov/swa

(ISC)2 Security Congress 2013
24-27 September 2013
Chicago, IL
https://www.isc2.org/congress2013/default.aspx

World Congress on Engineering and Computer Science
23-25 October 2013
San Francisco, CA
http://www.conferencealerts.com/show-event?id=112271

16th Annual Systems Engineering Conference
28-31 October 2013
Arlington, VA
http://www.ndia.org/meetings/4870/Pages/default.aspx

OWASP AppSec USA 2013
18-21 November 2013
New York, NY
http://www.sourcesecurity.com/events/free-event-listing/owasp-
appsec-usa-2013.html

Upcoming Events

38 CrossTalk—July/August 2013

Upcoming Events

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk—July/August 2013 39

backtalk

Just a few weeks ago, I was notified that my
article submission for the 25th Anniversary Edi-
tion of CrossTalk was accepted—so some-
where in this issue, there is my scholarly article
about how we have progressed over the last
25 years. However, this BackTalk column is a
fitting end to the issue. It is more about where
we have digressed since 1988. After all, in
retrospect, it is easy to see where we made the
right choices. It is where we made the wrong
choices that few people wish to elaborate on.

In 1988, I was the proud owner of a really
high-quality video tape recorder, chocked full
of awesome features, complete with stereo
recording. It had a digital channel selector,
and could program up to 12 (that is right –
TWELVE!) future recordings. A high-quality
electronics manufacturer, Sony, made it. And it
was a Betamax. Arguably, a better product than
VHS—it had stereo and higher quality video—
but it was a losing battle.

Of course, I had a “backup” format for the
movies that I found really important—ones that
I paid money to buy, so that I could have a
high-quality movie that I could watch over and
over, for years and years to come. Yes, I owned
a LaserDisc. I had LaserDiscs of “The Wall” and
“Rocky Horror Picture Show.”	

Back in 1991, I graduated from Texas A&M
with my Ph.D. I took not one but two courses
on parallel algorithms and parallel sorting. It
was not a question of, “if we would be convert-
ed to parallel processing by 2010.” It was more
of a question of, “what kind of parallel architec-
ture would we all be using?” Choices included
the mesh, the cube, and the butterfly, just to
name a few. Granted, we now use multi-core,
multi-threaded machines, but few programmers
really know how to write code to truly take
advantage of parallelism. Instead of large-
scale parallelism, we now do parallelism “in the
small”—nothing at all like what we envisioned
back in the early 1990s.

Also in the early 1990s we thought that by
2000, there would really be only one pro-
gramming language used in the DoD, right?
Heck, I was a member of the Ada Government
Advisory Group (a.k.a. the Ada GAG—a horrible
acronym if there ever was one).

In the mid 1990s, I was convinced that the
3.5” floppy disk was eventually going to disap-
pear – the thin floppy was incapable of holding
enough information – so I made sure to back
up everything I had on the one medium that we
just knew would be around for years and years
to come—the Iomega Zip Drive.

By the year 2000 came along we decided
that the “single programming language” idea
was never going to work, so we decided to
agree on a common operating system instead. I
was on the working committee for the Defense
Information Infrastructure Common Operating
Environment (DIICOE). Bet you have not heard
of DIICOE in a while either, have you?

Even though I am the epitome of a die-hard
Mac user, for about 15 years, I used another
OS. What did I switch to? Linux, of course.
In the 1990s, we just knew that by the early
2000s, Linux would be the predominant oper-
ating system for both home and office.

Speaking of the Apple Macintosh, who would
have predicted that both Macs and PCs would
share the same chips? Over the years, I learned
and then taught 6800/68000 assembly lan-
guage, and also mastered the Power PC (PPC)
architecture. Now, my Mac runs on an Intel, and
using a virtual machine interface, it boots either
OS X, Windows 7 or Windows 8.

I only represent one lowly software engi-
neer—and the list of projects, technologies and
initiatives I have been on that are obsolete and
no longer part of the DoD is really long. One
could argue spectacularly long. So, this means I
have been a failure, right?

Well … no, to put it bluntly. In fact, almost
everything I have listed above actually contrib-

uted to progress in engineering and comput-
ing science. Ada is still used, and some of
the features it heralded became part of other,
newer languages. Parallel processing is still a
critical component of supercomputing. In fact,
it appears that Moore’s Law might apply to the
number of processors in a system. DIICOE
helped us standardize some critical components
of embedded operating systems, and helped
standardize some real-time operating system.
The Un*x OS is not extremely popular for home
computing, yet it runs a lot of servers, supercom-
puters, and large-scale systems. It is also the
basis for the Mac OSX operating system.

What about the 68000 and PPC architec-
tures? They are used in high-speed embed-
ded systems. The LaserDisc? The DVD simply
eclipsed it—higher capacity, smaller size,
cheaper technology, and better quality video.
Same with the Zip drive. It was great for its
brief time, but the non-moving technology
(and eventual greater capacity) of the USB
drive sounded its death knell. These were not
failures, just technologies that were eclipsed by
better technology. There is no shame in having
worked on a once cutting-edge technology that
becomes obsolete.

That is just the way progress is. Two
steps forward, one step back. Every great
new technology we have today is based on
something that preceded it. You cannot judge
progress by the number of technologies that
have failed and been replaced. You can only
say “What we have now is better than what
we had yesterday.”

Learn, improve, discard, and move on. I would
bet that every decent developer or software
engineer could point (usually with pride) to some
project they worked on that has been made ob-
solete by the steamroller of progress. And every
one of us has learned from the experience.

Progress marches on.
Just like CrossTalk.
Happy 25th Anniversary!

David A. Cook
Stephen F. Austin State University
cookda@sfasu.edu

Twenty-five Years of
the Wrong Choices!

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk / 517 SMXS MXDEB
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35, New Workloads
Coming Soon
 �Ground Theater
Air Control System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League
Baseball Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Contact Us:
Email: 309SMXG.SODO@hill.af.mil

Phone: (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

	Front Cover
	Table of Contents
	From the Sponsor
	CrossTalk and Software—Past, Present and Future: A Twenty-Five Year Perspective
	A Twenty-Five Year Perspective
	Is Something Missing From Project Management?
	New Software Metric to Complement Function Points: The Software Non-functional Assessment Process (SNAP)
	Improving Affordability: Separating Research from Development and from Design in Complex Programs
	Efficiencies of Virtualization in Test and Evaluation
	Upcoming Events
	BackTalk
	Back Cover

