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SCIENCE OF DECISION MAKING: A DATA-MODELING APPROACH 

 

 

1. INTRODUCTION 

 

 Peptide mass fingerprinting (PMF)-based identification algorithms using mass 

spectrometry (MS) data were developed in the early 1990s. One of the early PMF algorithms, 

SEQUEST (Yates Lab, The Scripps Research Institute; La Jolla, CA), was widely used by the 

scientific community to decipher the sequence information of peptides generated from tandem 

MS analysis. This software is commercially available and solely distributed by Thermo Fisher 

Scientific (Tewksbury, MA) (1,2). Later, other PMF algorithms were developed and reported in 

literature. These included Mascot  from Matrix Science, Inc. (Boston, MA) and open-source 

software such as the open mass spectrometry search algorithm (OMSSA) from the National 

Center for Biotechnology Information (Bethesda, MD) and X!Tandem from The Global 

Proteome Machine Organization, which is an online database (3–5). These algorithms assign a 

peptide sequence, along with a matching score of the experimental ion product mass spectrum, to 

a theoretical ion product mass that is derived from the protein sequences in a given proteome 

database. The resulting peptide-spectrum match (PSM) score is computed by either descriptive, 

interpretative, stochastic, or probabilistic modeling methods and are used to provide 

discrimination between true-positive (TP) and false-positive (FP) peptide identification (6). The 

aforementioned PMF algorithms have an inherent extensive computational time requirement that 

becomes cumbersome for high-throughput proteomic analysis. Therefore, there is a need to 

overcome such obstacles in data analysis procedure throughout the development of relatively 

rapid tools that are capable of identification and classification of microbes in near realtime 

settings.  

 

 The PMF algorithms create overlap between TP and FP peptide identifications 

(7), whereby the identified FP peptides lower the overall confidence for the identified TP 

peptides. Keller, et al. developed the PSM-scoring algorithm on the basis of machine learning 

methods such as linear discriminant analysis (8). This algorithm provides a higher confidence 

level in peptide identification because each spectrum is discriminated by weighing each vector 

feature and by providing a relative weight to that peptide MS spectrum. Many researchers use a 

decoy database that contains reversed protein sequences to score the FP peptide identification 

and, thereby, compute a false-discovery rate (FDR) score (9). This decoy database has two 

limitations: (a) the database search time is doubled, and (b) a suitable decoy database cannot be 

generated for all applications, especially when the researcher is not doing a targeted database 

search (10).  

 

 Gupta, et al. (2011) stated “that target-decoy approach (TDA) is not needed when 

accurate p-values of individual peptide-spectrum matches are available” (11). Moreover, when 

using a decoy database it is difficult to maintain the mass and amino acid composition of the 

target and decoy peptides. 
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 To overcome the issues of over-fitting a vector feature of the spectrum and the use 

of a decoy database, and to lower dynamically the FDR score, we have developed a parallel data 

analysis algorithm called “Merlin”. Merlin can be used to analyze PSM results from the 

SEQUEST and OMSSA algorithms, and it has the potential to analyze results from other PMF 

algorithms as well. 

 

 The Merlin algorithm employs multiple scores such as cross-correlation (XCorr), 

preliminary score (Sp), and mass differences coefficient (ΔCn) from SEQUEST. Merlin also 

incorporates the probability value (p-value) from PeptideProphet and the expected value (E-

value) from OMSSA to compute the most probable PSM for the identification and classification 

of an organism in the analyzed experimental sample. (The E-value is a parameter that describes 

the number of successes expected when searching a database of a particular size.) 

 

 In the future, we plan to incorporate other open- and closed-source PMF 

algorithms to provide a robust and automated PMF algorithm such as Merlin, which would be 

capable of improving the confidence score of identified peptides during the proteomics data 

processing. This algorithm could be integrated within the U.S. Army Edgewood Chemical 

Biological Center in-house-developed microbial identification tool, ABOid (12). 

 

 

2. METHODS 

 

2.1  Escherichia coli Strain O157:H7 Sample Preparation 

 

 The E. coli strain O157:H7 was grown in trypticase soy broth,  contained in an 

orbital shaker (125 rpm) at 37 °C, until the bacteria reached the late exponential phase 

(~10
8
 cfu/mL). The cell culture was stored at 4 °C until it reached fractionation. To isolate the 

secreted protein fractions, 30 mL of culture was centrifuged at 11,300×g for 1 h using a 

Beckman J2-MC centrifuge (Indianapolis, IN). The supernatant was decanted to separate it from 

the pellet. This supernatant, which contains the secreted proteins, is referred to as the secreted 

fraction. The pellet was resuspended in ~3.5 mL of 100 mM ammonium bicarbonate (ABC). 

This extracellular suspension was divided into three aliquots of approximately equal volume. 

The cell pellet extracellular samples were thawed and lysed by ultrasonication (25 s on and 5 s 

off for a total of 4 min) using a Branson Digital Sonifier (Danbury, CT). The lysate was 

centrifuged at 14,000 rpm for 20 min at 10 °C using a Beckman GS-15R centrifuge. Samples 

were frozen at –25 °C for up to 4 days. 

 

2.2 Bacterial Sample Processing 

 

 Samples were prepared for liquid chromatography (LC) tandem MS (LC–

MS/MS) in a similar manner to that previously reported by Jabbour et al. (13). Proteins were 

extracted from the secreted fractions by transferring each sample to a separate Microcon YM-3 

filter unit (Millipore, Billerica, MA) and centrifuging the samples at 14,100×g for  

20–30 min. The filters were each centrifuged three times at 14,000×g for 25 min, with a 200 µL 

ABC wash between centrifugations. 
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 The proteins in the retentate were denatured at 40 °C for 1 h with 270 µL of  

7.2 M urea and 30 µg/mL dithiothreitol in ABC. The urea was removed by centrifugation at 

14,100×g for 30–40 min. The retentate was washed three times using 150 µL ABC, followed by 

centrifugation at 14,100×g for 30–40 min using an Eppendorf centrifuge 5415C or 5415D 

(Eppendorf North America; Westbury, NY). The filter unit was then transferred to a new 

receptor tube and the proteins in the retentate were digested overnight at 37 °C with 5 µL 

sequencing-grade trypsin (Product No. 511A; Promega; Madison, WI) in 10 µL acetonitrile and 

240 µL ABC.  The tryptic peptides were isolated by centrifuging at 14,100×g for 20–30 min. 

 

2.3  LC–MS/MS Experiments 

 

 In a manner similar to that previously described by Jabbour et al. (13), the tryptic 

peptides were separated on a capillary column using the Dionex UltiMate 3000 (Sunnyvale, CA). 

The resolved peptides were then sprayed into a linear ion trap MS (LTQ XL; Thermo Scientific; 

San Jose, CA). The product ion mass spectra were obtained using the data-dependent acquisition 

mode with a survey scan, followed by performing an MS/MS evaluation on the top five most-

intense precursor ions. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Database Search and Data Analysis 

 

 A proteome database was constructed in a FASTA format derived from the E. coli 

O157:H7 strain Sakai genome obtained from the National Center for Biotechnology Information 

(NCBI) genomic database repository (http://www.ncbi.nlm.nih.gov, accessed August 14, 2012). 

The constructed proteome database included 115 protein sequences from all potential laboratory 

contaminants. The constructed proteome database also consisted of 5433 proteins that were used 

in this study. The targeted proteins in the proteome database were in silico digested using trypsin 

to perform enzymatic cleavage and to obtain the theoretical product ion spectra of all potential 

peptides. Then, the proteome database was indexed in FASTA format for compatibility with the 

examined algorithms (SEQUEST and OMSSA) listed in Table 1. 

 

 The experimental product ion spectra in *.RAW file format were obtained using 

the LTQ XL MS and converted into the mass-to-charge extensible markup language (mzXML) 

format using a file-conversion tool developed by Seattle Proteome Center at the Institute of 

System Biology (Seattle, WA) (14). Three replicate suspension samples analyzed on tandem 

MS/MS that resulted in 43501 MS/MS spectra were searched against the constructed proteome 

database according to the parameters listed in Table 1 and including two additional parameters: 

(a) mass tolerance of 2.50000 amu and (b) fragment ion tolerance of 1.00000 amu. 
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Table 1.  Protein Sequence In Silico Digestion Parameters 

Parameter Value 

FASTA database EC_Sakai.fasta 

FASTA index EC_Sakai.fasta.idx 

FASTA digest EC_Sakai.fasta.dgt 

Enzyme name Trypsin (KR) 

Mass range 600–3500 m/z 

Sequence length 5–35 

Mass type Monoisotopic 

Missed cleavage sites 2 

 

 

 The MS files (.RAW files) were submitted to SEQUEST. The same files that 

were converted into mzXML files were submitted to OMSSA for database searching. The output 

from the SEQUEST database, without any threshold cutoff, were submitted to the ABOid 

software to derive the probability score of peptides production ion spectra and then converted 

into a comma-separated file format (.csv) to concatenate the spectral files into one file.  The PSM 

results from the OMSSA database were also exported to a .csv file format. The .csv files 

generated from SEQUEST contain information such as the scan number, peptide, XCorr, Sp, ΔCn, 

RSp (rank score), M+H (molecular ion), protein name, and accession number. The .csv files 

generated by the OMSSA database contains information like scan number, peptide sequence, 

peptide mass, protein name and mass, accession number, E-value, and p-value. 

 

 For each analyzed sample, the .csv files resulting from the OMSSA and 

SEQUEST algorithms were also submitted through the Merlin algorithm to extract the common 

proteins identified previously. The common proteins, their weighing factors, and database 

parameters were submitted again to the ABOid software for identification and computation of 

the probability score. Peptide sequences with probability scores of 95% and higher were retained 

and used to generate a binary matrix of sequence-to-bacterium assignments. The binary matrix 

was populated by matching the peptides with corresponding proteins in the constructed proteome 

database and assigning a score of one for a match and zero for a mismatch. The columns in the 

binary matrix represent the proteome of bacteria and contaminants in the database, the rows 

represent identified tryptic peptide sequences that were obtained from tandem MS spectral 

processing. A sample microorganism is matched with a database bacterium by the number of 

unique peptides that remained after filtering of the degenerate peptides from the binary matrix. 

Verification of the classification and identification of candidate microorganisms is performed 

through hierarchical clustering analysis and taxonomic classification as shown by the ABOid 

software. The flowchart for the Merlin process is shown in Figure 1. 
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Figure 1.  Flow chart for Merlin algorithm. 

 

 

 Table 2 shows the total number of unique proteins observed from the two 

database-searching algorithms and the common proteins identified by the Merlin algorithm. 

Although the number of common proteins identified using Merlin was relatively lower than that 

of the other algorithms, the identification score for the bacteria was higher using the protein list 

from Merlin than that of the other algorithms.  

 

 

Table 2.  Database-Searching Comparison and Number of Unique Proteins Observed 

 

Sample ID Spectra SEQUEST OMSSA Merlin 

2011-02-10-02 13265 103 107 80 

2011-02-10-03 14728 82 92 68 

2011-02-10-05 15508 119 140 101 
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 Figure 2 shows a Venn diagram of the analyzed bacterial samples and the number 

of candidate proteins identified using the Merlin algorithm. The results showed an increase of 

common proteins in replicate analyses with Merlin, which was lower using the other algorithms 

individually. 

 

 

 
 

Figure 2. Venn diagram for Merlin results obtained from the replicate bacterial samples. 

 

 

4. CONCLUSIONS 

 

 This study showed that the use of a single PMF algorithm could result in a higher 

FDR value when compared with a combinatorial approach that concurrently retains spectral 

information from diverse individual algorithms. This conclusion was based on statistical 

confidence using Bayesian and Gaussian PMF algorithms to lower the FP rate and eliminate the 

data analysis bottleneck.  

 

 Additional studies are needed to incorporate the de novo analysis and identify the 

best-fitting peptides without using database-searching tools. The Poisson distribution should be 

used to match de novo output with peptides identified by database-searching tools. In addition, 

the incorporation of a receiver-operating characteristics curve will enable computation of the 

probability cutoff value for analysis. Such studies will expand the algorithms to provide 

enhanced selectivity.  
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ACRONYMS AND ABBREVIATIONS 

 

 

ΔCn  mass differences coefficient 

ABC  ammonium bicarbonate 

E-value  expected value 

FDR  false-discovery fate 

FP  false-positive (peptide identification) 

LC  liquid chromatography 

LC–MS/MS  liquid chromatography–tandem mass spectrometry 

MS  mass spectrometry 

mzXML  mass-to-charge extensible markup language 

OMSSA  open mass spectrometry search algorithm 

PMF  peptide mass fingerprinting 

PSM  peptide-spectrum match 

p-value  probability value 

RSp  rank score 

Sp  preliminary score 

TP  true-positive (peptide identification) 

XCorr  cross-correlation 
 



 

 

  



 

 

 



 

 

 


