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1 Executive Summary

The central theme of the work on this contract has been: 1) the development of techniques

and ideas for the control of the waveforms of single photons and, 2) the extension of the

concepts of nonlinear optics into the x-ray portion of the electromagnetic spectrum. Ad-

vances in the first portion of this work include: the first demonstration of use of spread

spectrum technology at the single photon level (Belthangady et al.); and in particular the

demonstration that it is possible to hide a single photon in an environment of a much higher

density of photons with the same spectral power density, and 2) The first demonstration

of the technique of chirp and compress, again at the level of a single photon (Sensarn et

al.). Key contributions and advances in the hard x-ray portion of this work include: 1)

The invention of a new technique for the generation of polarization entangled x-ray bipho-

tons (Shwartz et al.). 2) The demonstration of parametric down conversion in the Langevin

regime. 3) The first demonstration of x-ray optical mixing. (This work was part of a team

led by Ernie Glover. 4) And very recently, the first demonstration of second harmonic gener-

ation at x-ray wavelengths. Additional contributions include the demonstration of a greatly

simplified technique for obtaining temporally long biphotons (Chih-Sung Chuu), as well as

the suggestion of a second, backward wave technique that has not yet been demonstrated.

In the following sections we follow the AFOSR final report guideline and will not repeat

already published and well documented work. For completeness, in these cases, we will

include the published abstract. When the work is still underway, and not published or not

completely published, we expand and give details here.

We note that this work has been jointly supported by the US Army Research Office.

Before this contract began, we were jointly supported by DARPA, and the work described

here benefited from that interaction.

We begin by summarizing Publications and Presentations during this contract period.

3



2 Publications and Presentations

2.1 Publications

(1) Chinmay Belthangady, Chih-Sung Chuu, Ite A. Yu, G.Y. Yin, J. M. Kahn, and S. E.

Harris, “Hiding Single Photons with Spread Spectrum Technology,” Phys. Rev. Lett.,

104, 223601, (June 4, 2010).

(2) S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped

Biphotons,” Phys. Rev. Lett., 104, 253602, (June 25, 2010).

(3) S. Shwartz and S.E. Harris, “Polarization Entangled Photons at X-Ray Energies,” Phys.

Rev. Lett. 106, 080501, 2011.

(4) Chih-Sung Chuu and S.E. Harris, “ Ultrabright Backward Wave Biphoton Source”, Phys.

Rev. A, 83, 061803R, 2011.

(5) S. Shwartz, R.N. Coffee, J.M. Feldkamp, Y. Feng, J.B. Hastings, G.Y. Yin, and S.E.

Harris, “X-Ray Parametric Down-Conversion in the Langevin Regime”, Phys. Rev. Lett.,

109, 013602, (July 6, 2012).

(6) Chih-Sung Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of tem-

porally long, narrowband biphotons,” Appl. Phys. Lett., 101, Q51108 (2012).

(7) T. E. Glover, D. M. Fritz, M. Cammarata, T. K. Allison, Sinisa Coh, J. M. Feldkamp,

H. Lemke, D. Zhu, Y. Feng, R. N. Coffee, M. Fuchs, S. Ghimire, J. Chen, S. Shwartz,

D. A. Reis, S. E. Harris & J. B. Hastings, “X-ray and optical wave mixing, Nature, 488,

603, (29 August 2012).

(8) S. Shwartz, M. Fuchs, J. B. Hastings, Y. Inubushi, T. Ishikawa, T. Katayama, D. A. Reis,

T. Sato, K. Tono, M. Yabashi, and S. E. Harris,“X-Ray Second Harmonic Generation ”,

(submitted for publication).

(9) Steven Sensarn “Nonlocal Modulation and Dispersion ”, PhD dissertation, (May 2010).

(10) Chinmay Belthangady “Amplitude and Phase Modulation of Single Photons and Bipho-

tons”, PhD dissertation, (June 2010).

The paper “Polarization Entangled Photons at X-Ray Energies” was upgraded by the

reviewers from a PRA to Physical Review Letters, and the paper “Ultrabright Backward

4



Wave Biphoton Source” was selected by the editors for a Physics Viewpoint (spotlighting

exceptional research).

2.2 Presentations

(1) S. Shwartz and S. E. Harris, “Generation of Polarization Entangled Photons at X-Ray

Energies ”, SPRC 2010 Annual Symposium, Stanford, CA (September 13, 2010) (invited).

(2) S. E. Harris, “Modulation of Photons and Biphotons, Texas A&M, November 2010.

(3) Chih-Sung Chuu, Chinmay Belthangady, Ite A. Y, G.Y. Yin, J. M. Kahn, and S.E. Har-

ris, ”Spread Spectrum Technology with Single Photons and Slow Light, SPIE Photonics

West, San Francisco, CA (January 22-27, 2011) [invited].

(4) Chih-Sung Chuu, Chinmay Belthangady, Ite A. Y, G.Y. Yin, J. M. Kahn, and S.E.

Harris, Hiding Single Photons with Spread Spectrum Technology, 42nd Annual Meeting

of the Division of Atomic, Molecular,and Optical Physics (APS-DAMOP-2011), Atlanta,

GA (June 13, 2011).

(5) S. Shwartz and S. E. Harris, ”Polarization Entangled Photons at X-Ray Energies”, OSA

Topical Meeting on Nonlinear Optics (NLO), Kauai, HI (July 17, 2011).

(6) Chih-Sung Chuu and Steve Harris, ”Ultra-bright Backward Wave Biphoton Source”,

OSA Topical Meeting on Nonlinear Optics (NLO), Kauai, HI (July 17, 2011).

(7) S.E. Harris, Modulation of Photons and Biphotons, OSA Topical Meeting on Nonlinear

Optics (NLO), Kauai, HI (July 17, 2011) [plenary].

(8) S. Shwartz, ”X-ray Nonlinear Optics in Crystals ”, LCLS/SSRL users’ meeting SLAC,

CA (2011) (Invited).

(9) S. Shwartz, R. N. Coffee, J. M. Feldkamp, Y. Feng, J. B. Hastings, G. Y. Yin, and

S. E. Harris, ”X-Ray Parametric Down-Conversion in The Langevin Regime”, Winter

Colloquium on the Physics of Quantum Electronics (PQE), Snowbird, Utah (January

2012) (Invited).
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(10) Chih-Sung Chuu,,Generation and Modulation of Temporally Long Single Photons and

Biphotons, Physics colloquium, Physics Department, National Tsing Hua University,

Hsinchu, Taiwan, February 22, 2012.

(11) Chih-Sung Chuu,, Manipulating the wavepackets of single photons and biphotons,

Physics colloquium, Physics Department, National Chung Cheng University, Chiayi, Tai-

wan, March 21, 2012.

(12) S. Shwartz and S. E. Harris, ” Parametric Down-Conversion at X-Ray Wavelengths”,

International Workshop on Atomic Physics 2012, Dresden, Germany (November 2012)

(Invited).

(13) Chih-Sung Chuu,, Shaping single photons and biphotons, Colloquium, Electrophysics

Department, National Chia Tung University, Hsinchu, Taiwan, November 15, 2012.

(14) Chih-Sung Chuu,,Shaping single photons and biphotons, Colloquium, Physics Depart-

ment, National Taiwan Normal University, Taipei, Taiwan, December 19, 2012.

(15) Chih-Sung Chuu Shaping single photons and biphotons, Colloquium, Physics Depart-

ment, National Cheng Kung University, Tainan, Taiwan, January 4, 2013.

(16) Chih-Sung Chuu, Shaping single photons and biphotons, Colloquium, Institute of

Physics, National Chia Tung University, Hsinchu, Taiwan, January 3, 2013.

(17) S. Shwartz, M. Fuchs, J. B. Hastings, Yuichi Inubushi, T. Ishikawa, T. Katayama, D.

A. Reis, T. Sato, K. Tono, M. Yabashi, and S. E. Harris, Second Harmonic Generation at

X-Ray Wavelengths, OSA Topical Meeting on Nonlinear Optics, Kona, HI (July 2013).

(Invited)

(18) S.E. Harris “Fifty Years of Parametric Down Conversion: From Microwaves to x-rays,

CLEO-QELS, San Jose , CA, (June 2013 [plenary]).

2.3 Patent Disclosure

“Ultrabright long biphoton generation with non-linear optical material”, S11-432/US–PID:18566

6



3 Abstracts of Published Papers

3.1 Hiding Single Photons with Spread Spectrum Technology

Authors: Chinmay Belthangady, Chih-Sung Chuu, Ite A. Yu, G.Y. Yin, J.M. Kahn, and

S.E. Harris

We describe a proof-of-principal experiment demonstrating the use of spread spectrum

technology at the single photon level. We show how single photons with a prescribed tem-

poral shape, in the presence of interfering noise, may be hidden and recovered.

3.2 Generation and Compression of Chirped Biphotons

Authors: S. Sensarn, G. Y. Yin, and S. E. Harris

We describe an experiment demonstrating the radarlike technique of chirp and compress.

Chirped biphotons are generated using a quasi-phase-matched nonlinear crystal where the

phase-matched frequency varies linearly with position. Sum frequency generation is used to

measure the amplitude of the biphoton wave function. As compared to a nonchirped crystal,

compression and an increase in summing efficiency of a factor of 5 is observed.

3.3 Polarization Entangled Photons at X-Ray Energies

Authors: S. Shwartz and S.E. Harris

We show that polarization entangled photons at x-ray energies can be generated via

spontaneous parametric down-conversion. Each of the four Bell states can be generated by

choosing the angle of incidence and polarization of the pumping beam.

3.4 Ultrabright Backward Wave Biphoton Source

Authors: Chih-Sung Chuu and S.E. Harris

We calculate the properties of a biphoton source based on resonant backward-wave spon-

taneous parametric down conversion. We show that the biphotons are generated in a single

longitudinal mode having a subnatural linewidth and a Glauber correlation time exceeding

65 ns.
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3.5 A miniature ultrabright source of temporally long, narrow-
band biphotons

Authors: Chih-Sung Chuu, G. Y. Yin, and S. E. Harris,

We demonstrate a miniature source of long biphotons utilizing the cluster effect and

double-pass pumping in a monolithic doubly resonant parametric down-converter. We obtain

a biphoton correlation time of 17.1ns with a generation rate of 1.1 × 105 biphotons/(s mW)

and an estimated linewidth of 8.3 MHz.

3.6 X-Ray Parametric Down-Conversion in the Langevin Regime

Authors: S. Shwartz, R.N. Coffee, J.M. Feldkamp, Y. Feng, J.B. Hastings, G.Y. Yin, and

S.E. Harris

We experimentally and theoretically study the coincidence count rate for down-converted

x-ray photons. Because of photoionization, parametric down-conversion at x-ray wavelengths

generally involves loss and the theoretical description requires a Langevin approach. By

working in a transmission geometry (Laue) rather than in the Bragg geometry of previ-

ous experiments, we obtain an improvement in the signal-to-noise ratio of 12.5, and find

agreement between experiment and theory.

3.7 X-ray and optical wave mixing

Authors: T. E. Glover, D. M. Fritz, M. Cammarata, T. K. Allis, Sinisa Coh, J. M. Feldkamp,

H. Lemke, D.Zhu, Y. Feng, R. N. Coffee, M. Fuchs, S. Ghimire, J. Chen, S. Shwartz, D. A.

Reis , S.E.Harris, and J. B. Hastings

Lightmatter interactions are ubiquitous, and underpin a wide range of basic research fields

and applied technologies. Although optical interactions have been intensively studied, their

microscopic details are often poorly understood and have so far not been directly measurable.

X-ray and optical wave mixing was proposed nearly half a century ago as an atomic-scale

probe of optical interactions but has not yet been observed owing to a lack of sufficiently

intense X-ray sources. Here we use an X-ray laser to demonstrate X-ray and optical sum-

frequency generation. The underlying nonlinearity is a reciprocal-space probe of the optically
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induced charges and associated microscopic fields that arise in an illuminated material. To

within the experimental errors, the measured efficiency is consistent with first-principles

calculations of microscopic optical polarization in diamond. The ability to probe optical

interactions on the atomic scale offers new opportunities in both basic and applied areas of

science

4 X-Ray Second Harmonic Generation

Our work on second harmonic generation has now been submitted for publication . The

authors of the submitted publication are: S. Shwartz, M. Fuchs, J. B. Hastings, Y. Inubushi,

T. Ishikawa, T. Katayama, D. A. Reis, T. Sato, K. Tono, M. Yabashi, S. Yudovich, and

S. E. Harris. An excerpt and summary of this paper follows:

4.1 Introduction

This work reports experimental evidence for coherent nonlinear x-ray interaction at intensi-

ties on order of 10 16 W/cm2, where the corresponding electric field approaches the atomic-

field strength. Using a 1.7 Angstrom pump beam we observed second harmonic generation in

diamond without permanent damage. The generated second harmonic is of order ten times

the background radiation, scales quadratically with pump pulse-energy, and is generated over

a narrow phase-matching condition. Our observation of a nonlinear effect at intensities that

are several orders of magnitude higher than the radiation damage threshold in the visible

regime forms a basis for more general nonlinear experiments in the area of x-ray nonlinear

optics.

It is now 40 years since Freund and Eisenberger and colleagues described a theory for the

nature of a solid-state dense plasma nonlinearity that is operative at x-ray wavelengths. This

nonlinearity is nonlocal and of the second order and may be observed in centro-symmetric

materials but requires a nonuniform electron density. Because of the small magnitude of this

nonlinearity, to date, all experiments have been based on parametric down conversion from

the vacuum. The key factor for those experiments is the large number of vacuum fluctuation

modes at x-ray wavelengths. Thus, although the parametric gain is very small, coincidences
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of the generated signal and idler photons can be measured even when the pump source is an

x-ray tube. Recently, Glover and colleagues have demonstrated the nonlinear wave mixing of

x-ray and near-infrared beams using an x-ray FEL. However, the efficiency in this depends

on the intensity of the infrared laser and not on the intensity of the x-ray laser. On the

other hand, the high peak power an x-ray FEL is critical for the observation of most x-ray

coherent nonlinear effects.

Here we report the phase-matched second harmonic generation at hard x-ray wavelengths.

Using a 1.7 Å(7.3 keV) pump beam from the SACLA FEL at an intensity of 1016 W/cm2

the observed second harmonic is generated in a crystal of diamond. The observed second

harmonic (SH) signal is about 1 photon every 150 x-ray laser shots each containing about a

billion 7.3 keV photons focused to a micron-sized spot on the crystal. The second harmonic

beam is generated in a narrow angular range of 0.2 mrad full-width at half maximum

(FWHM) and scales quadratically with pump-pulse energy.

The weakness of the process, even with focused x-ray fields on the order of the atomic-

field strength, requires careful attention to reduce or eliminate potential backgrounds. In

particular, we designed the experiment to suppress the off-axis second harmonic in the pump

beam generated in the free-electron laser process itself as well as well parasitic scatter of

the fundamental pump. At hard x-ray wavelengths, phase matching can be achieved by

using the periodic nature of the electron density in crystals. Phase matching occurs when

~2kω + ~G = ~k2ω where are the internal wavevectors of the pump and second harmonic beams

respectively and ~G is a reciprocal lattice vector. Because of the finite dispersion, the angles

between the beams and the atomic planes differ slightly from the linear Bragg diffraction

condition of the second harmonic. However, the expected offsets are small compared to both

the divergence of the focused pump beam and the measured width of the SH signal. This

presents a challenge for distinguishing SHG from the linear Bragg diffraction of the residual

SH in the pumping beam.
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Figure 1: Schematic of the SHG experimental setup. X-ray pulses from the SACLA free elec-
tron laser are incident a silicon (111) channel cut monochromator at 10Hz. The monochroma-
tor selects a 7.3 keV pump-beam with 1eV bandwidth while rejecting a substantial fraction
of the second harmonics. A pair of Kirkpatrick Baez mirrors focuses the beam to about 1.5
microns while reducing the third harmonic contamination. The nonlinear medium is a (111)
cut diamond crystal placed in the focus and set for phase matching as indicated in the phase
matching diagram (bottom). The phase matching is achieved by using the (220) atomic
planes; kω and k2ω are the wave vectors of the pump and the generated second harmonic
respectively. G is the reciprocal lattice vector orthogonal to the (220) atomic planes. We
control the intensity of the pump by using a set of Al filters before the sample.
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4.2 Experiment

The experiment was performed at BL3 SPring-8 Angstrom Compact free electron laser

(SACLA) in Hyogo, Japan. The experimental setup is shown schematically in Fig 1.

In order to observe the SHG generated in the crystal extreme care was required to sup-

press backgrounds from residual second harmonic contribution in the beam and parasitic

scattering of the fundamental into the detector as well as orient the sample and detector. A

Si (111) double-crystal monochromator is used to select a narrow (1eV) bandwidth pump-

beam centered at 7.3 keV photon energy from the FEL. While even harmonics are forbidden

by symmetry from being radiated on axis, there is a finite SH generated slightly off-axis

due to the highly relativistic motion of the electrons in the undulator. The monochromator

suppresses the second harmonic by more than four orders of magnitude because the second

order Si (222) Bragg peak is very nearly forbidden. After monochromatization the beam

is focused by a pair of grazing incidence mirrors in the Kirkpatrick-Baez (KB) geometry to

about 1.5 m FWHM spot at the sample (assuming a Gaussian beam, the Rayleigh range is

30 mm and the divergence is 41 rad). A set of thin Al filters before the KB mirrors are used

to attenuate the fundamental while having negligible effect on the residual harmonic. The

pulse energy after the filters is measured on a shot-by-shot basis. The sample is a 0.48 mm

thick (111) cut diamond single crystal and is placed in the focus of the x-ray beam. The

sample is oriented near the diffraction condition for the (220) planes in the symmetric Laue

geometry with the polarization of the pump in the scattering plane. In this geometry both

diffracted residual second harmonic and the generated second harmonic transmit through

the crystal. Scattered photons are detected by a YAP:Ce scintillation detector with energy

resolution of 30. We choose to phase-match with the (220) reciprocal lattice vector. Impor-

tantly, this corresponds to the (110) planes for the fundamental which is strictly forbidden

in the face-center cubic structure, and thus elastic scattering of the pump in the direction of

the second harmonic generation is very highly suppressed. Nonetheless, as we expect average

count rates of much less than a single second harmonic photon per FEL pulse, additional

suppression is necessary. Note that the detector cannot distinguish a single SH photon from

two fundamental photons on any given pulse. Moreover, the probability of measuring two

12



photons per pulse also scales quadratically with incident pulse energy (as is the expected

SHG signal), so the suppression of stray scattered fundamental photons is critical. We use

slits and a set of Al foils between the sample and the detector to restrict the solid angle

of the detector and filter out background photons at the fundamental wavelength. The Al

filters attenuate the background at the fundamental wavelength by a factor of 106, while the

SHG beam is attenuated by a factor of 6.75.

4.3 Results

Since the maximum intensity in our experiment was about 1016 W/cm2, we first checked for

damage by measuring the elastic scattering of the (220) peak at 7.3 KeV at the maximum

pulse energy and observed no changes in the peak reflectivity or in the rocking curve. We

conclude that the crystal structure did not change during the exposure to the XFEL beam.

A histogram of detector counts as a function of photon energy is shown in Fig. 2a at

full intensity (no filter before the diamond crystal) and at the peak of the phase matching

condition for 24000 shots. The energy bin width is 1.39 keV. The data of Fig 2a consists

primarily of two peaks corresponding to photon energies near the fundamental and SH. There

is a small possibility of detected third harmonic photons as well. If we apply upper and lower-

level thresholds for defining a SH photon as 10.2−19 KeV (+/- 30% of 14.6 keV), we measure

153 SH photons in 24000 pulses ( 0.00640.0005/pulse), compared to 35 fundamental photons

in 5.19.5 keV (0.00150.0002/pulse). This level is low enough that contamination from the

wings of the fundamental (or third harmonic) is small, and the probability of two fundamental

photons in a single pulse is negligible.

In order to determine whether the second harmonic photons are generated in the crystal or

due to elastic scattering, We insert a 0.0025 mm Al filter before the diamond crystal in order

to determine whether the SH photons are generated in the crystal or due to elastic scattering

from the residual harmonic content in the incident beam. The absorption coefficients for Al

at the fundamental and SH are 168.0 cm-1 and 21.8 cm-1 corresponding to transmission

through the pre-filter of 0.43 and 0.9 respectively. The resulting histogram is plotted in Fig.

2b. In this case we count only 7 second harmonic photons in 6000 pulses, 207 % of what

13



one would expect if the signal was solely from undulator SH. This indicates that most of

the signal at the highest pump pulse-energy is SH generated in the crystal. In fact, if the

SH signal scales quadratically with pulse energy, than the signal upon inserting the Al filter

should be reduced by a factor of slightly more than five to 18.5%.

To better quantify the background we repeat the measurement with 0.025 mm, 0.1 mm,

and 0.2 mm thick Al filters and with no filter. Fig. 3a shows the SH count rate as a function

of the average of the pump pulse-energy when the crystal is detuned by -57 rad from the

peak of the phase matching condition. Fig 3b shows the rocking curve of the SHG process,

namely, the SH count rate as a function of the angular deviation of the crystal from the

phase matching angle taken without filters. Consistent with the data on the peak of the

phase matching condition, the SH signal at -57 rad (Fig 3a) upon inserting the 0.025 mm

pre-filter is reduced to 188 % of the value without the filter. It is clear from Fig. 3a that the

count rates at the two lowest pulse energies are equal within the statistical error. We use

this to estimate the residual SH assuming that it dominates the measurement at the lowest

pulse-energy. After correcting for the filter transmission, we find that the residual harmonic

corresponds to 0.00540.0030 counts/pulse. Thus the SHG from the crystal is about a factor

of ten higher than the background at the highest intensity. Assuming that the background

is negligible at all angles, the width of the curve represents the width over which the second

harmonic is phase matched. We plot a Gaussian fit and find the FWHM of the rocking curve

is about 180 µ rad.

In summary, we report experimental evidence for phase matched SHG at hard x-ray

wavelengths. The magnitude of the generated SH energy scales as the square of the pump

pulse energy, and its magnitude peaks at the calculated phase matching angle. The largest

observed SHG efficiency is 5.8 × 10−11, with an observed count rate that is more than ten

times above the background noise. These results advance our understanding of coherent

x-ray matter interactions at high intensity and form the basis for more general experiments

on x-ray nonlinear processes. For example, future experiments might explore x-ray phase

conjugation, squeezing, and the generation of polarization entangled x-ray photons.

14



!
"
#
$
%&
'(
$
')
*
+
+
+
',
#
-&
.
&'
,
.
/'
0
($
'

!
"
#
$
%&
'(
$
'1
+
+
+
',
#
-&
.
&'
,
.
/'
0
($
'

23"%"$'.$./45'67.89'

Pre-filter absent 

609!6:9!

23"%"$'.$./45'67.89'

Pre-filter present 

Figure 2: Photon-energy histograms of the measured signal at the peak of the phase-matching
condition. The pump-photon-energy is 7.3 keV and the SHG photon-energy is 14.6 keV. The
energy resolution of the detector is 30 %. The data in part (a) are taken with no attenuation.
The data in part (b) are taken with a 0.025 mm Al filter before the diamond crystal (the
transmission through the filter is 0.43 and 0.9 at 7.3 keV and at 14.6 keV respectively).
In Fig. 2b the second harmonic count rate is 20 percent of what would be expected if it
resulted from the undulator alone. Note that the number counts per pulse is small, and the
second harmonic counts are larger than the counts at the fundamental frequency; thus, the
contribution from two simultaneous fundamental photons is negligible.
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Figure 3: Scaling of second harmonic rate with average pump pulse-energy and deviation
angle. (a) Detected second harmonic signal as a function of input pulse-energy and measured
at angular deviation of -57 µ rad from the SHG phase-matching angle. The pulse-energy
is varied by inserting thin Al filters in the beam before the diamond crystal. Each of the
measured data points represents an average over 6000 pulses. The dashed blue curve is
calculated from the theory and scaled vertically by a factor of 1.48. The second harmonic
contribution at the higher pulse energies (two points) is dominated by SHG, while at the
lower pulse energies the residual second harmonic contamination dominates. (b) Normalized
second harmonic signal as a function of the angular deviation of the diamond crystal from
the phase matching angle. The data in part (b) are obtained with no attenuation before the
diamond crystal. The dashed curve is a Gaussian fit to the experimental data. The FWHM
of the rocking curve is 180 µ rad. The peak point represents the average signal measured
over 2400 pulses. The other points represent the average signal measured over 6000 pulses.
In both plots, the vertical error bars indicate the counting statistics.
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5 Temporal and Spatial Correlation of x-ray biphotons

It is the intent of this Section to derive and summarize the formulli for the temporal and

spatial correlations that are inherent to the spontaneous downconversion of an incident near-

monochromatic x-ray pumping beam. When combined with further numerical work, it is

likely, but not certain that we will submit the work of this section for publication. This

section was written by S.E. Harris.

We begin by developing the coupled equations for this inherently non-collinear problem.

To start, we separate the driving term of the wave equation into a polarization P that is

linear in the driving e-field and a driving current density J that is quadratic in the driving

e-fields. With ~∇⊥ = ~ax
∂
∂x

+ ~ay
∂
∂y
, the wave equation in free space is

∂2E
∂z2

+∇2
⊥E − 1

c2
∂2E
∂t2

= µ0
∂2P
∂2t

+ µ0
∂J
∂t

. (5.1)

With r = {x, y}, and q = {kx, ky}, we Fourier Transform Eq. (1) so that E(z, x, y, t) →
Ẽ(z, kx, ky, ω), P(z, x, y, t) → P̃ (z, kx, ky, ω) and J (z, x, y, t) → J̃(z, kx, ky, ω). For example,

E(z, r, t) =
∫ ∞

−∞

∫ ∞

−∞
Ẽ(z,q, ω) exp[−i(ωt− q · r)]dqdω (5.2)

We substitute Eq.(2) into Eq.(1) and write the linear portion of the frequency domain dipole

moment in terms of the refractive index P̃ (ω) = ǫ0[n(ω)
2−1]Ẽ(ω). With k2(ω) ≡ ω2n2(ω)/c2,

the Fourier transform of Eq.(1) is

∂2Ẽ

∂z2
− (k2

x + k2
y)Ẽ + k2(ω)Ẽ = −iµ0ωJ̃. (5.3)

Eq.(3) is exact and contains dispersion to all orders.

It is often the case that the electromagnetic fields vary slowly in the z-direction as com-

pared to the x-ray wavelength. It is then useful to the change variable from

Ẽ = E(z) exp(ikzz) (5.4)

J̃ = J(z) exp(ikzz)

With kx
2 + ky

2 + kz
2 = k2(ω) = ω2n(ω)2/c2, and assuming that ∂2E/∂z2 << kz∂E/∂z we

obtain the equation for the slowly varying Fourier components of the electromagnetic fields.
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With the impedance η(ω) =
√

(µ0/ǫ0)n(ω), and an angle of propagation θz with regard to

the z axis, we have

cos(θz)∂E/∂z = −η

2
J (5.5)

In the following we will assume that the signal and idler fields are described by the proto-

type plasma nonlinearity as first described by Levine and Eisenberger []. This nonlinearity is

dependent on whether the various fields are polarized in, or out, of the plane of incidence [],

and generally leads to the generation of polarization entangled photons []. This nonlinearity

satisfies detailed balance, so that with ζ(ωs, ωi, ωp) ≡ ζ , J̃s = ωsζẼpẼi
∗
, J̃i = ωiζẼpẼs

∗
, and

J̃p = −ωpζẼsẼi. Following the transformation of Eq.(4), the nonlinearity as it appears in

the first of the coupled S.V.E.A. equations is Js = ωsζEpEi
∗ exp(i∆kzz) where

∆kz = kpz − (ksz + kiz) (5.6)

The coupled S.V.E.A. equations for the signal, idler, and pump fields are

cos(θs)
∂Es

∂z
+ αsEs = −ωsηsζ

2
EpEi

∗ exp(i∆kzz)

cos(θi)
∂Ei

∂z
+ αiEi = −ωiηiζ

2
EpEs

∗ exp(i∆kzz)

cos(θp)
∂Ep

∂z
+ αpEp =

ωpηpζ

2
EsEi exp(−i∆kzz) (5.7)

With the loss at all frequencies taken as zero, and with θ as the angle with the z-axis these

equations satisfy the photon conservation condition

cos(θs)

[

1

ωs

d

dz

( |Es|2
2ηs

)]

= cos(θi)

[

1

ωi

d

dz

( |Ei|2
2ηi

)]

=

− cos(θp)

[

1

ωp

d

dz

( |Ep|2
2ηp

)]

(5.8)

5.1 Coupled Operator Equations

We work in the Heisenberg-Langevin picture and assume that the pumping field is indepen-

dent of z, and convert Eq.(7) from E-field to operator notation bi. So that the right hand
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side of each of Eqs.(7) is the same, we take Ei ∼
√

ωiηi/ cos(θi) bi. The coupled operator

equations for the Fourier components are then

∂bs
∂z

+
αs

cos θs
bs = κb†i exp[i∆kzz] +

√

2αs

cos θs
fs,

∂b†i
∂z

+
αi

cos θi
b†i = κ∗bs exp[−i∆kzz] +

√

2αi

cos θi
f †
i . (5.9)

Here, with r = 1/
√

cos(θs) cos(θi) cos(θp), the coupling coefficient is κ = rζ
2

√
ωsωiωpηsηiηp.

Before proceeding with the solution, we transform Eqs (9) to constant coefficients by bs =

as exp(i∆kzz/2) and b†i = a†i exp(−i∆kzz/2). We then have

∂as
∂z

+

(

αs

cos θs
+ i

∆kz
2

)

as = κa†i +

√

2αs

cos θs
fs,

∂a†i
∂z

+

(

αi

cos θi
− i

∆kz
2

)

a†i = κ∗as +

√

2αi

cos θi
f †
i (5.10)

The operators a(z,q, ω) are the coarse grained annihilation operators with commutator

[

aj(z1,q1, ω1), a
†
k(z2,q2, ω2)

]

=
1

(2π)3
δ(z1 − z2)δ(q1 − q2)δ(ω1 − ω2). (5.11)

They are normalized so that the signal and idler count rates per area are 〈a†s(r, t)as(r, t)〉 and
〈a†i(r, t)ai(r, t)〉 respectively. The fs(z,q, ω) and f †

i (z,q, ω) are the Langevin noise operators,

and satisfy

[

fj(z,q, ω), f
†
k(z

′,q′, ω′)
]

=
1

(2π)3
δj,kδ(z − z′)δ(q − q′)δ(ω − ω′). (5.12)

We have shown numerically that the commutator, Eq.(11) is conserved for all z. If the

loss at both the signal and idler frequencies is zero, then the Langevin terms may be taken

as zero, while still preserving the commutator. But when the loss is not zero these terms

are essential for obtaining the correct generation rates at the signal and idler, as well as the

coincidence count rate.
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5.2 Solution

With L as the crystal length we write the solution of Eq. (10) in terms of a matrix ¯̄M and

the exponential of this matrix exp
(

− ¯̄ML
)

¯̄M =

(

αs + i∆kz/2 κ
κ αi − i∆kz/2

)

and

exp
(

− ¯̄ML
)

=

(

A B
C D

)

(5.13)

The solution of Eq. (10) is

[

as(L)

a†i (L)

]

= exp
(

− ¯̄ML
)

[

as(0)

a†i (0)

]

+

∫ L

0

exp
(

− ¯̄M(s− L)
)

[

fs(s)

f †
i (s)

]

ds (5.14)

Expanding

as(L) = Aas(0) +Ba†i(0) +

∫ L

0

E(s)fs(s)ds+

∫ L

0

F (s)f †
i (s)ds

a†i (L) = Cas(0) +Da†i (0) +

∫ L

0

G(s)fs(s)ds+ (5.15)

∫ L

0

H(s)f †
i (s)ds

where

E(s) =
√
2αs

[

1 0
]

· exp
[

¯̄M(s− L)
]

·
[

1
0

]

F (s) =
√
2αi

[

1 0
]

· exp
[

¯̄M(s− L)
]

·
[

0
1

]

G(s) =
√
2αs

[

0 1
]

· exp
[

¯̄M(s− L)
]

·
[

1
0

]

H(s) =
√
2αi

[

0 1
]

· exp
[

¯̄M(s− L)
]

·
[

0
1

]

(5.16)
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5.3 Signal and idler count rates

The quantities of interest, that is the generation rates, coincidence rates, and the temporal

and spatial correlation functions may all be written in terms of the frequency domain func-

tions that are defined in Eqs(15) and (16). The rate Rs [photons/(sec area)] of generation

of signal photons is given by Rs = 〈a†s(r, t)as(r, t)〉. We Fourier transform from t → ω,

x → kx, and y → ky, and use Eq.(15) and Eq.(16), as well as the commutators of Eq.(11)

and Eq.(12). With some algebra one obtains

〈a†s(t, r)as(t, r)〉 =
1

(2π)3

∫

ω

∫

q

|B|2dωdq +
1

(2π)3

∫

ω

∫

q

∫ L

0

|F (s)|2dωdqds (5.17)

Similarly, the generation rate Ri [photons/( sec area)] at the idler wavelength is

〈a†i(t, r)ai(t, r)〉 =
1

(2π)3

∫

ω

∫

q

|C|2dωdq +
1

(2π)3

∫

ω

∫

q

∫ L

0

|G(s)|2dωdqds (5.18)

Because of the loss, the generation rate at the signal, may or may not, be equal to that at

the idler wavelength. We assume a plane wave pump beam with a projected area on the

x-y plane Ap; so that the total count rate at either the signal or the idler is obtained by

multiplying by Ap. But note, that since the square of the coupling coefficient in Eq. (10) is

inversely proportional to Ap, the total generated count rate is independent of this area.

From their definitions in Eq.(15) we see that when the loss at the signal frequency is equal

to zero, the quantity |A|2 = |A(ω, kx, ky)|2 is the power gain Gs at the signal wavelength.

The standard quantum limit requires that the count rate at the signal, i.e., the noise per

temporal and angular bandwidth at the signal frequency, be equal to Gs(ω)− 1. With the

noise given by Eq.(17), we require that when αs = 0,

|A|2 − 1 = |B|2 +
∫ L

0

|F (s)|2ds (5.19)

Similarly, when αi = 0,

|D|2 − 1 = |C|2 +
∫ L

0

|G(s)|2ds (5.20)

We have numerically verified that the quantities A.....H satisfy Eqs.(19) and (20).
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5.4 Correlations and coincidence counts

Assuming two ideal detectors each with an area A that is larger than that of the pumping

beam, then if the first detector clicks at time t1 and position r1 = {x1, y1}, the probability

of the second detector clicking at time t2 = t1 + τ and position r2 = r1 + µ, is given by the

Glauber correlation function G(2)

G(2)(τ, µ) = 〈a†s(t2, r2)a†i (t1, r1)ai(t1, r1)as(t2, r2)〉 (5.21)

To evaluate G(2)(τ, µ), we Fourier transform, use Wick’s theorem, Eqs. (15) and (16) and

the commutators of Eqs (11) and (12). With q = {kx, ky}, it is useful to form the Fourier

domain function

φ(ω,q) = B∗D +

∫ L

0

F ∗(s)H(s)ds (5.22)

With considerable algebra we obtain

G2(τ) =

(

1

2π

)4 ∫

q

∣

∣

∣

∣

∫

ω

φ(ω,q) exp(iωτ)dω

∣

∣

∣

∣

2

dq+RsRi (5.23)

The background (or accidental coincidence count rate RsRi is the result of signal and idler

counts that accidentally arrive within the same temporal window. Most often it is small as

compared to the first term. The coincidence count rate per area [photons/(sec area)] is

∫

G(τ)dτ =

(

1

2π

)3 ∫

ω

∫

q

|φ(ω,q)|2 dωdq (5.24)

We may also evaluate the spatial correlation of the incident photons. For example if x2 =

x1 + µ, then with φ = φ(ω, kx, ky),

G2(µ) =

(

1

2π

)4 ∫

ω

∫

ky

∣

∣

∣

∣

∫

kx

φ exp(−ikxx)dkx

∣

∣

∣

∣

2

dkydω (5.25)

As a result of the much wider angular aperture in the out of plane dimension y, the correlation

distance in this direction will be much narrower than in the in-plane dimension.
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5.5 ∆kz in the Laue geometry

In the Laue geometry as described here, the input and output planes of the diamond crystal

are normal to the z-axis and the monochromatic pump is in the x-z plane. We phase match

using the (220) atomic planes with the reciprocal lattice k vector ~G in the direction of the

x-axis. Denoting the magnitude of the k-vectors of the signal, idler and pump as ks, ki,

and kp, the magnitude of the Bragg angle θB is arcsin (G/2kp). The monochromatic pump

propagates in the x-z plane at angle θp = −(θB +∆), where ∆ is most often less than a few

mr. The phase matching angles of the signal θs and the idler θi are also in the x-z plane and

are determined by the solution of ~ks + ~ki = ~kp + ~G. For example, for a pump at 18 Kev the

magnitude of the Bragg angle is .276 radians. For ∆ = 1 mr, θp = −.277 radians, θs = .244

and θi=.308 radians, respectively.

With the phase matching angles of the central rays determined and denoted by θs and θi,

we define kpz0 = kp cos(θp), ksx0 = ks sin(θs) and kix0 = ki sin(θi); we take ksy0 = kiy0 = 0

and require that the sum of the tangential k-vectors in the x-y plane is zero. (For example,

kpx + ksx + kix + G = 0.) Noting that kpz0 = ksz0 + kiz0, the k-vector mismatch in the

z-direction is then

∆kz = kpz0 −
√

k2
s − k2

sx − k2
sy −

√

k2
i − (ksx0 + kix0 − ksx)

2 − k2
sy (5.26)

When ksx = ksx0, and kix = kix0, then ∆kz = 0. With the group velocity at the signal and

idler defined as Vs and Vi, then to lowest order in δωs = ωs−ωs0, and δksx = ksx− ksx0, the

quantity ∆kz expands to

∆kz = [sec(θi)/Vi − sec(θs)/Vs]δωs + [tan(θs)− tan(θi)]δksx +
kp sec(θs) sec(θi)

kski
ksy

2 (5.27)

6 Appendix: Cavity-Enhanced SPDC

This appendix describes the theory associated with the experimental paper “A miniature

ultrabright source of temporally long, narrowband biphotons”, and was written by Chih-Sung

Chuu.
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6.1 Nonlinear Polarizations

The real generated polarizations for the signal and idler fields are

P̂s(z, t) = ǫ0χ
(2)[Êp(z, t) + Êi(z, t)]

2

P̂i(z, t) = ǫ0χ
(2)[Êp(z, t) + Ês(z, t)]

2 (6.1)

where Êp(z, t), Ês(z, t), and Êi(z, t) are also real numbers.

We write the traveling-wave pump field as

Êp(z, t) =
Ep(z, t)

2
exp[i(kpz − ωpt)] + c.c. (6.2)

where Ep(z, t) is slowly-varying envelope, and approximate the standing-wave signal and

idler fields by

Ês(z, t) =
Es(t)

2
sin

qπz

L
exp(−iωs0t) + c.c.

= −iEs(t)

4
[exp(i

qπz

L
)− exp(−i

qπz

L
)] exp(−iωs0t) + c.c.

Êi(z, t) =
Ei(t)

2
sin

rπz

L
exp(−iωi0t) + c.c.

= −iEi(t)

4
[exp(i

rπz

L
)− exp(−i

rπz

L
)] exp(−iωi0t) + c.c. (6.3)

where q and r are integers corresponding to the cold cavity resonant frequencies Ωq =

qπc/n
(g)
s L and Ωr = rπc/n

(g)
i L, respectively, with n

(g)
s and n

(g)
i being the group indices

of the signal and idler fields and L being the cavity length. ωs0 = 1
2
(ωp + Ωq − Ωr) and

ωi0 = 1
2
(ωp − Ωq + Ωr) are the central frequencies of the signal and idler fields, which are

near Ωq and Ωr, respectively, and satisfy the energy conservation, ωp = ωs0 + ωi0.

Substituting the expressions of Ês(z, t), Êi(z, t) and Êp(z, t) into P̂s(z, t) and P̂i(z, t), we

then obtain
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P̂s(z, t) = ǫ0χ
(2)

{

Ep(z, t)

2
exp[i(kpz − ωpt)]−

iEi(t)

4
[exp(i

rπz

L
)− exp(−i

rπz

L
)] exp(−iωi0t) + c.c.

}2

P̂i(z, t) = ǫ0χ
(2)

{

Ep(z, t)

2
exp[i(kpz − ωpt)]−

iEs(t)

4
[exp(i

qπz

L
)− exp(−i

qπz

L
)] exp(−iωs0t) + c.c.

}2

(6.4)

We keep the terms in P̂s(z, t) and P̂i(z, t) that have frequencies of ωs0 and ωi0, respectively,

with the signal and idler fields propogating in the same direction as the pump,

P̂s(z, t) =
iǫ0χ

(2)

4
E∗

i (t)Ep(z, t) exp[i(kp −
rπ

L
)z − iωs0t] + c.c.

P̂i(z, t) =
iǫ0χ

(2)

4
E∗

s (t)Ep(z, t) exp[i(kp −
qπ

L
)z − iωi0t] + c.c. (6.5)

Since only the components that are nonorthogonal to sin(qπz/L) or sin(rπz/L) interact

with the signal or idler fields, we project the polarizations against the corresponding spatial

modes,

P̂s,q(t) =
2

L

∫ L

0

P̂s(z, t) sin(
qπz

L
)dz

P̂i,r(t) =
2

L

∫ L

0

P̂i(z, t) sin(
rπz

L
)dz (6.6)

For Ep(z, t) = Ep(t), the projected polarization at the signal frequency is
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P̂s,q(t) =
2

L

∫ L

0

iǫ0χ
(2)

4
E∗

i (t)Ep(t) exp[i(kp −
rπ

L
)z − iωs0t] sin(

qπz

L
)dz + c.c.

=
iǫ0χ

(2)

2L
E∗

i (t)Ep(t) exp(−iωs0t)

∫ L

0

exp[i(kp −
rπ

L
)z]

exp(i qπz
L
)− exp(−i qπz

L
)

2i
dz + c.c.

=
ǫ0χ

(2)

4

{

exp[i(kp − rπ
L
+ qπ

L
)L]− 1

i(kp − rπ
L
+ qπ

L
)L

− exp[i(kp − rπ
L
− qπ

L
)L]− 1

i(kp − rπ
L
− qπ

L
)L

}

E∗
i (t)Ep(t) exp(−iωs0t) + c.c.

=
ǫ0χ

(2)

4

{

−exp[i(kp − rπ
L
− qπ

L
)L]− 1

i(kp − rπ
L
− qπ

L
)L

}

E∗
i (t)Ep(t) exp(−iωs0t) + c.c. (6.7)

where, in the last equality, we only keep the term in which the signal propagates in the same

direction as the pump. Defining

∆k = kp −
rπ

L
− qπ

L
(6.8)

the projected polarization at the signal frequency can be written as

P̂s,q(t) = i
ǫ0χ

(2)

4

[

exp(i∆kL)− 1

∆kL

]

E∗
i (t)Ep(t) exp(−iωs0t) + c.c.

=
Ps,q(t)

2
exp(−iωs0t) + c.c. (6.9)

where the slowly-varying envelope

Ps,q(t) = −ǫ0χ
(2)

2
exp(i∆kL/2) sinc(∆kL/2) E∗

i (t)Ep(t) (6.10)

Similarly, the projected polarization at the idler frequency is

P̂i,r(t) = −ǫ0χ
(2)

4
exp(i∆kL/2) sinc(∆kL/2) E∗

s (t)Ep(t) exp(−iωi0t) + c.c.

=
Pi,r(t)

2
exp(−iωi0t) + c.c. (6.11)

where the slowly-varying envelope

Pi,r(t) = −ǫ0χ
(2)

2
exp(i∆kL/2) sinc(∆kL/2) E∗

s (t)Ep(t) (6.12)

26



6.2 SVEA (Lamb) Equations

Defining Ês(t) and Êi(t) as

Ês(z, t) = Ês(t) sin(
qπz

L
)

Êi(z, t) = Êi(t) sin(
rπz

L
) (6.13)

the second-order differential equation for Ês(t) and P̂s,q(t) is given by

∂2Ês(t)

∂t2
+

Ωq

Qs

∂Êq(t)

∂t
+ Ω2

qÊs(t) = − 1

ǫoǫs

∂2P̂s,q(t)

∂t2
(6.14)

where Qs = ǫ0ǫsΩq/σs is the cavity quality factor.

Substituting,

P̂s(t) =
Ps(t)

2
exp(−iωs0t) + c.c.

Ês(t) =
Es(t)

2
exp(−iωs0t) + c.c. (6.15)

into the second-order differential equation and picking out the e−iωs0t terms, we have

∂2Es(t)

∂t2
+(

Ωq

Qs
−2iωs0)

∂Es(t)

∂t
+(Ω2

q−ω2
s0−i

Ωq

Qs
ωs0)Es(t) = − 1

ǫoǫs
[
∂2Ps,q(t)

∂t2
−2iωs0

∂Ps,q(t)

∂t
−ω2

s0Ps,q(t)]

(6.16)

The slowly-varying envelope approximations assumes that

∂2

∂t2
≪ ωs0

∂

∂t
≪ ω2

s0 (6.17)

Furthermore, since ωs0 ≈ Ωq,
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Ω2
q − ω2

s0 = (Ωq + ωs0)(Ωq − ωs0) ≈ 2ωs0(Ωq − ωs0) (6.18)

We also assume that the cavity decay rate is small compared to the resonant frequency of

the cavity

Γs =
Ωq

Qs
≪ Ωq (6.19)

With these approximations, we obtain the complex SVEA equation

∂Es(t)

∂t
+

[

i(Ωq − ωs0) +
Ωq

2Qs

]

Es(t) =
iωs0

2ǫoǫs
Ps,q(t) (6.20)

Similary, for Ei(t) and Pi,r, we have

∂Ei(t)

∂t
+

[

i(Ωr − ωi0) +
Ωr

2Qi

]

Ei(t) =
iωi0

2ǫoǫi
Pi,r(t) (6.21)

where Qi = ǫ0ǫiΩr/σi.

Substituting the explicit forms of Ps,q(t) and Pi,r(t) into the SVEA equations, we obtain

the coupled SVEA equations,

∂Es(t)

∂t
+

[

i(Ωq − ωs0) +
Ωq

2Qs

]

Es(t) = −iωs0χ
(2)

4ǫs
exp(i∆kL/2) sinc(∆kL/2) E∗

i (t)Ep(t)

∂Ei(t)

∂t
+

[

i(Ωr − ωi0) +
Ωr

2Qi

]

Ei(t) = −iωi0χ
(2)

4ǫi
exp(i∆kL/2) sinc(∆kL/2) E∗

s (t)Ep(t)(6.22)
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6.3 Standing Wave

To quantize a standing-wave field,

Est(z, t) = Est(t) sin
mπz

L
(6.23)

we note that the energy per area stored in cavity

W (t) =
1

4
ǫ0ǫL|Est(t)|2 (6.24)

where L is the cavity length, is equal to the energy per area of the photon,

W (t) = ~ωst|ast(t)|2 (6.25)

where ωst is the angular freuqnecy of the photon and ast(t) is the annihilation operator of

the photon with units of (photon number/area)1/2. The conversion from Est(t) to ast(t) is

then

Est(t) = 2

√

~ωst

ǫ0ǫstL
ast(t) (6.26)

For E∗
st(t) and a†st(t), the conversion is

E∗
st(t) = 2

√

~ωst

ǫ0ǫstL
a†st(t) (6.27)

6.4 Traveling Wave

For a traveling wave Et(t), the power per unit area is

It(t) =
1

2ηt
|Et(t)|2 (6.28)

which is equal to that of the photon field,
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It(t) = ~ωt|at(t)|2 (6.29)

where at(t) is the annihilation operator of the photon field and has units of (photon number/time/area)1/2.

The conversion between Et(t) and at(t) is then

Et(t) =
√

2~ωtηt at(t) (6.30)

For E∗
t (t) and a†t(t), it is

E∗
t (t) =

√

2~ωtηt a
†
t(t) (6.31)

6.5 Quantized coupled SVEA (Lamb) Equations

The coupled SVEA equations are

∂Es(t)

∂t
+

[

i(Ωq − ωs0) +
Ωq

2Qs

]

Es(t) = −iωs0χ
(2)

4ǫs
exp(i∆kL/2) sinc(∆kL/2) E∗

i (t)Ep(t)

∂Ei(t)

∂t
+

[

i(Ωr − ωi0) +
Ωr

2Qi

]

Ei(t) = −iωi0χ
(2)

4ǫi
exp(i∆kL/2) sinc(∆kL/2) E∗

s (t)Ep(t)(6.32)

Using the field normalizations and noting that ηs,i = η0/ns,i, ǫs,i = n2
s,i, and c = 1/ǫ0η0,

we obtain the quantized coupled SVEA equations,

∂as(t)

∂t
+

[

i(Ωq − ωs0) +
Γs

2

]

as(t) = −iκ a†i (t) +
√
γs b

in
s (t)

∂ai(t)

∂t
+

[

i(Ωr − ωi0) +
Γi

2

]

ai(t) = −iκ a†s(t) +
√
γi b

in
i (t)

bouts (t) =
√
γs as(t)− bins (t)

bouti (t) =
√
γi ai(t)− bini (t) (6.33)
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where bins,i(t) and bouts,i (t) are the annihilation operators of the input and output coupling fields

(traveling wave) at the output mirror, respectively, and have units of (photon number/area/time)1/2.

Γs,i = Ωq,r/Qs,i = ∆s,i[2ξs,i + (1 − rs,i)] are the total power decay rates with ∆s,i being the

free spectral ranges, rs,i being the reflectivities of mirrors, and ξs,i being the absorption losses

of crystal per trip, and γs,i = ∆s,i(1 − rs,i) are the power decay rates due to the coupling.

κ = κ0 exp(i∆kL/2) sinc(∆kL/2) with κ0 = 1
2
dǫ20c

2ηsηi(ωsωi)
1/2Ep, where d = χ(2)/2, ωs

and ωi are the oscillation frequencies of the signal and idler fields, respectively, and ωs0 ≈ ωs

and ωi0 ≈ ωi are used.

6.6 Power Conservation

We first consider the case where there is no pump, Ep = 0, and therefore κ = 0. The coupled

equations become

∂as(t)

∂t
+

Γ′
s

2
as(t) =

√
γs b

in
s (t)

∂ai(t)

∂t
+

Γ′
i

2
ai(t) =

√
γi b

in
i (t) (6.34)

where Γ′
s = i2(Ωq − ωs0) + Γs and Γ′

i = i2(Ωr − ωi0) + Γi.

To calculate the photon rate per area of the signal field inside the cavity,

∂|as(t)|2
∂t

= a†s(t)
∂as(t)

∂t
+ as(t)

∂a†s(t)

∂t
(6.35)

we note that

a†s(t)
∂as(t)

∂t
=

bout†s (t) + bin†s (t)√
γs

[√
γs b

in
s (t)−

Γ′
s

2
as(t)

]

= [bout†s (t) + bin†s (t)]bins (t)−
[

bout†s (t) + bin†s (t)√
γs

]

Γ′
s

2

[

bouts (t) + bins (t)√
γs

]

=

(

1− Γ′
s

2γs

)

|bins (t)|2 −
Γ′
s

2γs
|bouts (t)|2 +

(

1− Γ′
s

2γs

)

bout†s (t)bins (t)−
Γ′
s

2γs
bin†s (t)bouts (t)(6.36)
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We hence have

∂|as(t)|2
∂t

= 2

(

1− Γs

2γs

)

|bins (t)|2−
Γs

γs
|bouts (t)|2+

(

1− Γs

γs

)

bout†s (t)bins (t)+

(

1− Γs

γs

)

bin†s (t)bouts (t)

(6.37)

where we use the commutator [bi(t′), bj(t)] = δijδ(t
′ − t).

For a lossless cavity, Γs = γs, we then have

∂|as(t)|2
∂t

= |bins (t)|2 − |bouts (t)|2 (6.38)

which says that the photon rate per area of the signal field inside the cavity equals to the

difference of that of the input and output photons in the same cavity mode. Similarly, for

the idler field,

∂|ai(t)|2
∂t

= |bini (t)|2 − |bouti (t)|2 (6.39)

6.7 With Pump

We next consider the case where pump is present. We note that

a†s(t)
∂as(t)

∂t
= a†s(t)

[√
γs b

in
s (t)−

Γ′
s

2
as(t)− iκ a†i (t)

]

= a†s(t)

[√
γs b

in
s (t)−

Γ′
s

2
as(t)

]

− iκ a†s(t)a
†
i (t) (6.40)

The photon rate per area of the signal field inside a lossless cavity is then
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∂|as(t)|2
∂t

= |bins (t)|2 − |bouts (t)|2 + [iκ∗ as(t)ai(t)− iκ a†s(t)a
†
i(t)] (6.41)

Similarly, for the idler field, we have

∂|ai(t)|2
∂t

= |bini (t)|2 − |bouti (t)|2 + [iκ∗ as(t)ai(t)− iκ a†s(t)a
†
i (t)] (6.42)

where we use the commutator [aj(t
′), ak(t)] = δjkδ(t

′ − t). Comparing the above two equa-

tions, we see that

∂|as(t)|2
∂t

+ |bouts (t)|2 − |bins (t)|2 =
(

∂|ai(t)|2
∂t

+ |bouti (t)|2 − |bini (t)|2
)

(6.43)

6.8 Output Fields

The coupled SVEA equations in the time domain are

∂as(t)

∂t
+

[

−i(ωs0 − Ωq) +
Γs

2

]

as(t) = −iκ a†i(t) +
√
γs b

in
s (t)

∂a†i (t)

∂t
+

[

i(ωi0 − Ωr) +
Γi

2

]

a†i(t) = iκ as(t) +
√
γi b

in†
i (t) (6.44)

We will use the Fourier transform pairs,

f(t) =

∫ ∞

−∞
f(δω) exp(−iδωt) dδω

f(δω) =
1

2π

∫ ∞

−∞
f(t) exp(iδωt) dt (6.45)

to obtain the coupled SVEA equations in the frequency domain, where δω is a low-frequency

variable that is relative to the carrier frequencies ωs0 or ωi0. For the signal field, the Fourier

transform pairs of the annihilation operator are

33



as(t) =

∫ ∞

−∞
as(ω − ωs0) exp[−i(ω − ωs0)t] d(ω − ωs0)

as(ω − ωs0) =
1

2π

∫ ∞

−∞
as(t) exp[i(ω − ωs0)t] dt (6.46)

where ω is the oscillation frequency of the signal field. For the idler field, the Fourier

transform pairs of the annihilation operator are

ai(t) =

∫ ∞

−∞
ai(ωi − ωi0) exp[−i(ωi − ωi0)t] d(ωi − ωi0)

ai(ωi − ωi0) =
1

2π

∫ ∞

−∞
ai(t) exp[i(ωi − ωi0)t] dt (6.47)

where ωi = ωp − ω is the oscillation frequency of the idler field.

Noting that

F
[

f †(t)
]

=
1

2π

∫ ∞

−∞
f †(t) exp(iδωt)dt =

{

1

2π

∫ ∞

−∞
f(t) exp[i(−δω)t]dt

}†

= f †(−δω)

F
[

∂f(t)

∂t

]

=
1

2π

∫ ∞

−∞

∂f(t)

∂t
exp(iδωt)dt =

1

2π

∫ ∞

−∞

{

∂

∂t
f(t) exp(iδωt)− iδωf(t) exp(iδωt)

}

dt

=
1

2π
[f(t) exp(iδωt)]∞−∞ − iδωf(δω) = −iδωf(δω) (6.48)

where we assume that f(t) is bounded so that f(t → ±∞) = 0, we obtain the Fourier-

transformed coupled SVEA equations

−i(ω − Ωq) as(ω − ωs0) +
Γs

2
as(ω − ωs0) = −iκ a†i (−ωi + ωi0) +

√
γs b

in
s (ω − ωs0)

i(ωi − Ωr) a
†
i(−ωi + ωi0) +

Γi

2
a†i(−ωi + ωi0) = iκ as(ω − ωs0) +

√
γi b

in†
i (−ωi + ωi0)(6.49)

34



The operators in the coupled equations are slowly-varying envelopes. To convert them to

rapidly-varying analytic signals, âs(ω), âi(ωi), b̂s(ω), and b̂i(ωi), we note that

âs,i(t) = as,i(t) exp(−iωs0,i0t)

b̂s,i(t) = bs,i(t) exp(−iωs0,i0t) (6.50)

and therefore

as,i(ω
′) = âs,i(ω

′ + ωs0,i0)

bs,i(ω
′) = b̂s,i(ω

′ + ωs0,i0) (6.51)

The coupled SVEA equations for the rapidly-varying analytic signals are then

−i(ω − Ωq) âs(ω) +
Γs

2
âs(ω) = −iκ â†i(−ωi) +

√
γs b̂

in
s (ω)

i(ωi − Ωr) â
†
i (−ωi) +

Γi

2
â†i (−ωi) = iκ âs(ω) +

√
γi b̂

in†
i (−ωi) (6.52)

We rewrite the above equations in the matrix form,

(

−i(ω − Ωq) +
Γs

2
iκ

−iκ i(ωi − Ωr) +
Γi

2

)(

âs(ω)

â†i(−ωi)

)

=

( √
γs b̂

in
s (ω)√

γi b̂
in†
i (−ωi)

)

(6.53)

to obtain âs(ω) and â†i (−ωi) in terms of b̂ins (ω) and b̂in†i (−ωi),

(

âs(ω)

â†i (−ωi)

)

=

(

−i(ω − Ωq) +
Γs

2
iκ

−iκ i(ωi − Ωr) +
Γi

2

)−1( √
γs b̂

in
s (ω)√

γi b̂
in†
i (−ωi)

)

=

(

[i(ωi − Ωr) +
Γi

2
]
√
γs −iκ

√
γi

iκ
√
γs [−i(ω − Ωq) +

Γs

2
]
√
γi

)

∣

∣

∣

∣

−i(ω − Ωq) +
Γs

2
iκ

−iκ i(ωi − Ωr) +
Γi

2

∣

∣

∣

∣

(

b̂ins (ω)

b̂in†i (−ωi)

)

(6.54)
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The slowly-varying output fields, bouts (t) and bouti (t), are related to the internal fields, as(t)

and ai(t), and the input fields, bins (t) and bini (t), through

(

bouts (t)

bout†i (t)

)

=

( √
γs 0
0

√
γi

)(

as(t)

a†i (t)

)

−
(

bins (t)

bin†i (t)

)

(6.55)

Taking Fourier transform of these equations followed by convertion to rapidly-varying ana-

lytic signals, we have

(

b̂outs (ω)

b̂out†i (−ωi)

)

=

( √
γs 0
0

√
γi

)(

âs(ω)

â†i (−ωi)

)

−
(

b̂ins (ω)

b̂in†i (−ωi)

)

=

(

A(ω) B(ω)
C(ω) D(ω)

)(

b̂ins (ω)

b̂in†i (−ωi)

)

(6.56)

or

b̂outs (ω) = A(ω) b̂ins (ω) +B(ω) b̂in†i (−ωi)

b̂out†i (−ωi) = C(ω) b̂ins (ω) +D(ω) b̂in†i (−ωi) (6.57)

where

A(ω) =
[Γi

2
+ i(ωi − Ωr)][γs − Γs

2
+ i(ω − Ωq)] + κ2

[Γs

2
− i(ω − Ωq)][

Γi

2
+ i(ωi − Ωr)] + κ2

B(ω) =
−iκ

√
γsγi

[Γs

2
− i(ω − Ωq)][

Γi

2
+ i(ωi − Ωr)]− κ2

C(ω) =
iκ
√
γsγi

[Γs

2
− i(ω − Ωq)][

Γi

2
+ i(ωi − Ωr)]− κ2

D(ω) =
[Γs

2
− i(ω − Ωq)][γi − Γi

2
− i(ωi − Ωr)] + κ2

[Γs

2
− i(ω − Ωq)][

Γi

2
+ i(ωi − Ωr)]− κ2

(6.58)

and ωi = ωp − ω.

For a lossless cavity (γs = Γs, γi = Γi), A(ω), B(ω), C(ω), and D(ω) are related by the

unitary conditions,
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A(ω)C∗(ω) = B(ω)D∗(ω)

|A(ω)|2 − |B(ω)|2 = 1

|C(ω)|2 − |D(ω)|2 = 1 (6.59)

6.9 Spatial Coupling Factor and Gaussian Beam

Before calculating the paired count rate and spectral Power spectral density, we will include

the spatial coupling factors at confocal condition into κ.

The modified classical coupled SVEA equations read

∂Es(t)

∂t
+

[

i(Ωq − ωs0) +
Ωq

2Qs

]

Es(t) = −gs
iωs0χ

(2)

4ǫs
exp(i∆kL/2) sinc(∆kL/2) E∗

i (t)Ep(t)

∂Ei(t)

∂t
+

[

i(Ωr − ωi0) +
Ωr

2Qi

]

Ei(t) = −gi
iωi0χ

(2)

4ǫi
exp(i∆kL/2) sinc(∆kL/2) E∗

s (t)Ep(t)(6.60)

where the spatial coupling factors are

gs =
2W 2

pW
2
i

W 2
pW

2
s +W 2

pW
2
i +W 2

sW
2
i

=
2ApAi

ApAs + ApAi + AsAi

gi =
2W 2

pW
2
s

W 2
pW

2
i +W 2

pW
2
s +W 2

sW
2
i

=
2ApAs

ApAi + ApAs + AsAi

(6.61)

with Wp, Ws, and Wi (defined below) being the 1/e2 beam radii of the pump, signal, and

idler beams at the focus, respectively, and Ap, As, and Ai are the corresponding spot sizes.

When the cofocal length equals to the crystal length, spot sizes are the smallest
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Ap = π

(

Wp√
2

)2

=
λpL

4np

As = π

(

Ws√
2

)2

=
λsL

4np

Ai = π

(

Wi√
2

)2

=
λiL

4ni
(6.62)

The field normalizations change accordingly to

Ej(t) = 2

√

~ωj

ǫ0ǫjLAj

aj(t) for standing waves

Ej(t) =

√

2~ωjηj
Aj

aj(t) for traveling waves (6.63)

and aj(t) has unit of photon number for standing waves and photon number/s for trvaeling

waves.

The quantized coupled SVEA equations have the same form,

∂as(t)

∂t
+

[

i(Ωq − ωs0) +
Γs

2

]

as(t) = −iκ a†i (t) +
√
γs b

in
s (t)

∂ai(t)

∂t
+

[

i(Ωr − ωi0) +
Γi

2

]

ai(t) = −iκ a†s(t) +
√
γi b

in
i (t) (6.64)

where κ = κ0 exp(i∆kL/2)sinc(∆kL/2) with

κ0 =
1

2
dǫ20c

2ηsηi(ωsωi)
1/2Ep ·

2
√
AsAiAp

A2
pA

2
i + A2

pA
2
s + A2

sA
2
i

(6.65)
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6.10 Paired Count Rate and Spectral Power Density

We assume that the total loss of the signal and idler fields are the same. The paired count

rate is then equal to the photon count rate of the signal (or idler) field and given by

Rcav =
〈

b̂out†s (t)b̂outs (t)
〉

=

∫ ∞

−∞

∫ ∞

−∞
dω1dω2 eiω1te−iω2t

〈

b̂out†s (ω1)b̂
out
s (ω2)

〉

(6.66)

Noting the commutator relation, [b̂inj (ω1), b̂
in†
k (ω2)] =

1
2π
δjkδ(ω1 − ω2), we have

〈

b̂out†s (ω1)b̂
out
s (ω2)

〉

=
〈

[A∗(ω1) b̂
in†
s (ω1) +B∗(ω1) b̂

in
i (ω1)][A(ω2) b̂

in
s (ω2) +B(ω2) b̂

in†
i (ω2)]

〉

= B∗(ω1)B(ω2)
〈

b̂ini (ω1)b̂
in†
i (ω2)

〉

= B∗(ω1)B(ω2)
1

2π
δ(ω1 − ω2) (6.67)

The paired count rate is then

Rcav =

∫ ∞

−∞
Scav(ω)dω (6.68)

where the spectral power density (spectrum) of the signal is given by

Scav(ω) =
1

2π
|B(ω)|2

=
1

2π

γsγi κ
2
0 sinc2(∆kL/2)

1
16
[4(ω − Ωq)2 + Γ2

s][4(ωi − Ωr)2 + Γ2
i ]− 1

2
κ2[4(ω − Ωq)(ωi − Ωr) + ΓsΓi] + κ4

(6.69)

In the low gain regime, we drop the κ2 and κ4 terms in denominator. The spectrum

becomes
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Scav(ω) =
1

2π

16γsγi κ
2
0 sinc2(∆kL/2)

[4(ω − Ωq)2 + Γ2
s][4(ωi − Ωr)2 + Γ2

i ]
(6.70)

and the paired count rate is

Rcav =
4γsγi(

1
Γs

+ 1
Γi
)κ2

0 sinc2(∆kL/2)

(Γs + Γi)2 + 4(ωp − Ωq − Ωr)2
(6.71)

For Γs ≈ Γi ≡ Γ̄ and γs ≈ γi ≡ γ̄, the spectrum can be written as

Scav(ω) =
1

2π

16 γ̄2 κ2
0 sinc2(∆kL/2)

[4(ω − Ωq)2 + Γ̄2][4(ωi − Ωr)2 + Γ̄2]

=
1

2π

16 γ̄2 κ2
0 sinc2(∆kL/2)

{4[(ω − ωs0) + (ωp − Ωq − Ωr)/2]2 + Γ̄2}{4[(ω − ωs0)− (ωp − Ωq − Ωr)/2)2]2 + Γ̄2}(6.72)

with the central frequency being ωs0 = (ωp + Ωq − Ωr)/2 for the signal field and ωi0 =

ωp − ωs0 = (ωp + Ωr − Ωq)/2 for the idler field. The FWHM bandwidth depends on the

detuning (ωp − Ωq − Ωr)/2

∆ωcav =

√

−Γ̄2 + (ωp − Ωq − Ωr)2 +
√
2
√

Γ̄4 + (ωp − Ωq − Ωr)4 (6.73)

At exact phase matching, ∆k = 0, and zero detuning, δ = (ωp − Ωq − Ωr)/2 = 0, the

paired photon rate has the maximum value of

Rmax =
4κ2

0γsγi
(Γs + Γi)ΓsΓi

(6.74)

and the FWHM bandwidth is minimum

∆ωres =

√

√

Γ4
s + 6Γ2

sΓ
2
i + Γ4

i − Γ2
s − Γ2

i

2
(6.75)

To find out the mirror reflectivity r that maximizes the paired count rate, we assume that

the signal and idler fields have the same mirror reflectivity rs = ri = r and crystal loss
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ξs = ξi = ξ. Then ∂Rmax/∂r = 0 gives r = 1− 4ξ.

When phase matching (∆k = 0) but not double resonance (δ 6= 0) is satisfied, the paired

photon rate can be expressed as

R =
Rmax

1 + 16(δ/Γ̄)2
(6.76)

where we assume Γs ≈ Γi ≡ Γ̄.

6.11 Temporal Second-order Intensity Correlation Function

The temporal second-order intensity correlation function of the signal and idler fields is given

by

G(2)(t1, t2) =
〈

b̂out†i (t2)b̂
out†
s (t1)b̂

out
s (t1)b̂

out
i (t2)

〉

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dω1dω2dω3dω4 eiω1t2eiω2t1e−iω3t1e−iω4t2

·
〈

b̂out†i (ω1)b̂
out†
s (ω2)b̂

out
s (ω3)b̂

out
i (ω4)

〉

(6.77)

where the expectation value can be carried out by using the commutator [bin(ωi), b
in(ωj)] =

δ(ωi − ωj)/2π,

〈

b̂out†i (ω1)b̂
out†
s (ω2)b̂

out
s (ω3)b̂

out
i (ω4)

〉

= 〈 [C(−ω1)b̂
in
s (−ω1) +D(−ω1)b̂

in†
i (ω1)] · [A∗(ω2)b̂

in†
s (ω2) +B∗(ω2)b̂

in
i

· [A(ω3)b̂
in
s (ω3) +B(ω3)b̂

in†
i (ω3)] · [C∗(−ω4)b̂

in†
s (−ω4) +D∗(−ω4)b̂

in
i

= C(−ω1)A
∗(ω2)A(ω3)C

∗(−ω4) 〈b̂ins (−ω1)b̂
in†
s (ω2)b̂

in
s (ω3)b̂

in†
s (−ω4)〉

+ C(−ω1)B
∗(ω2)B(ω3)C

∗(−ω4) 〈b̂ins (−ω1)b̂
in
i (ω2)b̂

in†
i (ω3)b̂

in†
s (−ω4)〉

= C(−ω1)A
∗(ω2)A(ω3)C

∗(−ω4)(
1

2π
)2δ(ω1 + ω2)δ(ω3 + ω4)

+ C(−ω1)B
∗(ω2)B(ω3)C

∗(−ω4)(
1

2π
)2δ(ω1 − ω4)δ(ω2 − ω3)
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We then have

G(2)(τ) =

∣

∣

∣

∣

1

2π

∫ ∞

−∞
A(ω)C∗(ω)eiωτdω

∣

∣

∣

∣

2

+

(

1

2π

∫ ∞

−∞
|B(ω)|2dω

)(

1

2π

∫ ∞

−∞
|C(ω)|2dω

)

= |φ(τ)|2 +R2
cav (6.79)

where τ = t2 − t1, R
2
cav is the constant background level resulting from the uncorrelated

photons in different pairs, and the biphoton wavefunction φ(τ) in the low-gain regime (κ2

and higher-order terms are dropped) and a lossless cavity is given by

φ(τ) =
1

2π

∫ ∞

−∞
A(ω)C∗(ω)eiωτdω

≈ 1

2π

∫ ∞

−∞

−i
√
ΓsΓi κ

(ω − Ωq + iΓs

2
)(ω − ωp + Ωr − iΓi

2
)
eiωτdω

=
2
√
ΓsΓi κ

2(ωp − Ωq − Ωr) + i(Γs + Γi)

{

eiΩqτ+Γsτ/2 , τ < 0
ei(ωp−Ωr)τ−Γiτ/2 , τ > 0

(6.80)

Substituting φ(τ) back to G(2)(τ), we obtain the biphoton wavepacket in the time domain

G(2)(τ)− R2
cav =

4ΓsΓi κ
2

(Γs + Γi)2 + 4(ωp − Ωq − Ωr)2

{

eΓsτ , τ < 0
e−Γiτ , τ > 0

(6.81)

6.12 SPDC with Quasi-Phase Matched Backward-wave

The coupled SVEA equations for the backward-wave SPDC with quasi-phase matching are

∂as(ω, z)

∂z
= iκ(z)a†i (ωi, z) exp[i∆k′(ω)z]

−∂a†i (ωi, z)

∂z
= −iκ(z)as(ω, z) exp[−i∆k′(ω)z] (6.82)

where ∆k′(ω) = kp − ks(ω) + ki(ωp − ω) and κ(z) switches its sign every domain, namely,

κ(z) = κ0, −κ0, κ0, ... for the first, second, third, ... domains. The domain length is chosen
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to be ld = Λm/2 = mπ/Km with Km = kp − ks(ω(Q)) + ki(ωi(Q)), and ω(Q) and ωi(Q) being

the mth-order quasi-phase matched signal and idler frequencies, respectively.

In the low gain regime, we can take the driving fields on the right to be independent of z

and equal to their values at z = 0 for the signal field and z = L for the idler field,

∂as(ω, z)

∂z
= iκ(z)a†i (ωi, L) exp[i∆k′(ω)z]

−∂a†i (ωi, z)

∂z
= −iκ(z)as(ω, 0) exp[−i∆k′(ω)z] (6.83)

Since κ(z) is periodic in z with period Λm, we can expand κ(z) as the summation of its

Fourier components,

κ(z) =
∞
∑

m=−∞
cm exp(−i2πmz/Λm) (6.84)

where

cm =
1

Λm

∫ Λm

0

κ(z) exp(i2πmz/Λm)dz

=
1

Λm

[

∫ Λm/2

0

κ0 exp(i2πmz/Λm)dz−
∫ Λm

Λm/2

κ0 exp(i2πmz/Λm)dz

]

=
κ0

imπ
[exp(imπ)− 1]

=

{

i2κ0/mπ if m is odd
0 if m is even

(6.85)

By substituting the Fourier expansion of κ(z) back into the coupled equation, we have

∂as(ω, z)

∂z
= −2κ0

π

∞
∑

(m)=−∞

1

m
exp{i[∆k′(ω)−Km]z}a†i (ωi, L) (6.86)
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for the first coupled SVEA equation, where (m) denotes that the summation is only over

odd m. Direct integration from z = 0 to L then gives

as(ω, z) = as(ω, 0)−
2κ0

π

∞
∑

(m)=−∞

exp{i[∆k′(ω)−Km]L} − 1

mi[∆k′(ω)−Km]
a†i(ωi, L) (6.87)

If Km is close to ∆k′(ω), the summation is dominated by the mth term. We then have

as(ω, z) = as(ω, 0)−
2κ0

mπ
L exp

[

i∆k(ω)L

2

]

sinc

[

∆k(ω)L

2

]

a†i (ωi, L) (6.88)

where ∆k(ω) = kp − ks(ω) + ki(ωp − ω)−Km. Similary, the second coupled SVEA equation

becomes

a†i(ω, 0) = a†i (ω, L)−
2κ0

mπ
L exp

[−i∆k(ω)L

2

]

sinc

[

∆k(ω)L

2

]

as(ωi, 0) (6.89)

By converting the signal and idler field operators at z = 0 and L to the rapidly-varying

analytic signals with

as(ω, z) = âs(ω, z) exp[iks(ω)z]

ai(ωi, z) = âi(ωi, z) exp[iki(ωi)z] (6.90)

we have

âs(ω, L) = A1(ω)âs(ω, 0) +B1(ω)â
†
i(ωi, L)

â†i (ωi, 0) = C1(ω)âs(ω, 0) +D1(ω)â
†
i(ωi, L) (6.91)

where
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A1(ω) = exp[−iks(ω)L]

B1(ω) = −2κ0

mπ
L exp

[

i∆k(ω)L

2

]

sinc

[

∆k(ω)L

2

]

exp{−i[ks(ω) + ki(ωi)]L}

C1(ω) = −2κ0

mπ
L exp

[−i∆k(ω)L

2

]

sinc

[

∆k(ω)L

2

]

D1(ω) = exp[−iki(ωi)L] (6.92)

The spectrum of the paired photons is then given by

S1(ω) =
1

2π
|B1(ω)|2

=

(

2κ0

mπ

)2
L2

2π
sinc2

[

∆k(ω)L

2

]

(6.93)

where the phase mismatch can be approximated by

∆k(ω) = kp − ks(ω) + ki(ωp − ω)−Km

≈ kp − ks(ω(Q)) + ki(ωp − ω(Q))−Km − n
(g)
s + n

(g)
i

c
(ω − ω(Q))

=
n
(g)
s + n

(g)
i

c
(ω(Q) − ω) (6.94)

with n
(g)
s and n

(g)
i being the group indices of the signal and idler fields at ω(Q) and ωi(Q) =

ωp − ω(Q), respectively. The spectrum can then be written as

S1(ω) =

(

2κ0

mπ

)2
L2

2π
sinc2

[

L(n
(g)
s + n

(g)
i )

2c
(ω − ω(Q))

]

(6.95)

with a FWHM bandwidth of

∆ω1 =
1.77 πc

(n
(g)
i + n

(g)
s )L

(6.96)

and the paired count rate
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R1 =

∫ ∞

−∞
S1(ω)dω

=
c
(

2κ0

mπ

)2
L

n
(g)
s + n

(g)
i

(6.97)

6.13 Practical Considerations

Six different system designs are considered. The parameters are calculated based on the

following equations and their values are given in Table 1 and Table 2.

6.14 Single Longitudinal-mode

To obtain single longitudinal-mode, we can only allow one pair of signal and idler modes to

line up within the gain linewidth. In other words, the spacing between two line-up mode

pairs or the cluster spacing has to be smaller than the gain linewidth. The cluster spacing

can be estimated by

∆ωcl =
∆s ∆i

|∆s −∆i|
(6.98)

6.15 Tuning Rate

The signal and idler field’s cavity resonance frequencies Ωs and Ωi can be tuned by changing

the temperature T . The thermal expansion coefficient of KTP is about α = (dL/dT )/L =

10−5 K−1. The tuning rate can be estimated as follows.

dΩs

dT
≈ −Ωs

(

α + n−1
s

dn
(g)
s

dT

)

dΩi

dT
≈ −Ωi

(

α + n−1
i

dn
(g)
i

dT

)

(6.99)

where n
(g)
s and n

(g)
i are the group indices of the signal and idler fields.
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6.16 Mode Hoping

As we tune the signal and idler’s cavity resonance frequencies by a total amount equal to

the difference of their free spectral ranges, mode-hoping will occur. The temperature change

corresponding to a mode-hop is

∆Thop ≈ ∆s −∆i

dΩs

dT
+ dΩi

dT

(6.100)

where ∆s and ∆i are the free spectral ranges of the signal and idler fields, respectively.

6.17 Stabilization

To maintain double resonance for a mode pair, the total amount of change of signal and

idler’s cavity resonance frequencies has to be smaller than the sum of signal and idler fields’

HWHM cavity linewidths. As a result, the temperature has be stabilized to

∆Tstab ≈
∆s

2F
+ ∆i

2F
dΩs

dT
+ dΩi

dT

(6.101)

where F is the cavity finesse.

6.18 Coherence Length and Bandwidth

The coherence length of the biphoton in the time domain will be equal to

Tcoh =
1

Γs

+
1

Γi

(6.102)

where Γs and Γi are the power decay rates at the signal and ideler frequencies, respectively.

If both phase matching and double resonance are satisfied, the biphoton bandwidth could

be as narrow as

∆ωmin =

√

√

Γ4
s + 6Γ2

sΓ
2
i + Γ4

i − Γ2
s − Γ2

i

2
(6.103)
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6.19 Paired Count Rate and Spectral Brightness

If both phase matching and double resonance are satisfied, for a pump with power Ppump =

0.01Pthreshold and beam waist w0, the paired count rate could be as high as

Rmax = α(
2

mπ
)2d224ǫ

4
0c

4η2sη
2
i ωsωi2ηp

Ppump

π(w0/
√
2)2

g2
γsγi

(Γs + Γi)ΓsΓi
(6.104)

where m is the the order of quasi-phase matching and g ≈ 0.5. We assume confocal condition

and take into account the overall detection efficiency α.

The spectral brightness (paired count rate per MHz bandwidth) will be Rmax/∆ωmin and

the spectral brightness normalized to mW pump power is then Rmax/∆ωminPpump.

To the best of my knowledge, the highest spectral brightness (normalized to mW pump

power) reported so far for type-II phase-matched biphotons is from Benson group in 2009,

which is

Rmax

∆ωminPpump

= 330 counts/(s ·MHz ·mW) (894.3 nm photons) (6.105)

6.20 Without Cavity

For SPDC without cavity enhancement, the photon rate at pump power Ppump is

Rbwd = α
( 2
mπ

)2d224ǫ
2
0cηsηiωsωi2ηp

Ppump

π(w0/
√
2)2

L2g2

|ns ± ni|
(6.106)

where the “+” and “-” signs in the denominator correspond to backward-wave and forward-

wave, respectively.
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Backward Cavity-enhanced2 Forward
Wave1 F = 1000 F = 1600 Wave3 F =

Pump Power = Threshold Power/100 8 W5 766 µW 445 µW 8 W5 85
FWHM Bandwidth ∆fFWHM 0.081 cm−1 2.09 MHz 1.44 MHz 1.55 cm−1 2.09
Biphoton Length ∼ 412 ps 98 ns 143 ns ∼ 21 ps 98
Gain Linewidth 0.081 cm−1 0.081 cm−1 0.081 cm−1 1.55 cm−1 1.55
Cluster Spacing 1.75 cm−1 1.75 cm−1 1.75
Max. Generation Rate (s−1) 7.10x106 1.31x105 9.24x104 5.42x109 3.23x10
Max. Detected Rate Rmax (s−1)6 2.09x104 385 272 1.59x107

Rmax/∆fFWHM (s−1MHz−1) 8.6 184 189 342
Rmax/∆fFWHMPpump (s−1MHz−1mW−1) 0.0011 240 424 0.043 5328
Signal Free Spectral Range 0.094 cm−1 0.094 cm−1 0.094
Idler Free Spectral Range 0.089 cm−1 0.089 cm−1 0.089
Signal Resonance Frequency Tuning Rate 0.15 cm−1/K 0.15 cm−1/K 0.15
Idler Resonance Frequency Tuning Rate 0.20 cm−1/K 0.20 cm−1/K 0.20
Mode-hop Temperature Change 13.7 mK 13.7 mK 13.7
Stability Requirement 0.3 mK 0.2 mK 0.3

Table 1: 3-cm crystals.

Backward Cavity-enhanced2 Forward Ca
Wave1 F = 1000 F = 1600 Wave3 F =

Pump Power = Threshold Power/100 8 W5 1 mW 441 µW 8 W5 117
FWHM Bandwidth ∆fFWHM 0.24 cm−1 5.61 MHz 3.64 MHz 4.66 cm−1 5.61
Biphoton Length ∼ 137 ps 37 ns 56 ns ∼ 7 ps 37
Gain Linewidth 0.24 cm−1 0.24 cm−1 0.24 cm−1 4.66 cm−1 4.66
Cluster Spacing 5.26 cm−1 5.26 cm−1 5.26
Max. Generation Rate (s−1) 7.10x106 2.52x105 1.52x105 5.42x109 6.22x10
Max. Detected Rate Rmax (s−1)6 2.09x104 741 448 1.59x107 1828
Rmax/∆fFWHM (s−1MHz−1) 2.9 132 123 114 326
Rmax/∆fFWHMPpump (s−1MHz−1mW−1) 0.00036 126 279 0.014 2795
Signal Free Spectral Range 0.28 cm−1 0.28 cm−1 0.28
Idler Free Spectral Range 0.27 cm−1 0.27 cm−1 0.27
Signal Resonance Frequency Tuning Rate 0.15 cm−1/K 0.15 cm−1/K 0.15 cm
Idler Resonance Frequency Tuning Rate 0.20 cm−1/K 0.20 cm−1/K 0.20 cm
Mode-hop Temperature Change 41.1 mK 41.1 mK 41.1
Stability Requirement 0.8 mK 0.5 mK 0.8

Table 2: 1-cm crystals.
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