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Initial Development and Testing of a 
State-of-the-Art Method to Quantify 

Hydrologic Model Uncertainty 
 

by Brian E. Skahill 

PURPOSE: The purpose of this document is to report upon the initial independent 
implementation and testing of the Bayesian Markov Chain Monte Carlo (MCMC) algorithm 
Differential Evolution Markov Chain (DE-MC). 

INTRODUCTION: To support the US Army Corps of Engineers’(USACE) use of risk-based 
analysis in flood damage reduction studies, Skahill (2012) identified the most promising state-of-
the-art and practice-oriented approaches to robustly quantify hydrologic and hydraulic (H&H) 
model uncertainty. Skahill (2012) provides a path forward for related work activities, including 
software development, preparation of practice-oriented guidance documentation, and research and 
development directed at improving uncertainty analysis algorithm efficiency. 

Bayesian Markov Chain Monte Carlo (MCMC), and in particular DiffeRential Evolution Adaptive 
Metropolis (DREAM) (Vrugt et al. 2008a, 2009), and/or its basis, Differential Evolution Markov 
Chain (DE-MC) (ter Braak 2006), was selected by Skahill (2012) as the state-of-the-art method for 
estimating model parameter and predictive uncertainty. The intent of MCMC is to sample (upon 
completion of the burn-in period), via stochastic simulation, from the noted target equilibrium (i.e., 
posterior probability) distribution. The purpose of this document is to report upon the initial 
independent implementation and testing of the Bayesian MCMC algorithm DE-MC. This new DE-
MC implementation differs notably from other MCMC implementations in that additional sampler 
burn-in (burn-in is the initial period when the MCMC sampler has not yet converged to its target 
equilibrium distribution) assessment heuristics were incorporated into the algorithm. These 
heuristics attempt to support a more robust assessment of sampler burn-in, rather than solely 
relying upon a quantitative sampler convergence diagnostic which can frequently prematurely 
misdiagnose convergence to the equilibrium target distribution. Two nontrivial test cases serve as a 
means to verify the independent DE-MC implementation and demonstrate related capabilities. The 
first test case involves a bimodal mixed normal target distribution and the second test case involves 
an application of the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic model. This 
technical note concludes with brief remarks regarding additional planned USACE-ERDC Bayesian 
MCMC research and development. 

BAYESIAN MCMC DE-MC: Markov Chain Monte Carlo (MCMC) is a formal Bayesian 
approach for estimating the posterior probability distribution of specified adjustable model 
parameters. The idea behind MCMC is that while one wants to compute a probability density, 
p(θ|y), where θ and y represent the vector of adjustable model parameters and the observed data, 
respectively, there is the understanding that such an endeavor may be impracticable. Additionally, 
simply being able to generate a large random sample from the probability density would be equally 
sufficient as knowing its exact form. Hence, the problem then becomes one of effectively and 
efficiently generating a large number of random draws from p(θ|y). It was discovered that an 
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efficient means to this end is to construct a Markov chain, a stochastic process of values that unfold 
in time, with the following properties: (1) the state space (set of possible values) for the Markov 
chain is the same as that for θ; (2) the Markov chain is easy to simulate from; and (3) the Markov 
chain’s equilibrium distribution is the desired probability density p(θ|y). By constructing such a 
Markov chain, one could then simply run it to equilibrium and subsequently sample from its 
stationary distribution. A Markov chain with the above mentioned properties can be constructed by 
choosing a symmetric proposal distribution and employing the Metropolis acceptance probability 
(Metropolis et al. 1953) to accept or reject candidate points.  

MCMC simulation is more efficient than other Monte Carlo methods. The ability to sample from 
the posterior probability distribution for the specified adjustable model parameters, p(θ|y), 
provides one with the capacity to robustly address questions associated with the deployed 
modeled scenarios/alternatives from a probabilistic perspective. For example, a question such as 
“What is the probability a specific simulated state variable such as flow will be exceeded?”, 
which of course has direct application not only to flood risk management and hydrologic design, 
but also to environmental and water quality analysis, among possible others, can be robustly 
answered via application of MCMC. Moreover, modeled sources of uncertainty; viz., input 
forcing, model parameter, and model structure, can all be encapsulated in θ in attempts to 
completely quantify model uncertainty (Vrugt et al. 2008a, b).  

C. ter Braak (2006) introduced Differential Evolution Markov Chain (DE-MC), which combines 
the salient features of the global optimization method Differential Evolution (DE) (Storn and Price 
1995, 1997) with Bayesian Markov Chain Monte Carlo. Multiple chains are run in parallel with 
DE-MC and learn from each other by way of jump proposals that are generated by taking the 
difference of two randomly selected chains from the current population. The probability of 
selecting the jump proposal is determined by using the Metropolis algorithm (Metropolis et al. 
1953). The proposal vector for the simple but effective DE-MC algorithm is given as follows: 

 xp = xi + γ (xR1 - xR2) + e (1) 

where xp, xi, γ, xR1, xR, and e represent the proposal vector of dimension d, the ith of the N chains 
which constitute the evolving population, a weighting factor, two unique vectors from the current 
population, excluding the ith chain, randomly selected without replacement, and an error term 
sampled randomly from a symmetric distribution with small variance compared with that of the 
target. N and γ constitute the two parameters associated with the DE-MC method. C. ter Braak 
(2006) suggested N = 2d or 3d for simple unimodal targets and N = 10d to 20d for more 
complicated target distributions. Assuming the target distribution is multivariate normal, the 
optimal choice for γ is 2.38/2 , and this value was observed to work well for the tests and 
examples considered by C. ter Braak (2006). Moreover, C. ter Braak (2006) demonstrated that 
adapting the DE-MC algorithm such that γ equals one every tenth generation mitigates against 
the potential of becoming trapped in a single mode within a multimodal distribution. 

INDEPENDENT IMPLEMENTATION AND TESTING OF DE-MC: The author of this 
technical note wrote an independent implementation of the MCMC method DE-MC, as documented 
herein. Noteworthy elements of the independent implementation include the following: 

1. Treatment of the initialization of the population.  
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2. Treatment of jump proposal dimensions that are outside of their bounds.  
3. Use of the Gelman and Rubin GR diagnostic (Gelman and Rubin 1992), R, to assess 

convergence to the stationary target distribution. 

Initialization of Population. The population to be evolved can be initialized either via 
uniform random sampling (URS) or Latin hypercube sampling (LHS). Based on limited 
experimentation to date, it is recommended that one employ LHS to initialize the population. 

Treatment of Proposal Dimensions that are out of Bounds. For DE-MC, wherein jump 
proposals are defined by Equation 1, it is possible for one or more dimensions associated with the 
proposal of a given chain to be out of bounds. In that case, the specific proposal dimension which 
is out of bounds can either be (a) set equal to its appropriate boundary value, or alternatively it can 
be (b) set equal to its current value. Limited experience to date suggests recommending the use of 
the latter option (i.e., (b)) for this implementation issue. 

Use of the Gelman and Rubin Convergence Diagnostic. A notable departure of the 
independent DE-MC implementation described herein from previous hydrologic modeling studies, 
which have employed Bayesian MCMC for optimization and inference, is how the Gelman and 
Rubin quantitative diagnostic, R, is employed to assess sampler convergence; viz., how R is used to 
determine if the burn-in period for the MCMC sampler is complete in that the chains have reached 
equilibrium and sampling is now from the target distribution. The Gelman and Rubin convergence 
diagnostic effectively measures the within and between variance of the chains, which are 
effectively the same when the chains have sufficiently mixed. A common specified value for R to 
diagnose sampler convergence is 1.2, and when the threshold value is reached, for each element of 
θ, it is often assumed that the MCMC sampler has converged to the target distribution (Vrugt et al. 
2003; Vrugt et al. 2008a, 2008b; Vrugt et al. 2009). The interested reader is directed to Cowles and 
Carlin (1996), and references cited therein, for more detail and discussion pertaining to the Gelman 
and Rubin quantitative convergence diagnostic. Unfortunately, it is known that diagnostic has the 
tendency to prematurely assess MCMC sampler convergence to its stationary distribution (Kass et 
al. 1998). This characteristic for R was observed during initial testing and evaluation of the 
independent DE-MC implementation.  

In attempts to ensure a more robust assessment of DE-MC sampler burn-in, a hybrid semi-
automated approach was implemented, consistent with available guidance regarding practical 
application of Bayesian MCMC. Effectively, additional heuristics have been incorporated to 
assist with diagnosing sampler convergence. In particular, if the Gelman and Rubin convergence 
diagnostic indicates convergence, in that for each adjustable model parameter the value for R is 
less than a pre-specified threshold value, then diagnostic information associated with each chain 
and for each parameter is written to file for manual review. In addition, the MCMC algorithm is 
paused, the user is prompted that indicates sampler convergence and that data is available for 
evaluation to support determination as to whether or not the burn-in period is complete. If the 
user decides that the sampler has not converged, then the algorithm proceeds as previously, but 
with a reduced value for R, the new threshold value given by (1+Rprev)/2. Alternatively, if the 
user decides that the DE-MC sampler has converged, then subsequent sampling during the post 
burn-in monitoring period proceeds unless it is determined that convergence was identified 
prematurely based on a comparison of the currently computed minimum RMSE fitness value 
versus the minimum root-mean-square error (RMSE) fitness value computed at what was 
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previously thought to be the completion of the burn-in phase for the sampler. In this case, burn-in 
sampling recommences with a new value for R as mentioned previously. The threshold 
comparison value of the noted minimum RMSEs, which suggests that burn-in was previously 
assessed prematurely, is a specified user input. This additional heuristic incorporated into the 
algorithm to automatically self-correct during post burn-in monitoring is relatively simplistic and 
requires further evaluation and testing. Testing to date, has demonstrated improved assessment of 
DE-MC MCMC sampler convergence. 

Verification and Testing. Verification of the independent DE-MC implementation involved 
two documented tests: one, a non-trivial known target distribution (ter Braak 2006), and the other 
involving calibration of a Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic model 
deployment (Vrugt et al. 2009). 

Bimodal mixed normal target distribution 

Numerical tests to validate the noted independent DE-MC implementation were performed with a 
known bimodal target composed of the sum of two normal distributions, which is documented to 
be a difficult problem for MCMC simulation in that the distance between the two modes makes 
jump proposals from one mode to the other problematic (ter Braak 2006; Vrugt et al. 2009). In 
particular, numerical experiments were performed for the specified known bimodal target: 

 ( ) ( ) ( ), ,d d d dπ x N I N I= - +
1 2

5 5
3 3

 (2) 

where , x, Nd, 5, and Id represent the target distribution, a given chain in the population, a 
multivariate normal distribution of dimension d, a vector consisting of a 5 in each of the d-
dimensions, and a d-dimensional identity matrix, respectively.  

Consistent with ter Braak (2006), all of the tests with the known bimodal target specified in 
Equation 2, involved (1) a predetermined burn-in of 1000 generations, (2) two different initial 
distributions; viz., a narrow initial distribution given by N(0,Id) and a broad initial distribution 
given by N(2.5,25 Id), (3) two values specified for d and N; viz., 5 and 10, and 100 and 1000, 
respectively, and (4) γ set equal to 2.38/2 . In each case, 100 independent trials were performed 
and uniform random sampling was employed to initialize the population. The subsequent 
monitoring period consisted of 1000 generations. Table 1 summarizes the trial runs. Figures 1 – 
7 provide an additional summary of the numerical experiments. For d = 10 and with the default 
value specified for γ, it was observed, as is clearly evident upon inspection of Figures 4 and 6, 
that DE-MC had difficulty converging to the known target distribution. However, activation of 
the adaption functionality for γ, previously mentioned and briefly discussed above, remedied the 
observed problem, as indicated in Table 1 and also in Figures 5 and 7. For d = 10 and N = 1000, 
additional numerical experiments, each consisting of 100 independent trials, were also performed 
wherein γ was effectively set equal to one every fifth, fourth, and third generation, in attempts to 
examine how the update frequency would impact the acceptance rate and also the RMSE for the 
estimate of the expected value (1.666). Table 2 summarizes the results from these additional 
numerical experiments. 
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Table 1. Summary of numerical experiments with independent DE-MC 
implementation with the known bimodal target distribution (If yes for adaption, 
then, as indicated in the text of the note, γ is effectively set equal to one every 
tenth generation; RMSE for estimate of the expected value, which is 1.666). 
Results based on the 100 independent trials. 

d N Initial Population Adaption Acceptance Rate RMSE 

5 100 Narrow No 0.163 0.37 

5 1000 Narrow No 0.157 0.112 

5 100 Broad No 0.166 0.352 

5 1000 Broad No 0.159 0.108 

10 1000 Narrow No 0.13 1.609 

10 1000 Narrow Yes 0.129 0.124 

10 1000 Broad No 0.199 2.054 

10 1000 Broad Yes 0.145 0.23 

 

Figure 1. Estimated marginal posterior probability distribution of x1 from trial 33, based 
on using d = 5, N = 100, and the narrow initial population. The solid black 
line depicts the true bimodal target distribution. 
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Figure 2. Estimated marginal posterior probability distribution of x1 from trial 2, based on 
using d = 5, N = 1000, and the narrow initial population. The solid black line 
depicts the true bimodal target distribution. 

 

Figure 3. Estimated marginal posterior probability distribution of x3 from trial 2, based on 
using d = 5, N = 1000, and the broad initial population. The solid black line 
depicts the true bimodal target distribution. 
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Figure 4. Estimated marginal posterior probability distribution of x5 from trial 3, based on 
using d = 10, N = 1000, the narrow initial population, and not adapting γ. The 
solid black line depicts the true bimodal target distribution. 

 

Figure 5. Estimated marginal posterior probability distribution of x5 from trial 5, based on 
using d = 10, N = 1000, the narrow initial population, and setting γ equal to one 
effectively every tenth generation. The solid black line depicts the true bimodal 
target distribution. 



ERDC/CHL CHETN-VIII-7 
September 2013 

8 

 

Figure 6. Estimated marginal posterior probability distribution of x5 from trial 4, based on 
using d = 10, N = 1000, the broad initial population, and not adapting γ. The 
solid black line depicts the true bimodal target distribution. 

 

Figure 7. Estimated marginal posterior probability distribution of x5 from trial 5, based on 
using d = 10, N = 1000, the broad initial population, and setting γ equal to one 
effectively every tenth generation. The solid black line depicts the true bimodal 
target distribution. 
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Table 2. Summary of the impact of the update frequency for γ. 

d N Initial Population 
Adaption Update 
Frequency 

Acceptance 
Rate RMSE 

10 1000 Narrow 0.1 0.129 0.124 
10 1000 Narrow 0.2 0.120 0.091 
10 1000 Narrow 0.25 0.115 0.085 
10 1000 Narrow 0.333 0.107 0.086 
10 1000 Broad 0.1 0.145 0.230 
10 1000 Broad 0.2 0.127 0.109 
10 1000 Broad 0.25 0.119 0.093 
10 1000 Broad 0.333 0.109 0.085 

SAC-SMA hydrology model 

Vrugt et al. (2009) described the DREAM MCMC sampler and compared it with other MCMC 
samplers via several case studies, one which involved inferring the posterior probability 
distribution for thirteen Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic model 
parameters for a SAC-SMA deployment to the 1944 km2 Leaf River watershed near Collins, MS 
using two years of mean daily flow data. The SAC-SMA hydrologic model is used by the National 
Weather Service (NWS) for flood forecasting throughout the United States. While it has sixteen 
parameters that need to be specified by the user, consistent with previous work (Vrugt et al. 2003 
and references cited therein), thirteen were specified as adjustable. The prior uncertainty ranges of 
the specified adjustable SAC-SMA hydrologic model parameters are defined in Table 3.  

Table 3. SAC-SMA model parameters, 
including their prior, and units. 

Parameter  Minimum  Maximum  Unit  

UZTWM  1 150 [mm]  
UZFWM  1 150 [mm]  
UZK  0.1 0.5 day-1  
PCTIM  0 0.1 [-]  
ADIMP  0 0.4 [-]  
ZPERC  1 250 [-]  
REXP  1 5 [-]  
LZTWM  1 500 [mm]  
LZFSM  1 1000 [mm]  
LZFPM  1 1000 [mm]  
LZSK  0.01 0.25 day-1  
LZPK  0.0001 0.025 day-1  
PFREE  0 0.6 [-]  

The reader is referred to Vrugt et al. 2003, and references cited therein, for comprehensive 
discussions regarding the SAC-SMA hydrologic model, the Leaf River watershed and its related 
hydrologic data (viz., mean areal precipitation (mm/day), potential evapotranspiration (mm/day), 
and streamflow (m3/s)) which was used to support the inference of the posterior distribution of 
the SAC-SMA specified adjustable model parameters. 
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Consistent with Vrugt et al. (2009), for the series of implementation validation and evaluation 
tests employed with this “real world” case study application, squared deviation likelihood was 
utilized as follows: 

 ( ) ( )( )ˆ
T

T

i ii
π x S x S

-

=

é ù
= -ê ú

ê úë û
å

1
2 2

1
 (3) 

where îS , S , and T represent the streamflow observations, their model simulated counterparts, 

and the number of data comparisons used to evaluate the likelihood (viz. 731). With each SAC-
SMA forward model call, approximately two months of simulation occurs prior to the window 
for performing comparisons of model simulated flows with their observed counterparts.  

For purposes of illustration, Figure 8 displays results associated with five unique realizations of the 
DE-MC method to calibrate the SAC-SMA Leaf River hydrologic model. In particular, it includes 
five plots of the RMSE computed each evolution. For each of the five DE-MC simulation runs, 
N=26 and γ was effectively set equal to one every fifth generation. The observed differences in 
Figure 8 across the five RMSE plots is a function of the initial seed specified to the DE-MC 
implementation as all of the other input settings remained constant. The five plots in Figure 8 not 
only underscore the well known documented difficulty of calibrating the SAC-SMA conceptual 
hydrologic model (Gupta et al. 2003; Duan et al. 1992), but also the variability in the performance 
of the DE-MC method. One can clearly observe six unique optima upon inspection of the five 
RMSE plots in Figure 8. Moreover, one can also observe from the five plots that the number of 
forward model calls necessary to achieve burn-in for the DE-MC sampler can exhibit a fair degree 
of variability from one simulation run to another. With the independent DE-MC implementation, a 
minimum RMSE value of 13.25 was achieved, as was also reported upon in Vrugt et al. (2009). 
Figure 9 is a trace plot of the specified SAC-SMA adjustable model parameter UZTWM associated 
with the first chain for one of the five DE-MC simulations. Figure 10 is a plot of the 95 percent 
predictive uncertainty bounds associated with one of the five DE-MC simulation runs. The 
computed uncertainty bounds are solely a function of the model parameter uncertainty obtained via 
sampling from the posterior probability density during the post burn-in monitoring period which 
was arbitrarily set to be equal in length to the number of simulations required to achieve DE-MC 
sampler burn-in. 

DISCUSSION AND CONCLUSIONS: This technical note briefly describes the Differential 
Evolution Markov Chain MCMC sampler, which was identified in Skahill (2012) to be a state-
of-the-art methodology for quantifying hydrologic model parameter and predictive uncertainty in 
support of risk-based hydrologic design, and evaluation of project alternatives. This document 
also describes some of the salient features associated with an independent implementation of the 
DE-MC method; viz., approaches to initialization of the population to be evolved, treatment of 
jump proposal dimensions that are out of bounds, and a hybrid, heuristic, semi-automated 
approach for assessing convergence of the DE-MC sampler. In addition, this technical note 
summarizes two case study applications of the independent DE-MC implementation.  

The first case study involved a bimodal mixed normal target distribution, a non-trivial 
verification problem in that in the past been demonstrated to be difficult to resolve for  
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Figure 8. A plot of mean RMSE for each generation for five unique DE-MC runs. 

 

Figure 9. A plot of the evolution of the first chain for the SAC-SMA parameter UZTWM. 
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Figure 10. 95 percent predictive uncertainty envelope which is solely a function 
of model parameter uncertainty. 

classical random walk metropolis MCMC samplers. However, systematic adaption of one of the 
two DE-MC algorithm input parameters ensured convergence to the bimodal target distribution. 
The second case study involved application of the independent implementation of the DE-MC 
method to calibrate a Sacramento Soil Moisture Accounting hydrology model deployment using 
two years of mean daily flow data. This validation and evaluation case study demonstrated that the 
DE-MC method is able to handle complex response surfaces and find the documented minimum. 
And that by sampling from the equilibrium posterior probability distribution for the specified 
adjustable model parameters one can then generate model predictive uncertainty bounds which can 
support risk-based analyses. Although, in the second case study example it was also illustrated that 
the DE-MC method has the capacity to exhibit a fair degree of random variability, when applied, in 
terms of the number of forward model calls required to achieve burn-in for the MCMC sampler. 

The work documented herein is just the beginning with respect to research and development 
directed to the development of a state-of-the-art robust methodology for computing model 
parameter and predictive uncertainty. Opportunities for future DE-MC related study and 
exploration include: 

1. Refine the current hybrid, heuristic, semi-automated approach for assessing DE-MC 
convergence by addressing the question “Can MCMC burn-in be completely automated and 
remain reliable?”. 

2. Ensure implementation of the DE-MC algorithm is as efficient as possible and reduce the 
observed variability in DE-MC algorithm performance. 

a. Would dynamic adjustment of the DE-MC parameter γ improve algorithm performance? 
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b. Explore applying those aspects of the DREAM MCMC algorithm (Vrugt et al. 2008a, 
2008b, 2009) which do not complicate its implementation and practical usage, such as 
dynamic chain removal. 

3. Bayesian MCMC provides one with a robust means for assessing model uncertainty; 
however, it is computationally costly. Regardless of the efficiencies derived, port the final 
independent Bayesian MCMC implementation to the HPC framework. 

4. Integrate the independent DE-MC implementation into the USACE-ERDC GSSHA 
hydrology model (Downer and Ogden 2003a, b) as an alternate simulation mode. 

5. Enhance the DE-MC GSSHA alternate simulation mode to also account for precipitation 
forcing uncertainty via specification of event multipliers similar to the approach described in 
Vrugt et al. (2008b). 

6. Modify the independent DE-MC implementation to account for model structural uncertainty 
via specification of a likelihood measure that accommodates for the treatment of serial 
correlation of the residuals. Explore alternative means to quantify model structural 
uncertainty. 

7. Incorporate into the independent DE-MC implementation automated means for computing 
the necessary length of the post burn-in monitoring period. 

8. Provide a more complete treatment and discussion of the various options/features of the 
independent implementation of the DE-MC method to provide potential users with a clear 
picture regarding recommended usage of various options such as use of URS versus LHS 
for initializing the population to be evolved or the treatment of jump proposal dimensions 
that are out of bounds.  

9. Clearly demonstrate the capacity of the Gelman and Rubin diagnostic to prematurely assess 
MCMC sampler convergence. 

10. Perform comprehensive case studies that demonstrate use of the state-of-the-art model 
uncertainty analysis method to support practical risk-based hydrologic and environmental 
application settings. 

ADDITIONAL INFORMATION: For additional information, contact Dr. Brian E. Skahill at 
Brian.E.Skahill@usace.army.mil. This CHETN should be cited as follows: 

Skahill, B. E. (2013). Initial development and testing of a state-of-the-art method 
to quantify hydrologic model uncertainty. ERDC/CHL CHETN-VIII-7. 
Vicksburg, MS: US Army Engineer Research and Development Center. An 
electronic copy of this CHETN is available from http://chl.erdc.usace.army. 
mil/chetn. 
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