
Army Research Laboratory

Geometric Single-Qubit Quantum Gates for an Electron Spin in

a Quantum Dot

by Vladimir S. Malinovsky and Sergey Rudin

ARL-TR-6641 September 2013

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated

by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6641 September 2013

Geometric Single-Qubit Quantum Gates for an Electron Spin in
a Quantum Dot

Vladimir S. Malinovsky and Sergey Rudin

Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHOR(S) 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:  
19a. NAME OF RESPONSIBLE PERSON

a. REPORT 

 

b. ABSTRACT 

 

c. THIS PAGE 

 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18

September 2013 Final

Geometric Single-Qubit Quantum Gates for an Electron Spin in a Quantum Dot

ARL-TR-6641

Approved for public release; distribution is unlimited.

Vladimir S. Malinovsky and Sergey Rudin

U.S. Army Research Laboratory

ATTN: RDRL-SEE-M

Adelphi, MD 20783-1197

We propose a scheme to perform arbitrary unitary operations on a single electron-spin qubit in a quantum dot. The design is

solely based on the geometrical phase that the qubit state acquires after a cyclic evolution in the parameter space. The scheme

uses ultrafast linearly chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled

by the relative phase between pulses. The analytic expression of the evolution operator for the electron spin in a quantum dot,

which provides a clear geometrical interpretation of the qubit dynamics, is obtained. Using parameters of indium gallium

nitride (InGaN)/gallium nitride (GaN), GaN/aluminum nitride (AlN) quantum dots, we provide an estimate for the time scale of

the qubit rotations and parameters of the external fields.

electron spin qubit, quantum gates

44

Vladimir S. Malinovsky

301-394-0422Unclassified Unclassified Unclassified
UU

ii



Contents

List of Figures v

1. Introduction 1

2. General Equations of Motion 1

3. Non-Impulsive Case 6

4. Adiabatic Solution 6

5. Bloch Vector Representation 10

6. Alternative Derivation of the Bloch Equation 13

7. Evolution Operator of the Bloch Vector 16

8. Ultrafast Qubit Rotations Using Geometrical Phase 18

9. Rotation in the Bloch Representation 21

10. Generalization of the Single-Qubit Operation Using Bright-Dark Basis 23

11. Electron Spin in a Quantum Dot as a Qubit 26

12. Conclusion 29

13. References 30

iii



Appendix. Eigenvectors of the Pauli matrices 33

Distribution List 35

iv



List of Figures

Figure 1. Energy structure of the three-level system comprised of the two electron spin

states and the trion state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2. The density plot of the |1〉 state population (a) and coherence (b) as a function

of the effective pulse area and frequency chirp; αP = αS, δ = 0. Initially, only the |1〉
state is populated.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3. The density plot of the |1〉 state population (a) and coherence (b) as a function of

the effective pulse area and frequency chirp; αP = αS, δτ0 = 0.75. Initially, only the

|1〉 state is populated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 4. The Bloch vector representation of the qubit state. Excitation of the qubit by an

external field corresponds to the rotation of the B vector about the pseudo field vector,

Ω, with components determined by the effective Rabi frequency Ωe(t), detuning δ, and

the relative phase ∆φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 5. The Bloch vector trajectory for the qubit state |0〉 in panel (a) and the qubit state

|1〉 in panel (b) generated by the sequence of two π-pulses with the relative phase ϕ + π. . 19

Figure 6. The Bloch vector trajectory for the qubit state |i〉 in panel (a) and the qubit state

|− i〉 in panel (b) generated by the sequence of two π/2-pulses and one π pulse with the

relative phase ϕ + π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 7. Optical selection rules in different bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 8. The population dynamics of the resonant qubit states with (dotted lines) and with-

out (solid lines) adiabatic elimination of the trion state in the three-level system. The

excitation is generated by the sequence of two pairs of π-pulses (Gaussian pulse en-

velops) with the relative phase ∆ϕ = π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



INTENTIONALLY LEFT BLANK.

vi



1. Introduction

The electron spin in a single quantum dot is one of the perspective realizations of a qubit for the

implementation of a quantum computer. During the last decade several control schemes to

perform single gate operations on a single quantum dot spin have been reported (1–4). Here we

propose a scheme that allows performing ultrafast arbitrary unitary operations on a single qubit

represented by the electron spin. The idea of geometric manipulation of the qubit wave function

has been recently developed into a new research direction called geometric quantum

computing (15–17). The main motivation of this development is the robustness of geometric

quantum gates against noise (15, 18, 19). In this report, we demonstrate how to use the

geometric phase, which the Bloch vector gains along the cyclic path, to prepare an arbitrary state

of a single qubit. We show that the geometrical phase is fully controllable by the relative phase

between the external fields. Realistic implementation of the proposed design using the electron

spin in a charged quantum dot as an example of a qubit is discussed.

2. General Equations of Motion

Let us consider the coherent Raman excitation in the three-level Λ-type system consisting of the

two lowest states of electron spin |0〉 ≡ | − X〉 and |0〉 ≡ |X〉 coupled through an intermediate

trion state |T 〉 consisting of two electrons and a heavy hole (5) (figure 1). We assume that the

trion state is far off-resonance with the external fields to ensure that decoherence on the

trion-qubit transitions can be neglected. The electron spin states are split by an external magnetic

field; the separation energy is ~ωe. The total wave function of the system

|Ψ(t)〉 = a0(t)|0〉 + a1(t)|1〉 + b(t)|T 〉 , (1)

where a0,1(t) and b(t) are the probability amplitudes, is governed by the time-dependent

Schrödinger equation with the Hamiltonian

H = ~







0 0 −(ΩP (t) + Ω̄S(t))

0 ωe −(Ω̄P (t) + ΩS(t))

−(ΩP (t) + Ω̄S(t)) −(Ω̄P (t) + ΩS(t)) ωT






, (2)

where ΩP,S(t) = ΩP0,S0(t) cos[ωP,St + φP,S(t)], Ω̄P,S(t) = Ω̄P0,S0(t) cos[ωP,St + φP,S(t)],

1



ΩP0,S0(t) = µ0T,T 1EP,S(t)/~, and Ω̄P0,S0(t) = µ1T,T 0EP,S(t)/~ are the Rabi frequencies, µ0T,T 1

are the dipole moments, EP,S(t) are the pulse envelopes, ωP,S are the center frequencies, φP,S(t)

are the time-dependent phases, and ~ωT is the energy of the trion state.
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Figure 1. Energy structure of the

three-level system

comprised of the two

electron spin states and

the trion state.

We are considering here a case of linearly chirped pulses such that

φP,S(t) = φP,S + αP,St2/2 , (3)

where φP,S are the initial phases and αP,S are the chirps of the pulses.

Using transformation |Ψ(t)〉 = URWA|Ψ̃(t)〉, where

URWA =







1 0 0

0 ei(ωS−ωP )t 0

0 0 e−iωP t






, (4)

U−1
RWA =







1 0 0

0 e−i(ωS−ωP )t 0

0 0 eiωP t






, (5)

we make the rotating wave approximation (RWA) by neglecting the rapidly oscillating terms with
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frequency 2ωS , 2ωP and ωS + ωP . In the RWA, the Hamiltonian has the following form

H̃ = U−1
RWAHURWA − i~U−1

RWAU̇RWA

= −~

2







0 0 ΩP+ + Ω̄S+e−i∆ωt

0 −2ωe Ω̄P+(t)ei∆ωt + ΩS+

Ω∗
P+ + Ω̄∗

S+ei∆ωt Ω̄∗
P+e−i∆ωt + Ω∗

S+ −2ωT







+ ~







0 0 0

0 −∆ω 0

0 0 −ωP







= −~

2







0 0 ΩP+ + Ω̄S+e−i∆ωt

0 2(∆ω − ωe) Ω̄P+(t)ei∆ωt + ΩS+

Ω∗
P+ + Ω̄∗

S+ei∆ωt Ω̄∗
P+e−i∆ωt + Ω∗

S+ −2∆P






, (6)

where ∆P = ωT − ωP , ∆ω = ωP − ωS , ΩP+ = ΩP0(t)e
iφP (t), ΩS+ = ΩS0(t)e

iφS(t),

Ω̄P+ = Ω̄P0(t)e
iφP (t), Ω̄S+ = Ω̄S0(t)e

iφS(t).

Assuming large detunings of the pump and Stokes field frequencies from the transition

frequencies to the trion state, we apply the adiabatic elimination of the trion state. In that case,
˙̃b ≈ 0 and we find

b̃ =
1

2∆P

[(

Ω∗
P+ + Ω̄∗

S+ei∆ωt
)

ã0(t) +
(

Ω̄∗
P+e−i∆ωt + Ω∗

S+

)

ã1(t)
]

. (7)

Substituting equation 7 into equations for a0,1 after some algebra, we obtain the following form of

the Hamiltonian for the effective two-level system

H̃ = −~

2

(

Ωac0(t) Ωeff(t)

Ω∗
eff (t) Ωac1(t) − 2δ

)

, (8)

where δ = ωe − ∆ω,

Ωac0(t) =
1

2∆P
(Ω2

P0(t) + Ω̄2
S0(t) + 2ΩP0(t)Ω̄S0(t) cos [φP (t) − φS(t) + ∆ωt] , (9)

Ωac1(t) =
1

2∆P

(Ω2
S0(t) + Ω̄2

P0(t) + 2ΩS0(t)Ω̄P0(t) cos [φP (t) − φS(t) + ∆ωt] , (10)

3



Ωeff (t) =
e−i∆ωt

2∆P

(

ΩP0(t)Ω̄P0(t) + ΩS0(t)Ω̄S0(t)

+ ΩP0(t)ΩS0(t)e
i[φP (t)−φS(t)+∆ωt] + Ω̄P0(t)Ω̄S0(t)e

−i[φP (t)−φS(t)+∆ωt]
)

. (11)

Since ΩP0(t)ΩS0(t) = Ω̄P0(t)Ω̄S0(t), we have

Ωeff (t) =
e−i∆ωt

2∆P

(

ΩP0(t)Ω̄P0(t) + ΩS0(t)Ω̄S0(t)

+ 2ΩP0(t)ΩS0(t) cos[φP (t)− φS(t) + ∆ωt]) . (12)

Making the transformation |Ψ̃(t)〉 = U|Ψ̄(t)〉, with

U =

(

e−iδt/2+i
R t

−∞
dt′Ωst(t′) 0

0 e−iδt/2+i
R t

−∞
dt′Ωst(t′)

)

= e−iδt/2+i
R t

−∞
dt′Ωst(t′)I , (13)

where Ωst(t) = (Ωac0(t) + Ωac1(t))/4, we can rewrite equation 8 in more symmetric form. In the

new basis, the Hamiltonian takes the form

H̄ = U−1H̃U − i~U−1U̇ = H̃ + ~(Ωst(t)− δ/2)I

= −~

2

(

δ + Ωdif (t) Ωeff (t)

Ω∗
eff (t) −δ − Ωdif (t)

)

, (14)

where Ωdif (t) = (Ωac0(t) − Ωac1(t))/2.

Taking into account the exact time-dependence of the phases in equation 3 we apply another

transformation |Ψ̄(t)〉 = UF |Ψ̆(t)〉, with

UF =

(

eiζt2/4 0

0 e−iζt2/4

)

= eiζ t2

4
σz , (15)

where ζ = αP − αS. Therefore, in the field interaction representation the Hamiltonian takes the

4



following form

H̆ = U−1
F H̄UF − i~U−1

F U̇F

= −~

2

(

δ + Ωdif (t) Ωeff (t)e
−iζt2/4

Ω∗
eff (t)e

iζt2/4 −δ − Ωdif (t)

)

+
~

2

(

ζt 0

0 −ζt

)

= −~

2

(

δ − ζt + Ωdif (t) Ωeff (t)e
−iζt2/4

Ω∗
eff (t)e

iζt2/4 −δ + ζt − Ωdif (t)

)

= −~

2

(

δ(t) Ω̄eff (t)e
i∆φ

Ω̄∗
eff (t)e

−i∆φ −δ(t)

)

, (16)

where δ(t) = δ + (αS − αP )t + Ωdif (t), ∆φ = φP − φS ,

Ω̄eff (t) =
ΩP0(t)ΩS0(t)

2∆P

(

1 +
ΩP0(t)Ω̄P0(t) + ΩS0(t)Ω̄S0(t)

ΩP0(t)ΩS0(t)
e−i[∆φ+∆ωt+ζt2/2]

+
Ω̄P0(t)Ω̄S0(t)

ΩP0(t)ΩS0(t)
e−2i[∆φ+∆ωt+ζt2/2]

)

. (17)

In general, the differential AC Stark shift, Ωdif (t) is not zero and has to be taken into account.

Using the definition of the Rabi frequency, we can rewrite equations 9 and 10 in the form

Ωac0(t) =
µ2

0T

2~2∆P
(E2

P (t) + E2
S(t) + 2EP (t)ES(t) cos [φP (t) − φS(t) + ∆ωt] , (18)

Ωac1(t) =
µ2

1T

2~2∆P
(E2

P (t) + E2
S(t) + 2EP (t)ES(t) cos [φP (t) − φS(t) + ∆ωt] . (19)

In the case, when µ0T ≈ µ1T , the AC Stark shifts are the same for both qubit states, so that

Ωdif (t) = 0, and we have

H̆ = −~

2

(

δ − ζt Ω̄eff (t)e
i∆φ

Ω̄∗
eff (t)e

−i∆φ −δ + ζt

)

. (20)

Note that we do not require completely overlapped pulses here.

5



3. Non-Impulsive Case

In some excitation schemes, due to selection rules that take into consideration the polarization of

the external field, the pump and Stokes field interact only with the corresponding transitions and

the general Hamiltonian can be simplified. For that case, we can obtain the correct form of the

Hamiltonian by putting Ω̄P0(t) = Ω̄S0(t) = 0 in equations 9, 10 and 17. It results in

Ωac0(t) =
1

2∆P

Ω2
P0(t) , (21)

Ωac1(t) =
1

2∆P
Ω2

S0(t) , (22)

Ωdif (t) =
1

4∆P
[Ω2

P0(t)− Ω2
S0(t)] , (23)

Ω̄eff (t) =
ΩP0(t)ΩS0(t)

2∆P
. (24)

Therefore, in the field interaction representation, the Hamiltonian has the form

H̆ = −~

2

(

δ(t) Ω̄eff (t)e
i∆φ

Ω̄∗
eff (t)e

−i∆φ −δ(t)

)

, (25)

where

δ(t) = δ + (αS − αP )t + [Ω2
P0(t)− Ω2

S0(t)]/4∆P . (26)

4. Adiabatic Solution

The Hamiltonian in equation 25 controls the dynamics of the qubit wave function in the

approximation of the adiabatic elimination of the trion state. Here we consider the adiabatic

excitation of the qubit and find the adiabatic solution of the Schrödinger equation with the

Hamiltonian in equation 25.

Since the phase factor, ei∆φ, of the coupling term in equation 25 is time independent, it is

6



convenient to use the following transformation |Φ(t)〉 = A|Ψ(t)〉, where

A = |0〉〈0| + ei∆φ|1〉〈1| = ei∆φ/2e−i∆φσz/2 , (27)

so that the new wave function is governed by the Hamiltonian

H̄ = AH̆A−1 = −~

2

(

δ(t) Ωe(t)

Ωe(t) −δ(t)

)

= −~

2
(δ(t)σz + Ωe(t)σx) . (28)

To solve the Schrödinger equation in the adiabatic representation, we apply another

transformation: |Φ̄(t)〉 = R(t)|Φ(t)〉, where

R(t) =

(

cos θ(t) sin θ(t)

− sin θ(t) cos θ(t)

)

= eiθ(t)σy , (29)

and tan[2θ(t)] = Ωe(t)/δ(t). In the new basis the Hamiltonian, equation 28, takes the form

H̃(t) = R(t)H̄(t)R−1(t)

=

(

−~

2

√

δ2(t) + Ω2
e(t) 0

0 ~

2

√

δ2(t) + Ω2
e(t)

)

= −~λ(t)σz/2 , (30)

where λ(t) =
√

δ2(t) + Ω2
e(t).

As we see, the Hamiltonian in equation 30 is diagonal in the adiabatic basis and we can readily

write down the solution. However, since the transformation R(t) is time dependent, an

additional nonadiabatic coupling term is present in the general Schrödinger equation

i~| ˙̄Φ(t)〉 = −1

2
~λ(t)σz|Φ̄(t)〉 − ~θ̇(t)σy|Φ̄(t)〉 , (31)

where

θ̇(t) = −Ωe(t)δ̇(t) − δ(t)Ω̇e(t)

2 (Ω2
e(t) + δ2(t))

. (32)

Neglecting the nonadiabatic coupling term in equation 31, we readily obtain for the qubit wave

7



function in the original basis

|Ψ(t)〉 = ei∆φ

2
σze−iθ(t)σyei

Λ(t)
2

σzeiθ(0)σye−i∆φ

2
σz |Ψ(0)〉 . (33)

where Λ(t) =
∫ t

0
dt′λ(t′). Note, that the general form of the evolution operator in equation 33 is

well justified if the following condition |Ωe(t)δ̇(t)− Ω̇e(t)δ(t)| � λ3(t) is valid.

In the case of completely overlapped pulses, ΩP0(t) = ΩS0(t), with identical chirp rates,

αP = αS, for the resonant qubit, δ(t) = δ = 0, we have θ(t) = θ(0) = π/4 and the

transformation matrix becomes R(t) = R(0) = eiπσy/4. Therefore, the unitary evolution

operator for the wave function of the resonant qubit takes the form

U (t) =

(

cos (S(t)/2) iei∆φ sin (S(t)/2)

ie−i∆φ sin (S(t)/2) cos (S(t)/2)

)

= cos (S(t)/2) I + i sin (S(t)/2) (ei∆φσ+ + e−i∆φσ−)

= cos (S(t)/2) I − i sin (S(t)/2) (n · σ) = e−iS(t)n·σ/2 , (34)

where S(t) =
∫ t

0
dt′Ωe(t

′) is the effective pulse area, n = (− cos ∆φ, sin∆φ, 0),

σ± = (σx ± iσy)/2 are the Pauli raising and lowering operators, and σx,y,z are the Pauli

operators. Note, that the nonadiabatic coupling term, equation 32, is zero for the resonant qubit

and the solution of the Schrödinger equation in the adiabatic approximation, equation 34, is the

exact solution.

The density plots of the population and coherence (|a0(T )a∗
1(T )|) at the final time (after the pulse

excitation) as a function of the effective pulse area, S(T ), and the dimensionless frequency chirp

parameter, α′/τ 2
0 , described by the unitary evolution operator in equation 34 is depicted in

figure 2. We use the Gaussian shape for the pulse envelopes, assuming that linear chirp is

obtained by applying a linear optics technique, meaning that a transform-limited pulse of duration

τ0 is chirped, conserving the energy of the pulse (6, 7). The temporal (α) and spectral (α′) chirps

are related as α = α′τ−4
0 /(1 + α′2/τ 4

0 ) (6, 7), where τ0 is the transform-limited pulse duration.

We observe the Rabi oscillation regime, when the population of the qubit states is changing

between 0 and 1 while the coherence is changing between 0 and 1/2. This behavior does not

depend on the chirp rate, since the effective Rabi frequency Ωe(t) is determined by the product of

the pump and Stokes Rabi frequencies: ΩP0,S0(t) = Ω0 exp{−t2/(2τ 2)}/[1 + α′2/τ 4
0 ]1/4 with

the chirp-dependent pulse duration τ = τ0[1 + α′2/τ 4
0 ]1/2 and the amplitude (6, 7).

In turn, for the off-resonant qubits, δ 6= 0, the evolution operator in the adiabatic approximation

8
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Figure 2. The density plot of the |1〉 state population (a) and coherence (b) as a function of the

effective pulse area and frequency chirp; αP = αS , δ = 0. Initially, only the |1〉 state is

populated.

takes the form

U (t) =

(

eiξ(t) cos θ(t) −e−iξ(t)ei∆φ sin θ(t)

eiξ(t)e−i∆φ sin θ(t) e−iξ(t) cos θ(t)

)

, (35)

where

cos θ(t) =
1√
2

√

1 +
δ

√

δ2 + Ω2
e(t)

, (36a)

sin θ(t) =
1√
2

√

1 − δ
√

δ2 + Ω2
e(t)

(36b)

and ξ(t) = 1
2

∫ t

0

√

δ2 + Ω2
e(t

′)dt′ is the effective pulse area.

Note that for the off-resonant case the transformation matrixes are

R−1(t) =

(

cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

)

,

R(0) =

(

1 0

0 1

)

. (37)

Figure 3 demonstrates excitation of the off-resonant qubit. As expected, the population of the

9
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Figure 3. The density plot of the |1〉 state population (a) and coherence (b) as a function of the

effective pulse area and frequency chirp; αP = αS , δτ0 = 0.75. Initially, only the |1〉
state is populated.

off-resonant qubit at the final time is not changed by the external fields as long as the pulse

excitation parameters are in the adiabatic regime. This is the regime of adiabatic return.

However, we still observe the Rabi oscillation for the value of the chirp |α′| . 5τ 2
0 . This is the

area of nonadiabatic population transfer where the nonadiabatic coupling term cannot be

neglected in equation 31.

5. Bloch Vector Representation

The dynamics of the qubit wave function can be described equally well using the Bloch vector

representation. In addition, the Bloch vector formalism allows a very nice and clear geometrical

interpretation of qubit dynamics (8). In this section, we give a short overview of the Bloch

picture.

A general state of a qubit can be described as

|Ψ〉 = a0(t)|0〉 + a1(t)|1〉 = cos (β/2) |0〉 + eiα sin (β/2) |1〉 , (38)

where α and β are the phase parameters. Up to an insignificant global phase, the wave function

10



can be mapped into a unitary Bloch vector B = (u, v, w), as shown in figure 4.

 

!

x y

z

B

 
"#

( ) cos
e
t $#% &

( )sin
e
t $% &

Figure 4. The Bloch vector representation of the qubit state.

Excitation of the qubit by an external field corresponds to

the rotation of the B vector about the pseudo field vector,

Ω, with components determined by the effective Rabi

frequency Ωe(t), detuning δ, and the relative phase ∆φ.

To use Bloch vector representation, we construct the qubit density matrix

% = |Ψ〉〈Ψ| =

(

%00 %01

%10 %11

)

=
1

2

(

1 + cos β e−iα sinβ

eiα sinβ 1 − cos β

)

, (39)

where %ij = ai(t)a
∗
j(t), i, j = 0, 1. Using a Pauli matrix decomposition

% =
1

2
(I + B · ~σ)

=
1

2
(I + u · σx + v · σy + w · σz)

=
1

2
(I + cos α sin β · σx + sinα sinβ · σy + cos β · σz) , (40)

we identify relation between the components of the qubit wave function, the qubit density matrix

11



elements, and the Bloch vector components. Therefore, we obtain the following expression

B =







u

v

w






=







%01 + %10

i(%01 − %10)

%00 − %11






=







cos α sinβ

sinα sinβ

cos β






. (41)

Taking into account the Hamiltonian in equation 25, the equation of motion for the density matrix

i~%̇ = H% − %H takes the following explicit form

i%̇00 =
(

e−i∆φ%01 − ei∆φ%10

)

Ωe(t)/2 , (42a)

i%̇01 = −δ(t)%01 − (%11 − %00)Ωe(t)e
i∆φ/2 , (42b)

i%̇10 = δ(t)%10 + (%11 − %00) Ωe(t)e
−i∆φ/2 , (42c)

i%̇11 = −
(

e−i∆φ%01 − ei∆φ%10

)

Ωe(t)/2 . (42d)

Using the relations in equation 41, we can also write the dynamic equation in the Bloch vector

representation as

u̇ = vδ(t) + wΩe(t) sin∆φ , (43a)

v̇ = −uδ(t) + wΩe(t) cos∆φ , (43b)

ẇ = −uΩe(t) sin∆φ− vΩe(t) cos∆φ . (43c)

Introducing a pseudo field vector, Ω, with components determined by the effective Rabi

frequency, two-photon detuning, and the relative phase between pump and Stokes pulses,

Ω =







−Ωe(t) cos∆φ

Ωe(t) sin∆φ

−δ(t)






, (44)

we can rewrite equation 43 in the compact form

Ḃ = Ω × B . (45)

This is the Bloch equation, which describes a precession of the Bloch vector, B, about the pseudo

field vector, Ω, and allows clear, intuitive interpretation of qubit dynamics.

12



6. Alternative Derivation of the Bloch Equation

As we showed in the previous section, the density matrix can be decomposed using Pauli matrixes

as

% =
1

2
(I + B · ~σ) . (46)

It is also easy to verify that

B = Tr[~σ%] = (Tr[σx%], T r[σy%], T r[σz%]) = (u, v, w) . (47)

Using the Pauli matrix decomposition procedure Tr[~σH ], we can rewrite the Hamiltonian in

equation 25 in the form

H =
~

2
(Ω · ~σ) , (48)

where

Ω = (−Ωe(t) cos ∆φ, Ωe(t) sin∆φ,−δ(t)) . (49)

Therefore, the equation of motion for the density matrix

%̇ = − i

~
(H% − %H) , (50)

takes the form

%̇ = − i

2
[(Ω · ~σ) · % − % · (Ω · ~σ)] . (51)

Using equation 46, we have

%̇ = − i

4
[(Ω · ~σ) · (I + B · ~σ) − (I + B · ~σ) · (Ω · ~σ)]

= − i

4
[(Ω · ~σ) · (B · ~σ) − (B · ~σ) · (Ω · ~σ)] . (52)

We know that for the two vectors M and N commuting with ~σ (see, for example, equation 16.59

in reference (24))

(M · ~σ) · (N · ~σ) = M · N + i~σ · (M × N) . (53)
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Therefore,

%̇ = − i

~
(H% − %H)

= − i

4
[(Ω · ~σ) · (B · ~σ) − (B · ~σ) · (Ω · ~σ)]

= − i

4
i2~σ · (Ω ×B)

=
1

2
~σ · (Ω × B) , (54)

and using equation 47, we obtain the Bloch equation

Ḃ = Tr[~σ%̇] =
1

2
Tr[~σ · ~σ · (Ω × B)] = Ω × B . (55)

Equation 55 can be written in the matrix form as

Ḃ = LB , (56)

where

L =







0 δ(t) Ωe(t) sin∆φ

−δ(t) 0 Ωe(t) cos ∆φ

−Ωe(t) sin∆φ −Ωe(t) cos∆φ 0






. (57)

In the Bloch picture, the transformation of equation 27 is the rotation of the Bloch vector, so that

the new Bloch vector is

B̃ =







ũ

ṽ

w̃






= RB =







cos ∆φ − sin∆φ 0

sin∆φ cos∆φ 0

0 0 1













u

v

w






. (58)

That gives
˙̃
B = Ω̃× B̃ = L̃B̃ , (59)

where Ω̃ = (Ωe(t), 0,−δ(t)),

L̃ = RLR−1 =







0 δ(t) 0

−δ(t) 0 Ωe(t)

0 −Ωe(t) 0






, (60)
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and

R−1 =







cos∆φ sin∆φ 0

− sin∆φ cos ∆φ 0

0 0 1






. (61)

The transformation R(t), equation 30, in the Bloch picture is the rotation of the Bloch vector such

that

B̄ =







ū

v̄

w̄






= RθB̃ =







cos[2θ(t)] 0 − sin[2θ(t)]

0 1 0

sin[2θ(t)] 0 cos[2θ(t)]













ũ

ṽ

w̃






, (62)

where tan[2θ(t)] = Ωe(t)/δ(t).

It results in
˙̄B = L̄B̄ −RθṘ−1

θ B̄ , (63)

where

L̄ = RθL̃R−1
θ =







0 λ(t) 0

−λ(t) 0 0

0 0 0






, (64)

and

R−1
θ =







cos[2θ(t)] 0 sin[2θ(t)]

0 1 0

− sin[2θ(t)] 0 cos[2θ(t)]






, (65)

RθṘ−1
θ = 2θ̇(t)







0 0 1

0 0 0

−1 0 0






, (66)

θ̇(t) =
Ω̇e(t)δ(t)− Ωe(t)δ̇(t)

2(δ2(t) + Ω2
e(t))

. (67)

Neglecting nonadiabatic coupling term RθṘ−1
θ in equation 63, we obtain

˙̄B = Ω̄ × B̄ , (68)

where Ω̄ = (0, 0, λ(t)).

Note that equation 63 can be obtained in a different way starting from equation 31, constructing
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equation for the density matrix, and using Tr[σi%̇].

7. Evolution Operator of the Bloch Vector

Since we already know the exact form of the evolution operator U (t) in equation 34 and

|Ψ(t)〉 = U (t)|Ψ(0)〉 , (69)

we can easily construct the evolution operator for the Bloch vector. Using the definition of the

density matrix, we have

%(t) = |Ψ(t)〉〈Ψ(t)| = U (t)|Ψ(0)〉〈Ψ(0)|U †(t) = U (t)%(0)U †(t) , (70)

where

%(0) = |Ψ(0)〉〈Ψ(0)| =

(

%00(0) %01(0)

%10(0) %11(0)

)

=
1

2

(

1 + w0 u0 − iv0

u0 + iv0 1 − w0

)

. (71)

is the initial condition and

U †(t) =

(

cos (S(t)/2) −iei∆φ sin (S(t)/2)

−ie−i∆φ sin (S(t)/2) cos (S(t)/2)

)

= cos (S(t)/2) I − i sin (S(t)/2) (ei∆φσ+ + e−i∆φσ−)

= cos (S(t)/2) I + i sin (S(t)/2) (n · σ) = eiS(t)n·σ/2 . (72)

Therefore,

%(t) = U (t)%(0)U †(t) =

(

cos (S(t)/2) iei∆φ sin (S(t)/2)

ie−i∆φ sin (S(t)/2) cos (S(t)/2)

)

(

%00(0) %01(0)

%10(0) %11(0)

)(

cos (S(t)/2) −iei∆φ sin (S(t)/2)

−ie−i∆φ sin (S(t)/2) cos (S(t)/2)

)

, (73)
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or, exactly,

%00(t) = %00(0) cos2 (S(t)/2) + %11(0) sin2 (S(t)/2)

+
i

2
sin (S(t))

(

%10(0)e
i∆φ − %01(0)e

−i∆φ
)

, (74a)

%01(t) = − i

2
ei∆φ sin (S(t)) (%00(0) − %11(0)) + %10(0)e

2i∆φ sin2 (S(t)/2)

+ %01(0) cos2 (S(t)/2) , (74b)

%10(t) =
i

2
e−i∆φ sin (S(t)) (%00(0) − %11(0)) + %01(0)e

−2i∆φ sin2 (S(t)/2)

+ %10(0) cos2 (S(t)/2) , (74c)

%11(t) = %00(0) sin2 (S(t)/2) + %11(0) cos2 (S(t)/2)

+
i

2
sin (S(t))

(

%01(0)e
−i∆φ − %10(0)e

i∆φ
)

. (74d)

Taking into account equation 41, we obtain for the Bloch vector components

u(t) = sin (S(t)) sin (∆φ)w0 +
(

cos2 (S(t)/2) + sin2 (S(t)/2) cos (2∆φ)
)

u0

− sin2 (S(t)/2) sin (2∆φ) v0 , (75a)

v(t) = sin (S(t)) cos (∆φ)w0 − sin2 (S(t)/2) sin (2∆φ)u0

+
(

cos2 (S(t)/2) − sin2 (S(t)/2) cos (2∆φ)
)

v0 (75b)

w(t) =
(

cos2 (S(t)/2) − sin2 (S(t)/2)
)

w0

− sin (S(t)) (u0 sin (∆φ) + v0 cos (∆φ)) , (75c)

which can be presented in the matrix form as

B(t) =







C2 + S2 cos (2∆φ) −S2 sin (2∆φ) 2C · S sin (∆φ)

−S2 sin (2∆φ) C2 − S2 cos (2∆φ) 2C · S cos (∆φ)

−2C · S sin (∆φ) −2C · S cos (∆φ) C2 − S2






B(0), (76)

where C = cos (S(t)/2), S = sin (S(t)/2).

17



8. Ultrafast Qubit Rotations Using Geometrical Phase

At this point, we are ready to discuss implementation of the single qubit gates since we have

obtained the analytic solution for the qubit wave function and constructed the evolution operator

in the Bloch vector representation. A universal set of quantum gates has been intensively

discussed in the literature related to the universality in quantum computation (9–12). To perform

quantum computation, we must have two major building blocks at our disposal: arbitrary unitary

operations on a single qubit and a controlled-NOT operation on two qubits. Here we address

only single qubit manipulation.

To demonstrate arbitrary geometric operations on a single qubit, we use the Bloch vector

representation discussed in the previous section. Since any unitary rotation of the Bloch vector

can be decomposed as (9, 13)

U = eiα0Rz(α1)Ry(α2)Rz(α3) , (77)

where Ri = eiασi (i = y, z) are the rotation operators, we need to demonstrate rotations of the

qubit Bloch vector about the z and y axes by applying various sequences of external pulses. The

decomposition in equation 77 plays an important role in circuit-based quantum computing, as it

shows explicitly that two single-qubit operations allow us to create the arbitrary state of the qubit.

Here we show how this can be accomplished by controlling the parameters of the external pulses,

which are defined by the explicit form of the evolution operator (see equation 34). There are two

distinct ways of the implementation depending on which part of the total qubit phase we employ:

dynamical or geometrical (14). Quantum gates relying on geometrical quantum phases are called

holonomic gates and they are expected to be robust with respect to noise (15, 18, 19).

To implement the rotation of the Bloch vector about z axis (the phase gate) based on the

geometrical phase, we can use the evolution operator of the resonant qubit, equation 34. The

product of two evolution operators corresponding to the sequence of two π pulses with the

relative phase ∆φ = ϕ + π, gives

Rz(ϕ) = Uπ;ϕ+πUπ;0 =

(

eiϕ 0

0 e−iϕ

)

, (78)

where the first subindex of U indicates the pulse area, S(T ), and the second one indicates the

phase, ∆φ.
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Figure 5. The Bloch vector trajectory for the qubit state |0〉 in panel (a) and the qubit state |1〉
in panel (b) generated by the sequence of two π-pulses with the relative phase ϕ + π.

Figure 5 shows the Bloch vector trajectories of the qubit basis states |0〉 and |1〉, which

correspond to the angles β = 0 and β = π in equation 41 and the Bloch vector initially pointing

in z and −z directions while the vector Ω1 = (−Ωe, 0, 0) is pointing in −x direction. For

simplicity we chose ∆φ = 0 for the first π-pulse. The fist π-pulse flips the population to the state

|1〉 (|0〉); correspondingly, the Bloch vector turns about the effective field vector Ω1 (about the x

axis), and it stays in the y, z plane all the time and points in the −z (z) direction at the end of the

pulse. Due to the second π-pulse, the population is transferred back to the initial state |0〉 (|1〉);
therefore, the Bloch vector returns to its original position pointing along the z (−z) axis.

However, since we chose ∆φ = ϕ + π for the second π-pulse, the pseudo-field vector is rotated

counterclockwise by the angle ϕ + π in the x, y plane, Ω2 = (Ωe cosϕ,−Ωe sinϕ, 0), and the

Bloch vector moves in the plane perpendicular to the x, y plane and has the angle π/2 − α

(−π/2 − α) with the x, z plane.

The Bloch vectors representing a pair of orthogonal basis states |0〉 and |1〉 follow a path

enclosing correspondingly solid angles of 2ϕ and −2ϕ. The geometrical phase is equal to one

half of the solid angle, which means the basis states |0〉 and |1〉 gain phases ϕ and −ϕ and the

evolution operator takes the form of the phase gate, equation 78, with the relative phase

controlling the phase of the gate.

The rotation operator about the y axis can be constructed using three pulses. The first and third
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pulse is π/2-pulse with ∆φ = 0, while the second pulse is π-pulse with the relative phase π + ϕ.

It is easy to show, using equation 34, that this three-pulse sequence results in

Ry(ϕ) = Uπ
2
;0Uπ;π+ϕUπ

2
;0 = eiϕσy . (79)
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Figure 6. The Bloch vector trajectory for the qubit state |i〉 in panel (a) and the qubit state | − i〉
in panel (b) generated by the sequence of two π/2-pulses and one π pulse with the

relative phase ϕ + π.

To demonstrate the geometrical nature of the Ry(ϕ) operation, we use the fact that it creates the

relative phase between the qubit basis states | ± i〉 = (|0〉 ± i|1〉)/
√

2 (see Appendix for the

eigenvectors of the Pauli matrices). In the Bloch representation, these states have the form

| ± i〉 = cos
(π

4

)

|0〉 + e±i π
2 sin

(π

4

)

|1〉 , (80)

which are two vectors defined by the angles β = π/2 and α = ±π/2 and pointing in the y and −y

directions, as shown in figure 6. The trajectory of the Bloch vector representing the states | ± i〉
is shown in figure 6. The pseudo-field vectors Ω1 and Ω3 are defined by the effective Rabi

frequencies of the first and third pulses and are pointing in the −x direction since ∆φ = 0. The

second pseudo-field vector Ω2 is rotated counterclockwise by the angle ϕ + π in the x, y plane

same as in the case above. The initial Bloch vector is pointing in the y (−y) direction. The first

π/2-pulse rotates the Bloch vector about Ω1 to the position of the state |1〉 (|0〉). The second

pulse flips the direction of the Bloch vector. The third π/2-pulse returns the Bloch vector to its

original position. The Bloch vector and the pseudo-field vector are orthogonal during the whole
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evolution. Similar to the previous case, we observe that the basis states |i〉 and | − i〉 follow a

path enclosing correspondingly solid angles of 2ϕ and −2ϕ. Therefore, they gain the relative

phase 2ϕ, which is the geometrical phase defined by the relative phase between pulses. It is easy

to show that the phase gate in the | ± i〉 basis is equivalent to the Ry(ϕ) gate in the |0〉, |1〉 basis.

9. Rotation in the Bloch Representation

Rotation operations in the Schrödinger picture are

|Ψ〉 = Ri|Ψ0〉 , (81)

where i = {x, y, z}, |Ψ0〉 is the initial wave function,

Rx = eiϕσx =

(

cosϕ i sinϕ

i sinϕ cos ϕ

)

, (82)

R−1
x = e−iϕσx =

(

cosϕ −i sinϕ

−i sinϕ cos ϕ

)

, (83)

Ry = eiϕσy =

(

cosϕ sinϕ

− sinϕ cos ϕ

)

, (84)

R−1
y = e−iϕσy =

(

cosϕ − sinϕ

sinϕ cosϕ

)

, (85)

Rz = eiϕσz =

(

eiϕ 0

0 e−iϕ

)

, (86)

R−1
z = e−iϕσz =

(

e−iϕ 0

0 eiϕ

)

. (87)
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Therefore for the density matrix, we have

% = |Ψ〉〈Ψ| = Ri|Ψ0〉〈Ψ0|R−1
i = Ri%0R

−1
i , (88)

where %0 = |Ψ0〉〈Ψ0| is the initial density matrix.

Using equation

B = Tr[~σ%] = (Tr[σx%], T r[σy%], T r[σz%]) = (u, v, w) , (89)

we find the following expressions for the transformation of the Bloch vector components

u = Tr[σxRi%0R
−1
i ] , (90)

v = Tr[σyRi%0R
−1
i ] , (91)

w = Tr[σzRi%0R
−1
i ] . (92)

Substituting equations 82 - 87 into equations 90 - 92, we obtain

Rx =







1 0 0

0 cos (2ϕ) sin (2ϕ)

0 − sin (2ϕ) cos (2ϕ)






, (93)

Ry =







cos (2ϕ) 0 − sin (2ϕ)

0 1 0

sin (2ϕ) 0 cos (2ϕ)






, (94)

Rz =







cos (2ϕ) sin (2ϕ) 0

− sin (2ϕ) cos (2ϕ) 0

0 0 1






. (95)

From equation 76, we see that the evolution operator in the Bloch representation is

U(t) =







C2 + S2 cos (2∆φ) −S2 sin (2∆φ) 2C · S sin (∆φ)

−S2 sin (2∆φ) C2 −S2 cos (2∆φ) 2C · S cos (∆φ)

−2C · S sin (∆φ) −2C · S cos (∆φ) C2 − S2






. (96)
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Therefore, to demonstrate, for example, the Rz rotation in the Bloch picture, we see that the first

π pulse with the relative phase ∆φ = 0 gives for the evolution operator

Uπ;0 =







1 0 0

0 −1 0

0 0 −1






. (97)

The second π pulse with the relative phase ∆φ = π + ϕ gives for the evolution operator

Uπ;π+ϕ =







cos (2(π + ϕ)) − sin (2(π + ϕ)) 0

− sin (2(π + ϕ)) − cos (2(π + ϕ)) 0

0 0 −1






. (98)

Finally, the sequence of Uπ;π+ϕ and Uπ;0 results in

Uπ;π+ϕUπ;0 =







cos (2(π + ϕ)) − sin (2(π + ϕ)) 0

− sin (2(π + ϕ)) − cos (2(π + ϕ)) 0

0 0 −1













1 0 0

0 −1 0

0 0 −1







=







cos (2ϕ) sin (2ϕ) 0

− sin (2ϕ) cos (2ϕ) 0

0 0 1






, (99)

which, of cause, coincides with equation 95. Similarly, one could consider the Ry rotation in the

Bloch picture.

10. Generalization of the Single-Qubit Operation Using Bright-Dark Basis

In the previous sections, we have considered several excitation schemes of the three-level system

and discussed a possible implementation of single-qubit gates. It was shown that all possible

qubit states can be created in a controllable fashion using a couple of completely overlapped laser

pulses, ΩP (t) = ΩS(t). In this section, we present a bit more general solution, which allow some

additional flexibility in terms of the ratio of the pump and Stokes pulse amplitudes. Again, we

address here the coherent Raman excitation in a three-level Λ-type system consisting of the two

lowest states of electron spin |0〉 ≡ | −X〉 and |0〉 ≡ |X〉 coupled through an intermediate trion

state |T 〉 (see figure 1) and assume that the trion state is far off-resonance with the external fields.

In addition, we restrict our consideration to the non-impulsive regime, and can then put
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Ω̄P+(t) = Ω̄S+(t) = 0 in the equation 6 so that the Hamiltonian takes the form

H̃ = U−1
RWAHURWA − i~U−1

RWAU̇RWA (100)

= −~

2







0 0 ΩP+

0 −2ωB ΩS+

Ω∗
P+ Ω∗

S+ −2ωT






+ ~







0 0 0

0 −∆ω 0

0 0 −ωP






(101)

= −~

2







0 0 ΩP+

0 2(∆ω − ωB) ΩS+

Ω∗
P+ Ω∗

S+ −2∆P






, (102)

where ∆P = ωT − ωP , ∆ω = ωP − ωS , ΩP+ = ΩP0(t)e
iφP (t), ΩS+ = ΩS0(t)e

iφS(t), and

φP,S(t) = φP,S + αP,St2/2.

Let us consider the case when ΩP0(t) = Ω0(t) cosϑ and ΩS0(t) = Ω0(t) sinϑ; the same

time-dependent envelope for the pump and Stokes Rabi frequencies while the mixing angle ϑ

controls the ration between the maximum of the Rabi frequencies. In this case, we make

transformation to the bright-dark basis (|Ψ̄〉 =
{

aB(t), aD(t), b̃(t)
}

= Rbd|Ψ̃〉) using the

following matrix

Rbd =







e−iφP cosϑ e−iφS sinϑ 0

−eiφS sinϑ eiφP cosϑ 0

0 0 1






. (103)

R−1
bd =







eiφP cosϑ −e−iφS sinϑ 0

eiφS sinϑ e−iφP cos ϑ 0

0 0 1






. (104)

In the bright-dark basis, the Hamiltonian takes the form

H̄ = RbdH̃R−1
bd

=
~

2







2δS2 2δSCe−iφ+ −ξ+(t)Ω0(t)

2δSCeiφ+ 2δC2 eiφ+ξ−(t)SCΩ0(t)

−ξ∗+(t)Ω0(t) e−iφ+ξ∗−(t)SCΩ0(t) 2∆P






, (105)

where S = sinϑ, C = cos ϑ, φ+ = φP + φS, ξ+(t) = eiαt2/2C2 + eiβt2/2S2 ,

ξ−(t) = eiαt2/2 − eiβt2/2.
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In the resonant case, δ = 0, we obtain

H̄ = RbdH̃R−1
bd

=
~

2







0 0 −ξ+(t)Ω0(t)

0 0 eiφ+ξ−(t)SCΩ0(t)

−ξ∗+(t)Ω0(t) e−iφ+ξ∗−(t)SCΩ0(t) 2∆P






. (106)

In the case of equal chirp rates, α = β, we have

H̄ = RbdH̃R−1
bd

=
~

2







2δS2 2δSCe−iφ+ −eiαt2/2Ω0(t)

2δSCeiφ+ 2δC2 0

−e−iαt2/2Ω0(t) 0 2∆P






. (107)

In the two-photon resonance case, δ = 0, and equal chirp rates, α = β, we have

H̄ = RbdH̃R−1
bd

=
~

2







0 0 −eiαt2/2Ω0(t)

0 0 0

−e−iαt2/2Ω0(t) 0 2∆P






. (108)

We can see from equation 108 that aD(t) = aD(0) and we are left with the system of two

differential equations for the probability amplitudes aB(t) and b̃(t). Making the adiabatic

elimination of the excited state |T 〉 (assuming that
˙̃
b(t) ≈ 0), we have

b̃(t) =
1

2∆P
Ω0(t)e

−iαt2/2aB(t), (109)

and

iȧB(t) = − 1

4∆P
Ω2

0(t)aB(t). (110)

The solution of the equation 110 is

aB(t) = aB(0)e
i

4∆P

R t

0 Ω2
0(t′)dt′

. (111)

Therefore, the evolution operator for the two-photon resonant excitation by the equally chirped
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pulses under condition of the adiabatic elimination of the trion state has the following form

U (t) = R−1
bd









e
i

4∆P

R t

0 Ω2
0(t′)dt′

0 0

0 1 0

0 0 1









Rbd

=







eiφP cosϑ −e−iφS sinϑ 0

eiφS sinϑ e−iφP cos ϑ 0

0 0 1













eiS(t) 0 0

0 1 0

0 0 1













e−iφP cos ϑ e−iφS sinϑ 0

−eiφS sinϑ eiφP cos ϑ 0

0 0 1







=







eiS(t) cos2 ϑ + sin2 ϑ ei∆φ(eiS(t) − 1) sinϑ cos ϑ 0

e−i∆φ(eiS(t) − 1) sin ϑ cosϑ cos2 ϑ + eiS(t) sin2 ϑ 0

0 0 1






, (112)

where S(t) =
∫ t

0
Ω2

0(t
′)dt′/(4∆P ), and ∆φ = φP − φS .

For the qubit states, the evolution operator can be written as

U (t) = eiS(t)/2

(

eiS(t)/2 cos2 ϑ + e−iS(t)/2 sin2 ϑ ei∆φ(eiS(t)/2 − e−iS(t)/2) sin ϑ cosϑ

e−i∆φ(eiS(t)/2 − e−iS(t)/2) sin ϑ cos ϑ e−iS(t)/2 cos2 ϑ + eiS(t)/2 sin2 ϑ

)

= eiS(t)/2

(

cos (S(t)/2) + i sin (S(t)/2) cos (2ϑ) iei∆φ sin (S(t)/2) sin (2ϑ)

ie−i∆φ sin (S(t)/2) sin (2ϑ) cos (S(t)/2) − i sin (S(t)/2) cos (2ϑ)

)

= eiS(t)/2 [cos (S(t)/2) I + i sin (S(t)/2) (cos (∆φ) sin (2ϑ)σx

− sin (∆φ) sin (2ϑ)σy + cos (2ϑ)σz)]

= eiS(t)/2e−iS(t)n·σ/2 , (113)

where

n = (− cos (∆φ) sin (2ϑ) , sin (∆φ) sin (2ϑ) ,− cos (2ϑ)) . (114)

11. Electron Spin in a Quantum Dot as a Qubit

In the previous sections, we developed several methods of an arbitrary manipulation of a qubit

wave function using the geometric phase. Now we apply the proposed scheme to electron spin

states in a charged quantum dot. Due to quantum confinement, the state of the electron can be

expressed as a product of the Bloch function and an envelope function, which has a typical scale

of the quantum dot size, a few nanometers. The energy level structure and optical selection rules
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have been discussed in the literature (1–4). A commonly accepted energy level structure is

comprised of four levels, the two electron spin states and two trion spin states. Figure 7 shows

two arrangements of the energy levels and polarization selection rules, which provide a possibility

of optical control for the electron spin qubit.

e
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1 X

(a)

e

h

0 X

T
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H

2
H
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Figure 7. Optical selection rules in different bases.

The usual experiment of the electron spin control is performed at low temperature (∼ 1 K). An

external magnetic field in the Voigt configuration (of order 2 ÷ 7 T) is applied along the x-axis,

perpendicular to the sample growth direction, the z axis. Zeeman splitting of the electron and

trion spin states are on the order ωe = 10 meV and ωh = 10µeV, correspondingly. At these

conditions, taking into account the optical selection rules, the four-level system can be considered

as a double Λ system (1–4, 25). This coupling scheme is shown in figure 7(b), where we

indicated by “H” and “V ” the optical field couplings with the orthogonal polarization. The

shown coupling scheme is in the so-called “x basis.”

An alternative arrangement is depicted in figure 7(a). In this case the mixed basis is used, where

the electron spin states are in the x basis while the trion states are in the z basis (1–4, 25). Using

the two σ+ or σ− polarized fields, one can couple the electron spin states |X−〉 and |X+〉 as

shown in the figure 7(a). This is the case where our three-level model can be implemented. The

corresponding Hamiltonian has the form obtained in equation 16. Assuming large detunings of

the pump and Stokes field frequencies from the transition frequencies to the trion state |T 〉, after

the adiabatic elimination of the trion state, for the case of completely overlapped, identically

linearly chirped pump and Stokes pulses, we obtain the following Hamiltonian

H = −~

2

(

δ Ωe(t)e
i∆φ

Ω∗
e(t)e

−i∆φ −δ

)

, (115)

27



where δ = ωe − ∆ω, and ∆ω = ωP − ωS , Ωe(t) = ΩP0(t)ΩS0(t)[1 + e−i(∆φ+∆ωt)]2/(2∆) is the

effective two-photon Rabi frequency, ∆ = ωT − ωP , and ∆φ = φP − φS. Note, that here we

have used µ0T ≈ µ1T .
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Figure 8. The population dynamics of the resonant qubit states with (dotted lines)

and without (solid lines) adiabatic elimination of the trion state in the

three-level system. The excitation is generated by the sequence of two

pairs of π-pulses (Gaussian pulse envelops) with the relative phase

∆ϕ = π/2.

We observe almost perfect resemblance between equation 115 and equation 25. The only

difference is that the effective two-photon Rabi frequency contains the oscillating term with a

frequency ∆ω. Now, we show that the contribution of this oscillating term can be neglected

when the pulse duration is longer than ∆ω−1 ≈ ω−1
e . To demonstrate this and justify the

procedure of the adiabatic elimination of the trion state, we numerically solve the time-dependent

Schrödinger equation with the Hamiltonian in equation 16. That is, we compare our analytic

solution with the exact solution of the Schrödinger equation without the adiabatic elimination

approximation. An example of the comparison is shown in figure 8.

The example in figure 8 shows the dynamics of the population of the resonant qubit excited by a

sequence of two pairs of linearly chirped pulses with the relative phase between the pairs being

φ = π/2. The parameters of the excitations are the transform-limited pulse duration τ0 = 100 fs,

the pulse area of the pump and Stokes pulses is equal to π, liner chirp rate α′/τ 2
0 = 20, ∆τ0 = 6,

ωeτ0 = 1, the ratio between the maximum Rabi frequency and the single-photon detuning
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Ω0/∆ = 0.77. We observe a negligibly small amount of population in the trion state |T 〉 at the

intermediate time. The presented comparison also demonstrates a reasonable agreement between

the proposed control schemes and the exact numerical solution. Note that the total time for the

qubit operation in figure 8 is on the order of 25 ps, which is much shorter than the typical life time

of the trion state (1, 2, 25) as well as the time scale of other forms of decoherence, such as that

induced by the electron-phonon interaction.

12. Conclusion

We presented the analytic expression of the evolution operator of the electron spin in a quantum

dot, which provides a clear geometrical interpretation of qubit dynamics. Using the analytic form

of the evolution operator, we proposed a set of single-qubit rotations that are solely based on the

geometrical phase. Our proposal combines the pulse area control with the adiabaticity by using

chirped pulses. To estimate the time scale of the proposed operation, we can use the 100 fs

pulses, which become picosecond pulses after linearly chirping. That amount of chirping is

sufficient to provide adiabatic excitation (6, 7, 20) and can be readily produced experimentally

using commercially available laser systems. Using parameters of the dipole moments

µ0T,T 1 ≈ 200 D available in InGaN/GaN (21), GaN/AlN (22, 23) quantum dots, and detuning

∆ = 5 meV, we estimate the peak amplitude of the pulses on the order of 106 − 107 V/m. Note

that the demonstrated adiabatic manipulation of a qubit using only the geometric phase has some

advantages, since it reduces the requirements of perfect tuning of the control field parameters and

is significantly more robust against noise (15, 18, 19).
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Appendix. Eigenvectors of the Pauli matrices

The eigenstates of σx are

|j〉 =
(|0〉 + |1〉)√

2
= cos

(π

4

)

|0〉 + sin
(π

4

)

|1〉 =
1√
2

(

1

1

)

, (A-1)

| − j〉 =
(|0〉 − |1〉)√

2
= cos

(π

4

)

|0〉 + eiπ sin
(π

4

)

|1〉 =
1√
2

(

1

−1

)

. (A-2)

Correspondingly,

|j〉 ↔ B =







1

0

0






and β =

π

2
, α = 0, (A-3)

| − j〉 ↔ B =







−1

0

0






and β =

π

2
, α = π. (A-4)

The eigenstates of σy are

|i〉 =
(|0〉 + i|1〉)√

2
= cos

(π

4

)

|0〉 + eiπ/2 sin
(π

4

)

|1〉 =
1√
2

(

1

i

)

, (A-5)

| − i〉 =
(|0〉 − i|1〉)√

2
= cos

(π

4

)

|0〉 + ei3π/2 sin
(π

4

)

|1〉 =
1√
2

(

1

−i

)

. (A-6)

Correspondingly,

|i〉 ↔ B =







0

1

0






and β =

π

2
, α =

π

2
, (A-7)

| − i〉 ↔ B =







0

−1

0






and β =

π

2
, α =

3π

2
. (A-8)
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The eigenstates of σz are

|0〉 =

(

1

0

)

, (A-9)

|1〉 =

(

0

1

)

. (A-10)

Correspondingly,

|0〉 ↔ B =







0

0

1






and β = 0, α is arbitrary, (A-11)

|1〉 ↔ B =







0

0

−1






and β = π, α is arbitrary. (A-12)
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