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1 Introduction
Matthew Clark

Cyber-physical systems are becoming more and more complex, thereby increasing the cost and time
to ensure safety. They range from highly complex but finite state to infinite state, indeterminate
systems. Current methods of performing software and system verification and validation requires
exhaustive offline testing of every possible state space scenario; an impossible task for adaptive,
non-deterministic, and near infinite state algorithms. This certification incapacity is creating a
growing gap between state of the art software system capabilities and capabilities of systems which
can be certified. Currently, we attempt to prove systems are correct via verification of every possible
state PRIOR to fielding the system. However, if, through the use of run time architecture, we can
provably bound systems behavior, then it may be possible to reduce the reliance on comprehensive
off-line verification, shifting the analysis/test burden to the more provable run time assurance
mechanism.

Consider autonomy as “the ability to reason and make decisions to reach given goals based on a
systems current knowledge and its perception of the variable environment in which it evolves[1].”
Autonomous, safety critical software that relies on the perception of its environment to make deci-
sions quickly becomes a large near infinite state problem. To that end, Run Time Assurance (RTA)
is the ability to ensure the safe operation of a system that contains functional components, which
may not be sufficiently reliable, or sufficiently verified, according to current development or certi-
fication standards. There may be multiple reasons for having such components in a system: under
the normal conditions, they can provide improved performance or operational efficiency for the
system, or enhance the user experience. The core idea that enables the use of such components in
a system is the presence of a safe fallback mechanism that:

1) Reliably detects potential problems
2) Invokes a recovery/switching mechanism that can ensure safe operation of the system, pos-

sibly with reduced capabilities and performance.

Figure 1: Run Time Assurance of Unverified Flight Critical Software
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Within the flight domain, the following certification challenges were identified as only solvable
at run time: unanticipated vehicle interactions, unanticipated external interactions, mission/battle
management decisions with flight-critical consequences, untested system modes, and autonomous
decision making control [1]. The desire is that unmanned aerial systems (UAS’s) should be able
to use the same infrastructure as manned systems, with minimized uniqueness. They also must
be made to be responsive to dynamic missions, adapting in real time to changes in environment,
mission, etc. This creates an unsolvable offline certification challenge but an opportunity for run
time certification techniques.

Similarly, in the automotive sector, the Google autonomous car has successfully achieved over
100,000 miles of unattended driving in the streets of California [2]. Google has heralded the
innovation as “safer than human driving while intoxicated.” But up to this point, as required by
California state law, a human driver must be present in the vehicle who has the ability to monitor
and intervene the autonomous system in case of a failure. For the autonomous vehicle scenario to
become reality, the human monitor must be replaced with a certified bounding algorithm that is
capable of providing absolute guarantees on the vehicle’s safety in the highly dynamic environment
such as urban streets.

Within the power distribution industry, innovations in smart-grid technology consider decen-
tralizing power distribution by creating stand-alone power units called “micro-grids.” Users would
have more control with these units and would have the option to add alternate power sources such
as windmills or solar panels. Advantages of micro-grids include versatility, the ability to better
align protection with the usage of alternative energy sources, and the relatively small vulnerability
to security threats as compared to the current centralized power distribution system. However, the
de-centralized “micro-grid” is an inherently unstable control system that needs to be closely moni-
tored to prevent supply over-voltage or sagging [3] . To enable the combined use of the micro-grid,
highly adaptive autonomous systems would be needed to carefully manage energy production and
consumption and would require a boundary mechanism to assure safety of the system.

Finally, the NITRD report on 21st century medical devices cited the need for adaptive patient-
specific algorithms. Current devices are designed to cover a large group of patients with similar
medical conditions. Medical devices that adapt to a patient’s specific medical condition would
improve the quality of patient care. These medical devices may be more responsive to specific
patient needs but must not broach a boundary that will cause harm [4] .

As early as 2002, Run Time Assurance was identified as a key technology to increase the reliance
on online certification. Barron Associates and Lockheed Martin developed the original concept of
“Run Time Assurance.” They described RTA as a “mechanism for the implementation of advanced,
complex flight control functions”. The approach was similar to the Simplex architecture developed
by the Software Engineering Institute at Carnegie Mellon University Both the RTA and Simplex con-
cepts focused on verifying that an advanced controller performs within a pre-described boundary
and predicts violations of the boundary in enough time to safely switch to a reversionary controller.
In addition to work by Barron, Lockheed, and CMU, many government agencies, industrial part-
ners, and academia have explored technologies applicable to run time verification and assurance.
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However, a common, implementable framework has yet to be developed for the domain of
safe and secure autonomous vehicles. The question arose, what will it take to create a run time
assurance framework for the cyber physical systems in the autonomous vehicle space? To explore
this question the following study investigates the key technologies available and needed to increase
the reliance on run time assurance. To answer this question, four questions were provided to
prominent researchers in the domains of Controls and Computer Science.

1) What algorithms can be used to guarantee safe bounds?
2) How do we create a run time version of the algorithm that enables safe switching?
3) How do we ensure timing constraints and worst case execution time is preserved?
4) How can model based design / simulation enable quicker realization of an end product?

The first question, addressed in section 2, explores algorithms and methods suitable for creating a
run time assurance argument. For an autonomous system, certain assumptions about the known
environment must be made given a set of known input and output states. Utilizing these assump-
tions to create a boundary for non-deterministic, adaptive systems, RTA aims to achieve advanced
performance with the assurance of safety constraints and failsafe operability. The bounding algo-
rithm entails mathematical techniques within the domains of both Control Science and Computer
Science to model the environment and synthesize a guaranteed boundary. The constraints can then
be verified offline using known Formal Methods approaches. The scope of the bounding algorithm
must be large enough to gain the added benefit of allowing the adaptive controller to safely adapt.
Secondly, the bounding must incorporate all possible failure modes of what is known. A predom-
inant focus of the bounding algorithm research is on how to synthesize a provable boundary and
then how to derive a complete set of properties to ensure safety of that boundary.

The second question, addressed in section 3, investigates the ability to create a run time ver-
sion of the algorithms and methods described in section 2. Creating a mathematical boundary
that accounts for all possible environmental scenarios becomes a highly computationally intensive
problem. Such problems are difficult to calculate offline let alone provide assurance dynamically.
Once the safety properties and switching conditions are identified, one needs to develop a monitor
that will calculate the switching conditions and effect the switch. It is desirable to have a general
mechanism in place, which can be instantiated for many different systems that rely on the same
class of properties. The mechanism can then be verified once and reused. Development of this
mechanism includes the design of a runtime monitoring and switching algorithm for the chosen
property language, means of initiating a switch as well as means of determining the completion
of the switch. Therefore, the second domain of expertise needed to formulate the RTA framework
is the ability to perform the computations at run time. As new approximation methods are being
investigated to reduce the required time needed to calculate the safe boundary, methods of run
time verification must be employed to ensure the right data is being monitored, at the right time,
with the appropriate mechanisms to switch to a safety controller if needed. These approximation
methods do not account for the overhead associated with the instrumentation of a program needed
to retrieve the right set of conditions and data at the right time.

The third question, addressed in section 4, seeks to ensure timing constraints and worst case
execution time is preserved. As run time methods and monitoring software is added, impacts to
existing hardware and software interaction will need to be considered. For example, any run time
approach for flight critical systems will need to address interactions between triplex redundant
control architectures. Technologies need to be considered from a hardware timing, synchroniza-
tion, and parallel monitoring approach to ensure timing is considered within and external to the
system. Multiple processors, cores, or interacting systems of systems rely on consistent timing
constraints being followed. In this task, specifics of the system platform are used to implement
the monitoring subsystem and deploy it on the platform. For example, if a partitioned architec-
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ture is used, the monitoring system may be deployed in a separate partition, which would require
that inter-partition communication mechanisms have to be used for forwarding observations to the
monitoring subsystem. The effect of this additional communication overhead on the system bus
needs to be taken into account.

Finally, section 5 investigates how model based design / simulation enables quicker realization
of RTA. Many formal verification and validation techniques emphasize correctness by construction
and design for verification. These tag lines speak to the need to ensure the modeling and simula-
tion environment is compatible with the current V&V techniques and formal methods, allowing an
increase in validity in methods earlier in the design process. A modeling and simulation environ-
ment must be able to connect different abstractions of not only the run time implementation but
the environment of which it is protecting. Run Time Assurance must consider such environments
in order to accelerate framework production, simulation, verification, and validation.

An exploration of the currently available technology necessary to design and implement a Run
Time Assurance methodology that reduces the reliance on test is, by and large, the scope of the
project. The remainder of this paper documents the results of further investigation into these four
questions and the challenges that arise from each.
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2 State of the Art in Run Time Assurance Boundary Methods
Dr. George Pappas and Dr. Ratnesh Kumar

Hybrid systems combine both digital and analog components, in a way that is useful for the anal-
ysis and design of distributed, embedded control systems. Hybrid systems have been used as math-
ematical models for many important applications, such as automated highway systems [5, 6, 7], air
traffic management systems [8, 9, 10], embedded automotive controllers [11, 12], manufacturing
systems [13], chemical processes [14], robotics [15, 16], real-time communication networks, and
real-time circuits [17]. Over the past fifteen years, their wide applicability has inspired a great deal
of research from both control theory and theoretical computer science.

Many of the above motivating applications are safety critical, and require guarantees of safe
operation. Consequently, much research focuses on formal analysis and design of hybrid systems.
Formal analysis of hybrid systems is concerned with verifying whether a hybrid system satisfies a
desired specification, like avoiding an unsafe region of the state space. The process of formal design
consists of synthesizing controllers for hybrid systems in order to meet a given specification.

2.1 Example: Aircraft conflict resolution

As a safety critical example we consider the verification of a conflict resolution maneuver for air
traffic control similar to the one described in [10]. Consider the following conflict resolution ma-
neuver for two aircraft:

1. Cruise until aircraft are α1 miles apart;

2. Change heading by ∆φ; fly until lateral displacement of d miles achieved;

3. Change to original heading; fly until aircraft are α2 miles apart;

4. Change heading by −∆φ; fly until lateral displacement of −d miles achieved;

5. Change to original heading.

The hybrid automaton modeling this maneuver has four discrete states {CRUISE, LEFT, STRAIGHT,
RIGHT} and is depicted in Figure 2. The continuous dynamics in each discrete state is the relative
dynamics of the aircraft given a fixed velocity and heading, (vi is the velocity and φi is the heading
of aircraft i). The aircraft are considered to be at a safe distance if they are at least 5 miles apart.
In the relative coordinate frame, the unsafe set is given by {(x, y) ∈ IR2 | x2 + y2 ≤ 25}. Aircraft
1 is assumed to fly at a fixed velocity v1 and heading φ1, while aircraft 2 can switch “modes” and
rotate left or right a fixed angle of ±∆φ.

Major efforts have focused on developing algorithms that verify the safety of such hybrid system
models (off-line analysis). For example, safety analysis of the hybrid system computes the region of
the state space that will lead to a conflict. The result of such a computation of the minimal unsafe
sets is shown in Figure 3. The set unsafeCruise \ unsafeLeft contains the set of states which are
made safe by the aircraft turning left, and the set unsafeCruise \ unsafeRight contains the set of
states which are made safe by the aircraft turning right. The set unsafeCruise \ (unsafeLeft ∪
unsafeRight) contains the states which are made safe by turning either left or right, and the set
unsafeCruise∩unsafeLeft∩unsafeRight shown in Figure 3(d) is the set of states which is unsafe
regardless of the action the aircraft takes.
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Figure 2: Hybrid system model of aircraft conflict resolution maneuver.
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Figure 3: Showing minimal unsafe sets for each discrete state of maneuver automaton.
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2.2 Computability boundary

In developing computational approaches for hybrid system verification, the first major obstacle has
to do with computability. As hybrid control systems increase to have an infinite number of states,
showing that a class of verification problems is computable was challenging. A natural way to
show that a class of safety verification problems is computable, is the process of abstraction. Given
a hybrid control system and some desired property, one extracts a finite, discrete system while
preserving all properties of interest. This is achieved by constructing suitable, finite and computable
partitions of the state space of the hybrid control system. By obtaining discrete abstractions which
are finite, and preserve properties of interest, analysis can be equivalently performed on the finite
system, which requires only a finite number of steps, guaranteeing termination. Checking the
desired property on the abstracted system should be equivalent to checking the property on the
original system.

Properties about the behavior of a system over time are naturally expressible in temporal logics,
such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL*). Preserving LTL properties
leads to special partitions of the state space given by language equivalence relations, whereas CTL*
properties are abstracted by bisimulations.

Unfortunately, there are severe obstacles due to undecidability. For example, in [18] it was
shown that checking reachability (whether a certain region of the state space can be reached) is
undecidable for a very simple class of hybrid systems, where the continuous dynamics involves only
variables that proceed at two constant slopes. These results implied that more general classes of
hybrid systems cannot have finite bisimulation or language equivalence quotients.

Therefore, exact discrete abstractions of hybrid systems is limited by this result. Given this
limit, hybrid systems that can be abstracted fall into two classes. In the first class, the continuous
behavior of the hybrid system must be restricted, as in the case of timed automata [19], multirate
automata [20, 21], and rectangular automata [18, 22]. In the second class, the discrete behavior of
the hybrid system must be restricted, as in the case of order-minimal hybrid systems [23, 24, 25].

2.3 Discrete abstractions

While the decidability frontier for hybrid system verification has been well understood for some
time, in most practical cases when no equivalent abstraction can be found, one may be content with
a sufficient abstraction or an approximation, where checking the desired property on the abstracted
system is sufficient for checking the property on the original system.

The basic idea is to replace the actual system by a simpler, abstract system, in which model
checking is easier to perform. The verification results about the abstract system, of course, can only
be related back to verification results about the original concrete system under certain conditions on
how the abstract and concrete system are related and whether the particular property in question
survives this abstraction process.

The options for directly constructing discrete abstractions by finite quotients and for which sub-
classes they work have been examined by Henzinger [26, 27]. Because of the limited scope of
discrete abstractions, more general predicate abstractions [28, 29, 30, 31, 32, 33] and abstraction-
refinement techniques like Counterexample-Guided Abstraction-Refinement (CEGAR) have been
developed subsequently [34, 29, 35, 36]. Those directions have again worked successfully in dis-
crete and, to some extent, real-time systems.

The use of discrete abstractions for continuous dynamics has become standard in hybrid sys-
tems verification (see e.g. [37, 38]). The main advantage of this approach is that it offers the
possibility to leverage controller synthesis techniques developed in the areas of supervisory con-
trol of discrete-event systems. We briefly describe the approach presented in [39] for computing
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discrete abstractions for a class of switched control systems:

Σ : ẋ(t) = fp(t)(x(t)), x(t) ∈ IRn, p(t) ∈ P
where P is a finite set of modes. Given a parameter τ > 0, we define a transition system Tτ (Σ)
that describes trajectories of duration τ of Σ. This can be seen as a time sampling process. This is
natural when the switching in Σ is determined by a time-triggered controller with period τ .

The computation of a discrete abstraction of Tτ (Σ) can be done by the following simple ap-
proach. We start by approximating the set of states X1 = IRn by a lattice:

[IRn]η =

{
x ∈ IRn

∣∣∣∣ xi = ki
2η√
n
, ki ∈ Z, i = 1, ..., n

}
,

where xi is the i-th coordinate of x and η > 0 is a state space discretization parameter.
We can then define the abstraction of Tτ (Σ) as the transition system Tτ,η(Σ) = (X2, U,S2, X0

2 , Y,O2),
where the set of states is X2 = [IRn]η; the set of labels remains the same U = P ; the transition
relation is essentially obtained by rounding the transition relation of Tτ (Σ) on the lattice [IRn]η (see
Figure 4):

x′2 = S2(x2, p) ⇐⇒ x′2 = arg min
x′∈[IRn]η

‖x′ − S1(x2, p)‖;

the set of outputs remains the same Y = IRn; the observation map O2 is given by O2(q) = q, the
set of initial states is X0

2 = [IRn]η. Note that the transition system Tτ,η(Σ) is discrete since its sets
of states and actions are respectively countable and finite.

x2

S1(x2, p)

S2(x2, p)

Figure 4: Principle for the computation of a discrete abstraction of a switched system.

The approximate bisimilarity of Tτ (Σ) and Tτ,η(Σ) is related to the notion of incremental stabil-
ity [40]. Intuitively, incremental global uniform asymptotic stability (δ-GUAS) of a switched system
means that all the trajectories associated with the same switching signal converge to the same ref-
erence trajectory independently of their initial condition. Incremental stability of a switched system
can be characterized using Lyapunov functions.

Definition 1 A smooth function V : IRn × IRn → IR+ is a common δ-GUAS Lyapunov function for Σ
if there exist K∞ functions1 α, α and κ > 0 such that for all x, y ∈ IRn, for all p ∈ P :

α(‖x− y‖) ≤ V(x, y) ≤ α(‖x− y‖);
∂V
∂x (x, y) · fp(x) + ∂V

∂y (x, y) · fp(y) ≤ −κV(x, y).

1A continuous function γ : IR+ → IR+ is said to belong to class K∞ if it is strictly increasing, γ(0) = 0 and γ(r) → ∞
when r → ∞.
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Figure 5: Example of switching safety (left) and reachability (right) controllers synthesized using
approximately bisimilar discrete abstractions of a model of a DC-DC converter [41, 42].

The existence of a common δ-GUAS Lyapunov function ensures that the switched system Σ is incre-
mentally stable. We need to make the supplementary assumption on the δ-GUAS Lyapunov function
that there exists a K∞ function γ such that

∀x, y, z ∈ IRn, |V(x, y)− V(x, z)| ≤ γ(‖y − z‖). (1)

Theorem 1 Consider a switched system Σ, time and state space sampling parameters τ, η > 0 and a
desired precision ε > 0. If there exists a common δ-GUAS Lyapunov function V for Σ such that equation
(1) holds and

η ≤ min
{
γ−1

(
(1− e−κτ )α(ε)

)
, α−1 (α(ε))

}
(2)

then
Rε = {(x1, x2) ∈ X1 ×X2| V(x1, x2) ≤ α(ε)}

is an ε-approximate bisimulation relation between Tτ (Σ) and Tτ,η(Σ). Moreover, Tτ (Σ) ∼ε Tτ,η(Σ).

Let us remark that the δ-GUAS Lyapunov function V essentially plays the role of an approximate
bisimulation function here. Particularly, it should be noted that given a time sampling parameter
τ > 0 and a desired precision ε > 0, it is always possible to choose η > 0 such that equation
(2) holds. This essentially means that approximately bisimilar discrete abstractions of arbitrary
precision can be computed for Tτ (Σ).

For simplicity, we only presented results for switched systems that have a common δ-GUAS
Lyapunov function. However, let us remark that it is possible to extend these results for systems
with multiple Lyapunov functions by imposing a dwell time (see [39] for more details). The ap-
proach described above has been used in [41, 42] for synthesizing safety and reachability switching
controllers for a model of a DC-DC converter (see Figure 5). Similar approaches can be used to
compute approximately bisimilar abstractions for incrementally stable nonlinear systems [43] and
time-delay nonlinear systems [44]. An approach relaxing the incremental stability assumptions for
non-linear systems can be found [45]; this approach is made currently available in the tool PES-
SOA [46]. The development of discrete abstractions defined on non-uniform grids has been treated
in [47, 48]. Finally, an approach for computing discrete abstractions of linear systems without
griding the state-space can be found in [49].
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In [30] Kumar et al. presented an approach for discretizing a hybrid system to a purely discrete
transition system that preserves its behaviors at all switching instances and further preserves the
structure of the underlying discrete transitions graph (transition structure of the hybrid automa-
ton). This guarantees that the abstracted discrete transition system preserves the associated reach-
ability/safety properties and so those can be verified using model-checking and counter-example
guided abstraction refinement approaches as demonstrated in the work of Jiang [35]. This safety
verification approach was applied to synchronization of distributed local clocks of the nodes on a
CAN bus by Jiang et al. [36]. The class of discrete transition systems obtained by abstracting hybrid
systems can themselves possess finite bisimilar abstractions, and such classes have been reported
by Zhou et al. in [31, 32]. The method of abstracting hybrid systems into safety preserving dis-
crete abstractions has further been employed by Zhou et al. [50] and Li et al. [33] for abstracting
Simulink/Stateflow diagrams into discrete transition systems.

2.4 Reachability computations

The basic idea behind explicit-state reachability analysis is to perform a set-valued simulation of
the system. Simulating the execution of a system from a single starting state up to a prespecified
number of transitions is easy. It is especially efficient when the system is deterministic, because
there are no choices in the simulation then.

Reachability analysis generalizes the simulation of a single initial point to simulating how a set
of initial states evolves under a prespecified number of transitions of the system. Like simulations,
reachability analysis directly follows the transition semantics of hybrid automata but considers
appropriate sets of states instead of single states.

Reachability analysis cannot work with arbitrary sets. But suppose the initial set of states is
represented by a set P of a specific family of shapes S (e.g., all polygons, or all rectangles, and so
on). Suppose there is a way to compute the image of a set of states of shape S under one transition
of the system and that the resulting set of states can be overapproximated again by a set of shape
S. Then, for any prespecified number of transitions, say 10, the image of an initial set P of shape
S under the system dynamics can be approximated by computing the one-step transition of P and
then the one-step transition of the resulting set of shape S and so on until 10 transitions have
been made. Since the resulting set will again have an overapproximation of shape S, the resulting
procedure can be used for (approximate) bounded model checking.

The effectiveness and efficiency of this reachability analysis hinges on the computational proper-
ties of the shapes S and whether the dynamics of a particular class of systems can be approximated
well by sets of shape S. The standard method to compute the reachable states is to iterate the
following one-step successor operators for discrete and continuous transitions respectively. We now
present computing such successor for two different classes of continuous dynamics.

2.4.1 Zonotope methods for linear control systems

Zonotopes are a compact representation for a special form of polygons that have been used suc-
cessfully for reachability analysis [51, 52, 53, 54], because their special form simplifies several
aspects of reachability computation. A zonotope P ⊆ Rn is defined by a center c ∈ Rn and a finite
number of generators v1, . . . , vk ∈ Rn that span the polytope as bounded linear combinations from
the center:

P =

{
c+

k∑
i=1

αivi | αi ∈ [−1, 1]

}
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A common denotation for this zonotope is (c, 〈v1, . . . , vk〉). Zonotopes are central-symmetric convex
polytopes with computationally attractive features. Linear transformations, which are one of the
basic operations in reachability of linear systems, can be computed efficiently for zonotopes. For a
matrix A ∈ Rn×n, the image of the linear transformation x 7→ Ax of zonotope P = (c, 〈v1, . . . , vk〉)
can simply be computed component-wise:

AP = (Ac, 〈Av1, . . . , Avk〉)

The Minkowski sum of zonotopes P = (c, 〈v1, . . . , vk〉) and Q = (d, 〈w1, . . . , wm〉) can also be com-
puted efficiently by a single vector addition and a single list concatenation:

P ⊕Q = (c+ d, 〈v1, . . . , vk, w1, . . . , wm〉).

It is also computationally efficient to find box-hull overapproximations of zonotopes.
The intersection of zonotopes with guards of hybrid automata and the regions resulting from the

resets are unfortunately not generally zonotopes, which still poses challenges for using zonotope
reachability for hybrid systems. The technique is extremely scalable for continuous systems with an
LTI (linear time-invariant) dynamics [52, 53, 54]. Just like when working with general polytopes,
direct uses of zonotope-based reachability computation suffer from the wrapping effect [53]. The
wrapping effect is the effect that approximation errors accumulate during the computation, making
results at higher time-steps increasingly useless. Each of these image computations may cause
approximation errors. Other versions of zonotope-based reachability computation avoid wrapping
effects [52], even for LTI with input, by basing all subsequent image computations on the original
zonotope. This way, approximation errors may still accumulate at hybrid switching surfaces, but
no longer at each intermediate time-step of a continuous transition. Extensions of zonotope-based
reachability analysis to nonlinear systems and hybrid systems can be found at [55, 56]. Another
pleasant property of zonotope computations is that they turn out to be numerically more stable
than general polytope operations. Zonotope-based reachability computation has recently been
extended to reachability computations based on support functions [57], which are essentially a
generalization of zonotopes to (subclasses of) generators in infinitely many directions.

2.4.2 Hamilton-Jacobi methods for nonlinear control systems

Level set methods are a class of algorithms designed for approximating the solution of the Hamilton-
Jacobi partial differential equation (PDE) [58], which arises in many fields including optimal con-
trol, differential games, and dynamic implicit surfaces. In particular, dynamic implicit surfaces can
be used to compute backward reachable sets and tubes for nonlinear, nondeterministic, continuous
dynamic systems with control and/or disturbance inputs; in other words, inputs and parameters to
the model can be treated in a worst case and/or best case fashion. The strengths and weaknesses
of the Hamilton-Jacobi PDE formulation of reachability are very similar to those of viability theory:
it can treat very general dynamics with adversarial inputs and can represent very general sets, but
the known computational algorithms require resources that grow exponentially with the state space
dimension; for example, in ToolboxLS2 the level set algorithms run on a Cartesian grid of the state
space. The ToolboxLS algorithms also do not guarantee the sign of computational errors, but they
deliver higher accuracy for a given resolution than that available from typical sound alternatives.

Because ToolboxLS [59] is designed for dynamic implicit surfaces rather than specifically for
reachability, it does not include a specialized verification interface; however, it has a 140 page user
manual documenting the software and over twenty complete examples including three reachable

2http://www.cs.ubc.ca/~mitchell/ToolboxLS/
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set computations. It has been used primarily for reachability of systems with two to four continuous
dimensions, including collision avoidance, quadrotor flips, aerial refueling, automated landing, and
glidepath recapture.

The above reachability computation approach was also used by Jin et al. in [60] to demonstrate
how backward reachability methods can be used to compute the stability regions and how those
can then be used for switching control designs for achieving power system stability under discrete
line or bus faults.

2.5 Barrier certificate methods

The basic idea behind barrier certificates is to find a barrier separating reachable states and bad
states that we can easily show to be impenetrable by the continuous system dynamics. Barrier cer-
tificates were proposed for safety verification in [61] and later refined in [62]. Barrier methods are
different from explicit reachability computational approaches as they do not require computation
of reachable sets, but instead relies on a deductive inference.

For a continuous control system, a barrier certicate is a function of state satisfying a set of
inequalities on both the function itself and its Lie derivative along the flow of the system. In the
state space, the zero level set of a barrier certicate separates an unsafe region from all system
trajectories starting from a set of possible initial states. Therefore, the existence of such a function
provides an exact certicate/proof of system safety. Similar to the Lyapunov approach for proving
stability, the main idea here is to study properties of the system without the need to compute the
reachable set explicitly. Although an overapproximation of the reachable set may also be used as
a proof for safety, a barrier certicate may be easier to compute when the system is nonlinear and
uncertain. Moreover, a barrier certicate can be easily used to verify safety in innite time horizon.
With this methodology, it is possible to treat a large class of hybrid systems, including those with
nonlinear continuous dynamics, uncertainty, and constraints. Consider a control system described
by ordinary differential equations

ẋ(t) = f(x(t), d(t)), (3)

where x(t) ∈ Rn is the state of the system, d(t) ∈ D ⊆ Rm is a collection of uncertain disturbance
inputs, and f ∈ C(Rn+m,Rn). We will be mostly dealing with a bounded disturbance set D. In the
safety verification problem, we will be interested only in segments of system trajectories that are
contained in a given set X ⊆ Rn. Now suppose also that a set of possible initial states X0 ⊆ X and
a set of unsafe states Xu ⊆ X are given. Our objective is to prove that the system is safe in the
following sense.

Definition 2 (Safety) Given a system (3) and the sets X , D, X0 and Xu, we say that the system
safety property holds if there does not exist a time instant T ≥ 0, a bounded and piecewise continuous
disturbance input d : [0, T ]→ D, and a corresponding trajectory x : [0, T ]→ Rn such that x(0) ∈ X0,
x(T ) ∈ Xu, and x(t) ∈ X ∀t ∈ [0, T ].

The safety of the system (3) can be shown by the existence of a barrier certificate [63]. A barrier
certificate is a function of state satisfying some Lyapunov-like conditions on both the function itself
and its time derivative along the flow of the system, stated in Proposition 1 below. The main idea
is to ask that the value of the function at the initial set X0 to be non-positive, the time derivative
of the function to be non-positive on X , and the value of the function at the unsafe set Xu to be
strictly positive. If a function satisfying such a property can found, then we can conclude that no
trajectory of the system starting from X0 can reach Xu.
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Proposition 1 ([63]) Let the system (3) and the sets X ⊆ Rn, D ⊆ Rm, X0 ⊆ X and Xu ⊆ X be
given, with f ∈ C(Rn+m,Rn). Suppose there exists a function B ∈ C1(Rn) that satisfies the following
conditions:

B(x) ≤ 0 ∀x ∈ X0, (4)
B(x) > 0 ∀x ∈ Xu, (5)
∂B

∂x
(x)f(x, d) ≤ 0 ∀(x, d) ∈ X ×D, (6)

then the safety of the system (3) in the sense of Definition 2 is guaranteed.

The above method is analogous to the Lyapunov method for stability analysis. Contrary to
stability analysis, however, no notion of equilibrium, stability, or convergence is required in safety
verification. For example, the system does not even need to have an equilibrium.

The conditions in Proposition 1 define a convex set of barrier certificates {B(x)}. This is a very
beneficial property, as a barrier certificate inside this set can be searched using convex optimization.
For example, when the vector field f(x, d) is polynomial and the sets X , D, X0, Xu are semialge-
braic, i.e., defined by polynomial inequalities and equalities, a computational framework called sum
of squares optimization [64] that is based on semidefinite programming can be utilized to search
for a polynomial barrier certificate. In particular, the software SOSTOOLS [64] is available for this
computation.

The method can also be extended to handle safety verification of hybrid systems, systems with
disturbances and to switching diffusion systems [62].

2.6 Verification using robust simulation

Verification consists in analyzing the behavior of a control system Σ against some specification:
given a property Φ defined on trajectories (e.g. “a trajectory reaches the set YF ”), we would like
to be able to prove that it is satisfied by all trajectories of the control system. For discrete soft-
ware/hardware systems, the problem has attracted a lot of attention in computer science, resulting
in the success story of Model Checking [65] with the associated set of techniques widely used in the
industry. Verification of continuous control and hybrid systems is in general much more challenging
since these generally have an uncountable number of trajectories. There has also been a lot of work
on the subject using set-based reachability computations, abstraction and or deductive techniques
(see [66] for a recent survey).

In the following, we briefly describe an approach based on simulation of individual trajectories
of a system together with the use of bisimulation function [67]. Let us consider the following
dynamical system:

Σ :

{
ẋ(t) = f(x(t)), x(t) ∈ IRn, x(0) ∈ I0
y(t) = g(x(t)), y(t) ∈ IRk.

Let Φ be a property defined on the output trajectories y, formulated for instance in some temporal
logic; y |= Φ means that trajectory y satisfies property Φ. Let us assume that we are given a
measure ρ(y,Φ) estimating how robustly property Φ is satisfied by Φ:(

∀t ≥ 0, ‖y − y′‖ ≤ ρ(y,Φ)
)

=⇒ y′ |= Φ.

We refer the reader to [67] for a precise definition of such a measure and algorithms for its com-
putation. The last ingredient of the verification approach is a bisimulation function between Σ and
itself:
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Definition 3 Let V : IRn × IRn → IR+ be a smooth function, V is an (auto)bisimulation function of Σ
if for all (x1, x2) ∈ IRn × IRn,

V(x1, x2) ≥ ‖g(x2)− g(x1)‖
∂V(x1, x2)

∂x1
· f(x1) +

∂V(x1, x2)

∂x2
· f(x2) ≤ 0

Using robustness measures for property satisfaction and a bisimulation function makes it pos-
sible to verify that the property holds for an infinite number of trajectories by simulating only one
trajectory:

Theorem 2 Let x0 ∈ I0 be an initial condition of Σ and let y be the associated output trajectory.
Then, for all x′0 ∈ I0, with associated output trajectories y′(

V(x0, x′0) ≤ ρ(y,Φ)
)

=⇒ y′ |= Φ

The previous result allows us to verify that the property Φ holds for all the trajectories of Σ by
computing only a finite number of them. Let {x01, . . . , x0n} ⊆ I0 be a finite subset of initial conditions
and {y1, . . . ,yn} the associated output trajectories of Σ such that for all x0 ∈ I0, there exists x0i
such that V(x0, x0i ) ≤ ρ(yi,Φ) then all the trajectories of Σ satisfy Φ. An algorithm to construct
iteratively the sample of initial states can be found in [67]. In the case we cannot cover the whole
set of initial states, the algorithm identifies a subset of initial states for which the property holds.

Similar approaches have been developed for the verification of non-deterministic metric transi-
tion systems [68, 69] or hybrid systems [70, 71]. The same kind of ideas can be used for controller
synthesis by defining control laws for a finite number of trajectories [72].

2.7 Computational tools

Here is a current list of state of the art tools for hybrid system verification and synthesis.

• SpaceEx The SpaceEx tool platform (spaceex.imag.fr) developed at VERIMAG [73, 74] is a
tool for computing reachability of hybrid systems with complex, high-dimensional dynamics.
It can handle hybrid automata whose continuous and jump dynamics are piecewise affine
with nondeterministic inputs. Nondeterministic inputs are particularly useful for model-
ing the approximation error when nonlinear systems are brought to piecewise affine form.
SpaceEx comes with a web-based graphical user interface and a graphical model editor. Its
input language facilitates the construction of complex models from automata components
that can be combined to networks and parameterized to construct new components.

The analysis engine of SpaceEx combines explicit set representations (polyhedra), implicit
set representations (support functions) and linear programming [75] to achieve a high scal-
ability while maintaining high accuracy. It constructs an overapproximation of the reachable
states in the form of template polyhedra. Template polyhedra are polyhedra whose faces
are oriented according to a user-provided set of directions (template directions). A cover
of the continuous trajectories is obtained by time-discretization with an adaptive time-step
algorithm. The algorithm ensures that the approximation error in each template direction
remains below a given value. Empirical measurements indicate that the complexity of the
image computations is linear in the number of variables, quadratic in the number of template
directions, and linear in the number of time-discretization steps.

The accuracy of the overapproximation can be increased arbitrarily by choosing smaller time
steps and adding more template directions. To attain a given approximation error (in the
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Hausdorff sense), the number of template directions is worst-case exponential. In case stud-
ies, the developers of SpaceEx observe that a linear number of user-specified directions, possi-
bly augmented by a small set of ’critical’ directions, often suffices. The prime goal of SpaceEx
being scalability, it uses floating-point computations that do not formally guarantee sound-
ness. SpaceEx has been used to verify continuous and hybrid systems with more than 100
continuous variables.

• S-TALIRO S-TaLiRo (https://sites.google.com/a/asu.edu/s-taliro/s-taliro) is a Matlab toolbox
developed at Arizona State University that searches for trajectories of minimal robustness in
Simulink / Stateflow. It can analyze arbitrary Simulink models or user defined functions that
model the system. Among the advantages of the toolbox is the seamless integration inside
the Matlab environment, which is widely used in the industry for model-based development
of control software.

• PESSOA Pessoa (https://sites.google.com/a/cyphylab.ee.ucla.edu/pessoa/) is a software tool-
box, developed at UCLA’s CyPhyLab, for the synthesis of correct-by-design embedded control
software. It is based on the recent notion of approximate bisimulation that allows one to
replace differential equations, describing a physical system, by an equivalent finite-state ma-
chine. Controller design problems can then be solved by using efficient synthesis algorithms
operating over the equivalent finite-state machine models. The resulting controllers are also
finite-state, are guaranteed to enforce the control specifications on the original physical sys-
tem, and can be readily transformed into bug-free code for any desired digital platform.

• TuLiP (http://sourceforge.net/projects/tulip-control/) developed at Cal Tech is a Python-
based software toolbox for the synthesis of embedded control software that is provably cor-
rect with respect to an expressive subset of linear temporal logic (LTL) specifications. TuLiP
combines routines for (1) finite state abstraction of control systems, (2) digital design syn-
thesis from LTL specifications, and (3) receding horizon control. The underlying digital de-
sign synthesis routine treats the environment as adversary; hence, the resulting controller is
guaranteed to be correct for any admissible environment profile. TuLiP applies the receding
horizon framework, allowing the synthesis problem to be broken into a set of smaller prob-
lems, and consequently alleviating the computational complexity of the synthesis procedure,
while preserving the correctness guarantee.

• LTLMOP (http://ltlmop.github.com/), developed at Cornell University, stands for Linear Tem-
poral Logic MissiOn Planning and is a collection of Python applications for designing, testing,
and implementing hybrid controllers generated automatically from task specifications written
in Structured English or Temporal Logic.

• Toolbox for Level Set methods The toolbox of level set methods developed at UC Berkeley
and the University of British Columbia (http://www.cs.ubc.ca/ mitchell/ToolboxLS/index.html)
for solving time-dependent Hamilton-Jacobi partial differential equations (PDEs) in the Mat-
lab programming environment. Hamilton-Jacobi and related PDEs arise in computing reach-
avoid operators for nonlinear control systems. The algorithms in the toolbox can be used in
any number of dimensions, although computational cost makes dimensions four and higher
a challenge.

• HSolver (http://hsolver.sourceforge.net/) [76] is an open-source software package for the
formal verification of safety properties of continuous-time hybrid systems. It allows hybrid
systems with non-linear ordinary differential equations and non-linear jumps assuming a
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global compact domain restriction on all variables. Even though HSolver is based on fast
machine-precision floating point arithmetic, it uses sound rounding, and hence the correct-
ness of its results cannot be hampered by round-off errors. HSolver does not only verify
(unbounded horizon) reachability properties of hybrid systems, but—in addition—it also
computes abstractions of the input system. So, even for input systems that are unsafe, or
for which exhaustive formal verification is too difficult, it will compute abstractions that can
be used by other tools. For example, the abstractions could be used for guiding search for
error trajectories of unsafe systems.

• KeYmaera (http://symbolaris.com/info/KeYmaera.html) [77, 78, 79, 80, 81] is a hybrid ver-
ification tool for hybrid systems that combines deductive, real algebraic, and computer alge-
braic prover technologies. It is an automated and interactive theorem prover for a natural
specification and verification logic for hybrid systems. With this, the verification principle
behind this tool is fundamentally different and quite complementary to existing tools. It sup-
ports differential dynamic logic [82, 77, 79, 80], which is a real-valued first-order dynamic
logic for hybrid programs [82, 77, 79, 80], a program notation for hybrid systems.

2.8 Run-Time Assurance Framework

Run-time assurance framework provides methodologies (algorithms and tools) to ensure safe
operation of a given system while maximizing the use of its certain advanced subsystem that offers
complex performance capabilities but that is not fully verified. The advanced subsystem is accom-
panied by a substitute baseline subsystem that has lower complexity and has been verified to be
fail-safe. As a result, it is possible to revert control from the advanced subsystem to the substitute
baseline subsystem whenever it is deemed necessary during the run-time operation, thereby assur-
ing safety of the overall system in a run-time fashion while maximizing the use of the advanced
subsystem.

A possible architecture for run-time assurance framework is shown in Figure 6 that is inspired
from the works of Barron Associates and CMU [83, 84]. Here the system under control (plant),

Figure 6: Run-time assurance architecture

a verified fail-safe baseline control and an unverified advanced control are already designed and
made available. The objective is to design a switching/steering system so as to maximize the
use of the advance control without sacrificing the safety of the overall system. The task of the
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switching/steering system is to monitor, in an online fashion, the operation and performance of the
advanced control and, if deemed necessary, switch to the fail-safe baseline control.

The design of a switching/steering system can be approached by modeling certain regions of
the state-space as depicted in Figure 7. The figure depicts the unsafe part of the state-space, the
complement of which is deemed safe. A certain subset of the safe states is depicted to be the target
states; these are the states where the system is considered fail-safe (e.g., for a group of vehicles it is
the set of states where the inter-vehicle distance satisfies a certain safe separation bound and also
all the vehicles are stable).

Figure 7: Safety region XB vs. active safety
margin XA(x, T )

Figure 8: Enhanced safety region XB vs. active
safety margin XA(x, T )

XB denotes the safety region of the baseline control, and corresponds to the set of states from
where the baseline controller can steer the system to the target states while always avoiding the
unsafe states, and once the target states are reached, those can be maintained forever, i.e., can be
made to remain invariant. It is clear that under the operation of the advanced control, the current
state x must lie within XB (i.e., x ∈ XB) so as to be able to avail the safety of the fail-safe baseline
control by being able to safely switch to it.

Associated with any cyberphysical system, such as shown in Figure 6, is a reaction time T , which
is the extra time needed to perform a switch in control from the instance of recognizing that such
a switch is needed to the instance of actual execution of the switch. The reaction time corresponds
to the computation and communication delays associated with a given cyberphysical system and
needs to be computed/estimated. It then turns out that, not only the current state x must lie
within XB, but an entire “ball” of states around x that can be reached under the operation of the
advanced control within the reaction time T must lie within XB. Thus associated with the current
state x and the reaction time T , exists an active region of safety margin, denoted XA(x, T ), that
corresponds to the set of states reachable from x within time T under the advanced control. Thus
for ensuring safety, it must hold at each current state x, reached under the advanced control, that
XA(x, T ) ⊂ XB, and otherwise a switch to the baseline control must be made. Thus another task
for the switching/steering block is to perform monitoring to the estimate the current system state
and bound the set of forward reachable states XA(x, T ).

Further, since the advanced control is unverified, it may contain faults. So further online mon-
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itoring must be performed within the switching/steering block for detecting any fault in the ad-
vanced control, and a switch to the baseline control must be made once any such fault is detected.
For fault-detection purposes, monitoring can be performed at multiple levels: At the advance con-
trol level to directly detect any of its faults, and also at the higher system levels to catch any
advanced control faults that may manifest as failures at the higher system levels. Since not all
failures at higher levels may correspond to faults in the advanced control, fault-detection must be
accompanied with fault-identification. Thus a switch must be performed whenever:

[XA(x, T ) ( XB] ∨ [advanced control fault detected/identified].

In some cases, it may be possible to enlarge the safety regionXB to a larger setXB by designing
a steering control that can safely steer any state in XB to a state in XB and retain there for at least
the duration of reaction time so upon reaching XB, the steering control may be switched to the
baseline control. Thus the rule for switching from the advanced to the steering control (and next
switching to the baseline control) becomes:

[XA(x, T ) ( XB] ∨ [advanced control fault detected/identified],

where the corresponding enlarged safety region XB is depicted in Figure 8.
In summary, the design of the switching/steering block involves the following off-line and online

computations:

Offline:

• Compute safety region XB under baseline control
• Compute enhanced safety region XB under steering control
• Compute control switch reaction time T
• Verify switching/steering system

Runtime:

• Estimate current state x under the operation of advanced control
• Estimate/bound active safety margin XA(x, T ) associated with advanced control at cur-

rent state x within reaction time T
• Monitor input/output behaviors at various levels of hierarchy to detect any violations of

the specifications for those levels
• Perform detection and identification of any advanced control fault

The following models will be needed to be able to perform the above offline/runtime computa-
tions:

• Plant model

• Baseline control model to compute/bound XB

• Real-time analysis models of cyberphysical infrastructure to estimate/bound T

• Advanced control model or its abstraction to compute/bound XA(x, T )

• Input/output correctness properties of advanced controller and its controlled plant

• Models of noise distribution
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3 State of the Art for Runtime Monitoring and Switching
Dr. Insup Lee and Dr. Oleg Sokolsky

This section provides a brief overview of the current research on runtime monitoring and switching.
Section 3.1 introduces runtime verification from a history perspective, and it identifies various
components required for runtime monitoring and switching. Section 3.2 elaborates prior work
within each component.

3.1 Overview of runtime monitoring and switching

Runtime verification (RV) is a relatively new area of study that is concerned with dynamic mon-
itoring, analysis and recovery of system executions with respect to precisely specified properties.
A rigorous approach to proving the correctness of programs at run time was first presented in a
paradigm called program checking by Blum and Kannan [85]. The papers on program checking
also demonstrated that runtime monitoring was feasible in many instances where static, design-
time verification does not appear to be. This was the primary initial motivation for this field at
its inception about a decade ago. That is, despite the best verification efforts, problems can occur
at run time, and dynamic analysis of the running system can improve confidence in its evolving
behavior.

Since then, researchers came to realize that precisely specified monitoring and checking can be
used for many purposes, such as program understanding, systems usage understanding, security or
safety policy monitoring, debugging, testing, verification and validation, fault protection, behavior
modification (e.g., recovery), etc. At the most abstract level, a running system can be regarded as a
generator of execution traces, i.e., sequences of relevant states or events. Traces can be processed
in various ways, e.g., checked against formalized specifications [86], used to drive the simulation of
behavioral models, analyzed with special algorithms, visualized [87], etc. Statistical analysis [88]
and machine learning of system properties can be performed over the traces.

The scope of RV research covers three conceptually separate aspects. The first aspect concerns
checking of traces, such as property specification, and algorithms for the checking of such property
specifications over a given trace. The second aspect has to do with the generation of traces; that is,
how observations are made and recorded. Most RV systems rely on some form of instrumentation
to extract observations. Finally, the third aspect is about feedback and recovery; that is, actions
that are carried out when a safety violation occurs, e.g., raising an alarm or switching to a safe
controller.

The three aspects of RV are not independent, however. A trace generation method has to ensure
that all observations necessary for checking a property are recorded. A missed observation is likely
to result in an incorrect checking outcome. On the other hand, generating irrelevant observations
increases checking overhead and should be avoided. Recording exactly the right set of observa-
tions for a given property is the subject of trace generation research. This dependency between the
checking and trace generation aspects may also be turned around: if the trace generation method is
fixed, one can pose the question, which property specification language would be the most appro-
priate. For example, if the trace records state changes — that is, differences between two successive
states — rather than values of state variables, checking a state-based property would require an ad-
ditional step of reconstructing states. Likewise, what feedback and recovery actions are required
and when they must be taken depend on the checking result. A false positive checking outcome
may trigger unnecessary or undesirable switching actions, whereas a false negative one prevents
recovery actions from being carried out when needed, which potentially leads the system to failure.

We distinguish three broad categories of RV approaches to property specification. In the first
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category, properties depend on execution history and their evaluation depends on a sequence of
states in a trace. Such properties are often expressed in a variant of temporal logic; however, other
specification languages are also used, such as regular expressions and state machines. The second
category relies on the use of contracts or assume-guarantee interfaces between modules in the sys-
tem. Properties in this category typically describe a single state or changes between two consecutive
states in the trace. It may be considered a special case of the previous category. However, logics use
for property specification as well as checking algorithms tend to be different here. Finally, the third
category, sometimes referred to as specification-less monitoring, develops checking algorithms that
detect violations of specific common properties. These properties typically relate to concurrent
executions, such as freedom from race conditions [89], atomicity [90], serializability [91], etc.

An important research issue in runtime verification, which cuts across all RV aspects mentioned
above, is the management of spatial and temporal overhead. An inefficient implementation of the
monitoring and switching algorithm can easily be disruptive to system performance and limit the
use of RV techniques. Such an implementation may also delay the system from switching to a
safe state on time. A significant source of overhead is instrumentation that is necessary to extract
observations from a running system. Reducing the number of instrumentation points reduces in-
strumentation overhead but may lead to missing observations and incorrect checking results, which
may in turn result in system failure due to wrong or no recovery actions.

Last but not least, an RV framework has to provide the right feedback to the users. In many
situations, it is not enough to signal that a violation has occurred. If checking is applied to a running
system, as opposed to a recorded trace, feedback from the checker can help the system recover from
a problem. Understanding the right feedback to produce, and reasoning about its effects on the
system overall behavior is another important direction in RV research and especially critical in our
RTA problem setting.

3.2 Categories of runtime verification

3.2.1 Monitoring and checking of temporal specifications

This category of RV tools have been developed as a direct extension of the static verification concept
of model checking. Model checking algorithms [92] verify a model of the system against properties
specified in a temporal logic or similar formalism. The original RV research question was whether
an execution of the system can be verified at run time against the same set of properties. From
the theoretical perspective, the problem is to deal with the fact that the trace is evolving as check-
ing is being performed. Repeating the process from the beginning of the trace every time a new
observation arrives is wasteful. On-line or incremental variants of the algorithms are necessary to
make RV efficient. Another problem with respect to temporal properties comes from the finiteness
of observed traces. Standard temporal logics, which are defined over infinite traces, and their cor-
responding checking algorithms need to be extended towards incomplete behaviors of finite traces.

Efficient on-line algorithms for checking a trace with respect to formulas in past- and future-
time temporal logics, as well as regular expressions, have been available for about a decade [93,
94, 95, 86, 96] and are incorporated in a variety of tools [97, 98, 99]. One of the most extensive
toolsets for runtime verification of formal specifications is the MOP framework [100]. It supports
a variety of specification formalisms, such as temporal logics and finite state machines, and several
monitoring targets, such as Java programs and bus snooping.

Comparison of RV algorithms for different specification formalisms reveals that they have much
in common. All of the algorithms maintain a checker state that is updated when new observation
from a target system arrives. For example, in the case of past-time linear temporal logic (ptLTL),
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the checker state contains the valuations of all subformulas of a given formula in the current state
of the trace, which is updated using a dynamic programming approach [95].

This similarity between algorithms for seemingly different formalisms has led to the research
on special monitoring logics that can be used as the common underlying formalism for specifying
monitors. Eagle [101] is a logic with explicit fixpoint operators that is capable of implementing
future- and past-time temporal logics, interval logics, extended regular expressions, and other for-
malisms that may be useful in the monitoring context. An execution engine for Eagle specifications
makes it a flexible platform for implementing checkers. RuleR [102] takes this approach one step
further by replacing explicit fixed point operators with rules that activate each other in response to
observations. RuleR is lower-level logic that requires more effort to encode high-level semantics of
a commonly used logic. However, it allows much finer management of the checker state, leading
to more efficient checkers, and yields a system that is easier to implement and maintain.

The above temporal specification languages and corresponding checking algorithms can po-
tentially be adapted for various layers of the system, especially at the execution platform and the
control layers. At the layer of execution platforms, the above temporal approaches can be applied
to check for timing behaviors and other performance metrics of the tasks executing on the plat-
form, as well as to check for correctness behavior of the scheduling and communication protocols.
At the control layer, the main challenge is to derive a mapping between the specification languages
specified in the control-theoretic analysis of switching (Task 1) and the logics used by the runtime
monitoring algorithm. Abstractions of the state variables specified in the control-theoretic proper-
ties will be required to derive a set of observable variables (directly or indirectly) in the monitoring
specification languages such that the corresponding properties can be checked efficiently. For exam-
ple, if stability of the control system is expressed as an invariant of the Lyapunov functions over the
control state vector; the mapping in this case provides an equivalent “invariant” in the monitoring
logics on the corresponding variables observed by the monitor.

One issue in monitoring control dynamical systems is how to efficiently and accurately monitor
and check their continuous state values. Along this line, temporal logics for dense-time real-values
signals and corresponding automatic generation of property monitors have been explored (see
e.g., [103, 104]). Temporal properties in such logics specify the required behaviors of the dynamics
of purely continuous or switched control systems, such as those modeled by sets of differential
equations or hybrid automata. Although the proposed monitor generation algorithm proposed
in [103] works only in offline setting, extensions of such logics (e.g., to incorporate events related
to signal changes) as well as adaptions of the monitor algorithm to online setting are potentially
useful in the context of switching in UAVs.

From the perspective of control analysis, many properties desired for system safety such as
causality and stability can be expressed in simple non-temporal invariants over frequency domain.
It would be interesting to explore lightweight transformation algorithms that derive spectral values
from the observed traces to leverage on the spectral properties, which will in turn enable more
efficient and effective checking algorithms. This transformation approach differs from the mapping
approach described above in that the checkers compute the property based on the values of the
transformed control-theoretic variables instead of the directly observed values.

3.2.2 Design-by-contract monitoring

Design by contract, pioneered in the Eiffel programming language [105], relies on interface speci-
fications between components in the system. These specifications take the form of pre-conditions,
post-conditions, and invariants. Contracts are typically state predicates (that is, expressions over
the values of system variables in the current state). Contracts also typically allow us to relate “old”

Page 23 DISTRIBUTION STATEMENT A: Approved for Public Release
Distribution Unlimited (Case Number: 88ABW-2013-1876)

Page 23



and “new” values of variables. Like any other correctness properties, contracts can be verified stat-
ically (within the inherent limitations of verification tools), but they often are also checked at run
time for unexpected violations.

Unlike temporal specifications discussed earlier, contract checking is typically integrated more
tightly with the system execution, and can conceptually be viewed as part of the system. Semantics
of contracts determine, at which points the contracts should be checked. For example, a pre-
condition for a method in an object-oriented program is checked when the method is called, and
a post-condition is checked just before the method returns. Because of this tighter integration,
instrumentation is typically not an issue.

Some languages, such as Eiffel and Spec# [106], provide special syntax for contracts. Other
language frameworks support embedding of contract as code, usually providing a library of contract
primitives. For example, the Code Contracts project [107] provides contracts for .NET languages as
calls to methods of a Contract class. The TraceContract project [108] supports writing temporal
specifications in Scala as calls to methods of a Monitor class. There are several comment-based
contract frameworks for Java, such as JML [109] and Jass [110]. Both are based on writing spec-
ifications as special recognizable comments, which can then be extracted by tools. Some contract
checking systems, Jass among them, extend standard contracts with trace assertions [111], which
can be used to specify restrictions on sequences of invocations of methods of the class. With this
extension, the distinction between contracts and temporal properties begins to disappear.

Due to the restrictive expressive power of the contract languages, design-by-contract monitor-
ing is applicable to only simple properties. On the other hand, instrumentation and checking in
this category of RV are much simpler compared to the monitoring and checking of temporal prop-
erties. Hence, this approach is potentially useful for checking component-level properties such
as functional correctness, interface compliance properties (e.g., service requirements), or network
communication and security protocols at the execution platform layer.

Since system-level properties are often concerned with the overall behavior of the entire system
and over execution paths, they are typically not expressible by contract languages. A hybrid of the
two monitoring design-by-contract and (event-triggered) temporal monitoring can help leverage
the strengths of both techniques. It would be interesting to explore hierarchical monitoring, where
violations at child components detected by the design-by-contract monitoring method are used
as monitored events to the monitors of the parent components. An alternative hybrid technique
is found in high-order temporal contracts [112]. Here, the contract systems are extended with
temporal logics to express and enforce temporal properties. This integrated approach is particu-
larly interesting as it leverages and combines techniques from both higher-order design-by-contract
systems and the above first-order temporal systems within the same language.

Since contract checking is tightly integrated with the system execution, specific contract sys-
tems need to be designed for the implementation languages, which again imply language specific
challanges. The tight integration of contract checking and the system execution also makes isola-
tion of concerns between the system being monitored and the monitor itself difficult to achieve.
Further, since assertions are hard to formulate for many kinds of system of interest – in particular,
for adaptive systems – therefore, it may not be suitable for our setting.

3.2.3 Monitoring with uncertainty and system faults

The majority of RV tools assume full observability of system states. In complex real-time embedded
systems, this may not always hold true, e.g., due to the high cost in sensing all variables reliably.
Uncertainty in the system behaviors also arises due to the unreliability of hardware such as due to
degradation over time or possible hardware defects. It is thus useful to perform runtime verification
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in presence of uncertainty in the system state information. RV techniques also need to account for
the impacts of hardware and software faults on the quality of the observations.

One approach to incorporate uncertainty of the system behaviors is to use probabilistic models.
In this context, the system behavior with respect to a given safety specification can be computed as
the likelihood that the specification is being satisfied. A number of runtime monitoring algorithms
for probabilistic properties based on statistical methods have been proposed, for instance, [113,
114, 115, 116]. Wang, et al. [117] extends the technique in [113] with Mont Carlo simulation
for runtime verification of mixed analog and digital signal designs. Software runtime monitoring
algorithms have also been extended to account for hardware behaviors [118].

To allow unobservable states in runtime monitoring, stochastic models with hidden states have
been applied to the context of RV. For example, Wilcox, et al. [119] proposes a technique that
relies on the probabilistic hierarchical constraint automata model [120] to capture probabilistic and
faulty behaviors within both software and hardware. This technique integrates runtime monitoring
techniques for temporal properties with HMM-based stochastic state estimation to detect safety
violations during runtime. State estimation method has also been used in [121] to estimate the
confidence of the verification results when sampling-based monitoring technique is used.

While existing RV tools in this category remain relatively few, uncertainty is a critical issue in
complex systems such as UAVs. Integration of model-based diagnosis and other fault-tolerance
techniques with runtime monitoring is a promising direction in tackling this issue. One challenge
to be addressed is how to reliably derive the faulty model of the system. Since violations of the
system model may violate the correctness of the monitoring algorithm itself, appropriate methods
for checking at runtime the correctness of the model used are inherently necessary.

3.3 Instrumentation

In order to extract observations necessary for checking properties, RV tools rely on instrumentation.
Most tools use active instrumentation, that is, insertion of code probes into the running system.
One of the few exceptions is BusMOP [122], an instantiation of the MOP framework [100] for
the monitoring of PCI buses. BusMOP uses passive instrumentation, directly observing traffic on
the bus. In order to avoid missing relevant observations and allow RV to scale to large systems,
instrumentation should be automatic. Automatic instrumentation requires us to perform analysis
of the target system in order to identify where events of interest occur.

An increasingly popular way of implementing instrumentation of source code is through the
use of aspect-oriented programming [123]. Indeed, multiple probes are added to the code that
collectively supply observations to the monitor. Thus, instrumentation satisfies the definition of a
cross-cutting concern, which underlies aspect-oriented programming. The use of aspect-oriented
techniques in RV research was pioneered in the tools J-Lo [97] and Hawk [124]. An even closer
connection between RV and aspect-oriented instrumentation was made in the AspectBench Com-
piler using the notion of tracematches [125]. A tracematch is an extension of the AspectJ language,
which captures a regular pattern of events. In other words, it is similar to other temporal specifica-
tions discussed in Section 3.2.1. However, tracematches are given aspect semantics so that they can
be automatically weaved by the compiler. Since then, several RV tools, including MOP [100] and
Larva [126], rely on AspectJ for instrumentation. Aspect-oriented instrumentation for other pro-
gramming languages is less common. The InterAspect system [127], which performs instrumenta-
tion based on the intermediate representation of the GCC compiler, thus providing aspect-oriented
instrumentation for languages with GCC front-ends, in particular, C and C++.

Aspect-oriented programming provides a powerful way for instrumentation. Most existing
aspect-oriented instrumentation systems, however, are developed for Java, which may not opti-
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mal for performance on embedded platforms. New aspect-oriented instrumentation techniques for
embedded programming languages are hence necessary. Here, it would be interesting to explore
the use of InterAspect instrumentation system [127] for GCC-based languages within RV tools.

Since monitoring code is added directly to the monitored program, one challenge when using
aspect-oriented instrumentation approach is how to guarantee that the added code does not ad-
versely change the behaviors of the original program in undesirable or unpredictable manner. In
safety-critical systems, re-certification of the software after instrumentation will be necessary to
confirm to certification standards. To address this, time-aware instrumentation techniques [128]
have been proposed to preserve timing properties of the instrumented program. The idea is to
transform the execution time distribution of the system to maximize the coverage of the trace
while meeting the time constraints.

Based on the mode of interaction between the instrumented system and the checker, we distin-
guish between synchronous and asynchronous monitoring. In synchronous monitoring, whenever
a relevant observation is produced by the system, further execution is stopped until the checker
confirms that no violation has occurred. Synchronous monitoring may deliver a higher degree
of assurance than the asynchronous one, because it can block a dangerous action. However, this
comes typically with a higher instrumentation overhead. In some applications, where the system
can tolerate a slower response, but effects of a property violation are dramatic [126], this additional
overhead is justified.

3.4 Overhead reduction

Runtime checking of complicated properties that involve many system variables imposes high over-
head on the system performance. There has been much work on reducing the checking overhead
by combining static analysis techniques with subsequent runtime checking. We overview some of
these approaches here; the relationship between runtime verification and timing is explored in
more depth in Section 4.

The concept of combining static and dynamic analysis originates in the programming language
community in the context of typestate analysis. Typestate properties are properties of paths in a
program and are similar to behavioral specifications studied in the RV literature. A typical typestate
property may be expressed as a state machine constraining valid sequences of API calls in a pro-
gram. Residual typestate analysis has been proposed in [129]. It is based on the observation that,
while static typestate analysis often leads to inconclusive results, it produces valuable information
that can reduce the state machine that needs to be analyzed at run time.

Complementary to the residual analysis is the work of Eric Bodden and his colleagues [130,
131]. Here, static analysis of the code to be monitored is performed with the goal of identifying
instrumentation points that can be safely removed. Results of this work have been implemented in
the tool Clara [132].

Combination of symbolic techniques in automata-theoretic setting and compiler optimization
techniques have also been explored to optimize runtime overheads of temporal monitors. Along
this line, [133] proposed an approach for reducing overheads of runtime monitors for SystemC
program. Here, overhead optimization is achieved by means of symbolic representations of both
state and alphabet of the monitor, Satisfiability-Modulo-Theory solver, and state-folding technique.

In some cases, it may be acceptable to lower the accuracy of monitoring by missing some of
the execution events. In these cases, there is a trade-off between accuracy and lower overhead. A
control-theoretic approach to implementing this trade-off has been proposed in [134].

While the existing overhead reduction techniques are promising, their evaluations are primarily
restricted within the context of the monitor and the component under monitoring. Effects of such
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monitoring overhead optimization in a broader context within which the monitor is being deployed
need to be considered. One example is the connection between error detection and software health
management, which has been discussed in [135], where both the monitor and the diagnosis module
co-observe the program’s behaviors. It is hence critical to ensure that the runtime monitor preserves
the information required by diagnosis and vice versa.

3.5 Feedback and recovery

An important question when designing an RV system is what to do when a violation is discovered. If
the system is undergoing testing, it may be sufficient to alert the operator, who will stop the system
and diagnose the problem. However, in order to realize the vision of RV for a post-deployment
alternative to the design-phase verification, a more programmatic approach is needed. In our RTA
setting, this involves invoking a recovery mechanism that switches the system from the currently
unsafe state to a safe state.

Several RV systems, including MaC and MOP, have the ability to invoke user-specified recovery
routines. Monitoring specifications allow the user to specify, what actions are to be invoked when
a particular violation occurs, and what information is to be passed to the recovery routine. The
system can be partially reset or switched to a failsafe mode. In some situations, for example, when
monitoring performance and quality-of-service properties [113], the system can be steered to a
more suitable state. For safety property, the Simplex architecture [136] proposes to use a recovery
controller to steer the system to a safe state. Specifically, when a safety violation occurs, the system’s
controller is switched (from the current unsafe controller) to a recovery controller, which will then
bring the system to a safe state within the area of operation of a fully verified baseline controller.

The above approach relies on an implicit assumption that the recovery routine will be effective,
regardless of the reason the property was violated. For a property that depends on the interaction
of several parts of a system, this assumption may not hold. To give a simple example, suppose
the property is that the size of a queue, buffering traffic from a sender to a receiver, should be
always below a threshold. If the property is violated, it may mean that the sender is sending the
messages too fast or that the receiver is processing them too slow. Different recovery actions may
be warranted in each of these cases.

A possible way to solve this deficiency is to incorporate diagnostic facilities into an RV system.
The first work to explore this line of research was [137]. A more efficient approach, that combines
on-line and off-line techniques has been studied in [138]. Using safety cases as a guidance for
detecting property violation and designing recovery mechanism, such as the approach employed
in [139], is a promising direction for providing effective feedback mechanism.

Instead of having the monitor react to a property violation, it is sometimes possible to prevent
the violation by delaying or reordering events, or by preventing certain events from happening.
This extension of the RV research has come to be known as runtime enforcement. In general, some
events may not be under the control of a monitor. However, runtime enforcement has proved
very effective in many important areas such as security. The power of an enforcement monitor
determines the class of properties that can be enforced. Blocking of events is sufficient to enforce
safety properties [140], while the capability to delay events allows one to handle some liveness
properties as well [141]. Falcone, et al., [142] generalize existing enforcement approaches in a
single framework and further extends the class of enforceable properties.
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3.6 Challenges in applying runtime monitoring and switching in RTA

All of the research problems considered in this section, such as design of efficient property check-
ing algorithms, overhead reduction, checking under limited observability, specification and imple-
mentation of feedback and recovery, remain applicable in the RTA context. Here, we discuss an
additional challenge that is specific to RTA.

The question of what properties to monitor always arises in the design of a runtime verification
layer. In a typical runtime verification scenario, we monitor correctness properties of the system.
The same properties are considered during design-time verification efforts, thus there is no discon-
nect between properties that the system needs to satisfy and properties that are checked by the
runtime verification layer.

By contrast, in the RTA setting, the properties that need to be assured by the RTA framework are
different from the ones to be monitored by the monitoring and swithching layer. To avoid confusion,
we call the former assurance properties and the latter monitoring properties. Assurance properties
are typically system-level properties, such as safety, stability, possibly performance and quality of
service. They are often not monitorable directly. For example, a stability property is related to
future time, while runtime verification, effectively, monitors the past. Even when the assurance
property is directly monitorable, for example in the case of safety properties, we cannot simply
monitor for the violations of the property. Instead, the monitoring layer needs to raise an alarm and
invoke the switch to a safety controller so that the violation is avoided. Thus, a somewhat different
property needs to be monitored. The monitoring property that corresponds to a given assurance
property needs to be predictive in real time: a violation of the monitoring property has to occur
before the assurance property is violated, but when such a violation is imminent. Currently, there
are no general techniques for converting assurance properties into monitoring properties. Some
answers may be provided by techniques considered in Section 2, but more general approaches are
needed.
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4 Timing Constraints and Worst Case Execution Time
Dr. Lee Pike

RTA implementations must take into account the operational environment of the system under
observation. Such environmental considerations include, for example, reliability constraints, phys-
ical constraints (i.e., size, weight, and power (SWaP), and as we focus on in this section, timing
constraints. Time is a fundamental aspect of cyber-physical (CPS) systems [143]. While timing is
difficult enough to reason about in the traditional embedded setting, these difficulties are exacer-
bated in the context of RTA.

Figure 9: Simplex architecture (reproduced from [144]).

Without loss of generality, consider RTA in the context of the Simplex architecture [145, 144],
depicted in Figure 4. There, we have a complex controller and a simple (safety) controller. The
runtime monitor implements the decision logic determining whether actuation commands should
be switched from the complex to the simple controller (in an implementation, the decision logic
also includes the switching logic to handle the switch-over implementation).

Timing considerations arise from each component in the architecture as well as cross-cutting
concerns that apply to the entire system. Consider, for example, the following list of ways in which
timing is affected:

• Complex-controller computational complexity: the time complexity of the algorithm being
monitored. For example, is the computational time constant (O(1)), linear (O(n)), or perhaps
more expensive? How does the average time-compare to the worst-case time?

• Monitor complexity: the time complexity required to monitor the specified properties.

• Switching logic complexity: the time complexity of the Simplex switching logic.

• Software implementations: the timing effects of control-flow, memory management, and algo-
rithm implementations for each software component (the complex controller, runtime moni-
tor, and switching logic). Some timing effects will also depend on the hardware—for example,
if the hardware contains a floating-point unit (and the algorithm depends on floating point),
these computations can be performed more efficiently in hardware.

• Hardware nondeterminism: timing nondeterminism introduced by clock drift, cache usage,
pipelining, etc. Additional nondeterminism may be introduced by hardware interrupts and
delays caused by peripherals.
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• Faults: effects of stochastic faults in the hardware affecting timing.

The cumulative effects are extraordinarily difficult to control given that they occur within different
layers of abstraction in a system. In this section, we explore the problem of timing with respect to
RTA. We first describe background concepts about timing and scheduling in Section 4.1, providing
pointers into the vast literature on the subject. In Section 4.2, we overview work in runtime mon-
itoring that has specifically focused on being time-aware. We close by pointing to challenges and
future work in the area in Section 4.3.

4.1 Timing Concepts

Here, we briefly overview some timing concepts relevant to timing-aware RTA, focusing on con-
cepts that relate to hard real-time systems in which deadlines must be strictly met. We overview
scheduling algorithms, worst-case execution time, networking, and faults.

4.1.1 Scheduling

In our context, scheduling algorithms provide a mechanism for logically distinct programs to share
a single computational resource. RTA approaches in hard real-time systems will deal at some
level with scheduling. For example, one implementation of the Simplex architecture would be to
have the simple controller, the complex controller, and the decision logic be scheduled on a single
processor. At the least, it is likely that the complex controller is one of multiple programs scheduled
on a processor.

We call scheduled programs tasks. The scheduler is itself a task that determines which task to
execute next, given some scheduling algorithm. Scheduling can be cooperative or preemptive (or a
combination of the two). In cooperative scheduling, tasks themselves are responsible for yielding
to the scheduler. In preemptive scheduling, tasks can be interrupted at arbitrary points of execution
(from the interrupted task’s perspective).

Scheduling does not require the use of an operating system; for example, the following is a
cooperative round-robin scheduler for tasks foo and bar, implemented as a loop in C:

int main(void) {

while(1) {

foo();

bar();

}

return 0;

}

The following are three of the most common scheduling algorithms used for preemptive schedul-
ing in hard real-time systems, and particularly in real-time operating systems (RTOS); see [146]
for details. In particular, we only consider fixed-priority scheduling in which each task is given a
priority at design-time from some partial order of priorities. Dynamic-priority scheduling is more
complex and not even available in some RTOSes.

• Round-robin scheduling. One of the simplest scheduling algorithms, round-robin scheduling
provides each task a fixed duration to execute and schedules tasks in a fixed order.
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• Fixed-priority preemptive scheduling. In round-robin scheduling, there is no notion of prior-
itization among the scheduled tasks. In fixed-priority preemptive scheduling, each task is
given a fixed priority from some partial order of priorities. After some fixed time duration,
the scheduler preempts the currently-executing task and schedules the highest priority task,
from among those that are enabled (i.e., waiting to execute), to run next. (If more than one
enabled task is at the highest priority, then the scheduler may nondeterministically choose
from among the set.)

Of the preemptive algorithms, fixed-priority preemptive scheduling is one of the simplest but
it can be effective to meet many hard real-time constraints.

The principal weakness of this algorithm is the danger of starvation, where a low-priority
enabled task is never executed. Various modifications to the algorithm help reduce the risk of
starvation.

• Rate-monotonic scheduling. In rate-monotonic scheduling (RMS), tasks are assumed to have
fixed periodic deadlines. For example, if a task T has a periodic deadline of 100ms, then T
must complete one execution at least every 100ms. In RMS, tasks are assigned priorities in-
versely proportional to the size of their periodic deadlines, so that tasks with shorter deadlines
have higher priorities.

A theoretical result of RMS is that it is optimal insofar that if any static priority algorithm can
schedule tasks to meet their periodic deadlines, then RMS can, too. However, RMS suffers
the risk of “priority inversion” in which a higher-priority task is blocked indirectly by a lower-
priority task. This can happen when there are shared resources between tasks; see [147] for
details. Priority inversion is not hypothetical: a Mars Pathfinder bug was the result of priority
inversion [148].

4.1.2 Worst-Case Execution Time

Worst-case execution time (WCET) is the maximum amount of time required for a program to
complete; see [149] for a survey of the state-of-the-art. WCET is only valid with respect to a
hardware execution environment. Two major criteria are used to evaluate WCET approaches: (1)
whether they produce estimated or hard bounds for performance (safety) and (2) the accuracy of
the bounds generated [149]. The usual objective of WCET analysis is to find the most accurate over-
approximation—scheduling based on an under-approximation can cause deadlines to be violated.

WCET can be analyzed by either testing or static analysis. Testing may not produce an over-
approximation if test-cases do not exercise the most expensive portions of the program. The dif-
ficulty of testing is exacerbated by the unpredictability of modern hardware including pipelining
architectures and cache memory.

In static analysis, a model of program execution on a hardware platform is used. Static anal-
ysis is also difficult due to the unpredictability of modern hardware; as well, static analysis must
symbolically execute software. A number of academic and commercial WCET tools have been
developed [149].

4.1.3 Networking

Typically, CPS systems are distributed systems in which computation nodes communicate. Commu-
nication can be synchronous in which every node shares a global clock and so has the same time
reference, or asynchronous in which there is no shared time reference. A global clock does not have
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to be physical; a clock synchronization algorithm [150] can implement a global clock by ensuring
that each node’s local clock is synchronized within a small error bound.

Safety-critical systems, like flight-control systems, usually implement synchronous communica-
tion. Many fault-tolerant algorithms require a synchronous assumption; moreover, synchronous
systems are easier to reason about [151, 152]. In particular, modern fault-tolerant data-buses, such
as NASA’s SPIDER [153] and the Time-Triggered Architecture [151], ensure strict synchronization
among non-faulty nodes.

4.1.4 Timing and Faults

Finally, there is a subtle relationship between faults and timing. For example, Byzantine faults,
in which two receivers interpret the same message differently, are the most nefarious class of
faults masked in distributed systems [154]. While sometimes considered an academic curiosity,
Driscoll et al. at Honeywell report that in fault-injection experiments of a fault-tolerant network,
Byzantine faults resulting from slightly-unsynchronized systems were observed:

The dominant Byzantine failure mode observed was due to marginal transmission tim-
ing. Corruptions in the time-base of the faultinjected node led it to transmit messages
at periods that were slightly-off-specification (SOS), i.e. slightly too early or too late
relative to the globally agreed upon time base. A message transmitted slightly too early
was accepted only by the nodes of the system having slightly fast clocks; nodes with
slightly slower clocks rejected the message. [155].

Conversely, hardware faults can cause cascading timing issues throughout a system, which can
affect assumptions about WCET. See [156] for an overview of approaches to architectural-level
fault-tolerance.

In any case; reliable controllers will be fault-tolerant, and faults will be one cause of property
violations in a monitor. RTA must be fault-aware.

4.2 Timing-Aware RTA

In the following, we survey research in RV that is time-aware. Broadly, this includes work that
attempts to monitor timing properties as well as work that attempts to control the unpredictability
of timing within the monitor. For a general overview on the topic, Goodloe and Pike have written
a survey of RV in the context of real-time systems [157].

In the following, we begin by discussing RV approaches to monitor timing properties. Then we
discuss a range of approaches to control the timing overhead of RV.

4.2.1 Monitoring Time and Real-Time Logics

An early application of online monitoring to distributed real-time systems focused on verifying
that timing constraints are satisfied; the approach is based on clock-synchronization and time-
stamps [158]. Many variants of temporal logics have been developed for specifying properties of
real-time systems; a survey of these logics is given in Alur and Henzinger [159]. Several efforts in
the monitoring community have focused on monitoring metric temporal logic (MTL) specifications
of real-time systems [160]. MTL can be used to reason about quantitative properties over time. For
instance, one can specify the time elapsed between two events.

Mok and Liu developed the language Real-Time Logic (RTL) for expressing real-time properties
for monitoring. A timing constraint specifies the minimum/maximum separation between a pair of
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events. A deadline constraint on an event E1 and an event E2 is violated if the event E2 does not
occur within the specified interval after event E1. To monitor RTL constraints, Mok et al. employ
sensors that send timestamped events to the monitor, and an algorithm computes the satisfiability
of the constraint [161, 162].

An application in the area is to telecom switches that have real-time constraints, and approaches
to monitoring these are investigated by Savor and Seviora [163]. The authors introduce a notation
for specifying time intervals in the Specification and Description Language (SDL). Algorithms are
developed for processing different interleavings of signals as well as to monitor that the specified
signals occur within their designated timing intervals.

4.2.2 Time-Controlled RTA

We describe three classes of approaches for controlling the timing overhead in RTA: time-triggered
monitoring, networked monitoring, and probabilistic monitoring. In general, this area of research
is young with a number of promising approaches:

Time-triggered monitoring. Time-triggered computation is the idea of events being triggered
by the passage of time rather than by other events occurring [151]. Time-triggered systems are
fundamentally synchronous systems, and the design philosophy has been adopted in safety-critical
distributed-system design [151, 164].

Time-triggered monitoring is an approach in which the state of the system being observed is
sampled at time-triggered intervals. Until recently, monitoring based on sampling state-variables
has largely been disregarded as a runtime monitoring approach, for good reason: without the
assumption of synchrony between the monitor and observed software, monitoring via sampling
may lead to false positives and false negatives [165]. For example, consider the property (0; 1; 1)∗,
written as a regular expression, denoting the sequence of values a monitored variable may take. If
the monitor samples the variable at the inappropriate time, then both false negatives (the monitor
erroneously rejects the sequence of values) and false positives (the monitor erroneously accepts the
sequence) are possible. For example, if the actual sequence of values is

0, 1, 1, 0, 1, 1

then an observation of
0, 1, 1, 1, 1

is a false negative by skipping a value, and if the actual sequence is

0, 1, 0, 1, 1

then an observation of
0, 1, 1, 0, 1, 1

is a false positive by sampling a value twice.
Time-triggered sampling is an effective approach to reduce monitoring overhead [128, 166,

167, 168]. In the approach, the runtime verification system evaluates a given property based on
reconstruction of the execution path of the observed program from the sampled state variables.
There are a few challenges to this approach, however. One challenge is approximating the minimal
sampling period required given a property and monitored program. When a minimal sampling
period is determined, it may be too small to be efficiently used—for example, if a state variable is
updated in a tight loop. In this case, the sampling period can be extended by adding auxiliary state
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to store the “history” of state variable changes. Approaches for finding optimal trade-offs between
additional state and sampling periods are also explored in the work.

While the research described above attempts to apply the time-triggered approach to arbi-
trary programs, in a synchronous model of computation the problem becomes somewhat simpli-
fied. Synchronous languages are data-flow languages without hidden state, much like in func-
tional programming. Thus, the problem of determining control-flow is vastly simplified. The syn-
chronous model of computation is well-suited for designing control-systems and other embedded
programs [169, 170, 171]. In his manifesto on the need for time-aware computing in CPS, Ed-
ward Lee notes the benefits of synchronous programming:

The synchronous languages [171], such as Esterel, Lustre, and Signal, do not have
explicit timing constructs in them, but because of their predictable and repeatable ap-
proach to concurrency, can yield more predictable and repeatable timing than most
alternatives [143].

Synchronous programs can easily monitor other synchronous programs without additional over-
head since synchronous programs are inherently parallel. A language called LOLA specifically fo-
cuses on monitoring synchronous systems [172].

For control systems that deliver periodic control signals, a monitor can observe it in a time-
triggered fashion, regardless of its implementation. This is the approach taken in Copilot, a syn-
chronous language for monitoring hard real-time systems [173, 174]. Copilot generates C pro-
grams from synchronous specifications; the C code is guaranteed to use constant memory and be
constant-time, modulo perturbations due to the hardware platform. Copilot is implemented as an
embedded domain-specific language, meaning that it is actually a library, with its own syntax, embed-
ded in the high-level language Haskell. This approach simplifies the effort to ensure the compiler
is high-assurance [175].

While simple, the synchronous approach can be suitable if the monitor must only sample control
signals directly to calculate a property. Sensor values change at a slow rate relative to modern
processor speeds. For example, Copilot was used to sample (injected) faults in a fault-tolerant
airspeed sensor system [174]. Indeed, any fault that lasted on the order of microseconds is likely a
transient fault, which may be best to simply ignore [176].

Networked monitoring. The obvious approach to ensure that monitor has no overhead on the
system being observed is to execute it on separate hardware. Such monitors are called out-line
monitors. the BusMOP project [177, 178] takes this approach, in which high-speed monitors are
executed on FPGAs to verify properties of a PCI bus. The monitors observe data transfers on the
bus and can verify if safety properties are satisfied.

As noted in Section 3.3, this approach is quite unique as compared to other RV approaches. The
main weakness of this approach, however, is that the monitor can recover state from messages sent
over the bus (one avenue of research would be automatic light-weight instrumentation of programs
to send necessary state over the bus). As well, approaches to state-estimation (described below)
might be combined with a BusMOP-like approach to recover hidden state.

Probabilistic time-aware monitoring. The concept of probabilistic RV is discussed briefly in Sec-
tion 3.2.3. Here we focus on its relation to controlling monitoring overhead. In 2011, Stoller et al.
used probabilistic monitoring to control monitoring overhead [121]. The approach, called state
estimation, computes a Hidden Markov Model (HMM) model for a given system being observed
and property. In this context, the observations are traces observed by the monitor, and the hidden
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states are (some abstraction of) the states of the program. The idea is that while a monitor might
make time-triggered observations and potentially miss trace elements between samples, using the
HMM, a probability of the property being satisfied, given the observed trace, can computed. The
approach requires learning the HMM in advance. Techniques exist to learn an HMM automatically,
but they require being exposed to sufficiently many traces of the system behavior.

The technique is a novel approach to controlling monitoring overhead while recovering infor-
mation about the program’s hidden state. However, the approach is in its infancy; one experiment
was presented in the paper, based on a model of a portion of the Mars Rover software (in the
model, there were only six hidden states). For example, some directions for future research include
determining what sort of probability distributions the approach works for—failures may be so rare
that inaccurate probabilities are learned during the learning phase. Also, it needs to be determined
the extent to which the approach scales-up. Finally, it may be possible to combine state estimation
with the time-triggered RTA approaches described above.

Summary of approaches. We summarize the three approaches described above in Figure 10. We
consider three criteria: (1) whether the approach proves a property (for a trace), (2) whether the
approach requires instrumentation of the system being observed, and (3) to what extent control-
flow (vs. data-flow) properties can be monitored.

As can be seen, no one approach is a panacea. The time-triggered and networked approaches
may be used to prove properties, but only if there is assurance that value changed between sam-
ples (or the control-flow can be reconstructed from observations). The time-triggered approach
may require modest instrumentation, whereas the other approaches do not. Finally, the networked
approach cannot be used to monitor control-flow intensive properties (without extra instrumenta-
tion), whereas the time-triggered and probabilistic approaches can do so.

Property
proof

Requires no
code instru-
mentation

Control-flow
properties

Time-triggered depends depends X
Networked depends X χ
Probabilistic χ X X

Figure 10: Comparing three time-aware RTA paradigms.

4.3 Recommended Future Research

While timing has always been a critical aspect of embedded computing, timing analysis has mostly
been relegated to a second-class citizen in programming and development paradigms rather than
something that can be reasoned about and controlled directly. The state of affairs within the run-
time verification community is no different. Beyond the general need to promote time to be a
first-class concept in computer science and particularly in CPS [143], the following are specific
research directions within RTA.

1. New metrics. To control time, we have to first be able to measure it. Current metrics, like
worst-case (or average-case) execution time, are too course-grained and make comparing
trade-offs between approaches and abstraction levels difficult. As a simple example of new
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kinds of metrics, Stoller et al. define the concept of monitor overhead to be M/R where
R is the execution time of the program and M + R is the execution time of the monitor
and program together [121]. Other metrics might measure the variability in time-triggered
monitoring due to control-flow (e.g., [168]), maximal vs. actual efficiency of monitors, or an
efficiency function based on parallelism.

2. Empirical studies. The RV approaches described above—such as time-triggered runtime moni-
toring or probabilistic monitoring—are suitable for some tasks but not others. Having a better
sense of the real-world use-cases for monitoring influences the kinds of RV research pursued.
For example, the following are just a few classes of questions we do not have good data for
currently:

• What are the characteristics of the controller being monitored? What are the charac-
teristics of its implementation. Are there unbounded loops? Is there data-dependent
control-flow? What does its memory footprint look like?

• What are the characteristics of the properties to be monitored? Are the properties pre-
dominantly control-flow properties (e.g., properties on program modes or states) or
data-flow properties (e.g., temporal properties on sensor values)? What are the timing
properties of the monitor itself?

• What false-positive/false-negative rates are acceptable? It is not even clear what sort
of distributions of events might lead to false-positives and false-negatives in differ-
ent environments. Research here relates to reliability analysis for fault-tolerant sys-
tems [179, 180].

3. Multi-core real-time monitoring. Multi-core is the future of computing hardware, even for em-
bedded systems. To what extent can multi-core technology be used to alleviate the problems
of timing interference in monitoring?

4. Timing analysis/runtime monitoring integration. Worst-case execution time (WCET) analysis
is a standard part of real-time system embedded development (described in Section 4.1.2).
There has been little on integrating RTA monitors within the WCET analysis workflow. WCET
analysis is applicable to multiple components of a Simplex RTA architecture, including the
complex and safety controllers, the switching logic, and the monitor itself.

5. Assurance, certification, and RTA. The goal of RTA ultimately is to provide additional evidence
about the assurance of a fielded system. To date, little work has been done to understand how
assurance gathered via RV relates to assurance gather by means such as certification [181,
182] or formal verification [183]—one notable exception is [184]. Indeed, one attraction
of RTA is to improve the assurance of an already-fielded system. How to systematically add
RV to a system without having to re-certify the system in its entirety is unknown. The re-
certification problem is particularly germane to timing, as timing (so far) has proven to be a
non-compositional property.

6. Scaling-up and system integration. RV is largely a field of research with few industrial ap-
plications. Consequently, much of the work has been strongly theoretical and even in cases
in which tools exist, they have been applied to relatively modest case-studies. Research is
necessary to determine the extent to which techniques can be integrated into an overall sys-
tem design. This may include, for example, integration existing middleware (e.g., within an
RTOS) or within data-bus controllers [152]. Significant work is need to be able to provide RV
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as a architectural level service, together with off-the-shelf monitors, that does not have to be
redesigned from scratch in each instance.
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5 State of the Art in Model Based Design for RTA
Dr. Xenofon Koutsoukos and Dr. Joseph Porter

5.1 Research Objectives

The development of safety-critical embedded control systems in complex engineering systems such
as aircraft, robotics vehicles, and automobiles is challenging because of the high degree of uncer-
tainty and variability in the interactions with the physical world. Verification and validation of
embedded control software requires analyzing functional and behavioral correctness in the pres-
ence of multiple sources of nondeterminism due to the interactions with the physical environment.
Model-based design provides a flexible framework to address essential needs of embedded control
systems. Models are used not only to represent and design the system, but also to synthesize, ana-
lyze, verify, integrate, test, and operate embedded control systems. Model-based design focuses on
the formal representation, composition, and manipulation of models in the design process [185].
Model-based design tools allow simulation, rapid prototyping, automatic code generation, testing,
and verification.

Fig. 11 represents a simplified model-based design flow for a system composed of a physical
plant and a embedded control system. In a conventional design flow, the controller dynamics are
synthesized with the purpose of ensuring stability and safety and optimizing performance. The
selected design platform (abstractions and tools used for control design in the design flow) is fre-
quently provided by a modeling languages and simulation tools such as Matlab, Simulink, and
Stateflow [186]. The controller specification is passed to the implementation design layer through
a “Specification/Implementation Interface”. The implementation in itself has a rich design flow
that we compress here into just two layers: System-level design and Implementation platform de-
sign. The software architecture and its mapping on the (distributed) implementation platform are
generated in the system-level design layer. The results - expressed again in the form of architecture
and system models - are passed on through the next specification and implementation interface
to generate code as well as the hardware and network design. This simplified flow reflects the
fundamental strategy in platform-based design [187]: Design progresses along precisely defined
abstraction layers. The design flow usually includes top-down and bottom-up elements and itera-
tions (not shown in the figure).

Verification is one of key components of model-based design. Verification involves analysis
and reasoning using models of the system in each step of the design to ensure that it satisfies the
specifications. Specifications are typically expressed as logic formulae and they are checked at
design-time using verification methods including simulation, testing, model-checking, and theorem
proving. Model-based design techniques are gaining increased attention because they allow the
decomposition of the design process into an iterative progression from requirement models to im-
plementation models using the repeated step of model construction, model verification, and model
transformation. In this process, verification techniques can focus on the semantics of a suite of
abstract system models that are incrementally refined into implementation models.

In spite of significant progress in model-based verification techniques, verification of heteroge-
neous systems such as aircraft control systems remains a very hard problem. The primary unsolved
challenges are scalability and applicability in emerging system categories that have complex non-
deterministic dynamics. Such complex components are often used in the system design in order
to satisfy performance requirements. A typical example is a controller for an aggressive aircraft
maneuver that results in complex behavior that cannot be verified at design time.

Run-Time Assurance (RTA) provides a complementary approach to traditional verification meth-
ods. The main idea is to allow the use of unverifiable components but determine appropriate
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Figure 11: Simplified model-based design flow.
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bounds on their behavior in order to design run-time control and reconfiguration strategies that
ensure safety of the overall system. In addition to characterizing safe state sets at design-time,
the systems needs to satisfy several run-time properties that include efficient and accurate system
monitoring and state estimation, bounding the predicted system behavior for a short time hori-
zon, online fault diagnosis and isolation, and switching and reconfiguration. The overall system
behavior can be described by a (distributed) hybrid dynamical system. Verification of system-level
requirements such as safety depends on a set of run-time properties for monitoring the system state
and switching between different modes of operation that need to be satisfied by the implementa-
tion.

Effectiveness in model-based design largely depends on the degree to which design concerns
(captured in the different abstraction layers) are orthogonal, i.e., how much the design decisions in
the different layers are independent. RTA introduces major challenges in this regard. The controller
dynamics are typically designed without considering runtime properties (e.g., numerical accuracy
of state estimation and monitoring software components and time and memory requirement of
online reachability algorithms). Runtime properties of the implementation emerge at the conflu-
ence of design decisions in software componentization, system architecture, coding, and hardware
and network design choices. However, system-level specifications such as safety in RTA depend on
runtime properties of various system components. Thus, design in one layer depends on a web of
assumptions and properties to be satisfied by other layers. For example, safety depends on the abil-
ity to estimate the current state of the system, bound the set of reachable states from the current
state given the current controller, check at runtime how close the state is to the boundary of the
reachable states, and switch to a different controller if needed. Implementation properties such as
numerical accuracy and computational efficiency of state estimation, online reachability computa-
tion, monitoring, and switching affect control design properties related to how close to the unsafe
boundary the system can be allowed to go. Since runtime properties can only be evaluated after
implementation, the overall design needs to be verified against the system requirements also after
implementation. Even worse, changes in any layer may require re-verification of the full system.

Fig. 12 illustrates the application of the model-based design flow to RTA. A hybrid dynamical
system is synthesized to satisfy system-level requirements such as safety. The hybrid system should
be viewed as a specification that captures the behaviors as the system switches between various
controllers to ensure safety. Based on this hybrid system specification as well as environment
models, hardware description, and resource constraints, model-based design aims at synthesizing
software components so that the system implementation is consistent with the specification. The
software implementation includes monitors for testing runtime properties. The runtime monitors
are used, in turn, for switching between different modes of operation according to the hybrid
system specification. These interactions between design-time hybrid dynamical models and runtime
implementation models are not typically addressed in traditional model-based design.

Interactions across the abstraction layers create significant challenges in applying model-based
design for networked embedded control systems. An increasingly accepted way to address these
problems is to enrich abstractions in each layer with implementation concepts. An example for this
approach is TrueTime [188] that extends Simulink with implementation-related modeling concepts
(networks, clocks, schedulers) and supports simulation of networked and embedded control sys-
tems. While this is a major step in improving designers’ understanding of implementation effects, it
can be used mainly for simulation-based analysis. A control designer can now factor in implemen-
tation effects, but can not facilitate verification techniques. Decoupling the design layers is a very
hard problem and typically introduces significant restrictions and/or over-design. For example, the
Timed Triggered Architecture (TTA) orthogonalizes timing, fault tolerance, and functionality [189],
but it comes on the cost of strict synchrony, and static structure. A passivity-based design approach
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Figure 12: Model-based design flow for RTA.

Page 41 DISTRIBUTION STATEMENT A: Approved for Public Release
Distribution Unlimited (Case Number: 88ABW-2013-1876)

Page 41



that decouples stability from timing uncertainties caused by networking and computation is pre-
sented in [190]. Cross-domain abstractions that provide effective solutions for model-based fully
automated software synthesis and high-fidelity performance analysis are also presented.

The approaches described above provide some capabilities for decoupling the various design
concerns but they are not adequate for addressing the challenges introduced by RTA. The interac-
tion between design-time specifications and runtime verification properties arises in several aspects
of model-based design and create challenges that need to be addressed. In the following, we iden-
tify the main aspects of model-based design that are likely to require significant research develop-
ments to support RTA. First, we describe frameworks, languages, and tools used in model-based
design of embedded control systems. Then, we focus on software design and code generation. We
also discuss how methods for behavioral analysis, dependability analysis, and model-based testing
can be used in model-based design. We also describe case studies in related application domains
that are candidates for RTA and can be used for evaluation of the methods to be developed. Finally,
we conclude with open challenges that need to be addressed in order to apply model-based design
techniques for RTA.

5.2 Modeling Frameworks and Languages

Modeling languages and tools are pervasive in the embedded systems community, but RTA presents
a number of challenges for the use of model-based engineering and model-based real-time software
development.

5.2.1 Foundational Aspects

Model-based engineering offers several promising developments which may be extended or adapted
to address the problems inherent in RTA applications.

• Customizing abstractions for DSMLs

Model-integrated computing (MIC) relies on the design of domain-specific modeling lan-
guages (DSMLs) to capture abstractions from different facets of the design process, and
ensure that their syntactic and semantic details are integrated consistently between design
models and tools [185]. DSML domains can be as focused as processor details or the input
language for a particular verification tool, or as abstract as generic hierarchical functional
design diagrams. A common use of MIC is to restrict the use of engineering design languages
to support the semantics of a particular domain, and to define domain-specific abstractions
which can be used to integrate the models used in a particular design. These integration
abstractions can be customized for particular problem domains.

• Models of computation

Recent work in concurrent models of computation has led to frameworks and modeling
tools for accurately representing concurrency and nondeterminism in simulation and analysis
[191] [192]. The Ptolemy project created tools supporting semantic composition of differ-
ent concurrent models of computation (MoCs). Safety, performance, and guarded controllers
may all be most naturally defined in different MoCs. For example, the safety controller may
be strictly synchronous, while the performance controller may react to asynchronous events.
The MoC used to specify the behavior of the guard will have to subsume both sets of behavior,
and allow discrete switching events to change modes. Formal behavior models should support
all of the models of computation required to analyze or simulate the design. A compositional
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framework for models of computation precisely defines the behavioral interactions between
models created in different MoCs.

The use of formal, executable models of computation to define the semantics of a model-
ing language requires tool infrastructure. Modeling language semantics are defined either
directly, where the syntax of the modeling language directly represents the executable be-
havior model that will be simulated, or by translation, where the syntax of the modeling
language is translated into another language which provides those semantics. Ptolemy (de-
scribed above) and Mathworks’ Simulink/Stateflow citetools:mathworks are good examples
of languages with direct semantics. Frequently tool infrastructures employ model transfor-
mations to create analysis models from design models. Some good examples can be found in
Whalen et al [193] and Miller et al [194], which describe the translation of different design
artifacts into models for theorem provers and model checkers to support avionics software
development. The MIC tool suite provides tools for defining model transformations over the
languages within a domain[195].

• Flexible design flow

Fig. 12 illustrates another impact of the complexity of RTA architectures, exhibited in the
design flow. As runtime guards are triggered and fault information is captured, the design
flow must feed back the data to designers which may refine the design to reduce failover
switching or address design flaws. This feedback loop in the design process is complicated by
the verification and analysis burdens of operating in a safety-critical environment.

In order to support the rapid iteration of designs, incremental techniques show great promise.
Incremental design methods have been proposed for formal deadlock analysis [196], schedu-
lability analysis [197] [198], and other areas pertinent to safety-critical systems [199] as a
means to reduce cost and schedule for design revisions. The key concept is that incremental
analysis operates only on the detailed behavior models of new or changed components, while
the behaviors of existing design components are abstracted to reduce the cost of re-evaluating
the design. In many cases incremental analysis abstractions introduce approximations which
must be carefully accounted for in order to retain the validity of the results. Thiele et al [200]
and Wandeler [201] discuss abstraction validity in the context of compositional schedulability
analysis.

5.2.2 Candidate Modeling and Design Tools

Finally, we discuss some of the existing modeling languages and frameworks for high-confidence
design, along with comments on their suitability for addressing the problems discussed above.

• Commercial Tools Most popular commercially available modeling tools provide textual and
graphical languages for the specification of functional models to provide simulation and con-
troller design (e.g. Simulink and Stateflow from the Mathworks, Inc. [186]). Other tools
provide built-in verification capabilities by building design environments on formally defined
languages. A good example is the SCADE tool suite, which is built on the synchronous lan-
guages Esterel and Lustre. For software component and system design, numerous commercial
tools build on the foundations provided by the Unified Modeling Language (UML). SysML is a
UML profile directed towards support of physical controller designs as well as customization
of the language for particular design domains.

• ESMoL The Embedded Systems Modeling Language (ESMoL) enables rapid modeling, sim-
ulation, and realization of controller software [202]. Models include software component
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models, hardware topology, and deployment maps instantiating the software components on
the hardware. Integrated tools calculate static schedules for time-triggered networks, and
generate code for platform-specific simulation (via TrueTime [203]) or for time-triggered ex-
ecution on hardware (via the time-triggered FRODO virtual machine [204]). ESMoL was
designed to be much simpler than AADL (though not as expressive), to provide the ability to
examine the platform effects of a controller design, and to allow for experimentation with
design abstractions through language and tool customization. The ESMoL framework could
support the development of RTA abstractions by extending the design language and adding
tools to support the required analysis of design models and generation of runtime controllers,
guard code, and monitors.

• ACME Studio Acme Studio is a component-based architecture description language (ADL)
for software designs, together with a modeling tool in which design views can be customized
for particular applications or architecture styles [205]. Components can have alternative
representations which meet different design or deployment criteria. Prior research results
with ACME Studio have included support for parametric abstractions of design models[206]
and the analysis of model consistency between different architectural views[207]. ACME is
extended by writing plugins to support the application of analysis and synthesis tools to the
design models.

• AADL The Architecture Analysis and Design Language (AADL) is a standard which supports
analysis and design of complex safety-critical applications with a suite of tools for performing
various analysis[208] [209] [210]. It is widely used for to specify controller implementations
in the avionics industry. Extensions to AADL take the form of profile definitions with support-
ing tools. The overall standardization and review process for AADL, along with its size and
complexity make it a less ideal target for creating research prototypes, though its wide use
means that prototypes for model-based integration of RTA abstractions and tools should keep
AADL in view as an ultimate delivery target for model-based RTA design and synthesis.

• BIP The BIP specification language is a notation and associated formal behavioral model
which allows building complex software systems by coordinating the behavior of a set of
atomic components. Component behavior is described as a Petri net extended with data and
functions described in C code. Interactions between components model concurrency as the
sets of possible event interactions between components. BIP also includes tools for auto-
mated deadlock analysis on the concurrent exchange of events represented by the specifica-
tion. Gossler and Sifakis introduce the foundational concepts in [211], and Basu et al [196]
present a summary and overview of this significant research effort. BIP is a concrete modeling
framework, an abstract theoretical proof framework, and a formal system integration layer
for distributed computations.

From the point of view of RTA, BIP provides a formal framework for incremental analysis
of the design models, as well as the ability to integrate the behavioral models directly into
a deployed system. Bliudze and Sifakis describe an algebra of connectors [212], where the
structure of interactions between components can be defined using an algebraic notation,
and where existing interactions can be refined hierarchically by attaching components with
new behaviors. The key idea is that complete system verification is not required for design
extensions, but a reduced set of behaviors can be considered. Bensalem et al describe the re-
engineering of legacy robotics code using BIP specifications to formally verify and and then
execute the robot controllers in a deadlock-safe execution environment[213].
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5.3 Software Design

The most important capability of model-based design is automated software design based on the
models. Model-based design is widely used to transform design and simulation models into deploy-
able implementation models. From the RTA perspective automated software design is essential, as
both controller models and runtime guards will be derived from models, and may be complex.

5.3.1 Capabilities

• Code generation

Code generation is an essential part of modern model-based controller design. Modern con-
troller modeling and simulation tools include features to generate code for entire models and
for individual components and subsystems. This is true both for commercial tools as well as
tools created by the research community, as code generation is considered the bridge between
abstract modeling techniques and the concrete implementations.

Specifically for monitors (as in RTA), code generation assumes that properties are given as
LTL conditions (or something very similar). Rosu and Havelund present a rewriting-based
approach to generating runtime monitors from LTL specifications[214]. The LTL syntax is
modified to allow the specification of finite traces. They present a handful of approaches
to generating the monitors (using rewriting specifications written in Maude) in order to ex-
plore the feasibility and efficiency of the approaches. Ghezzi et al [215] attempt to infer
the structure of the runtime monitor from observations. Though this approach necessarily
has serious limitations, the idea of consistency checking between collected data and monitor
representations could be useful for RTA applications.

One key problem in model-based code generation is that of representing the proper model of
computation for distributed environments. Commercial tools often generate standalone code
for particular control functions. Any code generation provided for a distributed platform is
specialized to a particular network protocol (often even to a particular network device) and
to specific processors. Research in this area focuses on generating code to target a more
generic model of computation so that the generated code can be reused on any platform that
implements that model of computation [216] [217] [204] [202].

• Model-Based Integration of Schedulability Analysis

A number of modeling tools provide automated computation of schedule feasibility and
scheduling parameters. The Cheddar project covers utilization-based scheduling analysis for
real-time system specifications, and has been integrated with AADL[218] [219]. Scheduling
models for AADL have also been presented in Sokolsky et al [220] and Gui et al [221].
For cyclic time-triggered scheduling Zheng et al describe methods for computing sched-
ule offsets using constraint solvers[222]. An alternative approach can be found in Schild
and Wurtz[223], which has been integrated with the ESMoL tools as described in [224].
For mixed models of computation, additional research attempts to bridge the gap between
scheduling models for time-triggered systems and those for event-triggered systems [225].

For RTA designs automation is essential to support the required design flows, and incremen-
tal techniques can further strengthen the applicability of the tools to rapid design iterations.
Incremental scheduling analysis techniques are discussed in Easwaran [198], where a com-
ponent or subsystem-level scheduling profile is created to represent the available supply of
scheduled resource (processor time, in this case) so that new real-time components can be
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rapidly evaluated for admission to the system design. For computing incremental schedules
for distributed systems with dependencies, Pop et al [226] and Porter [199] present tech-
niques.

• Performance Analysis

Several examples of integrating performance analysis into AADL tools for aerospace systems
design can be found in Bozzano et al [227, 228] and in Varona-Gomez and Villar [229]. The
integration of these types of tools into the design environment supports rapid evaluation of
complex designs.

5.4 Behavioral Analysis

Behavioral analysis is a key component of any system design methodology. In model-based design,
behavioral analysis is performed using models of the system at various abstraction levels before
the system is implemented. At each step of the design, the designer needs to ensure that the
model satisfies the requirements by generating the behavior at the corresponding level of abstrac-
tion in an efficient manner. In general, techniques for analyzing the behavior of the models can
be classified into (1) simulation-based methods and (2) formal verification methods. There also
methods that combine ideas from both simulation and formal verification such as statistical model
checking [230].

The basic principle of both simulation-based and formal verification methods is to test whether
the model satisfies a set of properties that correspond to the requirements. Model-based design
techniques provide an iterative progression from requirement models to implementation models by
(1) model construction and refinement and (2) model verification. At each design step, models are
enhanced with constructs that can describe the system behavior and analysis methods focus on the
semantics at the corresponding level of abstraction.

Simulation is the predominant technique for behavioral analysis because of the availability of
software tools that are well-developed and easy to use. Of course, simulation is a partial test
that checks instances of a property in a particular context. Moreover, as designs become complex,
simulation becomes computationally expensive especially when heterogeneous models need to be
integrated. On the other hand, formal verification methods test a property under a large number
of scenarios that can include many possible inputs, initial conditions, and interactions with the
environment but they typically impose restrictions on the models.

5.4.1 Simulation-based methods

In RTA, simulation of control design models should include implementation models that capture
how runtime properties are monitored. Such models require capturing the effects of the hardware
platform on the behavior of software-based controllers. Aspects that need to be modeled include
time delays, quantization effects, and platform faults. Modeling and simulation platforms such
as Matlab/Simulink/Stateflow [186], Ptolemy [191], and Modelica [231] offer broad component
libraries that allow designing complex systems especially at the control design layer. While such
tools are essential especially at the initial design stages, they do not provide sufficient capabili-
ties for refining the models to capture the implementation effects due to the software/hardware
platform.

One approach to address these issues is hardware/software co-simulation [232]. A key aspect
of co-simulation is the use of a high-fidelity model of the hardware platform. Simulation of the
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involved software components takes place within the hardware simulation, i.e. the hardware simu-
lation is a virtual machine within which the software executes. As long as the hardware model is of
high enough fidelity, co-simulation techniques are able to achieve accurate results. The hardware
platform model is typically specified at a low-level of abstraction, e.g., the Register Transfer Level
(RTL level), using languages such as VHDL or Verilog [233, 234]. This level of abstraction provides
high resolution but is computationally expensive [232]. Moreover, co-simulation requires detailed
hardware models and results in very slow simulation execution times. Co-simulation research has
focused on single node, or system-on-a-chip (SoC), simulation [235]. Modeling and simulation
of large-scale distributed systems using co-simulation is not yet common, perhaps due to its slow
simulation time or the requirement for detailed hardware models.

Hardware/software co-simulation can also be performed also using Transaction-Level Modeling
(TLM). TLM focuses on what data is being transferred rather than how it is being transmitted [236],
thus a TLM communication model abstracts away communication details like channel coding to
speed up simulation while retaining certain accuracy. System level design languages (SLDLs),
such as SystemC, SpecC, and SystemVerilog, support TLM and are used in the system-level design
process [237, 238, 239]. SLDLs can be used to build executable specification models at early design
stages to simulate the system, and then refine these models for implementation. SLDLs typically
support discrete-event simulation semantics that must be integrated with modeling and simulation
tools for dynamic systems. SystemC/TLM is a representative SLDL which has been widely accepted
for embedded system design [240]. The SystemC implementation has a discrete-event simulation
kernel enabling concurrent behavior simulation. A TLM library provides a rich set of modeling
primitives for specifying software components and hardware platforms for embedded systems and
facilitates the generation of complex models. By adding appropriate timing annotations, a SystemC
model can reveal timing behavior of the corresponding hardware/software platform.

Simulation of critical embedded systems such as avionics by generating SystemC code from an
AADL specification of the hardware components has been presented in [241]. AADS, an AADL
simulation and performance analysis framework based on SystemC, is presented in [242]. The
tool can support prototype-based design allowing functional and non-functional (execution times,
power consumption, etc.) verification of the system while it is being refined until the final im-
plementation. A specification for SystemC-AADL interoperability is presented in [243]. Although
these preliminary methods allow defining the architecture before the implementation, considerable
work is required for analyzing software and hardware architectures for real time, mission-critical,
embedded systems.

Another approach that allows incorporating implementation effects is system-level performance
simulation. Model-based design tools such as Simulink and Modelica do not directly provide sim-
ulation capabilities for the deployment platform and cannot simulate the impact of deployment on
controller behavior. However, extensions to Simulink such as the TrueTime toolbox [188] have
been developed for this purpose. TrueTime supports modeling, simulation, and analysis of dis-
tributed real-time control systems including real-time task scheduling and execution, various types
of communications networks, and suitable interfaces with the continuous-time plant model. While
gaining insight into platform effects is crucial, models need to be manually developed and inte-
grated with the control design model, which imposes an additional burden on the system designer.

Tools for synthesizing TrueTime models have been developed as part of the ESMoL tool chain [244].
Functional code is generated from an ESMoL system model and it is integrated with the TrueTime
runtime code. Additionally, a new Simulink model, with the appropriate TrueTime blocks for the
given hardware configuration, is automatically synthesized. This model combined with the gener-
ated code is capable of simulating platform effects introduced by the deployment of the controller
model onto the hardware platform. Using such an automated synthesis approach allows the anal-
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ysis of deployment flaws and schedule timing inconsistencies. Moreover, runtime properties that
affect stability and safety can be identified far in advance of deploying the controller onto real hard-
ware. Currently, the approach assumes a time-triggered architecture and time invariant controllers.

Other embedded system modeling and simulation frameworks such as SCADE/ Lustre [245],
Giotto [246], Timing Definition Language (TDL) [247] do not provide include capabilities for mod-
eling the deployment platform. Giotto and TDL, in particular, emphasize a transparent deployment
approach to mapping system functionality onto the hardware platform, and thus limit the detail of
the hardware models.

An alternative approach for incorporating implementation effects into simulation of control
systems is the development of formalized frameworks for simulation integration. The High Level
Architecture (HLA), for example, is a standard for simulation interoperability that allows indepen-
dently developed simulations, each designed for a particular problem domain, to be combined into
a larger and more complex simulation [248]. In HLA, the independent simulators are known as
federates and the larger simulation formed by the interconnection of the federates is known as
the federation. The HLA standard provides a set of services to accurately handle time manage-
ment and data distribution among the heterogeneous simulators. HLA can be viewed as a general
integration framework for simulations that can be used to integrate control design and platform
deployment models. An example of an integrated modeling and simulation tool for networked
control systems based on HLA which combines the network simulation capabilities of NS-2 with
the control design and simulation capabilities of Matlab/Simulink has been developed in [249].
The integration of Matlab/Simulink with NS-2 allows the analysis of networked control systems
using a detailed implementation of the network stack for packet level data transmission. The tool
is developed following a model-based integration approach that allows for rapid synthesis of com-
plex high-level architecture-based simulation environments [250]. The main challenge for such
integration frameworks is scalability in order to handle large and complex systems.

Another integration framework for simulation interoperability is the Functional Mock-up Inter-
face (FMI) standard [251]. The goal of FMI is that dynamic system models of different software
systems can be used together for software/model/hardware-in-the-loop simulation especially for
embedded software in vehicles. Integration of a model in a simulation environment can be per-
formed either by model integration or by co-simulation at various levels. The approach allows
the integration of controller code for controlling a vehicle that can include platform effects into
modeling environments such as Modelica and Simulink.

5.4.2 Formal verification methods

Formal verification methods use mathematical techniques to ensure that the design satisfies prop-
erties that capture notions of functional and behavioral correctness. The main difference from the
simulation-based methods is that there is no need to assume a specific input sequence and environ-
ment interactions. Formal verification methods algorithmically and exhaustively search all possible
behaviors represented by the model and either prove that the properties of interest are satisfied or
generate counterexamples that violate the properties.

In model-based design, formal verification methods can be applied at many different levels of
abstraction. Focusing on the model-based design flow for RTA shown in Fig. 12, we categorize for-
mal verification methods broadly into: (1) hybrid system verification and (2) model-based software
verification and design. At the control design layer, hybrid system verification techniques aim at
analyzing safety and reachability properties of the closed-loop system. At the software implemen-
tation layer, model-based software verification and design focuses on the formal representation,
composition, and manipulation of software models during the design process. It addresses system
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specification, model transformation, synthesis of implementations, model analysis and validation,
execution, and design evolution.

Hybrid systems theory provides the most comprehensive theoretical framework for analysis and
synthesis of control systems. Continuous-state dynamics model physical systems and the interac-
tions with the environment, as well as continuous feedback control loops. Discrete-state dynamics
and event-driven models allow the abstraction of computational platforms and software systems,
and facilitate the analysis and design of real-time systems. The integration of continuous and dis-
crete dynamics has led to a fundamental understanding of the dynamics of complex embedded
control systems. Hybrid system verification methods in the context of RTA are reviewed in Sec-
tion 2.

Hybrid system design and verification methods are used for synthesizing the control dynamics
to satisfy safety, stability, and performance requirements. The control models must be implemented
by software and deployed in the platform. Model-Integrated Computing (MIC) provides the tech-
nology foundation for model-based software design [185] and has been used extensively in high-
confidence applications. Model-based design utilizes transparency and simplicity for synthesizing
software implementations that allow reasoning and verification. Transparency requires the explicit
representation of layers of abstractions, their semantics, and their relationship along all stages of
the design flow and system lifecycle. These representations need to be formal and manipulatable
for design automation and expressive enough for inspection and inference. Simplicity is another
cornerstone of high-confidence system design. Since exhaustive testing of real-world systems to
reduce the probability of errors to acceptable levels is impossible, layers of abstractions in the de-
sign flow captured by architecture specifications need to be used in order to preclude classes of
design errors. This approach radically simplifies the integration, test and certification process by
emphasizing correctness via construction instead of analysis and testing. Examples of composition
platforms which provide support for containment of design errors are the time-triggered architec-
ture (TTA) [189] and the ARINC 653 standard.

An interesting approach for achieving compositionality for selected properties is to introduce
restrictions in the system design. BIP (Behavior Interaction Priority), for example, is a formal frame-
work for modeling heterogeneous real-time components [196]. The BIP model achieves composi-
tionality in state invariants (such as deadlocks) by introducing a specific interaction and scheduling
technique. BIP sacrifices some runtime performance for improving compositionality but in safety
critical systems this may be acceptable. Investigating new compositional frameworks for multiple
interacting properties and understanding the performance tradeoffs are important research goals.

Because BIP focuses on the organization of computation between components, it can be viewed
as an architecture description language (ADL) [196] that provides a rigorous system modeling
framework that is suitable for verification. A method for translating AADL into BIP for verification
of real-time systems has been presented in [252, 253].

Model-based design provides processes and tools for systematic code synthesis based on model
transformations as described in Section 5.3.1. Once models are verified, automatic code genera-
tion produces executable code from the models. Recent work in formal verification addresses the
significant challenge of proving the equivalence between behaviors specified in a design language
such as Simulink and the behavior of code generated from those Simulink models. A framework for
making such comparisons, where particular model transformations are used to perform code gen-
eration are verified as instances is described in [254]. Proofs may be constructed for the realization
of that transformation on a particular source and destination model.
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5.5 Dependability Analysis

Achieving dependability in safety critical systems is of extreme importance since failures could
have severe negative impacts. Dependability is the ability to deliver service that can justifiably be
trusted, and it integrates attributes such as reliability, availability, safety, security, and maintain-
ability [255]. There exist several means to achieve dependability, which includes fault detection,
isolation, mitigation, and fault tolerance.

Contrary to its importance, fault management for the high-confidence systems such as UAVs is
not a solved problem. The need for autonomous operations in unknown and difficult environments
makes this problem even more acute. Aircraft, for example, incorporate subsystems (called Line
Replaceable Units (LRUs) in the aerospace industry) that typically include physical devices such
as pumps, valves, and pipes, and one (or more) embedded computing systems. With use over
time these units may develop faults and degrade in performance. Subsystem manufacturers often
provide monitoring algorithms to detect these faults, and report them to a centralized computer
that runs a supervisory controller. The controller may run a fault management scheme to deal
with the faults so that safe operation may be maintained. For example, the Central Maintenance
Computer (CMC) of the Boeing 777 aircraft computer logs fault codes reported by the LRUs for
later inspection by the maintenance crew. For faults with more immediate consequences, corrective
actions must be taken. In present day systems, typically fault management and remedial tasks
are left to humans (e.g., pilots). However, alarms generated by faults in complex systems often
cause information overload. Further, autonomous vehicles require sophisticated online automated
mechanisms that are provably robust and reliable in fault detection, isolation, and recovery tasks
to ensure safe operation.

Dependability is a requirement that can be best addressed by model-based design. Fault and
health management architectures can be developed and integrated into the system using model-
based design techniques. RTA introduces considerable challenges because of the strong dependence
on runtime properties. The runtime environment is much more complex in RTA than traditional
systems, and therefore, there is a need to design the runtime components so that they are robust to
faults and degradations. In the following, we focus on how model-based design has been applied
to (1) hybrid system fault management and (2) software health management, two complementary
aspects that are important for RTA.

5.5.1 Fault Management in Hybrid Control Systems

The Fault-Adaptive Control Technology (FACT) tool suite has been developed in order to address
the challenges of fault management of such systems [256, 257]. FACT is a systematic model-based
approach to the design and implementation of control systems that can accommodate faults. The
FACT tool suite uses a model-integrated computing approach to automatically synthesize simulation
models, hybrid observers, and diagnoser software-code from hierarchical component based system
models. Figure 13 illustrates the fault adaptive control architecture. Capabilities include fault
detection in the presence of nonlinear dynamics and noisy sensors, rapid fault isolation, estimation
of the fault magnitude, and control reconfiguration to accommodate the fault. Reconfiguration is
performed online which means that set points and control parameters may have to be changed,
or a different controller may have to be selected to continue system operation. The FACT tool
suite and various extensions have been applied to many practical systems that include robotic
vehicles [258, 259], spacecraft power distributions [260], and advanced life support systems [261].
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Figure 13: FACT Runtime System Architecture.

5.5.2 Software Health Management

Architectures such as FACT provide capabilities that are useful for RTA such as state estimation,
monitoring, and control reconfiguration. Because of the interactions between the control design
layer and the implementation layer, it is necessary to integrate hybrid system fault management
techniques with health management of the software that implements the required functionality.

A promising approach for dependability analysis of embedded software is to annotate architec-
ture models with dependability-related information such as faults, fault propagation, and policies
for fault tolerance (e.g., replication and voting). The Error Model Annex standard, for example,
can be used in conjunction with AADL and the resulting models can then be used for dependabil-
ity analysis [210]. Dependability analysis methods include fault tree analysis, failure modes and
effects analysis, and other model-driven approaches. A comparative study of methodologies using
AADL’s error annex can be found in [262]. Although such methods allow various dependability
analyses of the system, they must be complemented with runtime fault management systems.

An approach to Software Health Management (SHM) that uses concepts from the field of Sys-
tems Health Management such as detection, diagnosis and mitigation similarly to the hybrid system
fault management techniques presented above has been developed in [263, 264]. Conventional
Systems Health Management is associated with the physical elements of the system, and includes
anomaly detection, fault source identification (diagnosis), fault effect mitigation (at runtime/ on-
line during operation), maintenance (offine), and fault prognostics (online or offine). Software
Health Management borrows concepts and techniques from Systems Health Management and is a
systematic extension of classical software fault tolerance techniques. SHM is performed at runtime,
and just like Systems Health Management it includes detection, isolation, and mitigation to remove
fault effects. SHM can be considered as a dynamic fault removal technique. An example of an
Inertial Measurement Unit subsystem is presented in [265].
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5.6 Model-based testing

Research and tool development in the Electronic Design Automation (EDA) industry has led to
the use of test bench models to integrate functional verification and platform-specific simulation.
These tools support the comparison of analyses and simulations between different design stages
(for example, integrating the guard design and modifying it to account for implementation effects)
and between design refinements as evaluation uncovers behaviors that are out of bounds. Test
bench models can also coordinate the evaluation and comparison of design models that exhibit
nominal behavior and faulty behavior. Automation of these comparisons is key to streamline the
development flow to accommodate the additional complexity of the RTA infrastructure.

Dynamic systems and their controller components are represented using various design models.
The development flow of of a full control system design can proceed incrementally, with subsys-
tems behavior developed and evaluated in independent test bench models. In the world of EDA
electronic sub-modules for a chip design are specified independently along with elements which
provide the necessary inputs to simulate the behaviors of interconnected components. Throughout
this section we include a number of representative citations from the extensive EDA literature to
illustrate the facets of test bench-based design and analysis. Test bench models are key for defining
evaluations for software-implemented controllers and the platforms on which they are deployed to
ensure that requirements are met.

The capability to integrate simulation-based evaluation and verification in a single design model
is valuable when considering the limitations of each approach. Formal verification is exhaustive,
but limited by the complexity of the behaviors represented in the design model. Simulation-based
evaluation (and hardware testing) function well for complex models, but do not provide the level
of assurance available from formal verification. Realistically, both techniques will be required.
The modeling environment must ensure that behaviors represented in the design have the same
meanings in both contexts. Unifying the collection and representation of evaluation results can
also streamline the design flow and reduce development time.

5.6.1 Test Automation

Test bench modeling allows developers to define test and evaluation models that reference system
and subsystem behavior models, and define an environment which supports execution of both
simulations and target systems, and both testing and verification[266]. Test bench models solve
the problem of keeping different behavioral representations (simulations, analysis models, and
target systems) together so their results can be easily compared for consistency. Automation allows
test bench models to be updated as the design changes[267].

For embedded software design and evaluation, Hause et al describe the use of models to de-
couple the test definitions from the specification of the system under test using UML and SysML
models[268]. They introduce the notion of a test bench model which configures the hardware and
software involved in a particular test. Lattmann et al use an extended notion of test bench, where
the test bench model captures the inputs, outputs, performance, metrics, and requirements for each
test [269].

Model-based test automation does not change directly for RTA, rather it complements the de-
sign flow requirements for evaluating RTA models at both design time and run time. The system
under test takes one of three different forms – 1) a legacy controller (presumably with test models
already defined); 2) a performance controller - this must be evaluated with as many of the exist-
ing test bench models as possible, though the results may be interpreted differently, as exhaustive
testing and verification are not possible. Additional test models should be added to establish the
performance bounds of the controller where possible; and 3) a guarded performance controller -

Page 52 DISTRIBUTION STATEMENT A: Approved for Public Release
Distribution Unlimited (Case Number: 88ABW-2013-1876)

Page 52



test/verification models for both the performance controller and the legacy (safety/recovery) con-
trollers should be applied to the guarded performance controller. If the guard is operating correctly,
then nearly all the tests for both controllers should pass. Additional test models should be defined
to exercise the switching conditions of the guard using extreme trajectories and injected faults.

5.6.2 Test Vector Generation

The EDA community uses automated test generation at a number of levels. Lavagno et al give
a survey of automated test pattern generation (ATPG) for sequential and combinational circuits
[270]. As software is much more flexible than hardware, automated testing tools and program
infrastructure have many facets in the software domain. Godefroid et al give a survey of recent
techniques in the automated testing of software [271].

The set of possible tests is virtually infinite (i.e. larger than any reasonable evaluation effort can
support) for the input, output, and state space of any realistic engineering system. Current research
investigates efficient mechanisms for exhaustive evaluation, and the generation (and reduction) of
test sets from system design models. Software tests are generated from behavioral specifications -
for example, some methods use formal automata with temporal logic properties (as in Micskei and
Majzik [272]), where others start from UML activity diagrams with OCL constraints (as in Yin and
Liu [273]). One of the most promising techniques in this area is presented by Tan, Kim, and Lee
[274]. Instead of generating lengthy test traces which can only be evaluated offline, their approach
generates test input sequences from hybrid automata specifications and encodes the sequences as
automata that can be implemented to test the system online, even in environments where memory
space is limited.

In an RTA context test vector generation concerns illustrate some overall limitations of the RTA
approach. The complexity of the performance controller will likely lead to an intractable space of
test cases. If the guard conditions used at runtime require state-tracking, or if the guard conditions
are too complex then testing and verification may not be feasible. The RTA also places some chal-
lenges on the generation of guards from specifications. If automated test generation is important,
as it will be when considering the implementation of the controllers and guard as software and
their deployment to (possibly distributed) computing hardware, then the test generation methods
may impose constraints on the size and form of the guard implementation, as adequate testing is
not optional for high-assurance applications.

5.6.3 Test Space Reduction

Numerous techniques attempt to reduce the size of generated test vector sets, while maintaining
requirements coverage and fault detection. Lin and Huang describe one such approach [275].
They describe a test set minimization technique that maintains design coverage. As ties occur in an
objective function, they choose the test case that provides better fault detection. Many prior results
only aim to find the smallest test set that preserves coverage, compromising the ability to detect
faults in some cases.

5.6.4 Test Interpretation

Test bench models can help a designer develop intuition and understanding about the behavior of
a component or subsystem. Below we list some of the possible use cases and interpretations of test
models which are relevant to RTA.
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1. Validating runtime data against simulation – Bogosyan et al present an interesting way to use
simple controllers in the simulation environment to integrate simulated component dynamics
for a hybrid electric vehicle with data measured from the actual vehicle [276].

2. Parameter space exploration – One interesting idea (from Donze et al [277]) uses guided sim-
ulation (i.e. tests and/or state exploration) to partition the system design model parameter
sets into partitions based on whether each configuration leads only to safe behavior, could
lead to unsafe behavior, or whether safety cannot be determined for a particular partition.

3. Exhaustive property evaluation (safety/performance bounds)

4. Trajectory-based performance assessment for simulations and target systems – Henftling et al
[278] and Huang et al [279] describe the use of a testbench model to integrate both abstract
(verifiable) behavior representations and models which can be executed either by an emulator
or by the target hardware.

5. Debugging implementation models – test bench models and tools should support fault injec-
tion and isolation in order to assist in the debugging of design models. This is the subject of
recent work in the EDA research community [280] [281].

6. Defining regression models for prior defects to ensure quality under design revisions.

5.7 Applications and Evaluation

The research literature provides a number of interesting examples which illustrate different facets
of model-based design for complex and safety-critical systems. They are multi-faceted in that they
each cover multiple aspects of the modeling and design process, and they are generally detailed.
Many of these could be adapted as test cases to evaluate and extend the use of model-based design
for RTA techniques.

5.7.1 Example: Modeling of the simplex architecture

Sha et al claim to be able to achieve highly reliable designs using simple, reusable, robust, and
formally verified architecture patterns [282]. The simplex architecture is just an example of a more
general pattern that minimizes the size and complexity of the dependency tree in a system design.
They present an example of a high-level architecture suitable for RTA, and describe the integration
of tools to support it, based on AADL models.

5.7.2 Example: Health Management of an IMU

Dubey et al describe an avionics application where a model-based health management architecture
was used to mitigate faults in a redundant sensor architecture [265]. The authors provide signifi-
cant detail regarding the design and fault models, including a detailed discussion of the distributed
execution model and detailed fault behavior.

5.7.3 Example: Modeling and analysis of a network protocol

Pike et al [283] give a case study emulating a physical-layer network protocol, including formal
parameterized models of the physical link (signal levels and timing jitter), asynchrony of the com-
munication endpoints, real-time constraints, random parameter-space exploration, and statistical
evaluation.
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5.7.4 Example: NASA Planetary Rover

X9 is a test-case generation and monitoring environment based on rewriting techniques[284]. X9
uses a model checker inline, and is capable of determining whether mission plans are being exe-
cuted in the proper order, and also whether fault notices are propagated correctly. Each mission
plan contains a set of temporal logic formulae that must be satisfied during the execution of the
plan.

5.8 Challenges

Model-based design provides a powerful framework for the development of safety-critical systems
because behavioral analysis methods can be integrated in the design process based on formal mod-
els at different levels of abstraction. The main challenge in RTA lies on the integration of hetero-
geneous models that allow system evaluation of the control design while incorporating runtime
properties that depend on the software and hardware platform. To address this challenge, it is
necessary to define the system architecture of the system before its implementation and analyze
the constraints imposed on the system by the architecture from the beginning of the design cycle
until the final implementation.

5.8.1 Modeling Languages and Frameworks

The RTA approach increases the fundamental complexity of an engineering design. Each RTA sub-
system has two controllers, each of which may operate according to different assumptions and
execution models. Further, the guard logic which integrates the two controllers must be modeled
and evaluated. Modeling languages and tools must support the specification of the functions and
behavior of these elements, and support abstractions which assist the verification and testing ef-
forts in specializing those evaluations to the various execution scenarios (e.g. high-performance
operation, safe operation, switching).

Updating existing design models based on data from run time characteristics is key to over-
coming the additional design complexity introduced by the RTA architecture. Unless the overall
time and cost of re-verification (and re-certification) of design changes can be reduced, the RTA
approach may have limited applicability. Modeling languages and tools must support the creation
of appropriate abstractions to be fed back along the design flow. Exploration of the applicability
of incremental design techniques is a key challenge area that promises to address some of these
issues. Beyond exploring applicability, extending modeling languages and design tools to support
incremental design is also an open problem area.

5.8.2 Software Design

Generation of assured software code for runtime components (such as active guard logic) is still
an open area of research. Software model checking has made significant progress in recent years,
but many problems remain open. Model-based techniques integrating assured code generation
and software model checking, and relating the software models and results to those of the system
design models will provide many useful research problems.

For schedulability analysis, the performance controller may not have deterministic timing, so
the guard logic may be forced to monitor execution time. The maximum allowable execution time
of the controller would be constrained by the accuracy of trajectory prediction in the guard, and the
dynamics of the safety/recovery controller. Accurately modeling the relationship between runtime
bounds in the guard and the potential performance and timing of the controller is a significant
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challenge. One example of variable timing is an adaptive controller that sporadically recomputes
its dynamic model when conditions change. Another is a heuristic controller derived from learning
techniques that is either learning online or for which the calculation complexity is non-uniform in
different state regions.

Current research considers compositional and incremental analysis of design models to establish
correctness properties. End-to-end analyses complicate the application of compositional or incre-
mental design methods. Many correctness properties which must be supported in a design (e.g.
end-to-end latency) depend on a sequence of components together satisfying a design constraint.
These end-to-end properties are further complicated by indirect coupling with other components
that are specified independently, but which influence each other by sharing common resources.

5.8.3 Simulation-based Methods

Simulation is currently the most widely used method to verify system models. For RTA, it will
be necessary to develop methods that incorporate implementation effects into the simulation of
dynamic systems in order to analyze runtime properties of the system design. Although several
existing approaches have focused on related problems, the strong interactions between runtime
properties and system verification in RTA requires (1) new model-based methods that are capable
of refining control models with implementation details and (2) efficient and scalable simulation
techniques for heterogeneous systems.

RTA will require the integration of a hardware/software co-simulation framework with model-
ing and simulation platforms for dynamic systems such as Simulink and Modelica. Existing methods
for performance evaluation of embedded systems lack the necessary precision or are computation-
ally inefficient. Significant challenges for such integration include the availability of tools that
allow rapid design and modeling of embedded control systems of various complexity and size and
the runtime scalability of the simulation environment.

A promising direction for simulation-based methods required by RTA is the development of
simulation integration frameworks that enable flexible and extensible support for multiple models
of computation at different levels of abstraction. The frameworks should be customizable and allow
the integration of both existing and future design tools.

5.8.4 Hybrid System Verification

The use of formal verification methods in model-based design faces significant challenges, espe-
cially in the case of RTA. Although hybrid verification methods provide the mathematical foun-
dations for analyzing interacting physical and computational processes, thus far they have been
used only on relatively simple models combining finite state machines and linear differential equa-
tions. For applicability to the design of high-confidence, distributed aerospace systems, hybrid
system theory needs to be extended to far richer classes of models involving different hierarchies of
heterogeneous representations of computation and concurrency, resource awareness, adaptability,
quality of service (QoS), and system complexity.

Typically, models for hybrid control systems capture design intent and are not suitable for ver-
ification. For example, Simulink/Stateflow models are created for simulation and are typically
deterministic either because the designer or the language has resolved any nondeterminism. Hy-
brid system formal verification methods typically assume that the models are nondeterministic. In
general, there is a significant conceptual gap between a design language and a verification lan-
guage that needs to be addressed. Therefore, there is a need for the transformation of design
models into verification languages including the translation of properties that need to be verified.
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Previous work has investigated the transformation of Simulink/Stateflow models to formal models
but imposes restrictions on the components that can be used for control design [285, 286]. More-
over, for such approaches to be practical, the transformation itself should be verified otherwise the
verification results could be meaningless.

In order to address some of these limitations, RTA provides an alternative to design-time verifi-
cation methods. Complex controllers that cannot be verified at design-time will be integrated with
verifiable safe controllers using appropriate switching policies. Therefore, RTA must rely on design-
time formal verification techniques for the implementation of the safe controllers. Moreover, the
safe controllers will interact with other components, e.g., unverifiable controllers, monitors, and
switching policies. The design framework should support the integration of design-time and run-
time verification methods.

Hybrid verification in RTA must also address the dynamic runtime properties of both the con-
trolled plants (e.g., groups of UAVs with changing control objectives and system configurations) and
the control platforms (with changing communication and computation resources) which cannot be
modeled completely at design-time. Hybrid system models need to be extended with hierarchical
control layers providing different levels of assurance for behavioral properties. New online verifi-
cation methods need to be developed and design-time verification methods need to be migrated to
operation-time to address adaptivity and provide increased robustness. Model-based design must
provide a framework for integration of design-time and runtime verification techniques that cover
the system requirements.

Scalability of existing hybrid verification methods is another significant challenge. The com-
plexity of a given method is not only determined by its accuracy (and the properties that can be
addressed) but mainly by the sheer size of the model analyzed – which can be measured in the
number of components, tasks, variables, etc... In order to develop methods that scale and use
them in model-based design that addresses the needs of real defense systems, compositionality is
paramount. Compositionality would allow properties to be inferred only by consideration of the
properties of components and their interactions.

5.8.5 Software Verification

Model-based design employs systematic code synthesis based on model transformations. This step
also requires that the model transformation be verified and that it generate code that is ensured
to be correct. The verification of model transformations is possibly as difficult as the verification
of compilers. Compiler verification is an active research topic and it is too difficult in the general
case. However, in model transformation there are two important differences from general compiler
verification: (1) the model transformations are explicitly modeled using a well-defined modeling
language and (2) the model transformations are domain-specific. Based on these features, the
verification problem of model transformation tools can be addressed using certifiable model trans-
formers. The approach is based on automatic program synthesis tools and it can be used to (1)
automatically produce verification conditions in the generator (in addition to the normal output,
i.e. code); (2) generate a proof of correctness of the code from a theorem prover or a proof checker,
and (3) attach the proof to the code as a “certificate” for the correctness.

While extensive and systematic use of model-based methods in systems and software develop-
ment and the application of safe composition platforms are expected to eliminate design flaws and
spurious behavior, high-confidence systems must be prepared for the unexpected caused by limited
modeling fidelity, and unmodeled environmental impacts, or unforeseen situations. The challenge
is to develop verification methods that can be used at runtime in order to ensure the conformance
of system behavior to a set of system models that are simple and nonrestrictive but sufficient for
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indicating the violation of safety properties.

5.8.6 Dependability Analysis

Model-based fault diagnosis schemes are the preferred approach to health management of hybrid
control systems because they provide general and robust diagnosis solutions [287]. However, de-
ployment of these schemes on real systems presents significant challenges in model development,
system monitoring, and fault detection and isolation. Such a framework requires accurate and reli-
able models of the physical dynamics that for a realistic vehicle encompass multiple domains (e.g.,
hydraulic, electrical, and mechanical). Behaviors can be nonlinear, and the interactions between
components and between the system and the environment can be difficult to capture. Monitoring
complex systems to detect abnormal behavior also presents a number of challenges. A model of the
system is used to predict nominal behavior, and deviations between observed and predicted behav-
iors signal the presence of faults. However, system monitoring is often performed with incomplete
information due to lack of sensors, or with sensors that only provide data at rates slower than what
is required to accurately estimate the system state. In addition, uncertainty in both the measure-
ments and the system model may degrade the estimation accuracy. In spite of these difficulties,
fault detection must be robust to minimize false alarms, missed detections, and detection delays.
Challenges also arise in the fault isolation task. Different types of faults (abrupt, incipient, and
discrete) can be manifest in system components, sensors, and actuators. Interactions among com-
ponents may make it hard to distinguish between faults. Furthermore, fault isolation is impacted
by the granularity of the model and the measurements that are available to the diagnosis system.
Even with these issues, diagnosis algorithms must provide robust, accurate, and precise results in
a timely manner. Computational issues arise in accomplishing this goal, particularly with hybrid
nonlinear systems.

While traditional design-time and off-line approaches to testing and verification contribute sig-
nificantly to improving and ensuring high-dependability software, they do not cover all possible
fault scenarios that a system could encounter at runtime. Thus, runtime health management of
complex embedded software systems is needed to improve their dependability. Self-adaptive sys-
tems must be able to adapt to faults in software as well as the hardware (physical equipment)
elements of a system, even if they appear simultaneously.

RTA intensifies the challenges related to runtime support for fault and health management.
Faults and errors may occur either in the physical or in the cyber components of system. Because
of the required runtime infrastructure and the complex interactions, it is increasingly difficult to
design active fault management systems that can reliably respond at runtime to a multitude of
possible and even unforeseen fault conditions.

5.8.7 Model-based Testing

As complexity of control system designs grow, model analysis must ensure that the specified tests
cover the behaviors specified in the design. This is a key challenge for automated testing, both in
terms of specifying models and in model generation. Development of test bench modeling con-
cepts for definition of tests, automation of all kinds of design-time and runtime evaluation, and
interpretation of results is a key enabling technology for RTA.

In the RTA context we have three sets of tests/analyses that must be performed for each con-
troller - legacy, performance, and guarded. This increases the test time burden. We usually assume
that safety and performance analysis have already been performed for the legacy controller, and
that many of the safety analyses will not apply for the performance controller. The guarded con-
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troller incurs a higher test burden than either of the other controllers - not only must it pass the
safety and performance analyses, the guard logic must also be exercised against faults which are
particular to the logic itself (and to its implementation). Automatic reduction of the size of the
test space, while prioritizing tests and ensuring that critical fault cases are not missed is an open
problem. This must be supported by the modeling environment from which the design evaluation
is driven.

Incremental analysis provides one mechanism to improve development time. In the RTA con-
text, any incremental methods must also support safety certification of the design models. Beyond
simple streamlining of a development process, incremental model-based testing approaches will
have to formally and clearly demonstrate the relationship between the designed behaviors before
and after the changes are made. This demonstration will need to be made in the context of the RTA
infrastructure. Use of incremental techniques to support re-certification of design changes is still
an open area of research.
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berg, and Michael Theobald. Abstraction and counterexample-guided refinement in model
checking of hybrid systems. Int. J. Found. Comput. Sci., 14(4):583–604, 2003.

[35] S. Jiang. Reachability analysis of linear hybrid automata by using counterexample fragment
based abstraction refinement. In Proceedings of the 26th American Control Conference, pages
4172–4177, New York, NY, July 2007.

[36] S. Jiang and R. Kumar. Prevention of sequential message loss in can systems. In 2011 IEEE
International Computer Systems and Applications Conference, pages 479–484, Seattle, WA,
July 2009.

[37] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[38] P. Tabuada. Verification and Control of Hybrid Systems - A Symbolic Approach. Springer, 2009.

[39] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for incre-
mentally stable switched systems. IEEE Transactions on Automatic Control, 55(1):116–126,
2010.

[40] D. Angeli. A Lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control, 47(3):410–421, 2002.

[41] A. Girard. Synthesis using approximately bisimilar abstractions: state-feedback controllers
for safety specifications. In Hybrid Systems: Computation and Control, pages 111–120, 2010.

[42] Antoine Girard. Synthesis using approximately bisimilar abstractions: Time-optimal control
problems. In IEEE Conference on Decision and Control, 2010.

[43] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic models for nonlinear
control systems. Automatica, 44(10):2508–2516, 2008.

[44] G. Pola, P. Pepe, M. D. di Benedetto, and P. Tabuada. Symbolic models for nonlinear time-
delay systems using approximate bisimulations. Systems and Control Letters, 59:365–373,
2010.

[45] M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic models for nonlinear control
systems without stability assumptions. 2010. arXiv:1002.0822, submitted for publication.

[46] P. Roy, P. Tabuada, and R. Majumdar. Pessoa 2.0: A controller synthesis tool for cyber-
physical systems. In Hybrid Systems: Computation and Control, 2011.

[47] Y. Tazaki and J. Imura. Discrete-state abstractions of nonlinear systems using multi-
resolution quantizer. In Hybrid Systems: Computation and Control, volume 5469 of LNCS,
pages 351–365. Springer, 2009.

[48] J. Camara, A. Girard, and G. Goessler. Synthesis of switching controllers using approximately
bisimilar multiscale abstractions. In Hybrid Systems: Computation and Control, 2011.

Page 62 DISTRIBUTION STATEMENT A: Approved for Public Release
Distribution Unlimited (Case Number: 88ABW-2013-1876)

Page 62



[49] A. Girard. Approximately bisimilar finite abstractions of stable linear systems. In Hybrid
Systems: Computation and Control, volume 4416 of LNCS, pages 231–244. Springer, 2007.

[50] C. Zhou and R. Kumar. Semantic translation of simulink diagrams to input/output ex-
tended finite automata. Journal of Discrete Event Dynamical Systems, Dec. 2010. DOI
10.1007/s10626-010-0096-1.
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[78] André Platzer. Differential-algebraic dynamic logic for differential-algebraic programs. J.
Log. Comput., 20(1):309–352, 2010. Advance Access published on November 18, 2008.

Page 64 DISTRIBUTION STATEMENT A: Approved for Public Release
Distribution Unlimited (Case Number: 88ABW-2013-1876)

Page 64
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