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Abstract

The Rayleigh-Ritz (RR) procedure, including orthogonalization, constitutes a major bottleneck in
computing relatively high-dimensional eigenspaces of large sparse matrices. Although operations in-
volved in RR steps can be parallelized to a certain level, their parallel scalability, which is limited by
some inherent sequential steps, is lower than dense matrix-matrix multiplications. The primary moti-
vation of this paper is to develop a methodology that reduces the use of the RR procedure in exchange
for matrix-matrix multiplications. We propose an unconstrained penalty model and establish its equiva-
lence to the eigenvalue problem. This model enables us to deploy gradient-type algorithms that makes
heavy use of dense matrix-matrix multiplications. Although the proposed algorithm does not necessarily
reduce the total number of arithmetic operations, it leverages highly optimized operations on modern
high performance computers to achieve parallel scalability. Numerical results based on a preliminary
implementation, parallelized using OpenMP, show that our approach is promising.
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1 Introduction

Eigenvalue and eigenvector calculation is a fundamental computational problem with extraordinarily wide-

ranging applications. In the past several decades, a great deal of progress has been made in the development
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of efficient algorithms and solvers for various types of eigenvalue problems. Iterative methods are usually

preferred for solving large-scale problems because of their ability to take advantage of sparsity or other struc-

tures existing in the matrices of interest. When a few eigenpairs are needed, the task of sparse matrix-vector

multiplications, which can often be performed efficiently on both sequential and modern parallel comput-

ers, usually constitutes the dominant computational cost. However, as the number of desired eigenpairs

increases, the computational costs in an iterative eigensolver can shift to other linear algebra operations.

There are two types of operations that can potentially become bottlenecks. One is the construction and/or

maintenance of orthonormal bases for subspaces from which approximate eigenvalues and eigenvectors are

extracted at each iteration. This type of operations is often carried out through either a Gram-Schmidt

(including Arnoldi or Lanczos) procedure or a QR factorization at the complexity of at least O(nk2) where

n is the dimension of the target matrix and k is the number of desired eigenpairs. Another potentially

high-cost procedure is the Rayleigh-Ritz (RR) calculation [13] used to extract eigenvalue and eigenvector

approximations from a subspace of dimension p ≥ k. The RR procedure involves solving a p-dimensional

dense eigenvalue problem and assembling the so-called Ritz vectors which are approximate eigenvectors in

the original space. Because the Ritz vectors are mutally orthonormal, the RR procedure can sometimes be

viewed as a way to construct an orthonormal basis also. The complexity for the RR procedure is at least

O(nk2 + k3). When the number k is small, the costs of these two types of operations are minor or even

negligible. However, when k increases to a moderate portion of the matrix dimension n, these costs can

represent a significant, even dominant, portion of the overall cost.

The use of parallel computers can greatly reduce the solution time. However, to make efficient use of

these computers, we must ensure that our algorithm is scalable with respect to the number of processors

or cores. Although the standard Krylov subspace iterative algorithms can be parallelized through the par-

allelization of the sparse matrix vector multiplications (SpMV) and other dense linear algebra operations,

the amount of parallelism is limited because SpMVs must be done in sequence in these algorithms, and

each SpMV can only make effective use of a limited number of processing units in general. Block methods,

such as the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm [10], the block

Krylov-Schur algorithm [21] and the Chebyshev-Davidson algorithm [19, 20], are more scalable because

more concurrency can be exploited in multiplying a sparse matrix with a block of vectors.

However, block methods have so far not addressed the relatively high cost of performing an RR calcu-

lation at each iteration. Although parallel algorithms for solving the dense projected eigenvalue problem

are available in multi-thread LAPACK [2] libraries for shared-memory paralle computers and in the ScaLA-

PACK [4] library for distributed-memory parallel computers, the parallel efficiency of these algorithms is

often limited to a relatively small number of processors or cores. When a large number of processing units

are involved, the thread or communication overhead can be significant. One way to address this issue is to

use a “spectrum slicing” algorithm [1, 5, 8] that divides the part of the spectrum of interest into a number

of intervals and compute eigenvalues within each interval in parallel. However, this approach would re-

quire computing interior eigenvalues in each interval which is generally a more difficult task. Moreover, a

good initial guess of the eigenvalues of interest is needed so that the spectrum can be divided in an efficient
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manner [1].

In the Chebyshev-Davidson algorithm [19, 20], the number of RR steps is amortized over a large number

of SpMVs because a Chebyshev matrix polynomial filter is applied to a block of vectors before an RR

calculation is performed to update the approximate eigenvectors. However, an apparent drawback of this

algorithm is the difficulty to take advantage of a good pre-conditioner when it is available. In addition, it is

difficult to apply a Chebyshev polynomial filter to generalized eigenvalue problems.

In this paper, we present a block algorithm for computing k algebraically smallest eigenvalues of a real

symmetric matrixA ∈ Rn×n and their corresponding eigenvectors, though the same methodology can easily

be applied to compute the largest eigenvalues and to compute eigenvalues of complex Hermitian matrices.

Our approach starts from the trace minimization formulation for eigenvalue problems. It is well known that

the invariant subspace associated with a set of k algebraically smallest eigenvalues of A yields an optimal

solution to the following trace minimization problem with orthogonality constraints

min
X∈Rn×k

tr(XTAX), s.t. XTX = I. (1)

A major theoretical result of this paper is to establish an equivalence relationship between problem (1) and

the following unconstrained optimization problem

min
X∈Rn×k

fµ(X) :=
1

2
tr(XTAX) +

µ

4
‖XTX − I‖2F , (2)

when the penalty parameter µ > 0 takes suitable finite values. As is well recognized, the objective function

in (2) is the classic quadratic (or Courant) penalty function [6, 12, 15] for the constrained problem (1).

Generally speaking, the classic quadratic penalty model approaches the original constrained problem only

as the penalty parameter µ goes to infinity. However, we show that in terms of finding an optimal eigenspace

problem (2) is essentially equivalent to (1) when the penalty parameter µ is appropriately chosen.

We will call the approach of solving model (2) trace-penalty minimization. A key difference between

trace minimization and trace-penalty minimization is that explicit orthogonality of X is no longer required

in the latter, which immediately opens up the possibility of doing far fewer RR steps including far fewer

orthogonalizations and other RR-related operations. In exchange, as will be demonstrated later, more dense

matrix-matrix multiplications are performed (to a less extent, also more SpMV). A major potential advantage

of replacing RR steps by dense matrix-matrix multiplications is that the latter operations have much better

parallel scalability and are highly optimized for modern high performance computers. In addition, one could

incorporate pre-conditioning into trace-penalty minimization in a straightforward manner.

In this paper, we consider applying gradient-type methods to the trace-penalty minimization problem

(2). These methods can often quickly reach the vicinity of an optimal solution and produce a moderately

accurate approximation. In many applications, rough or moderately accurate approximations are often suf-

ficient. One of such instances is when solving a nonlinear eigenvalue problem, one approximately solves a

sequence of linearized eigenvalue problems one after another (such as in solving the Kohn-Sham equation

in electronic structure calculation by “self-consistent field” iterations [14]). In this paper we evaluate the
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efficiency of our algorithm not by measuring the time it takes to compute eigenpairs to a high accuracy close

to machine precision, but rather the time it takes to achieve a moderate accuracy in computed eigenpairs.

Once good estimates are at hand, there exist a number of techniques that can perform further refinements

to obtain a higher accuracy. For example, moderately accurate estimates can be further improved by using

a “spectral slicing” type of algorithm [1, 5, 8]. Another possibility is to apply polynomial filtering to do

refinements. For the proposed trace-penalty minimization problem (2), we have experimented with various

algorithmic options in Matlab, developed a Fortran implementation and parallelize it using OpenMP. Pre-

liminary numerical comparison with some of the existing approaches shows that our approach is promising.

The rest of this paper is organized as follows. We analyze the trace-penalty minimization model in

Section 2. Our algorithms and several implementation details are discussed in Section 3. Numerical results

are reported in Section 4. Finally, we conclude the paper in Section 5.

2 Trace-Penalty Minimization: Model Analysis

For a given real symmetric matrix A = AT ∈ Rn×n, an eigenvalue decomposition of A is defined as

A = QnΛnQ
T
n, (3)

where, for any integer i ∈ [1, n],

Qi = [q1, q2, . . . , qi] ∈ Rn×i, Λi = diag(λ1, λ2, . . . , λi) ∈ Ri×i, (4)

so thatQT
iQi = I ∈ Ri×i and Λi is diagonal. The columns q1, . . . , qn ofQn are eigenvectors ofA associated

with eigenvalues λ1, λ2, · · · , λn, respectively, which are assumed to be in an ascending order,

λ1 ≤ λ2 ≤ · · · ≤ λn.

We note the non-uniqueness of eigenvalue decomposition (3). One could not only alter the signs of eigen-

vectors, but also choose different unit eigenvectors associated with eigenvalues of multiplicity greater than

one. For convenience, we will treat (3) as a generic form of decomposition that represents all possible

alternatives.

Given a positive integer k ≤ n, it is well known that the eigenvector matrix Qk is a solution to the

trace minimization problem (1). As is stated in the introduction, instead of solving (1) directly, we propose

to solve the trace-penalty minimization problem (2). We first analyze the relationship between the two

problems (1) and (2), and then derive some useful properties for (2).

2.1 Equivalence and other Properties

We start with the following definition of equivalence.
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Definition 2.1. Problem (2) is said to be equivalent to (1) if each of its global minimizers spans a k-

dimensional eigenspace associated with k smallest eigenvalues of A.

The first-order necessary conditions for trace minimization (1) can be written as

AX −X(XTAX) = 0, XTX = I.

On the other hand, the first-order necessary condition for trace-penalty minimization (2) is simply

∇fµ(X) = AX + µX(XTX − I) = 0. (5)

Let L(Rn×k,Rn×k) be the space of linear operators that map Rn×k to Rn×k. The Fréchet derivative of

∇fµ at X is defined as the (unique) function∇2fµ : Rn×k → L(Rn×k,Rn×k) such that

lim
‖S‖F→0

‖∇fµ(X + S)−∇fµ(X)−∇2fµ(X)(S)‖F
‖S‖F

= 0.

It can be easily verified that

∇2fµ(X)(S) = AS + µS(XTX − I) + µX(STX +XTS), (6)

from which one can also derive the matrix representation of∇2fµ(X) in terms of Kronecker products.

The first-order necessary condition (5) implies that each stationary point X of (2) spans an invariant

subspace of A, since ∇fµ(X) = 0 is obviously equivalent to

AX = X(I −XTX)µ.

Trivially, X = 0 ∈ Rn×k is always a stationary point of (2). We first study this trivial stationary point and

show that it can be eliminated as a minimizer if the penalty parameter µ is sufficiently large.

Lemma 2.2. Let µ > 0. If µ ≤ λ1, the zero matrix X = 0 ∈ Rn×k is the only stationary point of problem

(2); otherwise, it is not a minimizer. Moreover, X = 0 is a maximizer when µ > λn.

Proof. Rearranging (5), we have

(µI −A)X = µX(XTX). (7)

Multiplying XT on both side of (7) yields

XT(µI −A)X = µ(XTX)2. (8)

If µ ≤ λ1, the matrix on the left is negative semidefinite while the one on the right is positive semidefinite,

forcing the only solution X = 0. When µ > λ1, it suffices to note that the Hessian of fµ at X = 0 is

∇2fµ(0) = I ⊗ (A − µI) which is not positive semidefinite. Finally, we note that ∇2fµ(0) is negative

definite when µ > λn.
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The next lemma shows that any stationary point of (2) can be expressed in terms of eigenpairs of A.

Lemma 2.3. Let µ > 0 and (U,D) ∈ Rn×k×Rk×k denote k eigenpairs of A so that AU = UD, UTU = I

and D is diagonal. A matrix X ∈ Rn×k is a stationary point of (2) if and only if

X = U [P (I −D/µ)]1/2V T, (9)

where V ∈ Rk×k is an arbitrary orthogonal matrix, and P ∈ Rk×k is a diagonal, projection matrix with

diagonal entries

Pii =

{
0, if µ ≤ Dii,

0 or 1, otherwise.
(10)

In Particular, X is a rank-k stationary point only if P = I and µI −D � 0 (being positive definite).

Proof. We will provide a proof for the case where X is of full-rank. The rank-deficient cases can be proved

along the similar line, though more notationally involved and tedious.

Suppose that X is a full rank stationary point, which spans an invariant subspace of A. Since every

k-dimensional invariant subspace of A can be spanned by a set of k eigenvectors, we can write X = UW

where U consists of k unit eigenvectors of A and W ∈ Rk×k is nonsingular. Upon substituting X = UW

into (7), we derive

U(µI −D)W = µUW (W TW ) ⇔ I −D/µ = WW T ⇔ W = (I −D/µ)1/2V T

for some orthogonal V ∈ Rk×k (which can possibly hold only if µ > Dii for i = 1, 2 · · · , k).

Now we establish the equivalence between the trace-penalty minimization model (2) and the trace min-

imization model (1) for proper µ values.

Theorem 2.4. Problem (2) is equivalent to (1) if and only if

µ > max(0, λk). (11)

Specifically, any global minimizer X̂ of (2) has a singular-value decomposition of the form:

X̂ = Qk(I − Λk/µ)1/2V T (12)

where Qk and Λk are defined as in (4), and V ∈ Rk×k is any orthogonal matrix.

Proof. It can be easily seen from (8) that condition (11) is necessary for the existence of a rank-k stationary

point. On the other hand, suppose that µ satisfies (11). Using Lemma 2.3, it is suffice to consider the

representation X = UW , where U consists of any k eigenvectors of A and W ∈ Rk×k. Hence, we obtain

2fµ(X) = tr(DWW T) +
µ

2
‖W TW − I‖2F ,
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where D = Diag(d) ∈ Rk×k is a diagonal matrix with k eigenvalues of A on the diagonal corresponding to

eigenvectors in U . A short calculation shows that

2fµ(X) =
µ

2
‖WW T + (D/µ− I)‖2F + tr(D)− 1

2µ
tr(D2)

≥ µ

2
‖(D/µ− I)+‖2F + tr(D)− 1

2µ
tr(D2)

=

k∑
i=1

(
µ

2

(
di
µ
− 1

)2

+

+ di −
d2i
2µ

)

=
k∑
i=1

θ(di),

where t+ = max(0, t) and

θ(d) =
µ

2

(
d

µ
− 1

)2

+

+ d− d2

2µ
=

{
d− d2/(2µ), d < µ,

µ/2, d ≥ µ.

Note that θ(d) is monotonically nondecreasing since θ′(d) = 1− d/µ > 0 in (−∞, µ).

Substituting the formulation of X̂ defined in (12) into fµ(X̂), we obtain

2fµ(X̂) = tr(Λk)−
1

2µ
tr(Λ2

k) =
k∑
i=1

θ(λi) ≤ 2fµ(X),

which verifies that X̂ is a global minimizer. This completes the proof.

The next theorem indicates that our trace-penalty minimization model (2) can have far fewer undesirable,

full-rank stationary points than the trace minimization model (1). Hence, when the penalty parameter is suit-

ably chosen, one could reasonably argue that from an optimization point of view trace-penalty minimization

is theoretically more desirable than trace minimization.

Theorem 2.5. If µ ∈ (max(0, λk), λn), then fµ(X) has no local maxima, nor local minima other than

the global minimum attained by X̂ defined in (12). Moreover, if µ ∈ (max(0, λk), λk+p) where λk+p is

the smallest eigenvalue greater than λk, then all k-dimensional stationary points of fµ(X) must be global

minimizers.

Proof. To prove the first statement, we show that for µ ∈ (max(0, λk), λn) any stationary point other than

the global minimizers can only be saddle points.

Without loss of generality, consider stationary points in the form of (9) with V = I , that is

X̂ = U [P (I −D/µ)]1/2 = U [(I −D/µ)P ]1/2, (13)

where AU = UD, UTU = I , and D is diagonal. The proof still holds for an arbitrary orthogonal matrix

V since the function value fµ(X̂) is invariant with respect to V . Substituting (13) into the Hessian formula
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(6), we obtain

∇2fµ(X̂)(S) = AS − S(µ(I − P ) +DP ) + µX̂(STX̂ + X̂TS). (14)

We next show that there exists two different matrices S ∈ Rn×k such that tr(ST∇2fµ(X̂)(S)) < 0 and

tr(ST∇2fµ(X̂)(S)) > 0, respectively, unless the stationary point X̂ is constructed from eigenvectors asso-

ciated with a set of k smallest eigenvalues which corresponds to the global minimum.

First assume that X̂ has full rank. Then µI � D and P = I in (13). Letting P = I in (14) yields

∇2fµ(X̂)(S) = AS − SD + µX̂(STX̂ + X̂TS).

For S = U , we have STX̂ = X̂TS = (I −D/µ)1/2 and

tr(ST∇2fµ(X̂)(S)) = 0 + 2 tr(µI −D) > 0.

On the other hand, if X̂ is not a global minimizer, without loss of generality we can assume that U contains

qj but not qi where λi < λj . Let S contain all zero columns except a single nonzero column that is qi at the

position so that the only nonzero column of SD is qiλj . For such an S, we have STX̂ = 0 and

tr(ST∇2fµ(X̂)(S)) = qT
i (Aqi − qiλj) + µ tr(STX̂(STX̂ + X̂TS)) = (λi − λj) + 0 < 0.

Hence, all full-rank stationary points are saddle points except the global minimizers.

We now consider the rank-deficient case, namely, there exists at least one zero entry in the diagonal of

P , say Pii = 0 for some i ∈ [1, k]. Let Ū be the remaining matrix after deleting the i-th column from U .

Since rank(Ū) = k − 1, there must exist at least one column, denoted by qj , of Qk that is not contained in

Ū . Then it holds qT
j Ū = 0 and qT

jAqj ≤ λk. Let S contain all zero columns except one nonzero column

that is qj at the i-th position so that both SP = 0 and STX̂ = 0. Consequently, in view of (14) we have

tr(ST∇2fµ(X̂)(S)) = qT
jAqj − µ+ µ tr(STX̂(STX̂ + X̂TS)) ≤ (λk − µ) + 0 < 0.

On the other side, let S contain all zero columns except that the i-th column is qn. For any integer l ∈ [1, k],

if the column Ul = qn, then it follows from Lemma 2.3 that Pll = 0 and qT
nX̂l = 0. Otherwise, the

column Ul 6= qn, thus qT
nUl = 0 which implies qT

nX̂ = 0. By our assumption, µ < qT
nAqn = λn. Hence,

tr(ST∇2fµ(X̂)(S)) = λn − µ > 0. This complete the proof of the first statement.

The second part of this theorem is a direct consequence of the full-rank requirement and the stationary-

point expression (9) which, together, demands µI � D. Hence, for µ ∈ (max(0, λk), λk+p), D can only

have a set of k smallest eigenvalues of A on its diagonal.

2.2 Error Bounds between Optimality Conditions

After establishing the equivalence between our trace-penalty minimization model (2) and the original trace

minimization model (1), we investigate the relationship between the first-order optimality conditions of the
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two models, which would play an important role in setting the stopping tolerance for an iterative algorithm

to solve (2).

Given any approximate solutionX of (2), an orthonormal basis for the range space ofX , say Y (X), is a

feasible solution of (1). Specifically, let X be of full rank and X = UΣV T denote the partial (or economy-

form) singular value decomposition (SVD) of X , where U ∈ Rn×k and V ∈ Rk×k have orthonormal

columns, and Σ ∈ Rk×k is a diagonal matrix with the singular values ofX on its diagonal. Then a particular

choice for Y (X) is

Y (X) , U. (15)

Consequently, the violation of the first-order necessary conditions of the trace minimization (1) can be

measured by the Frobenious norm of the residual

R(X) , AY (X)− Y (X)
(
Y (X)TAY (X)

)
. (16)

Lemma 2.6. Let µ > max(0, λk), and∇fµ(X) and R(X) be defined as in (5) and (16), respectively. Then

‖R(X)‖F ≤ σ−1min(X)‖∇fµ(X)‖F , (17)

where σmin(X) is the smallest singular value of X . Moreover, for any global minimizer X̂ and any ε > 0,

there exists δ > 0 such that whenever ‖X − X̂‖F ≤ δ,

‖R(X)‖F ≤
1 + ε√

1− λk/µ
‖∇fµ(X)‖F . (18)

Proof. Recall that X = UΣV T where the columns of U form an orthonormal basis for the range space of

X . Projecting∇fµ(X) onto the null space of XT and using the definition of R(X) in (16), we obtain

(I − UUT)∇fµ(X) = (1− UUT)(AX + µX(XTX − I))

= (I − UUT)AX = (I − UUT)AUΣV T

= R(X)ΣV T.

A rearrangement of the above equality gives

R(X) = (I − UUT)∇fµ(X)V Σ−1,

9



which leads to (17) through the following steps,

‖R(X)‖F = ‖(I − UUT)∇fµ(X)V Σ−1‖F
≤ ‖(I − UUT)∇fµ(X)V ‖F ‖Σ−1‖2
= ‖(I − UUT)∇fµ(X)‖F σ−1min(X)

≤ σ−1min(X) ‖∇fµ(X)‖F ,

where the last inequality is due to the fact that I − UUT is a projection.

To see the second part of this lemma, we only need to recall Theorem 2.4 that gives

σmin(X̂) =
√

1− λk/µ,

for any global minimizer X̂ . This completes the proof.

2.3 Condition Number of the Hessian at Solution

An important quantity for a smooth unconstrained optimization model is the condition number of the Hes-

sian at solution, which can be defined in our case as

κ(∇2fµ(X̂)) =
λmax(∇2fµ(X̂))

λmin(∇2fµ(X̂))
,

where λmax(·) (or λmin(·)) stands for the largest (or the smallest) eigenvalue of the referred matrix, and X̂

is a global minimizer of (2). Obviously, κ is infinity when the involved matrix is singular.

In the next lemma, we calculate the condition number κ(∇2fµ(X)) for the case k = 1, and give a lower

bound for the general case.

Lemma 2.7. Let µ > max(0, λk) and X̂ be a global minimizer of fµ in (2). The condition number of the

Hessian of fµ at X̂ satisfies

κ
(
∇2fµ(X̂)

)
≥ max (2(µ− λ1), λn − λ1)

min (2(µ− λk), λk+1 − λk)
≥ λn − λ1
λk+1 − λk

. (19)

In particular, for k = 1 the first inequality above holds as an equality .

Proof. As is well known, the largest or smallest eigenvalues of a symmetric matrix can be obtained by

maximizing or minimizing the Rayleigh-Ritz quotient, namely, in our case,

λmax(∇2fµ(X̂)) = max
tr(STS)=1

tr(ST∇2fµ(X̂)(S)),

λmin(∇2fµ(X̂)) = min
tr(STS)=1

tr(ST∇2fµ(X̂)(S)).

We first treat the case of k = 1 in which X and S refer to vectors, so we simplify them as x̂ and s. Also,
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the trace constraint tr(STS) = 1 becomes sTs = 1. Applying theorem 2.4, x̂ takes the form

x̂ = ± q1
√

1− λ1/µ.

Hence, µ(x̂Tx̂− 1) = −λ1. Using (6) with s = Qy and yTy = 1, we have

sT∇2fµ(x̂)s = sTAs− λ1 + 2µ(sTx̂)2 = yT [Λ− λ1I + 2(µ− λ1)e1eT
1

]
y.

Therefore,

max
sTs=1

sT∇2fµ(x̂)s = max (2(µ− λ1), λn − λ1) ,

min
sTs=1

sT∇2fµ(x̂)s = min (2(µ− λ1), λ2 − λ1) .

Hence, (19) holds as an equality.

Now we treat the general case. Let us recall theorem 2.4 that X̂ takes the form of (12). Since

tr(ST∇2fµ(X̂)(S)) = tr((SV )T∇2fµ(X̂V )(SV )),

and tr((SV )TSV ) = tr(STS), the orthogonal matrix V in a solution X̂ , as is defined in (12), does not

change the maximum or minimum of tr(ST∇2fµ(X̂)(S)) under the trace constraint tr(STS) = 1. Without

loss of generality, in this proof we set V = I and only consider

X̂ = Qk(I − Λk/µ)1/2.

In view of (6), we have

tr(ST∇2fµ(X̂)(S)) = tr(STAS)− tr(STSΛk) + µ tr((STX̂)2 + STX̂X̂TS).

Let all the columns of S be zero except that the j-th column is the unit eigenvector qi of A, namely,

S = qie
T
j , j ≤ k, ej ∈ Rk,

which satisfies the trace constraint tr(STS) = 1. Clearly,

STX̂ = ejq
T
i Qk(I − Λk/µ)1/2 =

{
eje

T
i

√
1− λi/µ, i ≤ k,
0, otherwise.

It is not difficult to verify that

tr(ST∇2fµ(X̂)(S)) = λi − λj + (δij + γi)(µ− λi). (20)
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where δij is the Kronecker delta and γi = 1 if i ≤ k and 0 otherwise. For different choices of i and j ≤ k,

the right-hand side of (20) can take the values of λi− λj for i > k ≥ j, and 2(µ− λi) for i = j ≤ k. These

values imply the bounds

λmax

(
∇2fµ(X̂)

)
≥ max (2(µ− λ1), λn − λ1)

λmin

(
∇2fµ(X̂)

)
≤ min (2(µ− λk), λk+1 − λk) ,

from which we obtain (19) and complete the proof.

We note that in the general case of k > 1, the bound in (19) can be further tightened. For example, by

letting i < j = k, we obtain the values of µ−λk; hence the factor 2 can be eliminated from the denominator.

One can also show that the Hessian becomes singular when there are eigenvalues λj , j < k, of multiplicity

greater than one. In general, this kind of non-uniqueness does not necessarily imply a higher degree of

difficulty in solving the optimization problem.

Even though the bound in (19) is not tight, it is good enough to serve the purpose of demonstrating

two useful points: (a) the penalty parameter µ should not be chosen excessively close to λk; and (b) one

should expect some difficulty arising from the existence of a relatively tiny gap between λk and λk+1. This

second difficulty, caused by clustered eigenvalues at a critical location, represents a common challenge to

eigenvalue solvers.

2.4 Extensions

It is not difficult to see that our analysis in this section, as well as the algorithmic framework described in

the next section, can be extended to the generalized eigenvalue problem:

min
X∈Rn×k

tr(XTAX), s.t. XTBX = I, (21)

where B is symmetric and positive definite. In this case, the trace-penalty minimization model is simply

min
X∈Rn×k

fµ(X) :=
1

2
tr(XTAX) +

µ

4
‖XTBX − I‖2F . (22)

In fact, by change of variable Z = B
1
2X (where the symmetric matrix B

1
2 satisfies B

1
2B

1
2 = B), the

generalized eigenvalue problem (21) can be converted to a standard eigenvalue problem

min
Z∈Rn×k

tr(ZTĀZ), s.t. ZTZ = I, (23)

where Ā = B−
1
2AB−

1
2 . As a result, our model analysis, directly applicable to (23), can be translated to

(22) in a straightforward manner. For example, Theorem 2.4 gives the global minimizers of (23) as

Z = Q̄k(I − Λk/µ)V T,

12



where Λk is diagonal with k smallest eigenvalues of Ā on its diagonal that also happen to be the generalized

eigenvalues of the matrix pair (A,B), and Q̄k consists of corresponding eigenvector of Ā. By the change of

variables Z = B
1
2X , then

X = Qk(I − Λk/µ)V T, (24)

where Qk = B−
1
2 Q̄k consists of the generalized eigenvectors associated with the k smallest generalized

eigenvalues in Λk. Naturally, the equivalence of the trace-penalty minimization model (22) to the trace

minimization model (21) requires that µ > max(0, λk) where λk is a k-th smallest generalized eigenvalue

of the matrix pair (A,B).

Another useful extension is to find eigenvectors in the orthogonal complement of the column-space of a

given U such that UTU = I , that is:

min
X∈Rn×k

tr(XTAX), s.t. XTBX = I, UTX = 0. (25)

The variation (25) can arise from a deflation procedure where U is constructed from already converged

eigenvectors. The trace-penalty minimization model corresponding to (25) is

min
X∈Rn×k

fµ(X) :=
1

2
tr(XTAX) +

µ

4
‖XTBX − I‖2F , s.t. UTX = 0. (26)

Starting from X0 such that UTX0 = 0, a projected-gradient method for solving (26) has the form Xj+1 =

Xj−αj(I − UUT)∇fµ(Xj) which is just a slight modification of regular gradient methods to be discussed

in details in the next section.

The principle of trace-penalty minimization can in fact be applied to other types of eigenvalue problems,

but for the sake of space we will leave further extensions to future work.

3 Algorithmic Framework

3.1 Gradient Methods for Trace-Penalty Minimization

The trace-penalty minimization model proposed in the previous section is an unconstrained nonconvex min-

imization problem. There are many well-studied approaches for this problem, such as the steepest descent

gradient, the conjugate gradient, the Newton’s and Quasi-Newton methods. Considering the scale of the

eigenvalue computation of interest, in this paper we focus on the gradient-type methods of the form:

Xj+1 = Xj − αj∇fµ(Xj), (27)

where the superscript j denotes the j-th iteration and αj is the step size.

Although the penalty function may have multiple stationary points, Theorem 2.5 shows that when µ is

chosen slightly above λk ≥ 0, then rank-k stationary points are likely to be all global minimizers. The

following lemma suggests that iterates generated by (27) will most likely remain full rank.
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Proposition 3.1. Let Xj+1 be generated by (27) from a full-rank iterate Xj . Then Xj+1 is rank-deficient

only if 1/αj is one of the k generalized eigenvalues of the problem:

[(Xj)T∇fµ(Xj)]u = λ[(Xj)T(Xj)]u. (28)

On the other hand, if αj < σmin(Xj)/‖∇fµ(Xj)‖2, then Xj+1 is of full rank.

Proof. Suppose that Xj+1 is rank deficient. Then there exists an nonzero vector u such that Xj+1u = 0. In

view of (27), we have

Xju− αj∇fµ(Xj)u = 0. (29)

Hence, (28) holds under λ = 1/αj after multiplying both sides of (29) by (Xj)T/αj . Due to the full rank

of Xj , (Xj)T(Xj) is positive definite. The expression of the gradient in (5) implies that (Xj)T∇fµ(Xj)

is symmetric. Therefore, (28) is a generalized symmetric eigenvalue problem. The second part of the

proposition follows directly from (29).

We next present a few strategies for choosing the step size αj . Given an arbitrary direction D ∈ Rn×k,

the objective function fµ(X + αD) is a quartic function of α; precisely,

fµ(X + αD) =
1

2
tr(XTAX) +

µ

4
tr(BTB) +

(
tr(DTAX) +

µ

2
tr(BTW )

)
α

+
(

tr(DTAD) +
µ

2
tr(BTH) +

µ

4
tr(W TW )

)
α2

+
(µ

2
tr(W TH)

)
α3 +

(µ
4

tr(HTH)
)
α4, (30)

whereB = XTX−I , W = DTX+XTD andH = DTD. The steepest descent gradient method computes

the step size by using an one-dimensional exact minimization, i.e., αj = argmin fµ(Xj − α∇f(Xj)),

which is determined by a root of the cubic equation dfµ(Xj − α∇f(Xj)/dα = 0. Note that µ > 0 and

tr(HTH) > 0 for ∇fµ(X) 6= 0, a positive root always exits. Although executing exact line searches along

each steepest descent direction often converges slowly, it has been demonstrated in [16, 17] that mixing it

with some other step sizes in an alternative fashion can accelerate convergence significantly.

Another successful approach is to use line search with a Barzilai-Borwein (BB) size [3]. Let

Sj := Xj −Xj−1 and Y j = ∇fµ(Xj)−∇fµ(Xj−1). (31)

The BB step size is

αjBB1 =
tr((Sj)TY j)

‖Y j‖2F
or αjBB2 =

‖Sj‖2F
tr((Sj)TY j).

(32)

Since Sj = αj−1∇fµ(Xj−1), the computation of the BB step sizes only requires to store one intermediate

matrix Y j in (31). When n and k are huge or when storage becomes a critical factor, one can still compute
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a so-called partial BB step size by using (32) but with a pre-selected small subset of columns of both Sj and

Y j , making the storage of an extra Y -matrix unnecessary. A simple heuristic line search scheme that we

will use is to shorten the step size, whenever necessary, by back-tracking αj = αδh, where α is one of the

BB step sizes in (32), δ ∈ (0, 1) and h is the smallest positive integer satisfying the condition

fµ(Xj − αδh∇f jµ) ≤ 2fµ(Xj). (33)

It is known that certain global convergence properties can be guaranteed in theory by more elaborate line

search conditions such as non-monotone line search conditions in [7, 9, 18]. We have found, however, that

on our trace-penalty function fµ(X) condition (33) has performed efficiently and reliably.

At the end of trace-penalty minimization, a Rayleigh-Ritz (RR) step is necessary to compute Ritz-pairs

as approximations to eigenpairs. Specifically, in our context the RR step corresponding to a given matrix

X ∈ Rn×k is defined by the following steps.

1. Orthogonalize and normalize X to obtain U so that UTU = I .

2. Compute the projection UTAU and its eigenvalue decomposition V TΣV .

3. Assemble the Ritz-pairs into the matrix-pair (Y,Σ) where Y = UV .

For convenience, we will refer the above RR procedure as a map (Y,Σ) = RR(X).

In Algorithm 1 below, we specify a basic version of a method for trace-penalty minimization, called

“EigPen-B”, which uses the first BB step formula in (32), the simple line search condition (33), and a

termination rule

‖∇fµ(Xj)‖F ≤ ε, (34)

where ε > 0 is a prescribed tolerance.

Algorithm 1: Eigenspace by Penalty – basic version (EigPen-B)

Initialize X0 ∈ Rn×k and estimate µ ∈ (λk, λn). Set ε, δ ∈ (0, 1) and j = 0.
Compute initial step α = ‖X0‖F /‖∇fµ(X0)‖F .
while ‖∇fµ(Xj)‖F > ε do

compute the smallest natural number h so that αδh satisfying (33);
update Xj+1 = Xj − αj∇fµ(Xj);
compute α using the first formula in (32);
increment j and continue.

Execute the RR procedure (X,Σ) = RR(Xj).

The memory requirement of Algorithm 1 is summarized as follows. Four n by k matrices, X , AX ,

∇fµ(X) and Y defined in (31), are required. As mentioned earlier, the need for storing Y can be essen-

tially eliminated if partial BB step sizes are computed (without obvious performance degradation in our

experiments). Using the convention that an m × p matrix times a p × n matrix costs 2mnp flops, we sum-

marize the computational complexity of various tasks as follows. Let s be the sparsity of the matrix A,
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i.e., s = |{Aij |Aij 6= 0}|/n2. The matrix-matrix multiplication AX needs 2sn2k flops while sn2 is often

around O(n). Forming X(XTX − I) takes 4nk2. Each of the inner product tr(STY ) and the calculation of

the norms ‖∇fµ(X)‖F and ‖Y ‖F takes 2nk. Hence, the total cost of each step in trace-penalty minimiza-

tion is at most 4nk2 + 8nk + 2sn2k +O(k3). The orthogonalization step by using Cholesky factorizations

needs 2nk2 +O(k3) since XTX comes free from trace-penalty minimization steps. The projection UTAU

requires 2nk + 2sn2k. The eigenvalue decomposition of the projection in an RR step takes O(k3). Fi-

nally, assembling the Ritz-pairs takes another 2nk2. Therefore, the total complexity of the last RR step is

6nk2 + 2sn2k +O(k3).

3.2 Enhancement by Restarting

Algorithm EigPen-B often works quite well in practice. However, a typical behavior of gradient methods

is that they can reduce the objective function rather rapidly at an initial stage, but the amount of reduction

can become extremely small as iterates get closer to a solution. In trace-penalty minimization, it has been

observed that restarting the gradient method with a modified X can usually help accelerate convergence and

achieve a higher accuracy more quickly. In this subsection, we describe a restarting strategy for trace-penalty

minimization that utilizes more than one RR step. In addition to accelerating convergence, the restarting

strategy provides a more reliable termination procedure by examining more than one set of Ritz-pairs.

We now demonstrate how RR steps can help speed up trace-penalty minimization. Let

Y = argmin
X∈Rn×k

{fµ(X) : X ∈ S}, (35)

where X ∈ S means that every column of X is in the subspace S. Let XJ be the iterate generated by the

EigPen-B algorithm after J iterations. Clearly, as long as XJ ∈ S there holds

fµ(Y ) ≤ fµ(XJ). (36)

On the other hand, consider the subspace trace minimization problem

U = argmin
X∈Rn×d

{
tr(XTAX) : XTX = I, X ∈ S

}
, (37)

where d is the dimension of the subspace S. Clearly, the RR step (U,Σ) = RR(XJ) is equivalent to

solving (37) for S = span{XJ} (assuming that XJ ∈ Rn×k has full rank) so that UTAU = Σ is diagonal

(otherwise, replace U by UV where UTAU = V ΣV T).

We now show that a “better point” Y for trace-penalty minimization in (35) and (36) can be explicitly

constructed from the RR step output (U,Σ) = RR(XJ). We first consider the simple case S = span{XJ}.

Lemma 3.2. Let S = span{XJ} where XJ ∈ Rn×k has full rank, and let U be defined in (37) so that

UTAU = Σ is diagonal. Then a Y in (35) has the form Y = U(I − Σ/µ)1/2, provided that µI � Σ.

Now we prove a more general result that contains the above as a special case.
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Lemma 3.3. Let S ⊇ span{XJ} have dimension d ≥ k, and U be defined in (37) so that UTAU = Σ is

diagonal whose diagonal elements are arranged in an ascending order. Then a matrix Y in (35) has the

form Y = UkD where Uk consists of the first k columns of U , and D ∈ Rk×k is a diagonal matrix whose

i-th diagonal element is

Dii = max

(
0, 1− 1

µ
Σii

)1/2

, i = 1, 2, · · · , k. (38)

Proof. Since U ∈ Rn×d is a basis of S, the solution of (35) can be expressed as X = UW for some

W ∈ Rd×k. Substituting X = UW into (35) and noting that UTAU = Σ and UTU = I , we reduce (35) to

min
W∈Rd×k

fµ(UW ) =
1

2
tr(W TΣW ) +

µ

4
‖W TW − I‖2F . (39)

Using the fact that Σ is a diagonal matrix, it can be verified (see Theorem 2.4) that W =
(
D 0

)T
, with

the diagonal matrix D defined as in (38), is indeed a solution of (39). Therefore, Y = UW = UkD.

In Algorithm 2 below, we present our trace-penalty minimization algorithm with restarting, which is

used to perform numerical experiments presented in the next section. The algorithm, called EigPen, contains

two loops. The inner loop is stopped once the condition

‖∇fµ(Xj)‖F ≤ εi max(1, ‖AXj‖F) (40)

is met, where εi ∈ (0, 1) is a prescribed tolerance. Then an RR step is executed to construct Ritz-pairs and

termination criteria are checked for the outer loop. If the algorithm does not stop, then a smaller tolerance

εi+1 = δεεi is set where δε ∈ (0, 1), and a better iterate is constructed from which the algorithm restarts the

next round of inner iterations by calling EigPen-B.

Algorithm 2: Eigenspace by Penalty – enhanced version (EigPen)

Initialize X̄0 ∈ Rn×k and estimate µ ∈ (λk, λn). Set ε0, δ, δε ∈ (0, 1) and i = j = 0.
while “not converged” do

Set Xj = X̄i and compute α = ‖Xj‖F /‖∇fµ(Xj)‖F .
while ‖∇fµ(Xj)‖F > εi ·max(1, ‖AXj‖F) do

compute the smallest integer h so that αj = αδh satisfying (33);
update Xj+1 = Xj − αj∇fµ(Xj);
compute α using the first formula in (32);
increment j and continue.

Execute the RR procedure (X,Σ) = RR(Xj) and let X̄i+1 = X(I − Σ/µ)
1
2 .

Update the tolerance εi+1 = δεεi and increment i.

The RR restart approach allows flexibility to integrate other techniques into EigPen. For example, at the

j-th iteration, if one chooses the subspace S in problem (37) to be S = span
{
Xj−1, Xj , AXj

}
, then the
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RR step would generate a step similar to those in the LOBPCG algorithm [10]. A key difference between

LOBPCG and EigPen is that RR steps constitute the main workhorse of the former, but are utilized only a

few times in the latter.

3.3 Penalty Parameter Adjustment

We now describe our approach to choosing penalty parameter µ. Theorem 2.4 states that µ > max(0, λk) is

necessary and sufficient for the equivalence between (1) and (2). A more restrictive range for µ is given in

Theorem 2.5 that eliminates all full-rank stationary points but the global minimizers. However, it requires

the extra work of estimating, at the least, λk+1. On the other hand, both Lemmas 2.6 and 2.7 suggest that

µ should not be too close to λk, otherwise ill-conditioning could arise in trace-penalty minimization. On

balance, we adopt a tractable strategy of choosing µ > λk (which is positive after a shifting if necessary) and

keeping it reasonably close to λk, without attempting to make µ smaller than the next smallest eigenvalue.

Given an initial matricesX0 ∈ Rn×k whose columns are normalized, the kth smallest eigenvalue λk can

be estimated by the maximal value of the diagonal entries of (X0)TAX0, which provides an initial choice

µ = max(c1, c2 max(diag((X0)TAX0))), (41)

where c1 > 0 and c2 > 1 are two constants for safeguarding. Another estimation of µ comes from the

structure of the minimizer X̂ given in (12), which yields the eigenvalue decomposition

µ(I − X̂TX̂) = V ΛkV
T, (42)

where V and Λk are defined in Theorem 2.4. Once a “good” iterate Xj is at hand after some iterations dur-

ing trace-penalty minimization, the relationship (42) implies that λk can be estimated from the maximum

eigenvalues of I − (Xj)TXj , i.e., λ̄jk = µλmax(I − (Xj)TXj). Since the computational cost of approx-

imating the largest eigenvalue of a k × k matrix is relatively low, the penalty parameter µ can be updated

during trace-penalty minimization by the formula

µ = max(c1, c2λ̄
j
k). (43)

A more accurate estimate of λk becomes available after an RR step is executed and the k-th Ritz-value θk is

at hand. Then we use the formula

µ = max(c1, c2θk). (44)

In favorable cases where the gap between λk and λk+1 is relatively large, our strategy of choosing µ

slightly larger than λk would have a good chance to satisfy both µ > 0 and µ ∈ (λk, λk+1), provided that

λk > 0. In order to ensure λk > 0, our current strategy is to first scale the matrix A by σ ≈ |λ1|, assuming
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that λ1 < 0, and then add a positive shift ω > 1, obtaining

Â =
1

σ
A+ ωI (45)

that is at least close to being positive semidefinite. After performing trace-penalty minimization to Â, the

above scale and shift can be easily reversed to recover the eigenvalues of A.

To estimate λ1, we note that the well-known Gershgorin circle theorem implies that

λ1 ≥ u1 := min
i=1,...,n

Aii −∑
j 6=i
|Aij |

 .

In addition, the relationship between matrix norms implies that

u2 :=
max(‖A‖∞, ‖A‖F )√

n
≤ ‖A‖2 = max(|λ1|, |λn|).

Hence, without too much computation a reasonable value of σ in (45) is taken as

σ = max(min(|u1|, u2), 1). (46)

As long as σ is not much smaller than |λ1|, setting ω to a moderate number between 1 to 10 usually works

well in our tests. In our numerical experiments, we always take the safe value of ω = 10.

4 Numerical Experiments

In this section, we test the performance of EigPen as a general solver for computing a set of smallest

eigenvalues and their corresponding eigenvectors of sparse matrices.

4.1 Solvers, Test Matrices and Platform

We choose to compare EigPen with the implicitly restarted Lanczos method in ARPACK1 and the locally

optimal preconditioned conjugate gradient (LOBPCG) algorithm. All algorithms are implemented in Fortran

and parallelized by using OpenMP except that preconditioning for EigPen is demonstrated in MATLAB. We

use an implementation of LOBPCG, previously developed by the second author of this paper, instead of the

BLOPEX2 package since the performance of BLOPEX seems not quite as stable and efficient as our own

version on our test platform.

We select a set of thirteen test matrices arising from the density functional theory (DFT) for electronic

structure calculation. They are all sparse matrices3 whose dimension n, the number of nonzero components
1Downloadable from http://www.caam.rice.edu/software/ARPACK
2Downloadable from http://code.google.com/p/blopex
3Downloadable from http://www.cise.ufl.edu/research/sparse/matrices
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nnz and sparsity are listed in Table 1. Many of them are produced by PARSEC [11], a real space DFT based

code in which the Hamiltonian is discretized by using finite difference.

Table 1: Problem characteristics
Name n nnz 100× nnz

n2 %

Andrews 60000 410077 0.01%
C60 17576 212390 0.07%
c 65 48066 204247 0.01%
cfd1 70656 948118 0.02%

finance 74752 335872 0.01%
Ga10As10H30 113081 3114357 0.02%

Ga3As3H12 61349 3016148 0.08%
OPF3754 15435 82231 0.03%

shallow water1 81920 204800 <0.01%
Si10H16 17077 446500 0.15%
Si5H12 19896 379247 0.10%

SiO 33401 675528 0.06%
wathen100 30401 251001 0.03%

We perform most of our numerical experiments on a single node of Hopper4, a Cray XE6 supercomputer

maintained at the National Energy Research Scientific Computer Center (NERSC) in Berkeley. The node

consists of two twelve-core AMD “MagnyCours” 2.1-GHz processors with a total of 32 gigabyte (GB)

shared memory. However, memory access bandwidth and latency are nonuniform across all cores. Each

core has its own 64 kilobytes (KB) L1 and 512 KB L2 caches. One 6-MB L3 cache shared among 6

cores on the Magny-Cours processor. There are four DDR3 1333-MHz memory channels per twelve-core

“MagnyCours” processor.

We use the multi-threaded version of the Cray Scientific Libraries package, LibSci, which includes

multi-threaded versions BLAS and LAPACK subroutines optimized for Cray XE6. Each sparse matrix vec-

tor multiplication (SpMV) in ARPACK is parallelized through OpenMP threads. While each individual

SpMV is not parallelized in EigPen and LOBPCG, a loop level parallelization is applied to the loop that

produces the columns of the product AX where X contains multiple columns. We also implement a block

version of the Davidson algorithm. Without using a preconditioner, the algorithm is essentially a steepest

descent algorithm directly applied to (1). Because its performance in our tests has been found to be clearly

poorer compared to other algorithms discussed in this section, we do not include its timing measurements

in the numerical results presented in this section. The block Krylov-Schur algorithm [21] and the (block)

Chebyshev-Davidson algorithm [19, 20] are not included in our comparison, partly because suitable For-

tran/OpenMP implementations of these algorithms were unavailable for our tests.

4.2 Termination Rules and EigPen Parameters

All tests on the aforementioned machine Hopper are run as batch jobs with a maximum wall clock time limit

of 6 hours. We terminate all algorithms when the relative residual norm (defined below) for every Ritz-pair
4Detailed information is available at http://www.nersc.gov/users/computational-systems/hopper/
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(ui, θi) is smaller than a prescribed tolerance tol, that is,

resi(U) =
‖Aui − θiui‖2
max(1, |θi|)

≤ tol, i = 1, · · · , nev, (47)

where nev is the number of smallest eigenvalues to be computed, ui is the i-th column of U that satisfies

UTU = I , and θi = uTi Aui (recall that for EigPen we need to perform an RR step to obtain the Ritz-pair).

We also terminate an algorithm when the number of iterations reaches a maximum of 10,000, but this limit

was never reached in our experiments.

In EigPen, the initial penalty parameter µ is computed by (41) and it is updated by (43) at most three

times in the first outer iteration of EigPen. After an RR step is executed, µ is set according to (44) and

is fixed throughout the next round of inner iterations. The constants c1 = 0.1 and c2 = 1.1 are used in

(41), (43) and (44). The initial tolerance ε0 is set to tol and the backtracking constant δ is set to 0.25. The

parameter δε is adjusted dynamically according to the number of the converged eigenvectors (denoted by

k1) that satisfy the condition resi ≤ tol, for i = 1, . . . , nev, after each RR step:

δε =



0.1, if k1 = 0,

0.5, if k1 ≤ 0.9 nev,

0.6, if k1 ≤ 0.95 nev,

0.7, otherwise.

As is already mentioned, in order to facilitate the selection of our penalty parameter µ in EigPen we perform

scaling and shifting as in (45) where σ is given by (46) and ω = 10 is always used.

4.3 Overall Performance

We first report the overall performance of ARPACK, LOBPCG and EigPen on the test matrices listed in

Table 1. The number of smallest eigenvalues (nev) to be computed is roughly 1% of the dimension of A.

All algorithms are run in parallel with 24 cores. No preconditioner is used in these tests.

For LOBPCG and EigPen, we set the dimension of X (denoted by k) to be slightly larger than nev to

improve the convergence. Specifically, k is set to nev×1.1 (round to the nearest integer). For ARPACK, we

set the parameter ncv = nev + 100, which is the dimension of the Krylov subspace constructed to extract

desired eigenvalue approximations. The number 100 is simply the degree of the polynomial constructed

implicitly in each restart to filter the unwanted spectral components from the starting vector. Setting ncv

to a larger value tends to reduce the number of restarts, but making each restart more costly. The optimal

value ncv that achieves the best tradeoff between the number of restarts and the amount of work per restart

is generally difficult to determine a priori.

Our experiments are performed using two different tolerance values tol = 10−2 and tol = 10−4. The

total wall clock times taken by the three solver are presented in Table 2. Whenever the code terminates

abnormally (either the run is stopped prematurely or the maximum wall clock time limit of 6 hours is
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reached), the corresponding entry in the table is marked by “– –”. From Table 2, we observe that ARPACK

did not succeed on matrices c 65, cfd1 and Ga10As10H30 for both tolerance values, and LOBPCG did

not succeed on matrices c 65, Ga10As10H30 and Ga3As3H12 for tol = 10−4. Even when it converges,

on larger problems ARPACK typically takes longer to run than either EigPen or LOBPCG (which may be

attributable to a limited parallel scalability in sparse matrix-vector multiplications). In general, EigPen is

faster that LOBPCG, especially on larger problems, with only one significant exception on the matrix c 65

for tol = 10−2.

Table 2: A comparison of total wall clock time (“– –” are abnormal terminations)
tol = 10−2 tol = 10−4

Matrix nev ARPACK LOBPCG EigPen ARPACK LOBPCG EigPen
Andrews 600 2956 575 159 3344 1160 496

C60 200 57 29 19 59 52 44
c 65 500 – – 331 3099 – – – – 10030
cfd1 700 – – 815 233 – – 2883 1547

finance 700 9903 968 472 16120 4629 1122
Ga10As10H30 1000 – – 5390 1848 – – – – 5531

Ga3As3H12 600 4871 771 563 6587 – – 1600
OPF3754 200 23 8 10 23 28 17

shallow water1 800 2528 642 215 18590 3849 951
Si10H16 200 73 77 24 78 100 86

Si5H12 200 103 86 24 114 114 38
SiO 400 789 265 81 840 1534 287

wathen100 300 828 219 89 869 1103 219

The minimal, average and maximal number of the RR steps performed by EigPen in this set of tests is,

respectively, 3, 5 and 9. As will be shown later, the cost of the RR steps only accounts for a very small

portion of the total cost of EigPen.

We next show the accuracy of the computed eigenpairs, as well as that of the computed minimum trace

values. We should point out that when tol is relatively large, the i-th Ritz value θi may be closer to λj for

j > i than to λi. In this case, we may miss some eigenvalues even though the convergence criterion (47) is

satisfied for all i ≤ nev. To measure the accuracy of the computation, we compute the relative difference

between θi and the true eigenvalue λi computed in advance by ScaLAPACK [4]. The maximum relative

errors among all eigenvalues, which is measured by

errθ = max
i=1,...,nev

|θi − λi|
max(1, |λi|)

,

are reported in Table 3, and the relative errors between the sum of the nev eigenvalues, defined by

errtrace =
|
∑nev

i=1 θi −
∑nev

i=1 λi|
max(1, |

∑nev
i=1 λi|)

,

are presented in Table 4. From these tables, we see that LOBPCG and EigPen achieve the same level of

accuracy on most problems. Compared with the other two solvers, the accuracy of ARPACK is worse on

most matrices when tol = 10−2 and somewhat better on about half of the matrices when tol = 10−4.

To measure the accuracy of the approximate eigenvectors, we also report the maximum residual error
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Table 3: A comparison of errθ among different solvers
tol = 10−2 tol = 10−4

Matrix ARPACK LOBPCG EigPen ARPACK LOBPCG EigPen
Andrews 1.51e-02 2.78e-04 2.31e-03 4.54e-06 4.58e-05 4.58e-05

C60 4.48e-06 1.78e-04 5.88e-04 4.48e-06 4.34e-05 4.34e-05
c 65 – – 2.43e-04 1.52e-03 – – – – 4.79e-05
cfd1 – – 2.72e-03 6.33e-03 – – 5.37e-07 3.90e-06

finance 5.19e-02 1.28e-03 4.78e-03 7.59e-05 4.80e-05 4.80e-05
Ga10As10H30 – – 2.98e-04 3.83e-04 – – – – 4.97e-05

Ga3As3H12 3.02e-02 1.70e-04 9.15e-04 5.50e-03 – – 4.69e-05
OPF3754 3.59e-06 6.74e-04 8.80e-04 3.59e-06 2.22e-05 2.22e-05

shallow water1 3.96e-01 5.75e-03 5.80e-03 3.85e-04 8.64e-06 8.42e-06
Si10H16 2.83e-02 5.01e-05 9.77e-05 2.53e-02 4.33e-05 4.33e-05

Si5H12 5.52e-02 6.11e-05 3.35e-04 4.38e-06 3.86e-05 3.86e-05
SiO 2.40e-02 9.14e-05 1.42e-03 4.43e-06 4.81e-05 4.81e-05

wathen100 5.27e-03 5.74e-05 9.11e-04 3.93e-06 3.17e-05 3.17e-05

Table 4: A comparison of errtrace among different solvers
tol = 10−2 tol = 10−4

Matrix ARPACK LOBPCG EigPen ARPACK LOBPCG EigPen
Andrews 1.01e-03 1.48e-05 1.06e-04 5.87e-09 1.07e-07 1.07e-07

C60 1.72e-07 4.20e-06 7.48e-06 1.72e-07 9.01e-08 9.01e-08
c 65 – – 5.73e-06 2.98e-05 – – – – 8.20e-07
cfd1 – – 2.36e-01 5.37e-01 – – 1.43e-06 1.11e-05

finance 8.13e-03 1.18e-04 4.99e-04 2.35e-07 3.91e-07 3.91e-07
Ga10As10H30 – – 1.33e-05 1.50e-05 – – – – 3.10e-07

Ga3As3H12 1.82e-03 8.57e-06 5.27e-05 6.38e-05 – – 1.01e-06
OPF3754 3.47e-09 4.87e-05 1.77e-05 3.47e-09 8.84e-08 8.84e-08

shallow water1 1.30e-01 2.38e-03 1.77e-03 2.03e-05 1.70e-07 1.49e-07
Si10H16 2.97e-03 7.60e-06 1.97e-06 1.91e-03 3.16e-06 3.16e-06

Si5H12 1.58e-03 7.62e-06 1.88e-05 2.12e-07 5.50e-07 5.50e-07
SiO 7.61e-04 6.01e-06 3.89e-05 1.72e-07 1.29e-06 1.29e-06

wathen100 2.66e-04 1.18e-05 2.43e-05 6.94e-08 3.05e-07 3.05e-07

defined by

errres = max
i=1,...,nev

resi

in Table 5. We observe that EigPen ususally returns a slightly smaller residual error than LOBPCG in this

set of tests.

4.4 Performance profile and dependency on eigenspace dimension

In this subsection, we examine how LOBPCG and EigPen perform when the number of desired eigenpairs

(nev) increases. For brevity, we only show results for two matrices Andrews and Ga3As3H12, but similar

profiles can be observed for other matrices as well. We exclude ARPACK from this comparison because

ARPACK is not as competitive as either LOBPCG or EigPen for relatively large values of nev, as is shown

by the results of the previous subsection.

In the following experiments, we set the convergence tolerance to tol = 10−2 and nev to a set of in-

creasing values {500, 1000, 1500, 2000, 2500, 3000}. We run both solvers on 24 cores. The wall clock time

measurements are plotted against nev for both solvers in Figure 1. We observe that in this test EigPen always

takes a less amount of time to run than LOBPCG does. The difference in wall clock time increases quickly

as nev increases. This observation suggests that the benefit of using EigPen become increasingly greater
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Table 5: A comparison of errres among different solvers
tol = 10−2 tol = 10−4

Matrix ARPACK LOBPCG EigPen ARPACK LOBPCG EigPen
Andrews 9.10e-03 9.58e-03 9.30e-03 3.96e-05 9.20e-05 3.14e-05

C60 1.77e-04 9.83e-03 5.23e-03 8.67e-07 9.31e-05 7.59e-05
c 65 – – 9.60e-03 9.72e-03 – – – – 7.22e-05
cfd1 – – 9.50e-03 6.22e-03 – – 9.80e-05 5.84e-05

finance 9.43e-03 9.94e-03 8.23e-03 5.86e-05 9.96e-05 7.29e-05
Ga10As10H30 – – 9.97e-03 5.99e-03 – – – – 2.72e-05

Ga3As3H12 7.92e-03 8.61e-03 8.79e-03 7.43e-05 – – 3.73e-05
OPF3754 1.19e-04 9.21e-03 5.34e-03 8.21e-05 4.96e-05 7.55e-05

shallow water1 1.00e-02 9.90e-03 6.70e-03 8.90e-05 9.61e-05 3.96e-05
Si10H16 2.44e-03 8.90e-03 3.44e-03 1.45e-05 9.01e-05 6.54e-05

Si5H12 1.99e-03 9.56e-03 6.51e-03 4.56e-05 9.78e-05 8.98e-05
SiO 1.37e-03 1.00e-02 9.11e-03 3.28e-06 9.46e-05 1.03e-05

wathen100 9.96e-03 9.60e-03 6.22e-03 1.13e-05 7.72e-05 9.95e-05

as nev becomes larger. The key reason that EigPen performs much better than LOBPCG for large nev is

that, by performing far fewer RR steps, it is able to leverage BLAS3 operations that are highly optimized

for Hopper (and other high performance computers).
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Figure 1: A comparison of wall clock times by LOBPCG and EigPen to compute nev eigenpairs of the
matrices Andrews and Ga3As3H12 as nev increases.

In Figure 2, we show run times of four categories: sparse matrix vector multiplications (SpMV), dense

matrix-matrix operations (BLAS3, the DGEMM,DSYRK,DPOTRF,DTRSM subroutines in BLAS and LA-

PACK), Rayleigh-Ritz (RR, the DSYGVD,DSYEVD,DGESVD subroutines in LAPACK) calculations, and

matrix copying (the DLACPY subroutine in LAPACK). These are the major computational components of

both EigPen and LOBPCG, albeit in different proportions. Two clarifications are in order here. Firstly, we

categorize these subroutines only at the highest solver level. As such, any call to DGEMM inside the subrou-

tine DSYEVD, for example, is not counted as in the BLAS3 category. Secondly, although the “correctness”

of such a classification scheme may be debatable, it does not at alter the overall fact, as is clearly shown by

our computational results, that the category BLAS3 is much more scalable than the category RR on our test

platform.

The run time of each category is measured in terms of the percentage of wall clock time spent in that
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category over the total wall clock time. We can clearly see that for EigPen the run time of BLAS3 dominates

the entire computation in almost all cases. The BLAS3 time increases steadily as nev increases from 500 to

3000, while the SpMV time decreases steadily. The run time of RR is negligible. However, since our imple-

mentation of EigPen performs extra matrix copying when computing the gradient difference Y j defined in

(31) for the BB step size computation, the cost associated with such data movement is notable. In LOBPCG,

the relative cost of SpMV also decreases as nev increase. However, the run time of RR increases rapidly as

nev increases. When nev ≥ 1500, the run time of RR is higher than that of BLAS3. Note that the RR time

for LOBPCG seems out of proportion when nev is equal to 1000 and 1500 for the matrix Ga3As3H12. The

reason is that we have to perform a few singular value decompositions (SVD) to repair a rank deficient basis

in LOBPCG and the cost of SVD is counted in RR. The rank deficiency is caused by eigenvalues clusters

nears the 1000th and the 1500th eigenvalues.
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Figure 2: A comparison of timing profile between EigPen and LOBPCG.

Figures 1 and 2 clearly demonstrate that the advantages of the EigPen algorithm are due to fewer

Rayleigh-Ritz calculations. This advantage is more pronounced when the number of eigenpairs to be com-

puted (nev) is large because the cost of Rayleigh-Ritz calculation grows rapidly with respect to nev (and
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k). Although the complexity of the Rayleigh-Ritz calculation is the same as that associated with the dense

matrix-matrix operations required for updating the approximate solution in EigPen, dense matrix-matrix op-

erations can be implemented efficiently on modern high performance parallel computers whereas it is more

difficult to achieve the same level of efficiency for RR calculations. As a result, by keeping the number of

Rayleigh-Ritz calcuations small in EigPen and making use of more BLAS3 operations, we can make it more

efficient than LOBPCG for large nev values.

4.5 Parallel scalability

In this subsection, we examine parallel scalability of LOBPCG and EigPen. For brevity, we again only

show results for the Andrews and Ga3As3H12 matrices, although similar results can be seen for other test

problems as well. We define the speedup factor for running a code on p cores as

speedup-factor(p) =
wall clock time for a single core run

wall clock time for a p-core run
.

We set nev = 1500 and only run 5 iterations for each solver since the speedup factor does not change if

more iterations are performed.

Figure 3 shows the speedup factors associated with SpMV, BLAS3, RR and DLACPY, as well as the

overall computation, when the parallelized Fortran codes are run with 2, 4, 8, 16 and 24 cores. As we can

clearly see from the figure that the speedup factors for BLAS3 are nearly perfect when these codes are run

on as many as 24 cores. The scalability of SpMV is almost as good for the Ga3As3H12 problem. But it is

slightly worse beyond 8 cores for the Andrews matrix, which we believe is due to a higher sparsity of the

Andrews matrix that makes the effect of thread overhead more prominent in parallel SpMV calculations.

However, the speedup factor for RR increases slowly with respect to the number of cores up to 8 cores, then

it starts to decrease. Because computation in EigPen is heavily dominated by BLAS3 (and to a lesser extent

by SpMV) that scales much better than RR, the overall scalability of EigPen is better than that of LOBPCG.

4.6 Preconditionining for EigPen

One can also introduce a preconditioner in EigPen similar to LOBPCG. The use of a preconditioner essen-

tially amounts to a change of variable in the form of Y = LX . If an appropriate nonsingular L is chosen,

substituting X = L−1Y into (2) yields a problem with a better conditioned Hessian. Let M = LTL be a

preconditioner. It is not difficult to show that a preconditioned gradient method can be described by

Xj+1 = Xj − αjM−1∇fµ(Xj). (48)

We now demonstrate that the performance of EigPen can be improved by preconditioning using the

matrix “c 65” as an example. Recall from Table 2 this problem is relatively difficult to be solved by

EigPen without using a preconditioner. The following experiment is performed in MATLAB on a Dell

Precision M4700 workstation with Intel i7-3720QM CPU at 2.60GHz (×8) and 16GB of memory running
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Figure 3: A comparison of timing profile between LOBPCG and EigPen.

Ubuntu 12.04 and MATLAB 2011b. We choose to use MATLAB because it is relatively easy to construct a

preconditioner and perform M−1∇fµ(Xj) in MATLAB.

We computed nev = 500 eigenpairs with the tolerance tol = 10−2 by using the same RR restart

Algorithm 2 as in subsection 4.3. The preconditioner is computed by performing an incomplete Cholesky

factorization of the matrix “c 65” using the command

L = ichol(A,opts),

where opts = struct(’type’,’ict’,’droptol’,1e-2,’michol’,’on’). Without precon-

ditioning, EigPen consumed 4700 seconds and performed a total number of 3389 gradient evaluations. With

the preconditioner, the wall clock time went down to 2339 seconds and the total number of gradient evalua-

tions decreased to 1375.

In order to see the effect of preconditioning clearly, we show the iteration history of the gradient norm

{‖∇fµ(Xj)‖F } computed by Algorithm 1 using the unpreconditioned scheme (27) and the preconditioned

scheme (48), respectively. The results are depicted in Figure 4. It is clear that preconditioning can improve
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the performance of EigPen significantly.
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Figure 4: The gradient norm ‖∇fµ(Xj)‖F versus iteration on c 65 matrix without/with preconditioning.

We should point out that it is generally not easy to identify an effective and efficient preconditioner for an

eigenvalue problem. An ideal preconditioner should be close to A−1 so that the first term of the Hessian (6)

associated with the transformed problem becomes well conditioned. Yet, the pre-conditioner itself should

not be too ill-conditioned; otherwise, the subsequent terms in (6) may become ill-conditioned, possibly

making the entire Hessian ill-conditioned. The purpose of presenting the above example is not to promote

a particular pre-conditioner, but rather to demonstrate the fact that EigPen can indeed take advantage of a

good pre-conditioner whenever it is available.

5 Conclusion

We propose and study a quadratic penalty approach for large-scale eigenspace computation. Our analysis

on stationarity of the penalty function establishes, under suitable conditions, not only an equivalence to

the original eigenvalue problem in terms of the optimal invariant subspace, but also a desirable property

of having fewer saddle points. It appears that our analysis and usage of quadratic penalty functions for

eigenspace computation is new. A gradient-type method is then developed in which the number of Rayleigh-

Ritz (RR) steps, including orthogonalization, is greatly reduced in exchange for BLAS3-rich operations.

Hence, our method has the potential to take advantage of tens or hundreds of thousands-way concurrency

on modern multi/many-core systems.

Numerical experiments, based on a Fortran implementation using OpenMP, are conducted on a parallel

computer to evaluate the performance of our new eigensolver EigPen in comparison to a few state-of-the-

art solvers such as LOBPCG. In our numerical experiments (where preconditioning is not used to avoid

complications), EigPen generally outperforms LOBPCG in wall clock time, especially as the dimension

of the computed eigenspace increases. This trend in favor of EigPen can be explained as follows. As the

eigenspace dimension increases, the computation in EigPen is increasingly dominated by dense matrix-
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matrix operations, but in LOBPCG it is increasingly dominated by the Rayleigh-Ritz procedure including

orthogonalization. Clearly, the former is more scalable than the latter on modern high performance comput-

ers.

The performance of EigPen can certainly be improved in several aspects, such as speeding up conver-

gence or improving accuracy, with the help of a number of techniques or of Hessian information. Candidate

techniques may include subspace optimization, preconditioning, deflation and polynimail filtering (in fact

we have tried some of them but did not include them in our numerical comparison for simplicity). A verifica-

tion of the parallel efficiency of EigPen using the Message Passing Interface (MPI) is also highly expected.
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