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Impact of bio-optical data assimilation on short-term coupled
physical, bio-optical model predictions
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[1] Data assimilation experiments with the coupled physical, bio-optical model of
Monterey Bay are presented. The objective of this study is to investigate whether the
assimilation of satellite-derived bio-optical properties can improve the model predictions
(phytoplankton population, chlorophyll) in a coastal ocean on time scales of 1-5 days. The
Monterey Bay model consists of a physical model based on the Navy Coastal Ocean Model

and a biochemical model which includes three nutrients, two phytoplankton groups
(diatoms and small phytoplankton), two groups of zooplankton grazers, and two detrital
pools. The Navy Coupled Ocean Data Assimilation system is used for the assimilation
of physical observations. For the assimilation of bio-optical observations, we used
reduced-order Kalman filter with a stationary forecast error covariance. The forecast error
covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical
orthogonal functions estimated from a monthlong model run. With the assimilation of
satellite-derived bio-optical properties (chlorophyll @ or absorption due to phytoplankton),
the model was able to reproduce intensity and tendencies in subsurface chlorophyll
distributions observed at water sample locations in the Monterey Bay, CA. Data
assimilation also improved agreement between the observed and model-predicted ratios
between diatoms and small phytoplankton populations. Model runs with or without
assimilation of satellite-derived bio-optical observations show underestimated values of
nitrate as compared to the water sample observations. We found that an instantaneous
update of nitrate based on statistical relations between temperature and nitrate corrected the
model underestimation of the nitrate fields during the multivariate update.

Citation: Shulman, I., S. Frolov, S. Anderson, B. Penta, R. Gould, P. Sakalaukus, and S. Ladner (2013), Impact of
bio-optical data assimilation on short-term coupled physical, bio-optical model predictions, J. Geophys. Res. Oceans, 118,

2215-2230, doi:10.1002/jgrc.20177.

1. Introduction

[2] During the last decade, considerable cfforts have been
made in development and testing approaches for the assimi-
lation of bio-optical properties (especially satellite observa-
tions of the ocean color) into biochemical, physical models.
Some studies havc focuscd on thc optimization of modcl
parameters and paramctcrizations with regards to obscrvations
[see, for example, Spitz et al., 1998; McGillicuddy et al.,
1998; Fennel et al., 2001; Hofmann and Friedrichs, 2002;
Friedriclis et al., 2006; Smith et al., 2009; Doron et al.,
2011], while othcrs havc focused on the sequcntial cstimation

lO;:canography Division, Naval Rescarch Laboratory, Stennis Space
Center, Mississippi, USA.
2Naval Rescarch Laboratory, Monterey, California, USA.
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navy.mil)
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(updating) of model bio-optical and physical state variables
bascd on availablc obscrvations [for cxamplc, Anderson et al.,
2000, 2001; Natvik and Evensen, 2003; Besiktepe et al., 2003;
Nerger and Gregg, 2007, Cossarini et al., 2009; Smith and
McGillicuddy, 2011; Ciavatta et al., 2011; Ford et al., 2012;
Hu et al., 2012; Rousseaux and Gregg, 2012]. The objectives
of many studics were the improvement of scasonal or yearly
hindcasts of bio-optical properties. For cxample, in Cossarini
et al. [2009], the objective was to investigate the seasonal
ecosystem dynamics of the Lagoon of Venice. The objective
of Ciavatta et al. [2011] was to investigate if a yearlong
assimilation of weekly satellitc chlorophyll data improves
the hindcast of key biogeochemical variables in shelf seas.
Ford et al. [2012] conducted assimilation of satellite-derived
chlorophyll into the global coupled physical, biochemical
modcl. The objective of Rousseaux and Gregg [2012] was
thc study of climate vanability and phytoplankton com-
position in the Pacific Ocean. The impact of yearlong
assimilation of SeaWiFS- and MODIS-derived chlorophyll
on ecosystcm model predictions was investigated in Hu et al.
[2012]. Sec Gregg [2008], McClain [2009], and Hu et al.
[2012] for a more detail review of data assimilative studies.
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Figure 1. Map of the observational assets during June 2008

ficld program: MBARI moorings M1 and M2 locations; R/V
Point Sur stations and watcr sample locations; HPLC sam-
ple locations; glider tracks (shown schematically); AUV
DORADO survey; locations of HF radar sites.

[3] In contrast to the existing studies, the objective of
this papcr is to investigatc whether the assimilation of
satcllitc-dcrived bio-optical properties (as eithcr chlorophyll
a (Chl) or absorption cocfficient) can improve thc ccosystem
model predictions of chlorophyll and phytoplankton pop-
ulation in a coastal ocean on time scales of 1-5 days. The
specific time scale of 1-5 days is chosen because it is a time
scale of availability of thc atmospheric modcl forecast
needed to force the occanic model forceast. The atmospheric
model forecast includes predictions of short-wave radiation,
which is critical not only for forecasting the heat content and
other physical propertics of the occan but also for estimating
thc photosynthctically active radiation (PAR) which drives
photosynthesis of the ccosystem model, and rclevant to the
forecast of the underwater light. Predictions of optical prop-
erties and underwater light are critical for numerous Navy
opcrations, which rcly on 1-5 days of forecasts.

[4] Wc designed our computational expcriments to coin-
cide with a large bio-optical ficld campaign that was
conducted in Monterey Bay, California during a sustained
wind-driven upwelling event in June 2008. The field pro-
gram captured the dynamic rcsponse of the Bay ecosystcm
to the continuous supply of nutrients from coastal upwelling.
To characterize the dynamics of the system, a combination
of field assets and measurcments systems was deployed,
including ship surveys, buoys, and autonomous underwater
vehicles. The experiment was a collaboration between the
NRL “Bio-Optical Studies of Predictability and Assimilation
for the Coastal Environment (BIOSPACE)” project, Multi-
disciplinary University Rescarch Initiative (MURI) project
“Rapid Environmental Asscssment Using an Integratcd
Coastal Ocean Observation-Modeling System (ESPRESSO),”
and thc Montcrey Bay Aquarium Rcsearch Institute (MBARI).

The objective of the NRL participation in the experiment was
to study the variability and predictability of underwater light
and coupled bio-optical and physical properties of the water
column on time scales of 1-5 days.

[s] The structurc of the paper is as follows: Section 2
describes observations, models, and data assimilation
schemes used in this study. The bio-optical physical condi-
tions during the data assimilation experiments are described
in section 2.1.3.3. The design of data assimilation cxperi-
ments is described in section 3. Section 4 presents results
of the data assimilation experiments. Section 5 is devoted
to discussions and conclusions.

2. Methods

2.1

2.1.1. Physical Observations

[s] Obscrvations of winds, temperature, and salinity from
the Monterey Bay Aquarium Research Institute (MBARI)
surface moorings M1 (122.02°W, 36.74°N) and M2
(122.40°W, 36.67°N) are used in this study (Figure 1).
Ncar-surface 3 m wind speed and direction were measured
by a MetSys wind monitor. Tcmperaturc and salinity wcre
measured by Sea-Bird MicroCAT CTD sensors at 12 depths
between | and 350 m. According to the manufacturer’s stated
accuracy, the data are expected to be accurate to within
about 0.005°C and 0.006 practical salinity units (psu).

[7] Surfacc current obscrvations used in this study were
derived from the California Coastal Ocean Current Mapping
Program’s HF radar network (www.cocmp.org). Surface
currents were estimated based on inputs from seven HF
radar sites (Figure 1). Vector currents were estimated on a
Cartesian grid with a horizontal resolution of 3 km by com-
puting the best fit vector velocity components using all
radial velocity observations within a radius of 3 km for each
grid point each hour [Paduan et al., 2006]. Several studies
have investigated the performance of thc Monterey Bay
HF radar nctwork by comparing thc radar-dcrived currents
with in situ velocity observations and by comparing radar-
to-radar velocity estimates on the overwater baselines
between radar sites [e.g., Paduan et al., 2006]. Consistent
unccrtainty valucs emerge in the range of 7-9 cm/s for the
remotely estimated velocities.

[8] The R/V Point Sur occupied 25 hydrographic and
optical stations from 2 to 13 June 2008 (Figure 1). Tempcr-
aturc and salinity depth profiles with 1 m vertical resolution
wcre derived from Sea-Bird SBE 9+ CTD measurements
using standard Sca-Bird proccssing software. Comparisons
of the moored data with adjaccnt shipboard profiles show
agreement to generally be within 0.1°C and 0.01 psu.

[¢] Four NRL and two Rutgers University SLOCUM
gliders [Schofield et al., 2007} werc deployed during a
period of 2 weeks of surveys with the R/V Point Sur. The
gliders were equipped with a SeaBird CTD and collected
temperature and salinity profiles up to 200 m depth mostly
inside the Bay because the navigation of gliders outside
the bay became difficult duc to strong wind-driven currcnts
(~1-2 knots).

[10] Satellite surface temperature data, available in situ
temperature, and salinity profiles from the Global Ocean
Data Assimilation Experiment (GODAE) data set (http:/
www.usgodae.org/) are used in this study for the assimilation

Observations
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into the Monterey Bay model described in section 2.2.
The description of the data set, processing, and quality
control procedurcs are described in Cummings [2005] and
Cummings et al. [2009].

2.1.2. Satellite MODIS-Aqua Ocean Color Data:
Chlorophyll a Concentration and Phytoplankton
Absorption Coefficient

[11] The MODIS-Aqua satellite imagery was processed
using the NRL Automated Processing System (APS). APS
is a complete end-to-end system that includes sensor
calibration, atmospheric correction (with near-infrared
correction for coastal waters), and bio-optical inversion.
APS incorporates, and is consistent with, the latest NASA
MODIS code (SeaDAS) [Gould et al., 2011; Martinolich
and Scardino, 2011].

[12] In this study, estimates of the chlorophyll a (Chl)
and absorption cocfficicnt due to phytoplankton at 488 nm
(a,n(488)) from MODIS-Aqua imagery on 5 and 10 June
2008 were assimilated into the bio-optical, physical model
described in section 2.2. Chlorophyll data are derived by
OC3M algorithm [O’Reilly et al., 2000], while a,,(488) data
are derived by using a quasi-analytical algorithm (QAA)
[Lee et al., 2002] at 1 km pixel resolution. Data are inter-
polated to the model grid spatially and temporally to 0Z and
12Z (with 12 hdata assimilation update cycle (see section 3)).

[13] Errors in satellite derived products as chlorophyll a
and absorption are usually poorly known. McClain [2009]
stated that many recent investigations in comparison of sat-
ellite derived products with water samples or high-
performance liquid chromatography (HPLC) data were
inconclusive mostly due to differences in the pigment
measurement methodology, i.e., fluorometric for water
samples versus high-pressure liquid chromatography
(HPLC). In McClain [2009]: “The satellite data product
accuracy goals generally accepted by the international mis-
sions are +5% for water-leaving radiances and +35% for
chlorophyll in thc open ocean.” At the samc time, it is also
stated that crrors differ regionally. Lee et al. [2010] reported
error in cstimation of absorption around 10% for values
below 0.1 m“l, which is an about average value for the
Montcrey Bay area.

2.1.3. Bio-Optical Observations Used for Model
Predictions Verification
2.1.3.1. Extracted Chlorophyll From the Water Samples

[14] Water was collected at up to 12 depths at each R/V
Point Sur station (Figure 1). Samplcs (280 ml) were taken
from thc Niskin bottles and filtered through 25 mm
Whatman GF/F (glass fiber filters) at 5-7 mm Hg pres-
sure. The filters were then placed into glass scintillation
vials with 10 ml of 90% acetone and frozen for 24 h to
allow chlorophyll extraction [Venrick and Hayward,
1984]. Samplcs were allowed to wanm for several hours
in the dark before fluorcscence measurements were per-
formed with a Turner 10-AU Fluorometer using standard
methods [Holm-Hansen et al., 1965; Lorenzen, 1966]. To
correct for phacophytin interference, each sample was then
acidificd with threc drops of 5% HCI to convert chloro-
phyll to phaeophytin. The ratio of these two measurements
is directly proportional to chlorophyll concentration.
2.1.3.2. High-Performance Liquid Chromatography Data

[1s] Water samples (540 ml) collected from near-surface
(~0.5 m) Niskin bottles were filtered onto Whatman glass

fiber filters (GF/F). The high-performance liquid chromatog-
raphy (HPLC) analysis provided pigment indices and
propottion factor for microplankton, nanoplankton, and
picoplankton [Vidussi et al., 2001]. The pigment data
indicated that the microplankton fraction was composed
predominantly of diatoms (based on the presence of fuco-
xanthin). For this analysis, the nano- and picoplankton frac-
tions were combined to represcnt the “small phytoplankton”
in our coupled bio-optical physical model (section 2.2).
Claustre et al. [2004] reported 11.5% uncertainty for fuco-
xanthin and 7% for chlorophyll a.
2.1.3.3. Nitrate Data

[16] Propeller-driven AUV such as thc MBARI manu-
factured DORADO has been described in Bellingham et al.
[2000] and Ryan et al. [2009]. The DORADO was deployed
on 3 June 2008 in the Monterey Bay (Figure 1), and instru-
ments on board included in situ ultraviolet spectrophotome-
ter scnsor that measured nitrate concentrations [Johnson and
Coletti, 2002].

2.2. Coupled Physical, Bio-Optical Model of the
Monterey Bay

[17] The Monterey Bay model (called the Navy Coastal
Ocean Model (NCOM) Innovative Coastal-Ocean Observ-
ing Network (ICON)) consists of a physical model
[Shulman et al., 2007], which is coupled to a biochemical
model [Chai et al., 2002]. The initial model development
started under the National Oceanic Partnership Program
ICON project. The physical model of the Monterey
Bay is based on the NCOM model, which is a primitive-
equation, 3-D, hydrostatic model. It uses the Mellor-
Yamada level 2.5 turbulence closure scheme and the
Smagorinsky formulation for horizontal mixing [Martin,
2006; Barron et al., 2006]. The NCOM ICON model is
set up on a curvilinear orthogonal grid with resolution
ranging from 1 to 4 km. The model domain is shown on
Figure 1. The model is forced with surface fluxes from
the Coupled Ocean and Atmospheric Mesoscale Prediction
System (COAMPS) [Doyle et al., 2009] at 3 km horizon-
tal resolution. The 3 km resolution COAMPS grid mesh is
centered over Central Califomia and the Monterey Bay.
The biochemical model (thc Carbon, Silicon, Nitrogen
Ecosystem (CoSINE) model) [Chai et al., 2002; Shulman
et al., 2011] of the NCOM ICON simulates the dynamics
of two sizes of phytoplankton, small phytoplankton cells
(<5 pm in diameter) and diatoms, two zooplankton
grazers, nitrate, silicate, ammonium, and two detritus pools
(Figure 2). Constituents from the biochemical model are
used to estimate chlorophyll and inherent optical proper-
ties (IOPs) based on the methodology outlined by Fujii
et al. [2007]. For cxample, the modcl chlorophyll concen-
tration (chl) and absorption duc to phytoplankton (a,n(4))
are estimated based on the following:

chl = chly-P1 + chl,-P2 N

agn(A) = aj(4)-chly-P1 + a3(2)-chly-P2
a;(4) = a;,(highlight)(;')'(l —foi)) + % (lowlight) (4)fou

e chl;/en; — O min

@

emax - omin
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Figure 2. Sehematie view and flowehart of the nine-eomponent bioehemieal model (the Carbon, Silieon,

Nitrogen Ecosystem (CoSINE)).

where Pl is the small phytoplankton concentration, P2 is the
diatoms coneentration, apy(7) is the absorption coefficient
due to phytoplankton, 4 is the wavelength, a}(/) and a3(4)
are chlorophyll-specifie absorption eoefficients by small phy-
toplankton and diatoms , ai’flhighlight)().)' and aj j,; ht)(/'.) arc
chlorophyll-specific absorption coeflicients at hlgﬁ and low
light by each phytoplankton group [Fujii et al., 2007}, ehl;
arc chlorophyll to nitrogen conversion cocfficicnts, cn, arc
earbon to nitrogen eonversion eoeffieients, fj, ; is the phyto-
plankton size fraction, and 8., and 8,,., are the minimum
and maximum phytoplanktonie chlorophyll to carbon ratios
[Fujii et al., 2007]. Absorption in equation (2) is modeled
as a sum of absorptions from small phytoplankton and dia-
toms. The ehlorophyll-speeifie absorption cocfficients for
small phytoplankton and diatoms are modeled separately,
taking into account their photoadaptive state (e.g., their spe-
cifie ehlorophyll to earbon ratio). This rcquires speeification
of high/low light absorption eoefficients for each phyto-
plankton group (small phytoplankton and diatoms). For
more details, see Fujii et al. [2007]. 1t is known that phyto-
planktonie ehlorophyll to earbon ratio is not eonstant and
depends on light, nutricnts, tempcrature, ete. However, to
model the ratio as variable will rcquirc introduction of more
state variables, as well as more highly uncertain model
parameters into the bioehemical model. Because the
objective of the paper is modeling on short-term time scales
(1-5 days), wc prefer to use (1)-(2) relations rather than
to increase a number of the bioechemieal model state vari-
ables and highly uncertain model parameters. Only P1 and
P2 are prognostie variables in (1) and (2).

[18] Phytoplankton photosynthesis in the bioehemieal
model is driven by photosynthetieally active radiation (PAR),
whieh is estimated based on the shortwave radiation flux

from the COAMPS model. The Penta et al. [2008] scheme
is used for PAR attenuation with depth.

[19] Open boundary eonditions for the NCOM ICON are
derived from the rcgional model of the California Current
(NCOM CCS) [Shulman et al., 2007]. The NCOM CCS
has a horizontal resolution of about 9 km, and the model is
forced with atmosphcric products dcrived from the
COAMPS [Doyle et al., 2009]. As in NCOM 1CON modcl,
the biochemical model of the NCOM CCS is also the nine-
eompartment model of Chai et al. [2002].

[20] Openboundary conditions for physieal variables (tem-
perature, salinity, veloeities) for the rcgional NCOM CCS
modcl are derived from the NCOM global model [Rhodes et
al.,2002; Barron et al.,2004], which has 1/8° horizontal reso-
lution. The NCOM global model does not have a biochemieal
model to derive open boundary eonditions for the bioechemical
model ofthc NCOM CCS. For this reason, bioehemieal traeers
of thc NCOM CCS were spun up from the elimatologieal
values of the nutrients (nitrate and silicate from The World
Atlas) [Garcia et al., 2006] and baeckground values for other
biochemieal variables from Oetober 1998 to June 2008.

2.3. Assimilation of Physical Observations

[21] For the assimilation of physical observations (tem-
perature and salinity), the NCOM 1CON model uses the
Navy Coupled Ocean Data Assimilation (NCODA) system
[Cummings, 2005; Cummings et al., 2009]. The NCODA is
a fully 3-D multivariatc optimum interpolation system. As-
similation of tcmpcrature and salinity data is performed every
12 h (assimilation cycle). The NCODA assimilates satellite
altimeter observations, satellite surface temperature, as well
as available in situ vertieal temperature and salinity profiles
from XBTs, ARGO floats, moored buoys, and gliders from
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Figure3. (a) 10 m wind vclocity at MBARI moorings M1 and M2. (b) HF radar surfacc currents.
(c) MODIS-Aqua chlorophyll and MODIS-Aqua SSTs (bottom). The modeling domain is shown with

black solid line overlay over MODIS-Aqua SST images (bottom).

the Global Occan Data Assimilation Expcriment (GODAE)  [2005] and Cummings et al. [2009]. Results of glider, ship,
data sct. The description of the data scts, processing, and and satcllite data assimilation into the NCOM ICON model
quality control procedures are described in Cummings are described in Shulman et al. [2009, 2010].
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Table 1. Description of the Model Runs

Assimilation Multivariate Update
Runs Physics (NCODA) MODIS Chl (BOMA) MODIS a,,(488) (BOMA) Small Phytoplankton Diatoms Nitratc
Run 1 No No No N/A N/A N/A
Run 2 Yes No No N/A N/A N/A
Run 3 Yes Yes No Yces Yes No
Run 4 Yes No Ycs Yes Yes No
Run § Yes Yecs No Yces Yes Ycs
Run 6° Ycs Yes No Yes Yes Yes

“Adjustment of nitratc based on temperature versus nitrate statistical relation (sec scction 3).

2.4. A Multivariate Data Assimilation of Bio-Optical
Properties (BOMA)
24.1. Kalman Gain Update

[22] To preserve the robustness of thc existing assim-
ilation systein for physical ficlds (NCODA), we decidcd to
decouple updates to the physical fields from the updatcs to
the components of thc ecosystcm model. To assimilatc bio-
optical measurements into the ecosystem model, we used
reduced-order Kalman filter with a stationary forecast error
covariance.

[23] Thc analysis fields for the bio-optical model state
variables were updated using Kalman update equations:

=3 +K(y-H) 3)
K = PyP;} @)

»w
where x° and ¥’ are the vector of analyzed and forecasted
bio-optical properties, y are available observations, # is the
observational opcrator that maps the model state onto avail-
ablc observations, and K is the Kalman gain matrix. Covari-
ance matrices P, and P,, in the Kalman gain equation (4)
are the cross-covariance between forecast and observation
errors and the innovation crror covariancc matrixes rcspec-
tivcly. For a lincar mcasurcment operator H, thesc covari-
ance matrices become:

Py =PHT (5)
P, = 1P HT +R (6)

where P is the forecast error covariancc matrix, and R is
the combined covariance of measurement and representation
errors.
2.4.2. Forecast Error Covariance Model

[24] Similar to Cane et al. [1996] and Nerger and Gregg
[2007], we used a stationary form of the error covariance
P We specified the forecast error covariance using an
cnsemble of modcl states X*™ drawn from a historic model run:

P/ x~ g P — aE[(X""s - E[chs])(chs - E[chs])T (7)

where 2 is a scalar that scalcs the climatological cnscmblc to
be consistent with the statistics of model innovations. Twin
data assimilation experiments wcre conductcd, when
pseudo- “observations” sampled from the “true” model run
were assimilated into the model run with different initial
conditions from thc “true” run. Optimal valuc of 2 = 0.01
was dctermincd based on minimization of misfits between
“true” and twin data assimilative run.

[25] We drcw the ensemble X of ~700 model states from a
monthlong run of nonassimilated model (see section 3 for
details of the run setup). To reduce the storage requircments
and because thc ensemble approximation P*™ was rank defi-
cicnt, we stored matrix P*™ using a truncated series of eigen
functions estimated from SVD of X°™:

P~ ZAZT

where Z is the matrix of orthonormal 3-D eigen functions
(EOFs) and A is the diagonal matrix of eigen values. We
retained 100 cigen functions that captured 98% of the
variancc in the ensemble covariancc P

[26] In our expcriments, we had morc obscrvations than
cnsemble members. Hence, it was more efficient to imple-
ment the inverse of covariance P,, in the space of the EOF
cocfficients instcad of the observation space formulation in
equation 6. To transform the P,, inverse from observational
space to EOF space, and to the form that requires inverse of
only R matrix, we used the Sherman-Morrison-Woodbury
formula [Barth et al., 2011] as follows:

Pl = (aiZAZTHT +R) ™ = (UUT +R) ™' =

=R~ (R'U) [1 + R0 V)R ) &0
whcre
U = VaHZVA )

2.4.3. Observation Error Covariance Model

[27] The combined covariance R of measurement and
representation errors is usually poorly known. As we stated
in section 2.1.2, “thc satcllite data product accuracy gener-
ally acccpted by thc intcrnational missions are +5% for
water-lcaving radiances and +35% for chlorophyll a in thc
open ocean” [McClain, 2009]. However, errors differ
regionally. As it is shown in section 4, the coupled physical,
bio-optical modcl (section 2.2) is under productive in the
Bay without data assimilation, and it is dcsirable to incrcasc
influence of observations on model predictions. We assumed
that covariance R had diagonal structure (uncorrelated
errors) and was stationary and proportional to the variance
of the observed ficld. Wc set the variance of R to be equal
to 10% of the field variance. The rcsulting magnitude of
the measurcment error was in agrecment with uncertainty
studies [Lee et al., 2002, 2010] of the QAA satellite retrieval
algorithm that was used in our study (section 2.1.2).
2.44. Localization

[28] To mitigatc for thc presence of spurious correlations
in our ensemble approximation to the forecast error
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covariancc cquation (7) and to cxcludc remote obscrvations
from thc analysis of thc local grid point, we localized the
forecast error covariance P using the box-car localization
function:

P = Ce * P™ (10)

c(xr,x2) = f|lx1 — x2ll,SLioc

. 11
c(xi,x2) = Oif ||lxy — x|, > Lioc (i)

Cloc(xl ) st) = {
where Ly, is the localization distancc. The choice of the
localization distancc represents a challenge. In Hu et al.
[2012], for assimilation of satellite-derived chlorophyll
observations, the localization distance was set up to 100 km.
In our case, this is approximately thc sizc of the modeling
domain. Through conducted twin experiments, we established

Model-predicted SSTs and surface currents for runs 1 and 2 (scc section 3 for modcl runs design).

that L,,. of 10 km was appropriate for our domain. We only
used localization in one of our runs (run 4 in section 3).
When localization was used, we implement Kalman filter
equations (3-4) as a set of independent filters, with each
filter updating a single water column. Because we used the
box-car localization function (equation (11)), the update for
each water column was cquivalent to using nonlocalized filter
that only accountcd for observations within the localization
distance L,

x"(iwc) = xf(iwc) + K(,Vloc b Hloc-x,)

where iy, arc the indices of grid points in a given water
column, y, are obscrvations within the localization radius
Ly, and Hy, 1s the observational operator that maps the model
state of the updated water column iy, onto observations ..
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Figure 5. Loeations of R/V Point Sur water sample sections A (taken 9 June) and B (taken 10 June) (top
inscrt); observed (seeond row) and model-predieted (runs I and 2) temperature profiles along seetions A and B.

3. Bio-Optical, Physical Conditions During Data
Assimilation Experiments

[29] Data assimilation experiments deseribed in this study
were eondueted for the time frame from 5 to 10 June 2008.
Observed wind veloeities at MBARI moorings (Figure 3)
indicate that this period was characterized by steady upwell-
ing winds. At the beginning of the experiment, 33 h low-
pass-filtered HF radar surfaee eurrents indieate a southward
flow along the cntrancc to the bay that scparates a well-
defined eyelonie eddy in the Bay and an antieyelonie eireu-
lation offshore (Figure 3). Five days later (Figure 3), HF
radar data show weakening of the cyclonic circulation.
Coineident with this weakening of eyelonie eireulation and
eurrents, conditions for phytoplankton growth in the Bay
improved as indieated by the inerease in surfaece eoneentra-
tions of chlorophyll a (Figure 3). In aceord with Figure 3,
the satellite-derived SST images from MODIS-Aqua
satellite show development and strengthening of a eold fila-
ment along the entranee to the Bay, separating warm, less

produetive anticyclonic cireulation offshore from the more
productive waters of the Bay.

4. Design of Data Assimilation Experiments

[30] Table I lists the runs and their attributes eonsidered in
this study.

[31] Run 1 is the base run of the NCOM ICON model
deseribed in seetion 2.2. The run was initialized from the
NCOM CCS model on 22 May 2008 and was run until
the end of June without any assimilation of physical or
bio-optical observations presented in seetion 2.1. The output
from run 1 (during the month of June) is used to estimate
error covariance P’ in aceord with section 2.4. All runs
deseribed below started from the restart file from run 1
(physical and bio-optical state variables) on 5 June 00Z
and were run for 5 days until 10 June 00Z.

[32] Run 2 is the run with the assimilation of physical
observations listed in section 2.1.1 with a 12 h data assimi-
lation eyele. Therefore, for each 12 h of the model run,
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Table 2. RMSE Between Observed and Model-Predicted Distri-
butions of Temperature and Salinity at Water Sample Scctions A
and B (Figure 3)*

Temperature Salinity
Scction A Scction B Scction A Section B
Run | 1.00 1.0 1.00 1.00
Run 2 0.78 0.86 0.35 0.82

“RMSE is normalized by the RMSE for the basc run 1 (0.9° and 0.06 psu
for scction A; 0.57° and 0.06 psu for scction B).

NCODA assimilated physical observations and crcated a
new restart file (noweast) with updated (analyzed) tempera-
ture and salinity fields. The next segment of the model run
was started from this NCODA created nowcast and was
run for 12 h until the ncxt model restart file is created. None
of thc bio-optical data listed in scetion 2.1.2 were assimi-
lated in run 2. Comparisons of run 2 with the base run 1
highlight the impact of just physical data assimilation on
the model predictions of physieal, as well as bio-optieal
properties on time scales of 1-5 days.

[33] Run 3 is the run with the assimilation of physical
data as in run 2, but for each 12 h, MODIS-Aqua Chl data
(described in seetion 2.1.2) are assimilated using BOMA
(section 2.4). In accord with (3), the only analyzed
(updated) bio-optical properties were Pl (small phyto-
plankton) and P2 (diatoms). Therefore, for each 12 h of
the model run, the NCODA assimilated physieal observa-
tions and created a new restart file with updated (analyzed)
temperature and salinity fields. Using this NCODA crcated
restart file, the BOMA assimilated MODIS-Aqua Chl data
and created a ncw restart file (nowcast) with updated
(analyzed) Pl and P2. The next segment of the model
run was started from this BOMA created restart file and
was run for 12 h until the next model restart file is

OBS

crcated. Comparisons of runs 3 and 1 show the impact
of assimilations of physical, as well as MODIS-Aqua
Chl data on the model predictions of bio-optieal proper-
ties. We found that no localization was needed to assimi-
late MODIS-Aqua Chl data into the model.

[34] Run 4 is a elone of run 3, but the MODIS-
Aqua phytoplankton absorption coefficient at 488 nm
(a,,(488)) data arc assimilated in the model instead of
thc MODI1S-Aqua Chl data as in run 3. Unlikc run 3, we
found that loealization was necessary for assimilation of
phytoplankton absorption data. Localization distance Ljoc
(in scction 2.4.4) was sct to 10 km. Comparisons of runs
3 and 4 will provide the impact of the assimilation of
surface absorption coefficient versus chlorophyll data on
the model predictions of bio-optical properties on time
scales 1-5 days.

[3s] Run 5 is a clone of run 3. However, the modcl nitrate
is also updated together with the phytoplankton (P1 and P2)
through the multivariate data assimilation BOMA in accord
with section 2.4. Comparisons of runs 3 and 5 show the
impaet of also updating nitrate through multivariate assimi-
lation on thc model predictions of bio-optical properties.

[36] In the described data assimilative runs 3-5, for each
data assimilative eyele (12 h), the assimilation of physieal
observations (through NCODA) is independent from the
assimilation of bio-optical observations (through BOMA).
In run 6, we introduced an instantaneous update of the model
nitrate based on updated temperature fields (through NCODA).
For cach data assimilation eyele (12 h), the updated tempera-
ture from the NCODA is used to instantaneously update nitrate
fields through the observed statistical relations bctween
temperaturc and nitrate based on the AUV DORADO survey
(seetion 2.1.3) eonduetcd on 3 Junc prior to the start of the data
assimilation experiments (5 June). The updated nitrate field is
written into the NCODA-created restart file. Using this
NCODA created restart file, the BOMA assimilated MODIS-
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Figure 6. Observed MODIS-Aqua— and model-predicted chlorophyll distributions on 10 Junc 2008.
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Figure 7. Comparisons of observed (sections A and B, see locations on Figure 3) and model-predicted
subsurface chlorophyll distributions at water sample locations.

Aqua Chl data and created restart file (nowcast) with updated
(analyzed) P1, P2, and nitrate ficlds (as in run 5). Comparisons
of runs S and 6 provide the impact of the instantancous updatc
of nitrate fields (based on updated physical fields (tempera-
ture)) on bio-optical properties predictions.

5. Results

S.1.

[37] Figures 4 and 5 provide a comparison of physical
properties between runs | and 2 (without and with assimila-
tion of physical data, sec scction 3 and Tablc 1). There are
significant differcnces in predictions of surface and subsur-
face physical properties: Run 2 matches much better with
observed SSTs (Figure 3), as well as observed subsurface
temperature distributions from the water samples (Figure 5).
This is also supported by the RMS errors (RMSEs) between
observed watcr samples and model-predicted tempcraturc
and salinity fields presented in Table 2. RMSEs for run 2
are reduced by 14%65% in comparison to the base run 1.
Conceming currents, run 2 is also better defined than in
run | cyclonic circulation in thc Bay.

[38] Figurc 6 provides a comparison of surface modcl-
predicted chlorophyll distributions for runs ! and 2. Without
the assimilation of MODIS-Aqua Chl, the model predicts
much lower chlorophyll values in the Bay for both cases of
with (run 2) and without (run 1) assimilation of physical
obscrvations.

Assimilation of Physical Data

5.2. Assimilation of Satellite-Derived
Bio-Optical Properties

[39] In agrecment with satellitc observations, the assimila-
tion of MODIS-Aqua Chl increased the model productivity
inside the bay and decreascd productivity outsidc the bay
for run 3 (Figure 6). The assimilation of ap,(488) (run 4) also
increased productivity inside the Bay; howcver, it also
created an artificial tongue of high Chl values offshore from
the northern part of the domain along the coast. This might be
a result of difficulties in assimilation of offshorc values of
absorption, which are significantly lower in comparison to
the values in the Bay. As stated in section 3, run 4 was done
with the localization (see section 2.4.4). This was required to
avoid noisy updated fields and to exclude remote a,,(488)
observations from the analysis of the local grid point.

Table 3. RMSE Between Observed and Model-Predicted Chloro-
phyll Distributions at Water Sample Sections A and B (Figure 3)*

Section A Section B
Run 1 1.00 1.00
Run 2 1.01 1.02
Run 3 0.71 0.95
Run 4 0.65 0.83
Run 5 0.70 0.93
Run 6 0.71 0.94

"RMSE is normalized by the RMSE for the basc run 1 (5.8 mg/m® for
scction A; 8.6 mg/m’ for scction B).
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Figure 8. Modcl-predicted surfacc diatoms and small phytoplankton distributions.

[40] Figure 7 provides comparisons of the model-predicted
subsurfacc Chl distributions to obscrved distributions (from
watcr bottle analyses) along sections A and B (recall that
chlorophyll data from the water samples were not assimilated).
The assimilation of surfacc MODIS-Aqua Chl improved not
only surface (Figure 6) but also subsurface model Chl predic-
tions in the Bay for data assimilative runs 3—4. Quantitatively,
this is also reflected in Table 3, where RMSEs between
observed Chl from water samples and corresponding model-
predicted Chl values (at water sample locations) arc prescnted.
All RMSE metrics arc normalized by thc corresponding
RMSE metric for the base run 1 (no assimilation of physical
as well as bio-optical properties). Table 3 shows similar values
of RMSE metrics for runs 1 and 2. This indicates that while the
assimilation of physical obscrvations improved the model
predictions of physical propertics, the model predictions of
Chl are not improved on time scales 1-5 days. Results show
that the assimilation of observed surface Chl or a,;,(488)
provides improvement in subsurface Chl predictions ranging
from 5% to 35%. Whilc the assimilation of MODIS-Aqua
bio-optical products improved subsurfacc predictions for
runs 3 and 4, the model subsurface predictions of Chl are still
undercstimated in comparison to the water sample profiles
(Figurc 7). One of the rcasons might be that MODIS-Aqua
bio-optical data arc assimilated as observed surfacc values,

while satcllite data provide an cstimate of the average, for
example, chlorophyll concentration over the layer between
the surface and one attenuation depth. In this case, based on
observed profiles on Figure 7, MODIS-Aqua Chl data should
somewhat undercstimate the “true” surface Chl (this is also
illustrated by a comparison of Chl values from the water
samples taken at surfacc and MODIS-Aqua Chl values at
water samplc locations (comparison is not shown here)). For
this reason, assimilation of satellite Chl data (as well as
a,n(488)) as surfacc obscrvations should result in under-
estimated surfacc and subsurface Chl values in model predic-
tions, which is illustrated in Figure 7.

[41] Assimilation of MODIS-Aqua bio-optical observations
increased (decreased) the concentration of diatoms (small
phytoplankton) inside the Bay in comparison to nonassimilative
runs 1 and 2 (Figure B). This is supported by comparisons of
model predictions with observed fractions of microplankton
(analog of diatoms in the model) versus total phytoplankton
from HPLC data (scction 2.1.3). Comparisons are presented
on Figurc 9. The HPLC data indicate that thcrc was stcady
prescnce of diatoms in the Bay between 5 and 10 June, with
the fraction of diatoms to total phytoplankton population in
the range of 90%. Runs 1 and 2 show variable fractions of
diatoms to the total phytoplankton population ranging from
20% to 80%, but mostly below the observed HPLC fractions.

PERCENT
100
[ [ (X}
® 0%, %% e,00%c03g g%e °e - 30..'-": 0e®°8
8 g L X [ .:.. o®
) 8 e g 0 ® Bgogge 330 3,432
o® YY) ° .. ‘ ° o ®
600 ® A L] . L] * [ XX i.
. O .o oo & . oe
° ° e® °
40 03.. P ® on [}
. .i.. °
20 [
SuN o) JUN JUN JUN JUN JUN
0 [IA] 06 07 08 09 10

Figure 9. Observed and model-predicted fractions of diatoms to the whole phytoplankton populations at
locations of R/V Point Sur watcr samples. Green, HPLC observed fractions; blue, run 1; light blue, run 2;

brown, run 3; red, run 4.
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Table 4. RMSE Between HPLC Fractions and Model-Predicted
Fractions of Diatoms to Total Phytoplankton Population®

RMSE
Run 1 1.00
Run 2 0.92
Run 3 0.43
Run 4 0.84
Run 5 0.42
Run 6 0.44

*RMSE is normalized by the RMSE for the base run 1 (0.52).

However, for run 3 (run with assimilation of MODIS-Aqua
surface chlorophyll), the fraction of diatoms increased and
partitioning between diatoms and small phytoplankton is in
much better agreement with the independent, nonassimilated
HPLC observations. This is also refleceted in the RMSE

SECTION A

metrics presented in Table 4. With the assimilation of
MODIS-Aqua Chl data, the RMSE between HPLC observed
and model-predicted fractions of diatoms to the total phyto-
plankton is more than twice smaller for run 3 in comparison
to the RMSE for nonassimilative base run 1. There are also
improvements in fractions of diatoms to the total phytoplank-
ton predictions for run 4 (assimilation of a,,(488)) after a
couple days of assimilation (Figure 9 and Table 4).

5.3.

[42] Figure 10 provides comparisons of the observed and
modcl-predicted subsurface nitrate distributions along water
samplc sections A and B. Runs 1 and 2 without assimilation
of MODIS-Aqua Ch! data and run 3 with assimilation of
MODIS-Aqua Chl data show underestimated values of
subsurface nitrate distributions in comparison to water
samples. Therefore, while the assimilation of MODIS-Aqua

Impact on Predictions of Nitrate Distributions

SECTION B

mg/m’
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Figure 10. Observed (top row) and model-predictcd nitrate distributions for runs 1-6 at water sample

sections A and B.
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Figure 11. Observed versus model-predicted nitrate for runs 1, 3, 5, and 6 at water sample locations.

Chl improved model subsurface Chl distributions (Figure 7)
and partitioning between diatoms and small phytoplankton
(Figure 9), it had a minimal impact on nitrate ficids in the
model. Results are similar for run 4 with the assimilation of
apy(488) (not shown here). For run 5, when phytoplankton
(and) and nitrate are updated through the BOMA, the subsur-
face nitrate distributions are even more underestimated
(Figurc 10). This is also illustrated by thc scatterplots of
observed (from water samples) versus the model nitrate fields
presented on Figure 11.

[43] As it was demonstrated in section 4.2, the model run
1 without assimilation of MODIS-Aqua Chl underestimates
surface and subsurface Chl distributions (Figures 6 and 7).
As a result, the assimilation of surfaee Chl data tends to
increase model Chl values and inerease phytoplankton
population, espeeially diatom population in the Bay (Figures 8
and 9). However, the increase in the model phytoplankton
population results in the decrease of nutrients due to the
uptake by phytoplankton for growth, which is statistieally
inherited in the model multivariate error eovarianeces used
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Figure 12. Tempcrature versus nitrate rclations for AUV DORADO, water samples, and model runs.
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in the BOMA (section 2.4). This is why the assimilation of
MODIS-Aqua Chl increased the model bias in predictions
of nitrate values even more for run 5 (Figures 10 and 11),
when not only phytoplankton but also nitrate are also
updated through the multivariate data assimilation. Note
that predictions of Chl and partitioning between diatoms
and small phytoplankton for run 5 are similar to run 3
(see Tables 3 and 4).

[44] Figure 12 shows temperature versus nitrate scattcrplots
of the AUV DORADO survey, from the water samples, and
the model runs. The average temperature versus nitrate statis-
tieal relation for the AUV survey is very similar to the relation
for the water samples, while the AUV survey was taken on
3 June which is about 6 days prior to water samples surveys.
This indicates persistence of the same statistical relation
betwcen temperature and nitrate on time scales of a week.
In run 6 (section 3), for each data assimilation cycle (12 h),
the statistical relation between T and nitrate (Figure 12) from
the AUV DORADO on 3 June is used to instantaneously
update nitrate fields based on the temperature from the
NCODA update. The nitrate predictions in run 6 improved
significantly and match nitratc observations much better in
comparison to other runs (Figurcs 10 and 11). Thercfore,
the instantaneous update of nitrate (based on statistical
relations between temperature and nitrate) corrected the a
priori model underestimation of the nitrate and the reduction
of nitrate by the multivanate update. Note that predictions of
Chl and partitioning between diatoms and small phytoplank-
ton for run 6 are similar to data assimilation runs 3 and 5
(see Tables 3 and 4).

6. Conclusions and Discussions

[45] Data assimilation experiments were conducted during
5 days of steady upwelling in the Monterey Bay area. The
results show that while the assimilation of physical observa-
tions improved the model predictions of physical properties,
the model underestimates productivity inside the Bay with
or without assimilation of physical observations. At the
same time, assimilation of MODIS-Aqua—derived optical
properties (chlorophyll or absorption due to phytoplankton)
significantly improved surface and subsurface agreement
between the model and obsecrvations. Results show that
the reduction in RMSEs between model and independent
water samples ranges from 5% to 35% in contrast to the
nonassimilative run.

[46] Whilc the assimilation improved the modcl predic-
tions, the model subsurface Chl distributions retained an
underprediction bias as compared to observed profiles from
water samples. One of the reasons might be that MODIS-
Aqua bio-optical data arc assimilated as observed surface
values, whilc satcllite data provide an estimate of the aver-
age, for example, chlorophyll concentration over the layer
between the surface and one attenuation depth. The assimila-
tion of satellite-derived products, not as surface values, but
rather as averages over attenuation depth values, is consid-
ered as a topic of our future research.

[47] Assimilation of bio-optical data also improved frac-
tionation of phytoplankton biomass between diatoms and
small phytoplankton in the model. Without assimilation,
the percentage of large diatoms varied during the experiment
between 20% and 80%. In contrast, HPLC measurements

showed the fraction of diatoms to total phytoplankton popu-
lation in the range of 90%. However, runs with the assim-
ilation of MODIS-Aqua surface chlorophyll produced much
better agreement with the independent, nonassimilated HPLC
observations. With the assimilation, the RMSE between HPLC
observed and model-predicted fractions of diatoms to the
total phytoplankton is less than half smaller than the RMSE
for nonassimilative run. There are also improvements in frae-
tions of diatoms to the total phytoplankton prcdictions for
the run with assimilation of a,,(488) after a couple days of
assimilation.

[48] To extend of our knowledge, we believe that the pres-
ent study is the first demonstration of IOP (a,,,(488)) assim-
ilation into coupled physical, biochemical dynamical model,
as well as the first demonstration of a capability to improve
the model-predicted fractionation of phytoplankton biomass
between diatoms and small phytoplankton.

[49] Model runs with or without assimilation of MODIS-
Aqua observations show underestimated values of nitrate
distributions in comparison to the water sample observa-
tions. The assimilation of MODIS-Aqua observations did
not improve the model predictions of nitrate. This can be
explained by the fact that multivariatc data assimilation
tends to increase phytoplankton population in the Bay (due
to the underestimated a priori Chl values in the model)
and, at the same time, tends to decrease nutrients. The lack
of improvements in nitrate distributions in the model sug-
gests deficiencies in the model nitrate initial and open
boundary conditions, and the need for nitrate observations
for assimilation into the model. These conclusions correlate
with results of the Ourmieres et al. [2009] study. Their goal
was an estimation of the basin scale patterns of oceanic
primary production and their seasonal variability. Ourmiéres
et al. [2009] found that intensive in situ mecasurements of
biogeochemical nutrients are urgently needed at basin scale
to improve coupled model predictions. Our results showed
that an instantaneous update of nitrate based on statistical
relations between temperature and nitratc (derived from
the AUV observations taken prior to the data assimilation
experiments) corrected the model underestimation of the
nitrate fields.

[50] The experiments conducted in this study were limited
to a 5-day period during a steady upwelling cvent. More
complicated bio-optical conditions are usually observed
during wind weakening and relaxation, when transitions
from diatoms to other phytoplankton groups might occur
with corresponding drastic changes in bio-optical properties
on time scales of days to a week. This might be a combina-
tion of changes in physical conditions (for example, dinofla-
gellates prefer more stable, stratified conditions), as well as
changes in nutrient distribution, leading to decreasing dia-
toms population and replacement by other phytoplankton
groups, which are capable of prospering at lower nutrients
levels. Also, as demonstrated in Shulman et al. [2011,
2012], dinoflagellates play an important role in changes of
bio-optical properties during the upwelling events. It was
demonstrated that during the upwelling development, dino-
flagellates avoided advection and retained their population
in the Bay due to their vertical swimming ability. The bio-
chemical model considered here does not include modeling
of dinoflagellates dynamics. Inclusion of the dinoflagellates
into the biochemical model and conducting data assimilation
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expcriments during the events influenced by their presence
is another topic of our future research.

[511 Our experiments with the ensemblc computed from a
monthlong modcl simulation suggcst that cnscmble mcthods
are very capable at capturing complex multivariate relation-
ships between optical properties, phytoplankton biomass,
and ecosystem structure (as represented by small and large
phytoplankton pools in the model). Our preliminary experi-
ments encourage furthcr development of ensemblc mcthods
for bio-optical data assimilation and uncertainty estimation
[Gould et al., 2011].

[52] Finally, in the present study, assimilation of physical
properties through the NCODA and assimilation of bio-
optical propcrtics through BOMA arc scparatcd. The adjust-
ment of updated physical and bio-optical variables is
achieved through thc coupled, bio-optical physical model
run during the data assimilation cycle. At the samc time,
an instantaneous joint update of physical and bio-optical
properties is preferred in order to maintain dynamical con-
sistency between the assimilated physical and bio-optical
fields [see, for example, Anderson et al., 2000, 2001].
The merger of NCODA and BOMA is another topic of our
future research.

[53] Acknowledgments. This rescarch was funded through the Naval
Rescarch Laboratory (NRL) projects, “Bio-optical Studics of Predictability
and Assimilation in thc Coastal Environment (BIOSPACE),” “Modcling
Dynamic Bio-Optical Laycers In Coastal Systems (DYaBOLIC)” under
program clement 61153N, and “Developing Enscmble Mcthods to Estimate
Uncertaintics in Remotcly Scnsed Optical Propertics (DEMEN)” under
program clement 62435, Our thanks also go to Fci Chai and Lei Shi of UMaine
for help with the biochemical modecl. Thanks to all holders of moorings,
gliders, AUV data, and to thc BIOSPACE mcmbers. We thank Ross N.
Hoffiman of AER and two anonymous reviewers for comments that improved
the paper. Computer time for the numerical simulations was provided through
a grant from the Department of Defense High Performance Computing Initia-
tive. SF’s works was supportcd by the David and Lucilc Packard Foundation
and the Officc of Naval Rescarch (ONR) under grant NO0O14-10-1-0424. This
manuscript is NRL contribution 7330-12-1495.

References

Andcrson, L. A, A. R. Robinson, and C. J. Lozano (2000), Physical and
biological modeling in the gulf strcam rcgion: I. Data assimilation mcth-
odology, Deep Sea Res., Part [, 47, 1787-1827.

Anderson, L. A., A. R. Robinson, and C. J. Lozano (2001), Physical and
biological modeling in thc gulf strcam region: 11. Physical and biological
proccsscs, Deep Sea Res., Part I, 48, 1139-1168.

Barron, C. N., A. B. Kara, P. J. Martin, R. C. Rhodes, and L. F. Smedstad
(2006), Formulation, implcmentation and cxamination of vertical coordi-
natc choiccs in the global Navy Coastal Occan Model (NCOM), Ocean
Modell., 11, 347-375, doi:10.1016/j.0ccmod.2005.01.004.

Barron, C. N, A. B. Kara, H. E. Hurlburt, C. Rowlcy, and L. F. Smcdstad
(2004), Sca surfacc hcight predictions from the Global Navy Coastal
Occan Modcl (NCOM) during 1998-2001, J. Atmos. Oceonic Technol.,
21, 18761893, doi:10.11 75/JTECH-1680.1.

Barth A, A. Alvera-Axcarate, J. M. Beckers, J. Stancva, E. V. Stancy, and
J. Schulz-Stcllenficth (2011), Correcting surfacc winds by assimilating
high-frequency radar surface currents in thc German Bight, Oeean Dyn.,
61, 599-610, doi:10.1007/s10236-010-0369-0.

Bcllingham, J. G., K. Streitlien, J. Overland, S. Rajan, P. Stcin, J. Stannard,
W. Kirkwood, and D. Yocrger (2000), An Arctic basin obscrvational
capability using AUVs, Oceanograply, 13, 64-71.

Besiktepe, S. T., P. F. J. Lermusiaux, and A. R. Robinson (2003), Coupled
physical and biogeochcmical data-driven simulations of Massachusctts
Bay in latc summcr: Real-time and postcruisc data assimilation, J. Mar.
Syst., 40, 171-212, doi:10.1016/S0924-7963(03)00018-6.

Canc, M. A, A. Kaplan, R. N. Miller, B. Tang, E. Hackert, and
A. J. Busalacchi (1996), Mapping tropical Pacific sca Icvcl: Data
assimilation via a rcduced statc spacc Kalman filter, J. Geophys. Res., 101,
22,599-22,617.

Chai, F., R. C. Dugdalc, T.-H. Peng, F. P. Wilkerson, and R. T. Barber
(2002), Onc-dimecnsional ccosystem model of the cquatorial Pacific

upwelling system. Part 1: Model development and silicon and nitrogen
cycle, Deep Seo Res., Part 11, 49, 2713-2745, doi:10.1016/S0967-0645
(02)00055-3.

Ciavatta, S., R. Torrcs, S. Saux-Picart, and J. 1. Allen (2011), Can occan
color assimilation improvc biogcochemical hindcasts in shelf scas?,
J. Geophys. Res., 116, C12043, doi:10.1029/2011JC007219.

Claustre H., ct al. (2004), An intcrcomparison of HPLC phytoplankton
pigment mcthods using in situ samplcs: Application to remotc sensing
and databasc activitics, Mar. Chem., 85(2004), 41-61.

Cossarini G., P. F. J. Lermusiaux, and C. Solidoro (2009), Lagoon of
Vcnice ccosystem; Scasonal dynamics and environmental guidance with
unccertainty analyscs and ecrror subspace data assimilation, J. Geophys.
Res., 114, C06026, doi:10.1029/20081C005080.

Cummings, J., ct al. (2009), Occan Data Assimilation Systcms for GODAE,
Qeceanograply, 22, 3, 96-109.

Cummings, J. A. (2005), Operational multivariatc occan data assimilation,
Q. J. R. Meteorol. Soc., 131, 3583-3604, doi:10.1256/qj.05.105.

Doron, M., P. Brasscur, and J.-M. Brankart (2011), Stochastic cstimation
of biogcochcmical paramctcrs of a 3D occan coupled physical-
biogcochcmical modcl: Twin experiments, J. Mar. Syst., 87, 194-207,
doi:10.1016/j.jmarsys.2011.04.001.

Doylc, J. D., Q. Jiang, Y. Chao, and J. Farrara (2009), High-rcsolution rcal-
time modcling of thc marinc atmosphcric boundary laycr in support of the
AOSN-II ficld campaign, Deep Sea Res., Part 11, 56, 87-99.

Fennel, K., M. Losch, J. Schrotcr, and M. Wenzel (2001), Testing a marinc
ccosystem modcl: Scnsitivity analysis and paramcter optimization,
J. Mar. Syst., 28, 45-63.

Ford, D. A., K. P. Edwards, D. Lca, R. M. Barcicla, M. J. Martin, and
J. Demaria (2012), Assimilating GlobColour occan colour data into
a pre-operational physical-biogcochemical modcl, Ocean Sci. Discuss.,
9, 687-744, doi:10.5194/05d-9-687-2012.

Fricdrichs, M. A. M., R. R. Hood, and J. D. Wiggcrt (2006), Ecosystem modcl
complexity versus physical forcing: Quantification of their relative impact
with assimilatcd Arabian Sca data, Deep Sea Res., Part 11 53, 576-600.

Fujii, M., E. Boss, and F. Chai (2007), Thc valuc of adding optics to
ccosysten  modcls: A casc study, Biogeosciences, 4, 817-835,
doi:10.5194/bg-4-817-2007.

Garcia, H. E., R. A, Locamini, T. P. Boycr, and J. 1. Antonov (2006), World
Oeean Atlas 2005, Volune 4: Nutrients (Phosphate, Nitrate, Silicate),
cdited by S. Levitus, pp. 396, NOAA Atlas NESDIS 64, U.S. Govem-
ment Printing Officc, Washington, D. C.

Gould, Jr., R. W., S. C. McCarthy, I. Shulman, E. Coclho, and J. Richman
(2011), Estimating unccrtaintics in bio-optical products derived from sat-
cllitc occan color imagery using an cnsemblc approach, Proc. SPIE, 8175,
817506-01-817506-10, doi:10.1117/12.897614.

Gregg, W. W., (2008), Assimilation of ScaWiFS occan chlorophyll data
into a three-dimensional global ocecan model, J. Mar. Syst., 69, 205-225.

Hofmann, E. E., and M. A. M. Fricdrichs (2002), Predictive modcling for
marinc ccosystems, Sea, 12, 537-565.

Holm-Hanscn, O, C. J. Lorenzen, R, W. Holmcs, and J. D. Strickland
(1965), Fluoromctric dctcrmination of chlorophyll, J. Cons. Cons. Int.
Explor. Mer., 30, 3-15.

Hu, J., K. Fenncl, J. P, Mattem, and J. Wilkin (2012), Data assimilation
with a local Enscmblc Kalman Filter applicd to a thrcc-dimensional
biological modcl of thc Middlc Atlantic Bight, J. Mar. Syst., 94(2012),
145-156.

Johnson, K. S., and L. J. Coletti (2002), In situ ultraviolct spcctrophotome-
try for high rcsolution and long tcrm monitoring of nitratc, bromidc and
bisulfide in the occan, Deep Sea Res., Part I, 49, 1291-1305.

Lee, Z, K. L. Carder, and R. A. Amonc (2002), Deriving inhcrent optical
propertics from watcr color: A multiband quasi-analytical algorithm for
optically decp watcrs, Appl. Opt. 41, 5755-5772.

Lec, Z., R. Among, C. Hu, P. J. Werdcll, and B. Lubac (2010), Unccertaintics
of optical paramcters and their propagations in an analytical occan color
inversion algorithm, Appl. Opt., 49(3), 369-381.

Lorenzen, C. J. (1966), A mcthod for the continuous mcasurement of
in vivo chlorophyll concentration, Deep Sea Res., 13, 223-227.

Martinolich, P., and T. Scardino (2011), Automoted Processing System
User’s Guide Version 4.2, NRL, Washington, D. C. [Availablc at http:/
www7333.nrissc.navy.mil/docs/aps_v4.2/html/user/aps_chunk/indcx.
xhtml.]

McClain, C. R. (2009), A dccadc of satcllitc occan color obscrvations,
Annu. Rev. Mar. Sci., [, 1942,

McGillicuddy, D. J,, D. R. Lynch, A. M. Moorc, W. C. Gentleman, C. S.
Davis, and Mcise, C. J. (1998), An adjoint data assimilation approach to
diagnosis of physical and biological controls on Pscudocalanus spp. in
the Gulf of Mainc-Georges Bank region, Fish. Oceanogr., 7, 205-218.

Natvik, L. J., and G. Evensen (2003), Assimilation of ocean colour data into
a biochcmical model of thc North Atlantic: Part 1. Data assimilation
cxperiments, J. Mar. Syst., 40-41, 127-153.

2229



SHULMAN ET AL.: IMPACT OF BIO-OPTICAL DATA ASSIMILATION

Nerger, L., and W. W. Gregg (2007), Assimilation of ScaWiFS data into a
global occan-biogeochemical model using a local SEIK filter, J. Mar.
Syst. 68, 237-254,

Ourmiéres, Y., P. Brasseur, M. Lévy, J.-M. Brankart, and J. Verron (2009),
On the key role of nutrient data to constrain a coupled physical-
biogcochcmical assimilative model of the North Atlantic Occan, J. Mar.
Syst., 75, 100115, doi:10.1016/j.jmarsys.2008.08.003.

O'Reilly, J. E, ct al. (2000), ScaWiFS Postlaunch Calibration and
Validation Analyses, Part 3, NASA Tech. Memo. 2000-206892, vol. 11,
49 pp., NASA Goddard Space Flight Center, Greenbelt, Md.

Paduan, J. D, K. C. Kim, M. S. Cook, and F. P. Chavez (2006), Calibration
and validation of dircction-finding high frcquency radar occan surface
current obscrvations, IEEE J. Oceanic Eng., 862-875.

Penta, B., Z. Lee, R. Kudela, S. Palacios, D. Gray, J. Jolliff, and 1. Shulman
(2008), An underwater light attcnuation scheme for marine ccosystem
modcls, Opt. Express, 16, 16,581-16,591.

Rhodes. R. C., et al. (2002), Navy rcal-time global modcling systcms,
Oceanography, 15(1), 29-43.

Rousscaux C. S., and W. W. Gregg (2012), Climate variability and phyto-
plankton composition in the Pacific Ocean, J. Geophys. Res., 117,
C10006, doi:10.1029/2012JC008083.

Ryan, J. P, A. M. Fischer, R. M. Kudela, J. F. R. Gower, S. A. King,
R. Marin 11I, and F. P. Chavez (2009), Influcnces of upwelling and
downwelling winds on red tide bloom dynamics in Monterey Bay,
California, Cont. Shelf Res., 29, 785-795.

Schoficld O., J. Kohut, D. Aragon, E. Creed, C. Haldeman, J. Kerfoot,
H. Roarty, C. Joncs, D. Webb, and S. Glenn (2007), Slocum gliders:
Robust and rcady, J. Field Rob., 24(6), 473-485.

Shulman, 1., B. Penta, M. A. Molin¢, S. H. D. Haddock, S. Anderson,
M. Oliver, and P. Sakalaukus (2012), Can vertical migrations of dinofla-
gellates cxplain observed bioluminescence patterns during an upwelling
cvent? J. Geophys. Res.,117, C01016, doi:10.1029/2011JC007480.

Shulman, 1., M. A. Moline, B. Penta, S. Anderson, M. Oliver, and
S. H. D. Haddock (2011), Obscrved and modeled bio-optical, biolu-
minescent, and physical propertics during a coastal upwelling
event in Montercy Bay, California, J. Geophys. Res., 116, C01018,
doi:10.1029/2010JC006525.

Shulman, 1., S. Anderson, C. Rowley, S. deRada, J. Doyle, and S. Ramp
(2010), Comparisons of upwelling and rclaxation cvents in the Monterey
Bay arca, J. Geophys. Res., 115, C06016, doi:10.1029/2009)C005483.

Shulman, I, ct al. (2009), Impact of glider data assimilation on the Monte-
rey Bay modcl, Deep Sea Res., Part 11, 56, 128-138.

Shulman, 1, J. Kindle, P. Martin, S. dcRada, J. Doyle, B. Penta, S. Anderson,
F. Chavez, J. Paduan, and S. Ramp (2007), Modeling of upwelling/rclaxa-
tion cvents with the Navy Coastal Occan Modecl, J. Geophys. Res., 112,
C06023, doi:10.1029/2006JC003946.

Smith, K. W, D. J. McGillicuddy, and D. R. Lynch (2009), Paramecter
cstimation using an enscmble smoother: The effect of the circulation in
biological cstimation, J. Mar. Syst., 76(1-2), 162-170.

Smith, K. W., and D. J. McGillicuddy (2011), Dynamical intcrpolation of
surface ocean chlorophyll ficlds via data assimilation with an itcrative
ensemble smoother, J. Mar. Syst., 85, 96-105.

Spitz, Y. H., J. R. Moisan, M. R. Abbott, and J. G. Richman (1998), Data
assimilation and a pelagic ccosystem modcl: Parameterization using time
scrics obscrvations, J. Mar. Syst., 16, 51-68.

Venrick, E. L., and T. L. Hayward (1984), Dctermining chlorophyll on
the 1984 CalCOF1 surveys. California Coop. Oceanic Fish. Invest.
Rep., 25, 74-79.

Vidussi, F., H. Claustre, B. B. Manca, A. Luchctta, and J. C. Marty (2001),
Phytoplankton pigment distribution in rclation to upper thermocline
circulation in the castern Mediterrancan Sca during winter, J. Geophys.
Res., 106, 19,939-19,956.

2230



