Contactless Microwave Measurements of Photoconductivity in Silicon Hyperdoped with Chalcogens

4. AUTHORS
David Hutchinson, Thomas Cruson, Anthony DiFranzo, Andrew McAllister, Aurore J. Said, Jeffrey M. Warrender, Daniel Recht, Peter D. Persans, Michael J. Aziz

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES
Rensselaer Polytechnic Institute
Office of Sponsored Research
Rensselaer Polytechnic Institute
Troy, NY 12180

8. PERFORMING ORGANIZATION REPORT NUMBER

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
57225-EL.5

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT
Photoconductivity in silicon hyperdoped with sulfur and selenium above the insulator-to-metal transition was measured via photoinduced changes in the microwave reflectivity of hyperdoped layers formed on p-type silicon. Despite these materials’ strong subgap optical absorption, exposing them to 1310 and 1550nm light results in a change in conductivity per photon 10,000 times smaller than what is observed in untreated silicon exposed to 980nm light. A similar bound applies for 405nm light, which is absorbed entirely in the hyperdoped layer. We use

15. SUBJECT TERMS
photoconductivity, photocarrier lifetime, hyperdoped silicon

16. SECURITY CLASSIFICATION OF:

| a. REPORT | b. ABSTRACT | c. THIS PAGE |
| UU | UU | UU |

17. LIMITATION OF ABSTRACT
UU

19a. NAME OF RESPONSIBLE PERSON
Peter Persans

19b. TELEPHONE NUMBER
518-276-2934
Contactless Microwave Measurements of Photoconductivity in Silicon Hyperdoped with Chalcogens

ABSTRACT

Photoconductivity in silicon hyperdoped with sulfur and selenium above the insulator-to-metal transition was measured via photoinduced changes in the microwave reflectivity of hyperdoped layers formed on p-type silicon. Despite these materials’ strong subgap optical absorption, exposing them to 1310 and 1550nm light results in a change in conductivity per photon 10,000 times smaller than what is observed in untreated silicon exposed to 980nm light. A similar bound applies for 405nm light, which is absorbed entirely in the hyperdoped layer. We use these results to deduce that the photocarrier lifetime in the hyperdoped material is ~ 100 ns.
Continuation for Block 13

ARO Report Number 57225.5-EL
Contactless Microwave Measurements of Photo...

Block 13: Supplementary Note
© 2012. Published in Applied Physics Express, Vol. Ed. 0 5, (4) (2012), (, (4). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authorize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution is unlimited.
Contactless Microwave Measurements of Photoconductivity in Silicon Hyperdoped with Chalcogens

Daniel Recht, David Hutchinson¹, Thomas Cruson¹, Anthony DiFranzo¹, Andrew McAllister¹, Aurore J. Said, Jeffrey M. Warrender², Peter D. Persans¹, and Michael J. Aziz³

Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138, U.S.A.
¹Department of Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.
²ARDEC, Benét Laboratories, Watervliet Arsenal, NY 12189, U.S.A.

Received February 9, 2012; accepted March 6, 2012; published online March 22, 2012

Photoconductivity in silicon hyperdoped with sulfur and selenium above the insulator-to-metal transition was measured via photoinduced changes in the microwave reflectivity of hyperdoped layers formed on p-type silicon. Despite these materials’ strong subgap optical absorption, exposing them to 1310 and 1550 nm light results in a change in conductivity per photon 10,000 times smaller than what is observed in untreated silicon exposed to 405 nm light. A similar bound applies for 405 nm light, which is absorbed entirely in the hyperdoped layer. We use these results to deduce that the photocarrier lifetime in the hyperdoped material is \(\leq 100 \text{ ns} \).

Silicon doped to nearly 1% at. %, i.e., hyperdoped, with sulfur, selenium, or tellurium is of interest because of its sub-bandgap optical absorption and potential use in photodetectors and photovoltaics.¹⁻⁶ However, whether these materials, which have absorption coefficients, \(\alpha > 10,000 \text{ cm}^{-1} \) between silicon’s band-gap and 0.2 eV, generate an electrical signal when they absorb subgap light remains unknown.²,⁶ Furthermore, these materials undergo an insulator-to-metal transition and have unexplained features in their band structure, which may be due to the delocalization of impurity states.⁷,⁸ The attribution of observations⁹ of longer-than-expected carrier lifetimes in silicon hyperdoped with titanium to such delocalization has been challenged,¹⁰ increasing the need for accurate measurements of carrier lifetime in hyperdoped silicon.

Photoinduced changes in microwave reflectivity are routinely used to measure photoconductivity without the confounding effects of electrical contacts.¹¹⁻¹⁵ In this technique, photocarriers generated by an optical pump beam lead to a small increase in the absorption of a microwave probe beam, which is detected as a decrease in the intensity of reflected microwaves. We report microwave reflectivity measurements of steady-state photoconductivity in silicon hyperdoped with S and Se by ion implantation followed by nanosecond pulsed laser melting. From these, we deduce upper bounds on the subgap photoconductivity and photocarrier lifetime in these materials.

~350 nm films doped with \(^{32}\text{S} \) and \(^{78}\text{Se} \) to peak concentrations approximately \((2−3) \times 10^{20} \text{ cm}^{-3}\) were prepared using the substrates (double-side polished, 750 \(\mu \text{m} \) thick, 10–30 \(\Omega \text{ cm} \)) and the procedure described by Said et al., omitting furnace annealing and contact deposition.³ Aside from a shallower Se implant depth, the samples should be similar in properties to those characterized previously.¹ One identically prepared samples for each dopant were measured in a microwave reflectance setup similar to that of Borrego et al.¹⁵ Figure 1 shows a schematic of the microwave setup. 38 GHz microwaves emitted by a Millitech Gunn diode pass, via a waveguide, through an isolator to protect the source from reflections. A “magic tee” then splits the microwaves into two beams. One beam passes through an attenuator and is reflected back by a metallic shunt. The other

E-mail address: maziz@harvard.edu

Fig. 1. Schematic diagram of microwave photoconductivity measurement apparatus.

DOI: 10.1143/APEX.5.041301

© 2012 The Japan Society of Applied Physics
within the 350 nm treated layer. Many measurements of each sample were made under each set of conditions and subsequently averaged. This experiment is similar to that of Sinton and Cuevas, but with microwaves as the probe.

Because the measurement involves microwave interference, we controlled for variations in sample thickness. Each sample was measured with its untreated surface resting on the stage ("down") and then measured again with its hyperdoped surface down. Because 405, 650, and 980 nm light cannot penetrate 750 μm of silicon to reach the hyperdoped layer, each sample thus provided its own untreated control at these wavelengths. Because 15% of 1060 nm light penetrates 750 μm of silicon, an additional sample was prepared where 2.7 μm (including the hyperdoped layer) were etched off using tetramethylammonium hydroxide. The signal from both sides of this sample under 1060 nm illumination was indistinguishable from a measurement of the untreated side of a hyperdoped sample.

The measured photoinduced decrease in reflected microwave intensity results from an increase in microwave absorption. This can be expressed as

\[
\text{signal} \propto \Delta A \propto \int_{\text{Sample}} \Delta \alpha_{\text{wave}}(z) E^2(z) \, dz, \tag{1}
\]

where \(\Delta A \) is the change in microwave absorption, \(\Delta \alpha_{\text{wave}}(z) \) is the change in the microwave absorption coefficient, \(E(z) \) is the microwave electric field, and \(z \) is the depth. Steady-state conditions and uniform microwave illumination imply no dependence on time or the other two spatial dimensions. Because silicon is nearly transparent to microwaves while the aluminum stage is a mirror, \(E(z) \) is a standing wave with a node at the stage. Silicon’s microwave refractive index of 3.4 gives 38 GHz microwaves a wavelength of 2.3 mm. This implies that \(E(z)^2 \) remains greater than 80% of its maximum in the top 350 μm of the sample and then decays smoothly with depth to the node at the stage. 405, 650, and 980 nm illuminations are thus absorbed in the region where \(E(z)^2 \) is nearly constant. For 1310 and 1550 nm pump wavelengths, absorbed only in the thin hyperdoped layer, \(E(z) \) can be taken as constant for measurements with the hyperdoped layer up and zero with the hyperdoped layer down (at the node). Incomplete absorption in the substrate precludes the quantitative analysis of the response to the 1060 nm pump. Nevertheless, comparison with the etched sample would detect anomalous photoconductivity at 1060 nm; this might be expected from Said et al. Although the hyperdoped layer’s resistivity of roughly 0.005 (Ω cm)\(^{-1}\) is several orders smaller than that of the substrate, the layer’s thinness ensures that it will have a small effect on samples’ microwave reflection and absorption in the dark.

Noting that the change in absorption coefficient is proportional to the change in conductivity, combining with eq. (1), and pulling \(E(z) \) out of the integral yields

\[
\text{signal} \propto \int_{\text{Sample}} \Delta \sigma(z) \, dz = \int_{\text{Sample}} \Delta n(z) \mu(z) \tau(z) \, dz, \tag{2}
\]

in which \(\Delta \sigma(z) \) is the change in conductivity, \(\Delta n(z) \) is the photocarrier concentration, \(\mu(z) \) is the carrier mobility (a single mobility is sufficient for order-of-magnitude estimates), and \(\tau(z) \) is the photocarrier lifetime. Under steady-state conditions, this implies that

\[
\text{signal} = C \Delta N \mu \tau, \tag{3}
\]

in which \(C \) is the constant of proportionality, \(\Delta N \) is the total number of photocarriers generated per second, and \(\mu \) and \(\tau \) are averages over \(z \) weighted by the steady-state photocarrier distribution. Normalizing by the number of incident photons arriving per second gives

\[
\text{signal per second} = C' \frac{\eta}{\mu \tau}, \tag{4}
\]

where the constant of proportionality \(C' \) is the same for all samples (because they have identical dimensions) and all wavelengths, and \(\eta \) is the quantum efficiency of photocarrier generation, a material property averaged over \(z \) weighted by the steady state photon distribution. Equation (4) means that the ratio of two measurements, corrected for different photon fluxes, is the ratio of the \(\eta / \mu \tau \) products implied by those measurements.

Figures 2 and 3 show the average photoinduced change in microwave reflectivity for the samples of silicon hyperdoped with S and Se, respectively. The data in both plots have been normalized by the number of pump photons incident per second, accounting for reflection, and scaled so that the signal from 980 nm illumination of the untreated side is unity. Three sets of data are shown: the signal with the untreated side illuminated, the signal with the hyperdoped side illuminated, and a calculation of the signal expected from the substrate when illuminating the hyperdoped side. Error bars represent one standard deviation in the combined three-sample datasets. The calculated data are the results when illuminating the untreated side scaled by the fraction of light transmitted by the hyperdoped layer. Recombination at the untreated surface may thus cause the calculated value to underestimate the expected signal. The transmitted fraction was computed from the optical absorption and secondary ion mass spectroscopy data (used to estimate the hyperdoped layer thickness of 350 nm) in refs. 1 and 2. Data for 1060 nm illumination is included for completeness despite the difficulties in interpretation discussed above.
At all wavelengths, our measurements were unable to detect photoconductivity in the hyperdoped material. The time-dependent photocurrent measurements at 405 nm indicated a substrate lifetime of 10μs, but produced a null result for the hyperdoped material. Even though 650 nm illumination is absorbed near the n+p junction, we observed no enhanced photoconductivity at that wavelength due to charge separation. Despite the intriguing device performance at 1060 nm reported in ref. 3, we saw no evidence of anomalous photoconductivity at this wavelength either. Given that the hyperdoped layer should absorb roughly half of the unreflected light at 1550 and 1310 nm, we conclude that the photoinduced change in conductivity in hyperdoped silicon exposed to these wavelengths is at least 10,000 times smaller (on a per-photon basis) than the change in conductivity in ordinary silicon exposed to 980 nm light. A similar statement is true for 405 nm light, which is absorbed entirely in the hyperdoped layer.

Combining this result with literature data gives an order-of-magnitude upper bound on the $\mu\tau$ product of silicon hyperdoped with S and Se. The conclusion of the previous paragraph implies that

$$10^{-4} \geq \frac{\eta h \mu_{h} \tau_{h} + (1-f) \eta_{s} \mu_{s} \tau_{s}}{\eta_{s} \mu_{s} \tau_{s}} \geq \frac{\eta_{s} h \mu_{h} \tau_{h}}{\eta_{s} \mu_{s} \tau_{s}},$$

(5)

in which the subscripts h and s represent the hyperdoped material and ordinary silicon, respectively, and f is the fraction of the signal when the hyperdoped layer is up due to carriers in the hyperdoped layer. $f < 1$ because of optical absorption below the hyperdoped layer. The second inequality holds because $\eta_{s} \mu_{s} \tau_{s} > \eta_{h} h \mu_{h} \tau_{h}$. Including carrier escape into the substrate, e.g., because of drift in an electric field caused by chalcogen concentration gradients in the hyperdoped layer,1) would add additional terms to the first inequality in eq. (5) without changing the second. Inserting order-of-magnitude estimates for silicon’s properties gives

$$10^{-4} \times 1 \times 1000 \text{cm}^2 \text{V}^{-1} \text{s}^{-1} \times 10 \mu\text{s} = 10^{-6} \text{cm}^2 \text{V}^{-1} \geq \eta_{h} h \mu_{h} \tau_{h}.$$

(6)

References 7 and 18 indicate that 50 cm2V$^{-1}$s$^{-1}$ is a reasonable estimate for the carrier mobility in the hyperdoped layer.7,18) Using this in eq. (6) implies that $20 \mu\text{s} \geq \eta_{h} h \mu_{h} \tau_{h}$. That this bound is valid for 405 nm illumination, which should cause substantial band-to-band absorption even in the hyperdoped layer (i.e., $\eta_{s} > 0.2$), suggests that a short photocarrier lifetime (≤ 100 ns) in the hyperdoped layer is responsible for photoconductivity being undetectable there. This is consistent with the lifetime reduction due to Auger recombination observed in silicon doped to similar concentrations with traditional dopants and/or Shockley–Read–Hall recombination in silicon with a similar number of deep traps[19] and prevents the use of this measurement to estimate the quantum efficiency of photocarrier generation associated with subgap absorption. Even though the samples measured here contain sufficient sulfur and selenium to be metallic,8,5) our data show carrier lifetimes much smaller than those associated with the lifetime recovery reported for silicon hyperdoped with titanium7,18) and consistent with the theoretical prediction of no lifetime recovery made in ref. 10. The contrast between these short lifetimes and the remarkable performance reported in ref. 3 for photodiodes made from these materials will be the subject of a future publication.

Acknowledgments The authors acknowledge Nathaniel Berry and Joseph Paki for technical assistance, Heyun Yin of Varian Semiconductor for ion implantation, and Joseph Sullivan, Mark Winkler, and Tonio Buonassisi for helpful discussions. This research was supported in part by the U.S. Army–ARDEC under contract W15QKN-07-P-0092 and by the U.S. Army Research Office under grant W911NF-09-1-0470. D. Recht was supported by the Department of Defense’s National Defense Science and Engineering Graduate Fellowship Programs. A. J. Said acknowledges financial support from the Fulbright Program.

