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ABSTRACT 
 

Analatom is developing a Structural Health Monitoring (SHM) system 
which provides both corrosion and strain measurements.  This combination of data 
provides critical assessment of structural health, leading to prediction of failure.  
The SHM system’s sensors can be permanently installed in high value structures, 
such as buildings, bridges, or aircraft, and are connected to data acquisition nodes 
where initial processing is performed.  From the nodes, processed data is 
transmitted using a ZigBee/IEEE 802.15.4 compliant low-power, self-organizing, 
self-healing wireless network to a central PC hub for analysis and interpretation.  
Analatom’s µLPR corrosion sensors have been installed on a mock-up bridge cable 
at Columbia University as part of a large project on development of a corrosion 
monitoring system for main cables of suspension bridges.  The sensors were placed 
inside a full-scale mock-up suspension bridge cable located in an environmentally 
controlled chamber subjected to accelerated corrosion conditions for one year. The 
µLPR sensors recorded corrosion rate measurement at 8 different locations inside 
the cable showing excellent agreement with temperature measurements. 
 
INTRODUCTION 
 

Recent studies have exposed the generally poor state of our nation’s critical 
infrastructure systems that has resulted from wear and tear under excessive 
operational loads and environmental conditions.  SHM (Structural Health 
Monitoring) Systems aimed at reducing the cost of maintaining high value 
structures by moving from SBM (Scheduled Based Maintenance) to CBM 
(Condition Based Maintenance) schemes are being developed.  These systems must 
be low-cost, simple to install with a user interface designed to be easy to operate.  
To accomplish these three points the system combines arrays of sensors connected 
to a data acquisition processor with wireless communication nodes that transmit 
data to a central processing server which uses Artificial Intelligence (AI) algorithms 
to perform diagnostic and prognostic assessments of the information. 
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To reduce the cost of the system and make it simple to install, a generic 
interface node that uses low-powered wireless communications has been developed.  
This node can communicate with a myriad of common sensors used in SHM.  In 
this manner a structure such as a bridge or ship can be fitted with sensors in any 
desired or designated location and format without the need for communications and 
power lines that are inherently expensive and complex to route.  Data from these 
nodes is transmitted to a central communications Personal Computer (PC) where AI 
algorithms analyze the data.  AI is used as it allows large data streams to be 
analyzed using non-linear transfer functions and produce a ‘simple’ output that 
effectively indicates both abnormal behavior and trends in the structure. 

In this paper as an example of a typical system, micro Linear Polarization 
Resistance (µLPR) corrosion sensor system is demonstrated to monitor corrosion in 
bridge suspension cables on a mockup cable installed at Columbia University.  The 
system components, operation and installation are given in technical detail. 
 
 
µLPR CORROSION SENSOR SYSTEM 
 
µLPR Corrosion Sensor 
 

Although well developed and understood the LPR technique has not been 
widely adopted for SHM (Structural Health Monitoring) as the macro LPR sensors 
and systems are expensive and highly intrusive.  The µLPR is based on the macro 
system; however, expertise in semiconductor manufacturing is used to micro-
machine the macro system.  Using photolithography it is possible to manufacture 
the µLPR sensor from a variety of standard engineering construction materials 
varying from steels for buildings and bridges through to novel alloys for airframes. 

Corrosion monitoring presented in this paper uses the µLPR corrosion 
sensor.  The micro µLPR works on the same principle as the macro LPR sensors 
and is designed to corrode at the same rate as the structure on which it is placed.  
The micro sensor is made up of two micro machined electrodes that are 
interdigitated at 150m spacing.  The corrosion reaction – both oxidation and 
reduction – produces a corrosion current that can be pre-determined empirically for 
each sensor type.  This I/V (Current/Voltage) form is called a Tafel plot. 
 

 

Figure 1: Thin Film µLPR Corrosion Sensor 
 

The µLPR sensor is made from shim stock of the source/sample material 
that is pressure and thermally bonded to Kapton tape.  The shim is prepared using 
photolithographic techniques and Electro Chemical Etching (ECM).  It is further 
machined on the Kapton to produce a highly ductile and mechanically robust micro 
sensor that is very sensitive to corrosion.  Examples of the sensor schematic, an 
actual sensor and a fitted sensor are shown below in Figure 1. 



 

Sensor System Electronics 
 

A low current and voltage circuit samples the µLPR sensor in operation.  
This ensures that no corrosion occurs during measuring the device’s I/V 
characteristics.  This circuit gives the effective corrosion resistance of the sensors 
between interdigitations.  Using this resistance and the Tafel constants it is then 
possible to obtain a direct measurement of the corrosion rate on the structure that is 
being monitored. 

The Data AcQuisition (DAQ) system uses a network of nodes that interface 
with sensors and transmit the sensor data to ‘coordinator’ nodes which in turn 
transfer the data to a PC/data bank.  Running on the PC is the SHM software that 
allows real-time and historical representation of the data/structure being monitored.  
At the heart of DAQ node is a TI (Texas Instruments) MSP430 MCU (Micro 
Controller Unit).  The MCU has digital and analog input/output capability.  
Communication to analog sensors uses external instrumentation amplifiers that are 
calibrated prior to sensor reading by onboard firmware.  Separate external analog 
switches are also used to minimize cross-talk between readings from sensors.  The 
TI MSP430 MCU is used due to its specific design features for low power 
applications.  To fully utilize the low power features of the MCU the firmware uses 
minimal system features in operation and turns ‘off’ the MCU whenever the system 
is idle.  An image of the node PCB is shown in Figure 2. 

 

Figure 2: The DAQ PCB has 16 analog input chanels, a digital bus (SPI), ZigBee 
protocol wireless comunications and USB or RS232 wired comunications. 

The DAQ node can handle data rates in excess of 500 total samples per sec 
(2 bytes per sample).  The data does, however, need to be buffered and streamed to 
the communications module, as such numerous nodes may be required running in 
parallel to collect multiple sensor measurements of inertial, strain and displacement 
data due to their higher data rate.  Resolution of the on-board Analog to Digital 
Converter (ADC) is 12 bits.  Higher resolution is availed by employing an ADC 
external to the MCU and modules with this option are available but should not be 
necessary for this project.  Digital input is obtained using the Synchronous 
Peripheral Interface (SPI) bus available on the MCU.  This BUS offers an industry 
standard in communicating with devices with digitized output.  This digital format 
in conjunction with analog is used for interfacing besides with the µLPR corrosion 
sensor also with displacement sensors, accelerometers and tilt sensors. 
 
Sensor System Architecture 
 

The system architecture is shown below in Figure 3.  Communication 
between nodes and the coordinator (Master Node) is wireless using the ZigBee 
protocol.  The coordinator communicates to the main hub (PC/data bank) on the 



 

802.11 protocol, although the system can be directly connected using a USB 
connection.  While the system is designed to be self (battery) powered, it should be 
noted that higher data rates required for displacement, inertial and video capture 
will deem it necessary to power the high duty cycle nodes from external power.  
One PC workstation is located on each structure (bridge or ship). 

 

Figure 3: Schematic of the hardware architecure presently employed as part of its 
SHM system. 

The sensor data that resides on the main PC/data bank will be backed up on-
site using a raid configuration.  Depending on the data volume and the availability 
of sufficient communications link bandwidth, the system either transmits all 
collected data to the operator’s main server via the internet or at set intervals to data 
storage units (hard drives) in the data bank.  Analysis of the data using 2nd 
generation neural network technology is performed at the operator’s side. 
 
µLPR Corrosion Software 
 

Three levels of software are used for bridge monitoring projects.  At the 
node level is the firmware that is effectively transparent to the end user.  The 
firmware resides in the nodes and handles all sensor interrogation and data 
transmission.  At the next level of operation is the Graphical User Interface (GUI) 
that configures and visualizes the SHM system operation and sensor data in real 
time.  This software will reside on the local PC data storage module (server).  The 
GUI is configured to suit the specific application.  The third and major portion of 
software employed is the data analysis software.  For this, second generation neural 
network AI is used to deal with the large data pools that the SHM system will 
generate.  Data pools (historically acquired sensor data streams) which have been 
stored in on-system, passive data bases can now be up-loaded from the onsite, 
acquisition computer to external (off–site) analysis module servers via (a) satellite, 
or manually by (b) wireless communication channels on a fixed periodic basis.  The 
up-load to satellite link clearly affords a timelier and more sensitive method of 
analyzing shifts in sensor signal data feeds.  While this choice offers close to real 
time results, short term periodic (manual) downloads can also support informative 
predictive assessments since the AI analytical server can accomplish diagnostics on 
‘all’ incoming and acquired data streams in minimal times of just a few minutes. 



 

Data analysis is performed in two parts.  Although base-line strain and 
deflection are set as part of the data retrieval system for individual locations on a 
structure, the correlation of these data points to one-another are then examined.  
This forms a multiple-nonlinear vector system and allows for correlation between 
drift in any bridge section, loading/traffic and other conditions such as weather and 
seasonal changes.  The second part of data analysis employs neural network 
technology to run anomaly detection.  This part of the analysis initially requires 
visual bridge inspection to correlate anomalies.  Data flow is bi-directional, e.g. if 
the software detects an anomaly, then visual inspection is required and vice-versa.  
Therefore, if visual inspection detects an anomaly this needs to be reported back to 
the SHM engineers so that data can be tagged ‘anomalous’ further enhancing the 
neural network’s learning process.  Ultimately the AI system produces a set of 
nonlinear transfer functions that describe the reaction of the bridge/structure to 
perturbation and allow for both diagnostics and prognostics on a long-term basis. 
 
 
Neural Network µLPR Corrosion Data Imaging 
 

Neural networks are very useful for modeling data where the underlying 
relationships between the data are complex or unknown.  Though there is certainly 
interplay between humidity, pH, strain, and corrosion, it is difficult to develop a 
model from first principles.  This is where a neural network model is useful.  A 
neural network is an adaptable system that can learn complex relationships through 
repeated presentation of data, and is capable of generalizing to new, previously 
unseen data.  The power and advantage of neural networks lies in their ability to 
represent both linear and non-linear relationships, and in their ability to learn these 
relationships directly from the data being modeled.  Traditional linear curve-fitting 
models are inadequate in modeling data that contain complex non-linear 
relationships. 

                                    

Figure 4: Steel Plate; Corrosion Damage.  Figure 5: Digitally Filtered Sensor Data. 

Neural network algorithms have been applied to interpolate and represent 
the areal distribution of corrosion from a µLPR sensor array.  Figures 4 and 5 
provide an example of applying this technique to a panel placed in a corrosive 
environment.  In this example, the analysis enables a better view of non-uniform 
corrosion over a metallic panel having one corner submerged in saltwater.  Figures 
4 and 5 below illustrate an image of the actual corrosion profile for the metal plate 
exposed to saltwater at the bottom right corner, and the corresponding image 
calculated from the µLPR sensor data output.  Note that the calculated corrosion 
topography/image based on µLPR sensor data in Figure 5 closely models the steel 



 

plate’s actual corrosion densities as shown in Figure 4.  Thus with appropriate 
model development, accurate prediction of the system health status is possible. 
 
µLPR Corrosion Sensor System Bridge Cable Installation 
 

The µLPR sensor location in any cable cross section will allow for corrosion 
in the cable to be displayed in a number of different formats.  For example, cables 
having a circular center section can have µLPR sensors distributed across the 
diameter of the cable.  The thickness loss reading recorded at each sensor can be 
interpolated to adjoining sensor, which using the AI algorithms then provides a 
view of the cross sectional corrosion within the cable.  In this manner if, for 
example, a breach in cable wrapping is present in a specific area, a map can be 
formed of the cable’s corrosion rate similar to that illustrated in Figures 4 and 5. 
 
 
EXPERIMENTAL PROCEDURE 
 

 

Figure 6: A µLPR Sensor Fitted into the Tight Gaps of a Wrapped Bridge Cable; to 
Right is the Mock-up Bridge Cable at Columbia University. 

It should be noted that the µLPR sensors have been designed to be easily 
installed within bridge cable windings.  The sensors can be fitted on the end of a 
flexible cable that allows them to be installed into the ‘tightest’ locations without 
the need spacers.  An example of this is shown in Figure 6 for bridge cables where a 
µLPR sensor is fitted into the strands of a bridge cable, through the actual strands 
and out around the tangential wrapping cable.  Over time, as the structure begins to 
deteriorate, the µLPR sensors fitted deep into the structure are able to pick up the 
onset of corrosion.  At this stage in the life of the structure it is far easier to make 
relatively low-cost changes to the maintenance regime of the structure that has 
long-term cost saving benefits.  In addition, during the life of the structure if events 
occur that do not fit into the normal behavior of the structure (i.e. an anomaly) the 
complete SHM system with AI analysis is far more likely to pick this up than 
scheduled inspection and maintenance, potentially offering significant savings. 

The µLPR sensor used in this application is approximately ½ the size of a 
postage stamp.  Thicknesses range from 0.003” to 0.006” making them ideal for 
installation into hard to access locations such as behind panels, under paint 
coatings, and inside suspension bridge cables.  The sensors can be fitted on the end 
of a flexible cable that allows them to be installed into the tight locations.  A severe 
environment example of this is shown in Figure 6 for bridge cables. 

Here the µLPR sensors are fitted in the interior of a bridge cable, woven 
between the individual strands.  The µLPR sensors were installed on a mock-up 
bridge cable at Columbia University, shown in Figure 6, as a part of large project, 
sponsored by FHWA, on the development of a corrosion monitoring system for 



 

main cables of suspension bridges.  These sensors were extensively tested in a 
QFog 1100 Accelerated Corrosion Chamber, before being placed inside a full-scale 
mock-up of a suspension bridge cable. 

The set-up consists of a cable specimen, with a diameter of about 21 in. and 
with a length of 20 ft, made by 73 127-wire hexagonal strands, for a total of more 
than 9,000 0.196-in diameter steel wires (Figure 6).  The reason for building 
hexagonal shape strands was to optimize/minimize the void ratio inside the cable 
and to improve the final compaction of the cable.  Of the 73 hexagonal strands, the 
central 7 ones are 35 ft long and subjected to 1,100 kips tension load while the 
remaining 66 strands are shorter (20 ft) and unloaded.  This unique cable specimen, 
one of the world’s biggest cable specimens ever built in a lab, is placed in a 
properly designed loading frame so to induce a tensile stress level up to 100 ksi in 
some of the wires.  The idea behind such a high level of stress is to highlight the 
effects induced by stress-corrosion cracking. 

To simulate conditions as close as possible to real operating conditions and 
to accelerate the corrosion processes in the cable specimen, this cable mock-up was 
placed inside a large environmental chamber, whose temperature, humidity and 
aggressiveness of the environment could be properly controlled, and subjected to 
cyclic accelerated tests.  These accelerated tests ran for days, with a typical cycle 
that consisted of a “rain” phase, of duration ranging from 0.5 to 1 hour, followed by 
a “heat” phase, lasting from 2 to 4 hours, and by an “air conditioning” phase, that 
lasted between 2.5 to 3.5 hours.  For each test, different pH and NaCl content of the 
“rain” phase have been considered.  These cycles were repeated for days and 
measurements of temperature, relative humidity and corrosion rate were collected at 
different intervals.  The entire duration of the testing period was over one year. 

A total of 72 sensors, including 8 µLPR sensors, were installed in the cross-
section of the cable.  Sensors were placed along three diameters, inclined at 60o 
angle with respect to each other.  Such distributions allows us to have 
measurements that are distributed along the radial direction in order to have a three 
dimensional distribution of the variations of the various parameters (e.g. 
temperature, humidity, etc.). 
 
 
RESULTS 
 

In Figure 7, the measurements of the corrosion rate recorded by 2 µLPR 
sensors (LPR3 and LPR4) during the test period May 22 – 24, 2009 are presented 
and correlated with the measurements of the temperature recorded along the vertical 
diameter of the cable.  LPR3 is placed close to the center of the 21 in diameter cable 
while LPR4 is placed along the radial direction inclined at 60o at about 6 in from 
the center. 

The temperature measurements show a clear dependence from the position 
of the sensor relative to the heat source.  All the sensors clearly identify 6 cycles: 
sensor T5, being the closest to the heat source, shows a substantial temperature 
variation during the cyclic testing while sensor T3 measures an almost constant 
temperature increase.  Sensors T1 and T2, being placed in the bottom half of the 
cable diameter, measure temperature that are quite similar from those recorded by 
sensor T3. 



 

Figure 7:  Correlation between Measured Internal Temperature in a Bridge 
Suspension Cable and µLPR Corrosion Sensor Response. 

The 2 µLPR sensors show excellent correlation with the fluctuation of the 
temperature: being LPR4 closer to external surface of the cable, it records more 
marked cyclic variations than the one recorded by LPR3.  During the ambient 
condition portion of the test, sensor LPR3 records a constant corrosion rate of 62 
µm/yr while, during the cyclic phase, it shows an average corrosion rate of 2.54 
µm/yr per cycle.  Sensor LPR4 shows instead a constant corrosion rate of 86 µm/yr 
and an average corrosion rate of 8.08 µm/yr per cycle and an average increase in 
the minimum corrosion rate of 3.75 µm/yr per cycle.  The initial difference of 
corrosion rate (62 µm/yr versus 86 µm/yr) between the two sensors can be 
attributed to possible different conditions inside the cable. 
 
 
CONCLUSIONS 
 

A SHM platform has been described for monitoring corrosion related 
fatigue and environmental impact on high value structures, such as bridges, aircraft, 
and buildings.  Evaluation of multi-dimensional sensor information correlated to 
direct corrosion rate measurements provides a powerful tool for diagnostics and 
prognostics of structural fatigue and remaining life estimates for critical structures.  
An example of µLPR corrosion sensors implemented in a mock-up bridge cable has 
been presented.  Next step of the project will consist in the deployment of such 
sensors at two locations on the Manhattan Bridge main cable in New York City. 
 
 
ACKNOWLEDGMENTS 
 

For preparing initial system design and development, funding was provided 
by US Air Force SBIR Phase II contract # F33615-01-C-5612 monitored by Dr. 
James Mazza.  Funding for development and experimental set-up was provided by 
US Navy SBIR Phase II contract # N68335-06-C-0317 monitored by Dr. Paul 
Kulowitch and for field installations by US Air Force SBIR Phase II contract # 
FA8501-11-C-0012 monitored by Mr. Feraidoon Zahiri.  Professor R. Betti would 
like to acknowledge the contribution of Mr. D. Khazem (Parsons Transportation 
Group) and Mr. M. Carlos and Mr. R. Gostautas (Mistras Corporation) in the 
construction of the cable mock-up and in the sensor system installation.  The 
support of the Federal Highway Administration for the project on the corrosion 
monitoring system for main cables of suspension bridges is greatly appreciated. 


	Main Menu
	Author Index
	How to Use This CD-ROM
	Search
	Print

	Table of Contents
	VOLUME 2
	SPECIAL SESSION: DECISION MAKING IN STRUCTURAL HEALTH MONITORING
	Computation of Lifetime Value of Information for Monitoring Systems
	Carbon Nanotube (CNT) Enhancements for Aerosurface State Awareness
	Optimal Sensor Placement and Weighted Residual Method in Loads Estimation Supporting Structural Health Monitoring
	Uncertainty Quantification in Transmissibility-Derived Features Used for Fault Detection
	Quantifying Damage Measures for a Composite Steel Girder Bridge Using Finite Element Analysis
	Hybrid Coherent/Incoherent Beam Forming Diagnostic Approach to Naval Assets
	Streicker Bridge: The Impact of Monitoring on Decision Making
	Advanced Sensing, Degradation Detection, Diagnostic and Prognostic Capabilities for Structural Health Management
	Acousto-Optic Measurements in CFRP Laminates Using Fiber Bragg Grating Sensors
	Uncertainties in Damage Identification and Lifetime Functions of Ageing Concrete Structures
	A Multi-Non-Linear Civil SHM Model for Decision Support
	Research on Software Platform of Bridge Health Monitoring System Based on JAVAEE and Scientific Computing Engine



	Main Menu
	Author Index
	How to Use This CD-ROM
	Search
	Print

	Table of Contents
	VOLUME 2
	SPECIAL SESSION: DECISION MAKING IN STRUCTURAL HEALTH MONITORING
	Computation of Lifetime Value of Information for Monitoring Systems
	Carbon Nanotube (CNT) Enhancements for Aerosurface State Awareness
	Optimal Sensor Placement and Weighted Residual Method in Loads Estimation Supporting Structural Health Monitoring
	Uncertainty Quantification in Transmissibility-Derived Features Used for Fault Detection
	Quantifying Damage Measures for a Composite Steel Girder Bridge Using Finite Element Analysis
	Hybrid Coherent/Incoherent Beam Forming Diagnostic Approach to Naval Assets
	Streicker Bridge: The Impact of Monitoring on Decision Making
	Advanced Sensing, Degradation Detection, Diagnostic and Prognostic Capabilities for Structural Health Management
	Acousto-Optic Measurements in CFRP Laminates Using Fiber Bragg Grating Sensors
	Uncertainties in Damage Identification and Lifetime Functions of Ageing Concrete Structures
	A Multi-Non-Linear Civil SHM Model for Decision Support
	Research on Software Platform of Bridge Health Monitoring System Based on JAVAEE and Scientific Computing Engine




