
Exploiting Data Sparsity in Parallel Matrix Powers

Computations

Nicholas Knight
Erin Carson
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-47

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-47.html

May 3, 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
03 MAY 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Exploiting Data Sparsity in Parallel Matrix Powers Computations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The increasingly high relative cost of moving data on modern parallel machines has caused a paradigm
shift in the design of high-performance algorithms: to achieve e ciency, one must focus on strategies which
minimize data movement, rather than minimize arithmetic operations. We call this a
communication-avoiding approach to algorithm design. In this work, we derive a new parallel
communication-avoiding matrix powers algorithm for matrices of the form A = D+USV H, where D is
sparse and USV H has low rank but may be dense. Matrices of this form arise in many practical
applications, including power-law graph analysis, circuit simulation and algorithms involving hierarchical
(H) matrices, such as multigrid methods, fast multipole methods numerical partial di erential equation
solvers, and preconditioned iterative methods. If A has this form, our algorithm enables a
communication-avoiding approach. We demonstrate that, with respect to the cost of computing k sparse
matrix-vector multiplications, our algorithm asymptotically reduces the parallel latency by a factor of O(k)
for small additional bandwidth and computation costs. Using problems from real-world applications, our
performance model predicts that this reduction in communication allows for up to 24 speedups on
petascale machines.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We acknowledge funding from Microsoft (award #024263) and Intel
(award #024894), and matching funding by UC Discovery (award
#DIG07-10227), with additional support from ParLab affiliates
National Instruments, Nokia, NVIDIA, Oracle, and Samsung, and support
from MathWorks. We also acknowledge the support of the US DOE (grants
DE-SC0003959, DE-SC0004938, DE-SC0005136, DE-SC0008700, DE-
AC02-05CH11231, DE-FC02-06ER25753, and DE-FC02-07ER25799) and
DOD (DARPA award #HR0011-12-2-0016 and NDSEG fellowship 32 CFR
168a).

Exploiting Data Sparsity in Parallel

Matrix Powers Computations

Nicholas Knight, Erin Carson, James Demmel
University of California, Berkeley

{knight,ecc2z,demmel}@cs.berkeley.edu

Abstract

The increasingly high relative cost of moving data on modern parallel machines has caused a
paradigm shift in the design of high-performance algorithms: to achieve efficiency, one must focus on
strategies which minimize data movement, rather than minimize arithmetic operations. We call this
a communication-avoiding approach to algorithm design.

In this work, we derive a new parallel communication-avoiding matrix powers algorithm for matrices
of the form A = D+USV H , where D is sparse and USV H has low rank but may be dense. Matrices of
this form arise in many practical applications, including power-law graph analysis, circuit simulation,
and algorithms involving hierarchical (H) matrices, such as multigrid methods, fast multipole methods,
numerical partial differential equation solvers, and preconditioned iterative methods.

If A has this form, our algorithm enables a communication-avoiding approach. We demonstrate
that, with respect to the cost of computing k sparse matrix-vector multiplications, our algorithm
asymptotically reduces the parallel latency by a factor of O(k) for small additional bandwidth and
computation costs. Using problems from real-world applications, our performance model predicts that
this reduction in communication allows for up to 24× speedups on petascale machines.

1 Introduction

The runtime of an algorithm can be modeled as a function of computation cost, proportional to the
number of arithmetic operations, and communication cost, proportional to the amount of data movement.
Traditionally, to increase the efficiency of an algorithm, one sought to minimize the arithmetic complexity.
On modern computer systems, however, the time to move one word of data is much greater than the time to
complete one floating point operation. This can cause the performance of algorithms with low arithmetic
intensity (see [11]) to be communication bound. Technology trends indicate that the performance gap
between communication and computation will only widen in future systems. This has resulted in a
paradigm shift in the design of high-performance algorithms: to achieve efficiency, one must focus on
strategies which minimize data movement, rather than minimize arithmetic operations. We call this a
communication-avoiding approach to algorithm design.

We consider simplified machine models, where a sequential machine moves words of data between a
slow memory of unbounded capacity and a fast memory of size M words, and a parallel machine consists
of p processors, who move data between their local memories each of size M words. In both cases, data
has a fixed width and is moved in messages of up to M contiguous words. In the parallel case, we
assume the processors communicate in a point-to-point fashion over a completely connected network (so
no contention) and each processor can send or receive at most one message at a time. We characterize
an algorithm by its latency cost, the number of messages sent, its bandwidth cost, the number of words
moved, and its arithmetic (flop) cost, the number of arithmetic operations performed. We characterize a
sequential or parallel machine by its latency α, reciprocal bandwidth β, and arithmetic (flop) rate γ, in
addition to M and p, and will estimate the runtime T of an algorithm (along the critical path) as

T = (#messages · α) + (#words moved · β) + (#flops · γ). (1)

For simplicity, we will not discuss overlapping communication and computation, although this potential
factor of 2 savings may be important in practice.

1

Computing k repeated sparse matrix-vector1 multiplications (SpMVs), or, a matrix powers computa-
tion, with A ∈ Cn×n and x ∈ Cn×q, where typically q � n, can be written

Kk+1(A, {pj}kj=0, x) := [x(0), . . . , x(k)] := [p0(A)x, p1(A)x, . . . , pk(A)x], (2)

where pj is a degree-j polynomial. For i = 1 to q, the span of the ith columns of x(0), x(1), . . . is often
called a Krylov (sub)space. Matrix powers computations constitute a core kernel in a variety of appli-
cations, including steepest descent algorithms, the power method to compute PageRank, and Krylov
subspace methods for linear systems and eigenvalue problems. Due to its low arithmetic intensity, SpMV
performance is communication bound on modern architectures.

In [4], the authors derive parallel communication-avoiding matrix powers algorithms to compute (2)
that achieve an O(k) reduction in parallel latency cost versus computing k repeated SpMVs, for a set
number of iterations [4, 9]. These algorithms assume that A is well partitioned, i.e., we can partition
A such that for each processor, computing powers up to Ak involves communication only between O(1)
nearest neighbors.

Although such advances show promising speedups for a wide variety of problems, the requirement that
A is well partitioned in the communication-avoiding matrix powers formulation of [4] excludes matrices
whose partitions have poor surface-to-volume ratio. In this work, we consider matrices of the form
A = D + USV H , where D is well partitioned and USV H may not be well partitioned but has low
rank. (Recall xH = xT denotes the Hermitian transpose of x, and that if an n-by-n matrix has rank r,
it can be stored and applied to a vector with O(nr) words and flops, instead of the usual O(n2).) There
are many practical situations where such structures arise, including analysis of power-law (or scale-free)
graphs representing the Web and social networks, and circuit simulation. Hierarchical (H) matrices (see,
e.g., [1]), which appear in numerical partial differential equation solvers, multigrid methods, fast multipole
methods, and preconditioned iterative methods, also have this form.

In this paper, we derive a new parallel communication-avoiding matrix powers algorithm for matrices
of the form A = D + USV H , where we only require that D (not A) be well-partitioned. If this splitting
is possible, our algorithm enables a communication-avoiding approach; we demonstrate that, with respect
to the cost of computing k SpMVs (the standard algorithm), our algorithm asymptotically reduces the
parallel latency by a factor of O(k) for small additional bandwidth and computational costs. Using detailed
complexity analysis, our performance model predicts that this reduction in communication allows for up
to 24× speedups over the standard algorithm on petascale machines.

2 Background and Related Work

We discuss work in related areas, namely parallel communication-avoiding matrix powers algorithms and
the serial blocking covers technique. We touch on applications that can benefit from our approach.

2.1 Efficient Matrix Powers Algorithms

The communication-avoiding matrix powers algorithms derived in [5] fuse together a sequence of k SpMV
operations into one kernel invocation. Depending on the nonzero structure of A (more precisely, of the
polynomials {pj(A)}kj=1), this enables communication avoidance in both serial and parallel implementa-
tions.

The serial matrix powers kernel reorganizes the k SpMVs to maximize reuse of A and the k+ 1
vectors, ideally reading A and x once, and writing the k output vectors only once. When reading A is
the dominant communication cost versus reading/writing the vectors (a common situation), this implies
an k-fold decrease in both latency and bandwidth cost.

In parallel, the matrix powers kernel reorganizes the computation in a similar way but with a slightly
different goal, since in a parallel SpMV operation only vector entries must be communicated. The parallel
matrix powers optimization avoids interprocessor synchronization by storing some redundant elements
of A and x on different processors and performing redundant computation to compute the k matrix
powers without further synchronization. Provided the additional communication cost to distribute x is a
lower-order term (equivalently, Ak is well partitioned), this gives k-fold savings in latency.

1When q > 1, an ‘SpMV’ is really a sparse matrix-dense matrix multiplication (SpMM)

2

We note that this discussion applies even if A is not given explicitly.
Serial and parallel variants of the matrix powers kernel, for both structured and general sparse matrices,

are described in [8], which summarizes most of [4] and elaborates on the implementation in [9]. Within [8],
we refer the reader to the complexity analysis in Tables 2.3-2.4, the performance modeling in §2.6, and the
performance results in §2.10.3 and §2.11.3, which demonstrate that this optimization leads to speedups
in practice. For example, for a 2D 9-point stencil on a n1/2-by-n1/2 mesh with p processors, assuming
k � (n/p)1/2, the number of arithmetic operations grows by a factor 1 + 2k(p/n)1/2, the number of
messages decreases by a factor of k, and the number of words moved grows by a factor of 1+k(p/n)1/2 [8].
Therefore since the additional arithmetic operations and additional words moved are lower order terms,
we expect the parallel matrix powers algorithm of [8] to give a Θ(k) speedup on latency-bound problems.

2.2 The Blocking Covers Technique

Many earlier research efforts sought to reorganize out-of-core algorithms to minimize data movement
within the memory hierarchy on a single processor. In [6], Hong and Kung prove a lower bound on
I/O complexity for a matrix powers computation on a regular mesh: if the computational graph has a
τ -neighborhood cover, then the number of I/Os can be reduced by a factor of τ over the standard method.
This is the same restriction required in the matrix powers algorithms in [4], namely, that A be well
partitioned.

A shortcoming of Hong and Kung’s technique is that certain graphs with low diameter (such as
multigrid graphs) cannot be covered efficiently with small, high-diameter subgraphs. In [7], this restriction
is overcome by relaxing the constraint that dependencies in the computational graph be respected, using
a blocking covers technique. A blocking cover of the computational graph has the property that the
subgraphs forming the cover have large diameters (equivalent to our definition of well partitioned) once
a small number of vertices (the blockers) have been removed. The authors show that, by introducing
a variable for each blocker for each of the τ iterations and maintaining linear dependences among the
removed vertices, each subgraph can compute τ matrix powers on its data without communicating with
other subgraphs. We extend the blocking covers technique of [7] to the parallel case, and further generalize
this technique to handle a larger class of data-sparse matrix representations.

2.3 Motivating Applications

Many scientific applications require solving linear systems Ax = b. Iterative methods are commonly used
when the coefficient matrix is large and sparse. The most general and flexible class of iterative methods are
preconditioned Krylov subspace methods. In each iteration m, the approximate solution is chosen from
the expanding Krylov subspace, Km+1(M−1A, x) = span(x, (M−1A)x, . . . , (M−1A)mx), or some variation
(depending on the preconditioner M−1 used). This includes the power method, e.g., in the PageRank
algorithm.

Significant reductions in communication can be achieved by rearranging the iterations to compute a
k element basis in one step (a matrix powers computation), essentially unrolling the inner loop k times.
Such methods are called k-step, or communication-avoiding, Krylov subspace methods. There is a wealth
of literature related to k-step methods. Space constraints prohibit an in-depth discussion; we direct the
reader to the thorough overview given in [5, §1.5-1.6].

As mentioned above, there are many applications where iterative methods are used for matrices with
the property of being mostly sparse, but with a few low-rank components that may be dense. This
includes matrices from Web graphs, social networks, and circuit simulations. Hierarchical semiseparable
(HSS) matrices [3], commonly used in PDE solvers, also have this property. Our technique is general and
can be implemented to avoid communication in all these applications.

3

3 Derivation

Recall that, given matrices A ∈ Cn×n and x ∈ Cn×q, and k ∈ N, our task is to compute the matrix in (2).
In this work, we will assume that the polynomials pj in (2) satisfy a three-term recurrence2

p0(z) := 1, p1(z) := (z − α0)p0(z)/γ0, and

pj(z) := ((z − αj−1)pj−1(z)− βj−2pj−2(z))/γj−1 for j > 1.
(3)

It is convenient to represent the polynomials {pj}kj=0 by their coefficients, stored in a tridiagonal matrix

Tk := tridiag
(∗ β0 ... βk−2
α0 α1 ... αk−1
γ0 γ1 ... γk−1

)
∈ C(k+1)×k. (4)

3.1 Parallel Matrix Powers Algorithms

For reference, we review two of the parallel matrix powers algorithms from [4, 5, 8], referred to by the
authors as PA0 and PA1. PA0 refers to the näıve algorithm for computing (2) via k SpMV operations,
and PA1 is the communication-avoiding variant. For simplicity, we use versions of PA0 and PA1 which do
not exploit overlapping communication and computation. While our approach can be extended to exploit
overlapping communication and computation, the potential savings are limited by a factor of 2 and thus
will not affect the asymptotic complexity of the algorithms given here.

Let the notation nz(A) = {(i, j) : Aij treated as nonzero} represent the edges in the directed graph of
A, and let the notation AI indicate the submatrix of A consisting of rows i ∈ I. To simplify the discussion
(without affecting correctness), we will ignore cancellation, meaning we assume nz(pj(A)) ⊆ nz(pj+1(A))
and every entry of x(j) is treated as nonzero for all j ≥ 0.

We construct a directed graph G = (V, E) representing the dependencies in computing x(j) := pj(A)x

for every 0 ≤ j ≤ k. First, denoting row i of x(j) by x
(j)
i , we define the n(k + 1) vertices V := {x(j)i : 1 ≤

i ≤ n, 0 ≤ j ≤ k}. The edge set E consists of k copies of nz(A), between each adjacent pair of the k + 1

levels V(j) := {x(j)i : 1 ≤ i ≤ n}, unioned with the edges due to the polynomial recurrence, i.e.,

E :=
{(
x
(j+1)
i1

, x
(j)
i2

)
: 0≤j<k,
(i1,i2)∈nz(A)

}
∪
{(

x
(j+d′)
i , x

(j)
i

)
:

1≤d′≤d,
0≤j≤k−d′,

1≤i≤n

}
where d is the number of nonzero superdiagonals of Tk (counting the main diagonal). We ignore possible
sparsity within these diagonals; this simplifies the discussion without affecting correctness.

Now we partition V ‘rowwise,’ that is, each x
(j)
i is assigned a processor affinity m ∈ {0, . . . , p− 1}, for

0 ≤ j ≤ k. Let Vm and V(j)
m restrict V and V(j) to their elements with affinity m. Let R(S) denote the

reachability set of S ⊆ V, i.e., the set S and vertices reachable from S via (directed) paths in G; then as

with V, we define the subsets R(j), Rm, and R(j)
m of R.

At the end of the computation, processor m has computed/stored (a superset of) the entries Vm. Thus,

for PA0, processor m must own A{i:x(j)
i ∈Vm}

and V(0)
m , and for PA1, processor m must own A{i:x(1)

i ∈R(Vm)}

and R(0)(Vm).
With this notation, we present the parallel matrix powers algorithms PA0 (Alg. 1) and PA1 (Alg. 2),

as pseudocode for processor m. The advantage of PA1 over PA0 is that it may send fewer messages
between processors: whereas PA0 requires k rounds of messages, PA1 requires only one. If the number of
other processors ` 6= m that each processor m must communicate with is the same for both algorithms,
PA1 obtains a k-fold latency savings. In general, however, PA1 incurs greater bandwidth, arithmetic, and
storage costs, as processors may perform redundant computations to avoid communication (see Table 1).
Whether this tradeoff is worthwhile depends on many machine and algorithm parameters; we refer to the
detailed analysis and modeling in [4, 5, 8].

2We see no obstruction to generalizing to longer recurrences; we focus on three-term recurrences, commonly used in
applications.

4

PA0

Flops
∑

x
(j)
i ∈Vm
1≤j≤k

q(2|nz(Ai)| − 1)

Words

k∑
j=1

∑
` 6=m

q
(
|R(j−1)

m (V(j)
`)|+ |R(j−1)

` (V(j)
m)|

)
Msgs.

k∑
j=1

(
|{` 6= m : |R(j−1)

m (V(j)
`)| > 0}|+ |{` 6= m : |R(j−1)

` (V(j)
m)| > 0}|

)
Mem. nz(A{i:x(j)

i ∈Vm}
) + q|Vm|

PA1

Flops
∑

x
(j)
i ∈R(Vm)
1≤j≤k

q(2|nz(Ai)| − 1)

Words
∑
` 6=m

q
(
|R(0)

m (V(k)
`)|+ |R(0)

` (V(k)
m)|

)
Msgs. |{` 6= m : |R(0)

m (V(k)
`)| > 0}|+ |{` 6= m : |R(0)

` (V(k)
m)| > 0}|

Mem. nz(A{i:x(j)
i ∈R(Vm)}) + q|R(Vm)|

Table 1: Complexity of PA0 and PA1 for processor m, in terms of vertices of the computational graph G.

Algorithm 1 PA0. Code for processor m.

1: for j = 1, . . . , k do
2: for all processors ` 6= m do

3: Send x
(j−1)
i ∈ R(j−1)

m (V(j)
`) to processor `.

4: Receive x
(j−1)
i ∈ R(j−1)

` (V(j)
m) from processor `.

5: end for
6: Compute x

(j)
i ∈ V

(j)
m via recurrence (3).

7: end for

Algorithm 2 PA1. Code for processor m.

1: for all processors ` 6= m do

2: Send x
(0)
i ∈ R

(0)
m (V(k)

`) to processor `.

3: Receive x
(0)
i ∈ R

(0)
` (V(k)

m) from processor `.
4: end for
5: for j = 1, . . . , k do

6: Compute x
(j)
i ∈ R(j)(Vm) via recurrence (3).

7: end for

5

3.2 Parallel Blocking Covers Algorithm

Consider computing (2) with a dense matrix A. As before, PA0 must communicate at every step, but
now the cost of PA1 may be much worse: when k > 1, every processor needs all n rows of A and x(0), and
so there is no parallelism in computing all but the last SpMV operation. (Note that when k = 1, PA1
degenerates to PA0.) If A can be split in the form D + USV H , where D is well-partitioned and USV H

has low rank, we can use a generalization of the blocking covers approach [7] to recover parallelism; we
call this algorithm PA1-BC.

Split the matrix A =: D + USV H , and write

x(j) = ((D − αk)x(j−1) − βj−2x(j−2) + USV Hx(j−1))/γj−1. (5)

Now we manipulate the three-term recurrence (3) to obtain the following identity, which we will then apply
to PA1 to obtain the PA1-BC (the blocking covers algorithm). Let pij(z) represent a degree-j polynomial
related to pj(z) by reindexing the coefficients (αj , βj , γj) := (αi+j , βi+j , γi+j) in (3).

Lemma 3.1. Given the additive splitting z = z1 + z2, (3) can be rewritten as

p0(z) = p0(z1), p1(z) = p1(z1) + z2p0(z)/γ0, and for j > 1,

pj(z) = pj(z1) +
∑j

i=1
pj−i+1
i−1 (z1)z2pj−i(z)/γj−i.

(6)

Proof. The result is readily established for j = 0 and j = 1; supposing it holds up through j = t,

pt+1(z) = ((z − αt)pt(z)− βt−1pt−1(z))/γt

= pt+1(z1) + z2pt(z)/γt +
1

γt

t∑
i=1

(z1 − αt)pt−i+1
i−1 (z1)z2pt−i(z)/γt−i

− βt−1
γt

t−1∑
i=1

pt−ii−1(z1)z2pt−i−1(z)/γt−i−1

Observe the following identities (for any j ≥ 0 and z): pj0(z) = 1, and

(z − αi+j−1)pji−1(z) =

{
γi+j−1p

j
i (z) i = 1

γi+j−1p
j
i (z) + βi+j−2p

j
i−2(z) i > 1

Substituting these identities, we obtain

pt+1(z) = pt+1(z1) + pt+1
0 (z1)z2pt(z)/γt +

t∑
i=1

pt−i+1
i (z1)z2pt−i(z)/γt−i

= pt+1(z1) +

t+1∑
i=1

pt−i+2
i−1 (z1)z2pt−i+1(z)/γt−i+1

This completes the induction.

Now substitute z := A = D + USV H =: z1 + z2 in (6), premultiply by SV H , and postmultiply by x,
to obtain

SV Hpj(A)x = S
(
V Hpj(D)x+

j∑
i=1

(V Hpj−i+1
i−1 (D)U)(SV Hpj−i(A)x/γj−i

)
. (7)

To simplify (7), we define

Wi := V Hpi(D)U for 0 ≤ i ≤ k − 2, (8)

yi := V Hpi(D)x for 0 ≤ i ≤ k − 1, (9)

bj := SV Hx(j) for 0 ≤ j ≤ k − 1, (10)

and rewrite the polynomials pji in terms of the original polynomials pi = p0i , via the following result.

6

Lemma 3.2. There exist coefficient vectors wji ∈ Ci+1 satisfying

[W0, . . . ,Wi](w
j
i ⊗ Ir,r) := V Hpji (D)U (11)

for 0 ≤ i ≤ k − 2, 1 ≤ j ≤ k − i− 1, and they can be computed by the recurrence

wj0 := 1, wj1 := (T1 − αi+j−1I2,1)wj0/γj−1, and for i > 1,

wji := ((Ti − αi+j−1Ii+1,i)w
j
i−1 − βi+j−2Ii+1,i−1w

j
i−2)/γi+j−1,

(12)

where Ir,c denotes the leading r-by-c submatrix of an identity matrix.

Proof. For any j, we verify the claim for i = 0 and i = 1; supposing it holds up to some i = t. Write

V H((D − αt+j)pjt (D)− βt+j−1pjt−1(D))U/γt+j ,

then substitute
pji (D)U = [p0(D)U, . . . , pi(D)U](wji ⊗ Ir,r)

for i = t− 1 and i = t. The conclusion follows from rewriting (3) as

V HD[p0(D)U, . . . , pi−1(D)U] = V H [p0(D)U, . . . , pi(D)U](Ti ⊗ Ir,r)

(for any i), and substituting.

Substituting (8), (9), (10), and (11) into (7), we obtain

bj = S
(
yj +

∑j

i=1
[W0, . . . ,Wi−1] · (wj−i+1

i−1 ⊗ Ir,r)bj−i/γj−i
)
. (13)

Ultimately we must evaluate (5), which we rewrite as

x(j) = ((D − αj−1)x(j−1) − βj−2x(j−2) + Ubj−1)/γj−1. (14)

Computing [x(0), . . . , x(k)] by this recurrence can be accomplished by applying PA1 to the following re-
currence for polynomials pj(z, c), where the sequence of indeterminates c := (c0, . . . , cj−1, . . .) represents
the terms (Ub0, . . . , Ubj−1, . . .):

p0(z, c) := 1, p1(z, c) := ((z − α0)p0(z, c) + c0)/γ0, and for j > 1,

pj(z, c) := ((z − αj−1)pj−1(z, c)− βj−2pj−2(z, c) + cj−1)/γj−1.
(15)

Given the notation established, we construct PA1-BC (Alg. 3).
We redefine G = (V, E) in terms of the graph of D (as opposed to that of A, which may be complete).

Processor m must own the following rows of D, U , V , and x(0):

D{i:x(1)
i ∈R(Vm)}, U{i:x(1)

i ∈R(Vm)}, V{i:x(j)
i ∈Vm}

, and R(0)(Vm) = x
(0)

{i:x(0)
i ∈R(Vm)}

,

in order to compute the entries x
(j)
i ∈ Vm.

Algorithm 3 PA1-BC. Code for processor m.

1: Compute local rows of Kk−1(D,U, Tk−2) with PA1, premultiply by local columns of V H .
2: Compute [W0, . . . ,Wk−2] by an Allreduce.
3: Compute wji for 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ k − i− 1, via (12).
4: Compute local rows of Kk(D,x(0), Tk−1) with PA1, premultiply by local columns of V H .
5: Compute [y0, . . . , yk−1] by an Allreduce.
6: Compute [b0, . . . , bk−1] by (13).
7: Compute local rows of [x(0), . . . , x(k)] with PA1, modified for (14).

In exact arithmetic, PA1-BC returns the same output as PA0. However, by exploiting the splitting
A = D+USV H , PA1-BC may overcome the problems of PA1, and allow us to avoid communication when
A itself is not well partitioned.

One can think of the sequential blocking covers algorithm in [7] as a special case of a sequential
execution of PA1-BC. Given a set of blocker vertices, indexed I ⊆ {1, . . . , n}, the algorithm in [7] removes
the outgoing edges from those vertices, i.e., removes rows I from A, to obtain a well-partitioned matrix
D. In our notation, this means setting U := [ei : i ∈ I] and SV H := AI , where ei is the ith identity
column.

7

PA0

Flops (8s2 + 8s+ 1)kq(n/p)
Words 4skq(n/p+ s)
Msgs. 8k

Mem. ((2s+ 1)2 + q(k + 1))(n/p) + 4sq(n/p)1/2 + 4s2q

PA1

Flops (8s2 + 8s+ 1)
(
kq(n/p) + 2sk2q(n/p)1/2 + (4/3)s2k3q

)
Words 4skq(n/p+ sk)
Msgs. 8

Mem. ((2s+ 1)2 + q(k + 1))(n/p) + ((2s+ 1)2 + 1)
(
4skq(n/p)1/2 + 4s2k2q

)
Table 2: Complexity comparison of PA0 and PA1 for computing [Dx, . . . ,Dkx] on p processors, when D
is a (2s+ 1)2-point stencil on an n1/2-by-n1/2 mesh. These results are modified from [4, Table 1] to allow
for x to have q > 1 columns. When computing the 3-term recurrence (3) resp. (15), the flop costs for both
algorithms increase by additive factors of (5k − 7)q(n/p) resp. (6k − 8)q(n/p).

PA0

Flops FPA0(3)(k, q) + kqr(4(n/p) + p)
Words WPA0(k, q) + 2kqrp
Msgs. SPA0(k, q) + k lg(p)
Mem. MPA0(k, q) + 2r(n/p)

PA1-BC
(offline)

Flops FPA1(3)(k − 2, r) + kr2(2(n/p) + p)
Words WPA1(k − 2, r) + 2kr2p
Msgs. SPA1(k − 2, r) + lg(p)
Mem. MPA1(k − 2, r) + r(n/p)

PA1-BC
(online)

Flops FPA1(3)(k − 1, q) + FPA1(3c)(k, q) + kqr
(
4(n/p) + p+O(sk(n/p)1/2)

)
+ k2(k + q)r2

Words WPA1(k − 1, q) + WPA1(k, q) + 2kqrp
Msgs. SPA1(k − 1, q) + SPA1(k, q) + lg(p)

Mem. MPA1(k − 1, q) + MPA1(k, q) + r(n/p) +O(skr(n/p)1/2)

Table 3: Complexity comparison for ‘stencil plus rank-r’ example, showing leading order constant factors.
‘Offline’ refers to Lines 1–3 and ‘Online’ refers to Lines 4–7 of PA1-BC. The functions F, W, S, M denote
flops, words, messages, and memory according to Table 2; the ‘(3)’ resp. ‘(3c)’ suffixes in the subscripts
of F indicate the 3-term recurrences (3) resp. (15) (see caption of Table 2).

3.3 Complexity Analysis for a Model Problem

To demonstrate the potential performance benefits of PA1-BC over PA1 and PA0, we consider the following
example. Let A = D + UV H be a dense n × n matrix, where the graph of D is a (2s + 1)2-point stencil
on a n1/2-by-n1/2 mesh, and U and V are dense n-by-r matrices. We assume p and n are perfect squares
and p1/2 divides n1/2, and we partition the vertices {1, . . . , n} so that each processor owns a (n/p)1/2-by-
(n/p)1/2 square of the domain. Following [4], we assume k < (n/p)1/2, so that PA1 (applied to D) need
only communicate among neighboring processors. We give the complexity for PA0 and PA1 in Table 2,
modified from [4, Table 1] to allow x to have q > 1 columns, and to use the three-term recurrences (3)
and (15).

We assume our collective communications attain the lower bounds in [2, Table 1]. We consider Lines 1-
3 of PA1-BC as ‘offline’ operations, and Lines 4-7 as ‘online’ computations, since typically the matrix A
and the polynomials pj are fixed across many calls to PA1-BC (or PA0/1), while the input matrix x
changes on each invocation. We compare PA0 and PA1-BC in Table 3.

We use the following arithmetic counts: apply(S, n1, n2) = 0 is the cost of applying S to an n1-by-n2
matrix (in this example S is the identity), add(n1, n2) = scal(n1, n2) = n1n2 is the cost of adding two
n1-by-n2 matrices or multiplying one by a scalar, and mm(n1, n2, n3) = 2n1n2n3 − n1n3 is the cost of
multiplying matrices of size n1-by-n2 and n2-by-n3.

PA0 We modify PA0 slightly to exploit the splitting Ax = Dx + U(V Hx) to save computation and

communication. We assign each processor m a block row (indices {i : x
(j)
i ∈ Vm}) of D, U , V , and x(0) —

a nonoverlapping partition of each, as opposed to PA1, whose partitions may overlap when k > 1. We first

8

𝐷2;3

𝐷2;4

𝐷2;1

𝐷2;2

𝑈2;1𝐵2;1,2𝑉2;2
𝐻

𝑈1;1 =
𝑈2;1𝑅2;1
𝑈2;2𝑅2;2

𝑈1;1𝐵1;1,2𝑉1;2
𝐻

𝑉1;2 =
𝑉2;3𝑊2;3

𝑉2;4𝑊2;3

Figure 1: An example of a hierarchical semiseparable matrix, with ` = 2.

compute y = V Hx via a local matrix multiplication (costing mm(r, n/p, q) flops) followed by an Allreduce
of y ((p − 1)rq flops, 2(p − 1)rq words, and lg(p) messages). Then we compute Uy by a local matrix
multiplication (costing mm(n/p, r, q) flops). Then we communicate rows of x(j) in order to compute the
local rows of Dx(j); the costs of this step follow from Table 2.

PA1-BC PA1-BC makes 3 calls to PA1, in Lines 1, 4, and 7. These costs are shown in Table 2 (note
that the third PA1 call uses the PA1(3c) variant).

Now we analyze the applications of V H (Lines 1 and 4) and subsequent Allreduce collectives (Lines 2 and 5).
Applying the local columns of V H costs mm(r, n/p, (k − 1)r) (resp. mm(r, n/p, kq)) flops, and the sub-
sequent Allreduce costs (p − 1)(k − 1)r2 flops and 2(p − 1)(k − 1)r2 words (resp. (p − 1)krq flops and
2(p− 1)krq words), and lg(p) messages (both).

Computing wji in Line 3 costs

(3k − 2) +

k−2∑
i=2

k−i−1∑
j=1

8i+ 5 = 4/3k3 +O(1)

flops (performed locally), and computing b0 through bk−1 in Line 6 costs

k−1∑
j=0

(
apply(S, r, q) + j · add(r, q) +

j∑
i=1

(
mm(r, r, q) + scal(r, q) + i · scal(r, r) + (i− 1)add(r, r)

))
< k2(k + q)r2

local flops. Note that if Tk is Toeplitz (e.g., {pj} are monomials), then we do not need to compute wji ,
as each is an identity column; furthermore, the upper bound k2(k+ q)r2 above reduces to k2(O(1) + q)r2

flops.
Lastly, computing U [b0, . . . , bk−1] in Line 7 requires a local computation of

mm(n/p+ 4sk(n/p)1/2 + 4s2k2, r, kq) < 2kqr(n/p) + 8sk2qr(n/p)1/2 +O(s2k3qr)

flops.

4 Extension to Hierarchical Matrices

Hierarchical (H-) matrices (mentioned above) are amenable to the splitting D + USV H . Particularly
interesting are a special class of H-matrices called hierarchical semiseparable (HSS) matrices. We briefly
review the HSS representation, using the notation in [3] (see also Fig. 1). For any L ∈ {0, . . . , blg nc}, we

9

can write A hierarchically by recursively defining its diagonal blocks as A =: D0;i and for 1 ≤ ` ≤ L and
1 ≤ i ≤ 2`−1,

D`−1;i =:

[
D`;2i−1 U`;2i−1B`;2i−1,2iV

H
`;2i

U`;2iB`;2i,2i−1V
H
`;2i−1 D`;2i

]
,

whose off-diagonal blocks are defined recursively by

U`−1;i =:
[
U`;2i−1R`;2i−1

U`;2iR`;2i

]
and V`−1;i =:

[
V`;2i−1W`;2i−1

V`;2iW`;2i

]
for 2 ≤ ` ≤ L and 1 ≤ i ≤ 2`−1, and of course are empty at level 0: U0;1, V0;1 := []. The subscript `
indicates the level in a perfect binary tree of depth L, and i indexes the 2` vertices at depth `.

The action of A on a matrix x, i.e., v := Ax, satisfies v0;1 = D0;1x0;1, and for 1 ≤ ` ≤ L and
1 ≤ i ≤ 2`, satisfies v`;i = D`;ix`;i +U`;if`;i, with f1;1 = B1;1;2g1;2, f1;2 = B1;2;1g1;1, and for 1 ≤ ` ≤ L− 1
and 1 ≤ i ≤ 2`,

f`+1;2i−1 =

[
RT

`+1;2i−1

BT
`+1;2i−1,2i

]T [
f`;i

g`+1;2i

]
and f`+1;2i =

[
RT

`+1;2i

BT
`+1;2i,2i−1

]T [
f`;i

g`+1;2i−1

]
,

where for 1 ≤ ` ≤ L− 1 and 1 ≤ i ≤ 2`, g`;i =
[
W`+1;2i−1

W`+1;2i

]H [g`+1;2i−1
g`+1;2i

]
, and gL;i = V HL;ixL;i for 1 ≤ i ≤ 2L.

For any level ` we assemble the block diagonal matrices

U` :=
⊕2`

i=1
U`;i, V :=

⊕2`

i=1
V`;i, D` :=

⊕2`

i=1
D`;i, (16)

denoted here as direct sums of their diagonal blocks. We also define matrices S`, representing the recur-
rences for f`;i and g`;i, satisfying

v = Ax =: D`x+ U`S`V
H
` x. (17)

We will now discuss parallelizing v = Ax, to generalize PA0 and PA1 to HSS matrices. We make the
following assumptions for the subsequent sections. The matrix A is n-by-n, and its HSS representation
has a perfect binary tree structure to some level L > 2. We have p ≥ 4 processors, and for simplicity
assume that p is a power of 2. For each processor m ∈ {0, 1, . . . , p− 1}, let Lm denote the smallest level
` ≥ 1 such that p/2` divides m. We also define the intermediate level 1 < Lp := lg(p) ≤ L of the HSS
tree; each Lm ≥ Lp, where equality is attained when m is odd.

4.1 PA0 for HSS Matrices

Given the notation and assumptions in the preceding section, we show how to modify PA0 when A is
HSS, exploiting the v = Ax recurrences for each 1 ≤ j ≤ k — the result is called PA0-HSS. For clarity,
we write the parallel upsweep/downsweep subroutine separately, in Alg. 5.

Our PA0-HSS algorithm is based on the serial algorithm for HSS matrix-vector multiplication from [3],
summarized in the recurrences in the preceding section. We are unaware of previous work demonstrating
a parallelization of these recurrences, although it is obvious, given the perfect binary tree structure. First,
on the upsweep, each processor locally computes V HLp

x (its subtree, rooted at level Lp = lg(p)) and then
performs Lp steps of parallel reduction, until there are two processors active, and then a downsweep until
level Lp, at which point each processor is active, owns SLp

V HLp
x, and recurses into its local subtree to

finally compute its rows of v = DLx+ULSLVLx. More precisely, we assign processor m the computations

f`;i and g`;i for
{
`, i :

L≥`≥Lp

2`m/p+1≤i≤2`(m+1)/p

}
and for

{
`, i :

Lp−1≥`≥Lm

i=2`m/p+1

}
(so only processors 0 and p/2 are active at the top level (` = 1)), and the matrices DL, UL, and VL are
distributed contiguously block rowwise, so processor m stores blocks DLp;m+1, ULp;m+1, and VLp;m+1.
The R`;i, W`;i, and B`;i matrices are distributed so that they are available for the computations in
the upsweep/downsweep (Alg. 5); we will omit further details for brevity, but will analyze the memory
requirements when we compare with PA1-HSS, below.

10

Algorithm 4 PA0-HSS. Code for processor m.

1: for j = 1, . . . , k do
2: Perform upsweep and downsweep (Alg. 5) to compute local rows of Ax(j−1).

3: Compute x
(j)
i ∈ V

(j)
m locally.

4: end for

Algorithm 5 Upsweep and downsweep for PA0-HSS. Code for processor m.

1: UPSWEEP:
2: for ` = L,L− 1, . . . , Lp do
3: for i = 2`m/p+ 1, . . . , 2`(m+ 1)/p do
4: Compute g`;i
5: end for
6: end for
7: for ` = Lp − 1, . . . , 1, 0 do
8: if p/2` divides m then
9: i = 2`m/p+ 1.

10: Send g`+1;2i−1 to proc. m+ p/2`+1.
11: Receive g`+1;2i from proc. m+ p/2`+1.
12: if ` > 0 then
13: Compute g`;i.
14: end if
15: else if p/2`+1 divides m then
16: i = 2`m/p+ 1/2.
17: Send g`+1;2i to proc. m− p/2`+1.
18: Receive g`+1;2i−1 from proc. m− p/2`+1.
19: end if
20: end for
21: DOWNSWEEP:
22: for ` = 0, . . . , Lp − 1 do
23: if p/2` divides m then

24: i = 2`m/p+ 1.
25: Compute f`+1;2i−1.
26: if ` < Lp − 1 then
27: Send f`+1;2i−1 to proc. m+ p/2`+2.
28: end if
29: else if p/2`+1 divides m then
30: i = 2`m/p+ 1/2.
31: if ` > 0 then
32: Receive f`;i from proc. m− p/2`+1.
33: end if
34: Compute f`+1;2i.
35: if ` < Lp − 1 then
36: Send f`+1;2i to proc. m+ p/2`+2.
37: end if
38: end if
39: end for
40: for ` = Lp, . . . , L− 1 do
41: for i = 2`m/p+ 1, . . . , 2`(m+ 1)/p do
42: Compute f`+1;2i−1 and f`+1;2i.
43: end for
44: end for
45: Compute vL;i for i=mn/(pr)+1, . . . , (m+1)n/(pr).

11

4.2 PA1 for HSS Matrices

The block-diagonal structure of D`, U`, and V` in (16) suggests an efficient parallel implementation of PA1-
BC, which we present as PA1-HSS (Alg. 6). As opposed to PA0-HSS, the only parallel communication in
PA1-HSS occurs in two Allgather operations, in Lines 1 and 5. The computation cost increases, however,
since each processor performs the entire upsweep/downsweep between levels 1 and Lp locally. Recall in
PA0-HSS, there was parallelism, albeit less than full, during these levels (Lines 7–39 of Alg. 5). Our
further loss of parallelism shows up in our complexity analysis (see Table 4) as a factor of p, compared to
a factor of lg(p) in PA0-HSS; we also illustrate this tradeoff in our performance modeling (see §5).

We assume the same data layout as PA0-HSS: each processor stores a diagonal block of DLp
, ULp

, and
VLp

(but only stores the smaller blocks of level L). We assume each processor is able to apply SLp
. We

rewrite (14) for the local rows, and exploit the block diagonal structure of DLp and ULp , to write

x
(j)
Lp,m+1 =

(
(DLp,m+1 − αj−1)x

(j−1)
Lp,m+1 − βj−2x

(j−2)
Lp,m+1 + ULp,m+1(bj−1){mr+1,...,(m+1)r}

)
/γj−1. (18)

We will not exploit the fact that each processor ultimately needs only a subset of the rows of bj computed
in Line 6. Each processor locally computes all rows of bj = SLp

V HLp
x(j) = SLp

· z, where z is the maximal

parenthesized term in (13), using the HSS recurrences:

V HLp
x(j) = z =:

[
gTLp,1

· · · gTLp,p

]T 7→ [
fTLp,1

· · · fTLp,p

]T
:= bj = SLp

V HLp
x(j).

The rest of PA1-HSS is similar to PA1-BC, except that the Allreduce operations have now been replaced
by Allgather operations, to exploit the block structures of Wi and yi.

Algorithm 6 PA1-HSS (Blocking Covers). Code for processor m.

1: Compute Kk−1(DLp;m+1, ULp;m+1, Tk−2), premultiply by V HLp;m+1.

2: Compute [W0, . . . ,Wk−2] by an Allgather.
3: Compute wji for 0 ≤ i ≤ k − 2, and 1 ≤ j ≤ k − i− 1, via (12).

4: Compute Kk(DLp;m+1, x
(0)
Lp;m+1, Tk−1), premultiply by V HLp;m+1.

5: Compute [y0, . . . , yk−1] by an Allgather.
6: Compute [b0, . . . , bk−1] by (13), where S = SLp

is applied as described above.

7: Compute local rows of [x(0), . . . , x(k)] according to (18).

4.3 Complexity Analysis for a Model Problem

We compare the asymptotic complexity of PA0-HSS and PA1-HSS. We assume A is n-by-n and dense,
and represented by the dense r-by-r matrices R`;i and W`;i (for levels 2 through L), B`;i,i±1 (for levels 1
through L) and DL;i, UL;i, and VL;i (i.e., at the leaf level). To simplify the presentation, we assume n
and r are powers of 2 and L = lg(n/r). A matrix satisfying these assumptions is said to have HSS rank
r; here we assume A is already represented as such a set of r-by-r matrices. We summarize the results in
Table 4.

PA0-HSS Computing the local portion of the upsweep and downsweep (levels L through Lp, i.e.,
Lines 2–6,40–45 of Alg. 5) costs

(2L/p)mm(r, r, q) +

L−1∑
`=Lp

2(2`/p)mm(r, 2r, q) + (2L/p)mm(r, 2r, q)

flops and no communication. For the intermediate lines, we follow processor 0, who is active on every
level. Processor 0 computes one g`;i for ` = Lp, Lp − 1, . . . , 1, performing Lp + 1 sends and receives of
size rq), and then computes one f`;i for ` = 1, . . . , Lp, sending messages (of size rq) Lp − 1 times. Thus,
2Lpmm(r, 2r, q) flops. The remaining cost is computing the three-term recurrence (locally), which is an
additional (5k − 7)q(n/p) flops.

12

PA0-HSS requires enough memory to store the local blocks of DL, UL, and VL, a total of 3rn/p
words. Furthermore, each processor must store the R`;i, W`;i and B`;i,i±1 matrices for its local up-

sweep/downsweep, a total of
∑L
`=Lp

(2`/p)2r2 words, and some subset of these matrices for the parallel

portion of the upsweep/downsweep. Processor 0 must be able to store 2Lp · 2r2 more, an upper bound for
the other processors. Lastly, each processor must be able to store their (k+1)qn/p entries of x(0), . . . , x(k).

PA1-HSS As opposed to PA1-BC, Lines 1, 4, and 7 of PA1-HSS will not require communication, due
to the block diagonal structure of D, U , and V . We assume all three lines are implemented to exploit the
upsweep/downsweep recurrences for (locally) applying the (HSS rank r) matrix DLp;m+1 to an n/p-by-r
matrix (Line 1) or to an n/p-by-q matrix (Lines 4 and 7). (Note that in Line 1 we could further expand
ULp;m+1 into a block diagonal matrix (with r-by-r blocks), using the R`,i matrices; however, this seems
to only increase the arithmetic cost.) The arithmetic cost for (locally) multiplying DLp;m+1 (with HSS
rank r) by a dense n/p-by-q matrix is:

L∑
`=Lp+1

{
(2`/p)mm(r, r, q) ` = L

(2`/p)mm(r, 2r, q) ` < L
+

L∑
`=Lp+1

{
(2`/p)mm(r, 2r, q) ` > Lp + 1

(2`/p)mm(r, r, q) ` = Lp + 1
+ (2L/p)mm(r, 2r, q)

< 18qr(n/p) + 20qr2

flops. We apply DLp;m+1 k−2, k−1, and k times, in lines Line 1, Line 4, and Line 7, resp. Evaluating the
three-term recurrences (in the same three lines) increases the cost by (5k−17)r(n/p), (5k−12)q(n/p), and
(6k− 8)q(n/p) flops, resp. Then applying V HLp;m+1 in Lines 1 and 4 costs mm(r, n/p, r) and mm(r, n/p, q)

flops, resp. (note that it would nearly quadruple these costs to apply V HLp;m+1 using the HSS upsweep

recurrences, rather than as a full matrix). The Allreduce operations in PA1-BC have become Allgather
operations in Lines 2 and 5, due to the structure and parallel layout of the matrices Wi = V Hpi(D)U
and yi = V Hpi(D)x. Since we parallelize at HSS level Lp (rather than the leaf level L), each processor
distributes k − 1 r-by-r (resp. k r-by-q) blocks. This costs

0 flops, (k − 1)r2(p− 1) resp. kqr(p− 1)) words, lg(p) msgs

Line 3 (performed locally) has the same O(k3) cost as in PA1-BC, a lower order term. The analysis of
Line 6 (also performed locally) is similar to that of PA1-BC, except now r is replaced by pr, except for
the terms involving Wi, which is block diagonal with p r-by-r diagonal blocks. In total, each processor
performs

k−1∑
j=0

(
apply(S, pr, q) + j · add(pr, q) +

j∑
i=1

(
mm(pr, r, q) + scal(r, q) + i · scal(pr, r) + (i− 1)add(pr, r)

))
flops, where each application of S to a pr-by-q matrix costs

Lp∑
`=1

2`mm(r, 2r, q) +

Lp∑
`=1

{
2`mm(r, 2r, q) ` > 1

(2`/p)mm(r, r, q) ` = 1
= 16pqr2 +O(qr)

flops.
The memory requirements for PA1-HSS are the same as PA0-HSS, except that each processor needs

all the R`;i, W`;i, and B`;i matrices for levels 1 through Lp, a cost of 8pr2 words.

5 Performance Modelling

We model speedups of our new algorithms for the two example problems discussed in the text: a 2D stencil
plus rank-r component, and an HSS matrix. Complexity counts used can be found in Tables 3 and 4,
resp. We use two machine models used in [8] – ‘Peta,’ an 8100 processor petascale machine, and ‘Grid,’
125 terascale machines connected via the Internet. The Peta machine has a flop rate of γ = 2 · 10−11

13

PA0-HSS

Flops kq(14r +O(1))n/p+ 8kqr2 lg(p)
Words kq(3r +O(1)) lg(p)
Msgs. 3k lg(p)
Mem. (7r + (k + 1)q)n/p+ 4r2 lg(p)

PA1-HSS
(offline)

Flops 18kr2n/p
Words kr2p
Msgs. lg(p)
Mem. (7r + (k + 1)q)n/p+ 16r2p)

PA1-HSS
(online)

Flops kq(36r +O(1))n/p+ (k2/3)(k + 10q)r2p
Words kqrp
Msgs. lg(p)
Mem. (7r + (k + 1)q)n/p+ 16r2p

Table 4: Complexity comparison for parallel HSS algorithms PA0-HSS and PA1-HSS, showing leading
order constant factors. ‘Offline’ refers to Lines 1–3 and ‘Online’ refers to Lines 4–7 of PA1-HSS.

4.5
4.8
5.2
5.6
6.0
6.4
6.8
7.2
7.5
7.7
7.8
7.7
7.4
6.8
6.2
5.4
4.6
3.6
2.6
1.4

4.8
5.1
5.4
5.7
6.0
6.3
6.6
6.7
6.8
6.7
6.5
6.2
5.9
5.6
5.1
4.6
4.0
3.3
2.4
1.4

4.5
4.7
4.8
5.0
5.0
5.0
5.0
4.9
4.9
4.8
4.7
4.5
4.4
4.2
4.0
3.7
3.3
2.9
2.2
1.3

3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.2
3.2
3.2
3.1
3.1
3.0
3.0
2.9
2.7
2.5
2.3
1.9
1.3

1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.6
1.6
1.6
1.5
1.4
1.1

0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

log
2
(n)

k

9 10 11 12 13 14

38

34

30

26

22

18

14

10

6

2 1

2

3

4

5

6

7

25.9
24.6
23.3
22.0
20.7
19.4
18.2
16.9
15.6
14.3
13.0
11.7
10.4
9.1
7.8
6.5
5.2
3.9
2.6
1.3

25.3
24.1
22.9
21.6
20.4
19.1
17.9
16.6
15.4
14.1
12.9
11.6
10.3
9.0
7.8
6.5
5.2
3.9
2.6
1.3

23.4
22.4
21.3
20.2
19.1
18.0
16.9
15.8
14.7
13.5
12.4
11.2
10.0
8.8
7.6
6.4
5.1
3.9
2.6
1.3

18.0
17.4
16.7
16.1
15.4
14.7
13.9
13.2
12.4
11.6
10.7
9.8
8.9
7.9
7.0
5.9
4.8
3.7
2.5
1.3

9.5
9.3
9.1
8.9
8.7
8.5
8.3
8.0
7.7
7.4
7.1
6.7
6.3
5.8
5.3
4.7
4.0
3.2
2.3
1.3

3.6
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.3
3.3
3.2
3.1
3.1
3.0
2.8
2.7
2.5
2.2
1.8
1.2

log
2
(n)

k

9 10 11 12 13 14

38

34

30

26

22

18

14

10

6

2

5

10

15

20

25

Figure 2: Predicted speedups for model problem: 2D 9-point stencil + rank-1 dense component. Param-
eters obtained from performance modeling in [8]. Left : Speedups for PA1 over PA0 for various k values
on Peta. Right : Speedups for PA1 over PA0 for various k values on Grid.

s/flop, latency cost α = 10−5 s/message, and bandwidth cost β = 2 · 10−9 s/word. The Grid machine has
flop rate γ = 10−12 s/flop, latency cost α = 10−1 s/message, and bandwidth cost β = 25 · 10−9 s/word.

For the stencil plus rank-r test, we ran the performance model for q = r = s = 1, i.e., a 2D 9-point
stencil plus rank-1 matrix (times a vector). We picked n and k based on those chosen in [8]; note that
the dimension of A is n2. Fig. 2 shows the best speedup of PA1-BC over PA0 over all p values such that
p ≤ min(pmax, (n/k)2). The p values which resulted in the maximum speedup for this test problem are
shown in Fig. 3. On Peta, the largest speedup was 7.8×. Speedups were generally higher on Grid, with a
maximum speedup of 25.9× for this range of k. We expect higher speedups on Grid since PA0 is extremely
latency bound on this machine. For both models, predicted speedups decrease with increasing n and k
due to growing additional flop and bandwidth terms.

Speedups of PA1-HSS over k invocations of PA0-HSS, for both Peta and Grid, are shown in Fig. 4. We
use the parameter triplets (ni, pi, ri) where p = (4, 16, 64, 256, 1024, 4096), n = (2.5, 5, 10, 20, 40, 80) · 103,
and r = (5, 5, 5, 5, 6, 7), based on the parameters for parallel HSS performance tests in [10]. Note that for
Grid we only use the first 3 parameter triplets since pmax = 125. On Grid, PA0-HSS is extremely latency
bound, so our 3k reduction in latency results in a 3k× faster algorithm (the extra flop and bandwidth
costs are insignificant for these values of k). This is the best we can expect. As shown in Fig. 5, for very
large k, the extra terms begin to dominate, and speedups eventually begin to decrease with k. On Peta,
we see O(k) speedups for smaller p and k, but as these quantities increase, the expected speedup drops.

14

163
181
202
226
256
291
334
387
455
541
655
809

1024
1260
1271
1291
1325
1396
1592
3385

655
726
809
907

1024
1165
1337
1551
1820
2166
2428
2429
2432
2438
2450
2469
2504
2576
2773
4475

2621
2904
3236
3628
4096
4660
4869
4863
4858
4854
4852
4851
4853
4859
4871
4893
4934
5020
5251
7118

8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100

8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100

8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100

log
2
(n)

k

9 10 11 12 13 14

38

34

30

26

22

18

14

10

6

2

125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

log
2
(n)

k

9 10 11 12 13 14

38

34

30

26

22

18

14

10

6

2

Figure 3: Best p values, used to obtain speedups in Fig. 4. Left : Peta machine model, where pmax = 8100.
Right : Grid machine model, where pmax = 125.

This is due to the extra factor of p/ lg(p) in the bandwidth cost and the factor of k2p/ lg(p) in the flop
cost of PA1-HSS. Since the relative latency cost is lower on Peta, the effect of the extra terms becomes
apparent for larger k and p.

6 Future Work and Conclusions

In this work, we derive a new parallel communication-avoiding algorithm for the matrix powers compu-
tation with A = D + USV H , where D is well partitioned and USV H has low rank but may not be well
partitioned. This is a significant improvement over the algorithms in [4, 8], which require A to be well
partitioned. Our approach allows us to exploit the low-rank structure to asymptotically reduce the paral-
lel latency cost: on latency-bound problems, our model indicates an O(k) speedup. We demonstrate the
generality of our parallel blocking covers technique by applying it to matrices with hierarchical structure.
Detailed performance modeling suggests 24× speedups on petascale machines, and up to 3k speedups
on extremely latency-bound machines, despite growth in arithmetic and bandwidth costs. Future work
includes a high-performance parallel implementation of our matrix powers kernel variants to verify the
speedups predicted by performance modeling. We also plan to explore the application of blocking covers
to other parallel algorithms.

References

[1] M. Bebendorf. Hierarchical Matrices, volume 63. Springer Berlin Heidelberg, 2008.

[2] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn. Collective communication: theory,
practice, and experience. Concurrency and Computation: Practice and Experience, 19(13):1749–1783,
2007.

[3] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for HSS representations
via sparse matrices. SIAM J. Matrix Anal. Appl., 29(1):67–81, 2006.

[4] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in computing
Krylov subspaces. Technical Report UCB/EECS-2007-123, EECS Dept., U.C. Berkeley, Oct 2007.

[5] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, EECS Dept., U.C.
Berkeley, 2010.

15

13.5

14.5

15.4

16.2

16.9

17.3

17.2

16.4

14.3

10.0

12.1

13.9

16.0

18.4

20.9

23.3

24.9

24.6

20.9

12.8

5.3

6.3

7.5

9.2

11.3

14.0

17.1

19.7

19.4

12.9

1.8

2.2

2.7

3.3

4.2

5.5

7.4

10.0

12.4

10.9

0.4

0.5

0.6

0.7

1.0

1.3

1.8

2.7

4.2

5.9

0.1

0.1

0.1

0.2

0.2

0.3

0.4

0.6

1.1

2.0

lg(p)

k

2 4 6 8 10 12

50

45

40

35

30

25

20

15

10

5

5

10

15

20

150.0

135.0

120.0

105.0

90.0

75.0

60.0

45.0

30.0

15.0

150.0

135.0

120.0

105.0

90.0

75.0

60.0

45.0

30.0

15.0

149.9

134.9

119.9

104.9

90.0

75.0

60.0

45.0

30.0

15.0

lg(p)

k

2 4 6

50

45

40

35

30

25

20

15

10

5 20

40

60

80

100

120

140

Figure 4: Left : Speedups for PA1-HSS over classical algorithm for various k values on Peta. We use the
parameters used in parallel runtime tests for 2D problems in [10], where p = {4, 16, 64, 256, 1024, 4096},
n = {2.5, 5, 10, 20, 40, 80}×103, r = {5, 5, 5, 5, 6, 7}. Right : Speedups for PA1-HSS over classical algorithm
for various k values on Grid. We use parameters p = {4, 16, 64}, n = {2.5, 5, 10} × 103, r = {5, 5, 5}.

1000 2000 3000 4000 5000
−500

0

500

1000

1500

2000

2500

3000

k

S
p
e
e
d
u
p

p=4

p=16

p=64

Figure 5: Speedup versus k for p = {4, 16, 64}, for HSS problem on Grid machine model.

16

[6] J. Hong and H. Kung. I/O complexity: the red-blue pebble game. In Proc. 13th Symp. Theory
Comp., pages 326–333. ACM, 1981.

[7] C. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relaxation using
blocking covers. J. Comput. Syst. Sci. Int., 54(2):332–344, 1997.

[8] M. Mohiyuddin. Tuning Hardware and Software for Multiprocessors. PhD thesis, EECS Dept., U.C.
Berkeley, May 2012.

[9] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in sparse
matrix solvers. In Proc. ACM/IEEE Conference on Supercomputing, 2009.

[10] S. Wang, X.S. Li, J. Xia, Y. Situ, and M.V. de Hoop. Efficient scalable algorithms for hierarchically
semiseparable matrices. SIAM J. Sci. Comput., 2012. (under review).

[11] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance model for
multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

17

