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Scientific Progress

Decentralized estimation and control algorithms for design of reliable guidance, navigation and control systems for autonomous
vehicles with the use of sensor networks that can enable more precise navigation laws, lower cost or smaller future systems,
and increased reliability, are the objectives of this research. The technical focus is the integration of estimation and control
algorithms for multiple vehicles that would lead to guaranteed performance bounds in uncertain, and possibly occluded,
environments in the presence of communication losses and network failures.

During the contract period we explored design of distributed cooperative control laws for multi-agent systems that take the
uncertainties in the agent dynamics into consideration.

1. We proposed a cascaded control structure for multi-agent coordination in the presence of uncertain agent dynamics and
disturbances, which resolved the coupling between the communication topology and the system dynamics. We implemented
and tested the proposed algorithms on the UIUC multi-robot testbed.

2. We extended the cascaded control structure for state-dependent (relative-position-induced) network topology to enable a
decoupled design for distributed control with event-triggered sampling. The decoupled architecture helps to leverage tools from
network theory and robust control to enable the operation of the large-scale system with guaranteed performance bounds and
robustness margins.

3. We developed a PI consensus algorithm for a multi-agent system with disturbances in each agent's dynamics operating over
time-varying communication topologies and with quantized feedback.

4. We designed time-coordinated 3D path-following algorithms for multiple quadrotors and flight-tested the algorithms at the
Naval Postgraduate School.

5. L1 adaptive controller is the core technology that enables distributed control design for multi-agent systems with uncertainties
and guaranteed performance. We have made several modifications to the standard L1 adaptive controller algorithm to relax the
CPU requirements, making it more suitable for systems with limited computation and sensing capabilities.

6. Throughout our research, we have been considering coordination under a very realistic communication setup, i.e., we have
assumed distance-based network or network with a integral type of connectivity (which is a much weaker assumption than the
point-wise connectivity), and shown the robustness of our coordination algorithms. We start to consider stochastic network
which is in nature closer to the physical communication link used in practice.

Technology Transfer



Robust Architectures for Multi-Agent Systems
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Outline

Brief Literature Overview

Decoupled Design for Distributed Control of Uncertain
Networked Control Systems

Cooperative Missions of UAVs



Objectives of Distributed Multi-Agent Systems

Distributed Stabilization

subsystem 1

Weak physical coupling
0 Decentralized control — Siljak 1991 @
Strong physical coupling

0 Distributed control — Bamieh 2002 TAC, D’Andrea (@) subsystem

2003 TAC, Dunbar 2007 TAC, Rice 2009 TAC /
@i; subsystem 3

Cooperative Control

Consensus — Olfati-Saber 2005CDC, Ren 2007CS

Flocking — Olfati-Saber 2006 TAC, Tanner 2003CDC,
Blondel 2005CDC

Formation — Tabuada 2001ACC, Tanner 2002IFAC, \ N
> Perfect Communication

Egerstedt 2001TRA
Maximal coverage — Bullo 2005CC, Cortes » Perfect Model
2004TRA, Martinez 2007CSM « No Physical Uncertainty

Optimization — Rabbat 2004 IPSN, Palomar
2007TAC, Lee 2004CL



Motion Induced Communication

" Flocking:
" Increase the chance of detecting enemies
or targets

= Self-assembled network (Olfati-Saber 2006) 7
= No assumptions on network topology (but needs a common
objective for the group), more realistic for low cost agents with
limited communication range

= |deal double integrator dynamics
= Uncertain dynamics (Li ACC 2011)

* Nonholonomic agents (more realistic and challenging)
" Tanner 2004 : inter-agent velocity alignment, assumptions
on network topology



Main Contributions

= Multiple nonholonomic agents
v Uncertain dynamics and disturbances

= Common goal: target tracking
= Self-assembled flocking and collision avoidance

= Cascaded control structure
v' Coordination and uncertainties decoupled and addressed
independently
v' Guaranteed performance bounds



Problem Formulation

= N Mobile (heterogeneous) agents

o _ [ E@) ] i [ cos(8i(2))
q'(t) = [ (1) ] =v'(¢) [ sin(6*(t)) }
i (t) = wi(t)
v'(s) = G, (s)(uy () + 2,(s))
w'(s) = Gy, () (g, () + 2,(5))
* Target: constant velocity, q;, @, v, are known to agents

= Communication: inter-agent communication range r

= Objective: track the target forming a flock and avoid collision



Preliminaries from graph theory

® General definition

® Graph induced by agents’ positions



Cascaded Control Structure :: Overview

“Simulator” (coordination) + Local Tracking Law (uncertainties)

= Simulator: virtual ideal kinematic model

>
>

>

Running in each agent’s computer

Driven by a cooperative guidance law that achieves flocking and
collision avoidance

Each agent exchanges information of its simulator with neighbors;
this information is uncertainty-free, and is used in the guidance law
Position and velocity of the simulator serve as reference inputs for
the real agent to track

= | ocal tracking controller : track the simulator
» Outer-loop : guidance law for the kinematic model

>

Inner-loop: adaptive controller for uncertain dynamics



Cascaded Control Structure :: Overview

= A demo of the simulator-follower structure

U R

B S R S Sy S S




Cascaded Control Structure :: Overview

Exchange (uncertainty-free) simulator states

Proximity Net G"(q)

Simulator

Local Tracking

Controller

................................... S T

! i E : | Outer Loop:
| Simulator: vl 1l 9;:» | B TeysUYe, et | |

. | 1 1 —
' | Guidance Law [T o, w0, ! Guidance : | Kinematics
: | T . :
: i T 1 PO eovveews  W——
i i i | : Voo We ! ! v, W
:TEUEQET lvs:ws: E .......... icci ........... Lo e
l : : : :
| Simulator: . | L1 Adaptive [ ‘| Dynamics
| Kinematic Model| ! ! Controller "
: | 1 . U W _ _
X 1 1 " : = -
| ! IR 1 U U Inner Loop:
_______________________ 1 i | L e e e e e e e e e e e e = =

Agent Model




Simulator : Flocking Algorithm for Ideal Kinematic Model

® |deal kinematic model
- it [ cos@®
f=| s | =t 5
gs_[gf;] ys[sinﬁ’z ]
0; = wt

75(0) = 2*(0) , %:(0) = y'(0) , #(0) = 6°(0)

" Flocking algorithm

Vg = vy — ky Vg Vi(gs) - [cos B sind]"

Smooth transition from P , i 5
aggregation to heading Ws = ko (95 @d)
%

alignment \ ed

= Collective potential function

Vi) = 3 (e~ ) Wi - al)

JENT (q)

= angle(—V; V(gs) + 0t)




Potential Functions

" [nter-agents

o0
l()g Z=Tc + ?‘g—’?‘ﬂ 1

~y — Ta—"¢
V;l("') h + hSlﬂ r— (T’c+rd);z

Fg—Te i
h /

» Target-agent \‘Q
16

oQ
o= | o At e
nE —(z—Rd)-l-

(z— Rg+1)log(z — Rg+ 1)

Vel2)

=
.

A
4

<. 7
0 2 4 6 S 10 12
Neutral Att/ra ct

! 1

I3




Track the Simulator : Outer-loop

» Objective : the real agent tracks the simulator, i.e., |p.| = 0

= Tracking error

Te cos? sin@ 0 Ts — X
Pe= | Y | = | sin@ cos@ 0O ys —y | , det(T') #0.
a. 0 0 1 0s — 0

A

3 4

[ WlYe — U + Vs COSE,
\_ —Wxe + Vs sin B, J

iﬂs—&}

>

|
—
e B
—

1

= \elocity commands (Kanayama et al, 1991)

w — | Ve | koxe + vs cOs O,



Track the Simulator : Outer-loop

" For perfect velocity tracking: v = v,, w = w,

(ws + kyye + kg sinOe)ye — kyae
Pe = [(Pe,us) = | —(ws + kyYe + ko sinbe)ze + vssin O
—kyYe — kg sin O,

= Key result: imperfect velocity tracking:

» If[v—vl<w, |w— ol <vy,, then|p.| <y, where



Track the Simulator : Inner-loop

» Objective: v(s) = M,(s)v,, w(s) = M, (s)w.(s)

v'(s) = G, (s) (ug (5) + 2,(s))
W'(s) = Gy, (5) (g, () + 25,(s))
= Solution: L1 Adaptive Controller

= Main features of L1 Adaptive Controller

» Guaranteed transient response for system’s both input and output:



Track the Simulator : Inner-loop

* L1 adaptive controller for v, M,(s) = %
> Output predictor:  9(t) = —mud(t) + my(uo(t) + 64 (1))
i édaptiﬁ law: ,(t) = [',Proj(6,(t), —(t))
ontrol law: 5
Uy (8) = Cyp(8)(ve(8) — 64(8))
H,(s) = ci,(g;cu%f()f‘é:(fgslm(s) stable

» L1 stability condition:
[Hy(s)(1 = Co(s))l £, Lv < 1

= Key result: If v, is bounded and v, < y;_, then
ref 1

v = velln, < 2 4 ydes 4+ —ry,
Ty,

Y2 X%




Short Summary

" |lv —1v,|, |w — w,| small = |p.| bounded Vt

= L1 adaptive controller: [v — v, |w — wc|[,  small

Agent can track the simulator with transient performance guarantees!



Coupling between dynamics and topology

= Coupling exists because:

= Communication is induced by motion, no artificial assumptions
* [nput to the simulator is based on G" (gq), not G" (gs)

» Without transient guarantees, it is
possible that simulators “move” to the \
same position

» With transient guarantees, we can select

(i,7) € €7(gs) = (3,5) € £7(q)

* The guaranteed transi
the controller is the
coupling issue.



Simulation: 3 agents, without L1 adaptive controller

= Algorithm designed for ideal dynamics

Response for ideal dynamics

30

20

10

-10

-20

-30

: : 1 . _
Gifs) = GLfs) = =, 24 = 2, = 0

i
-20 -10

i
40

Response for slow dynamics
Gy (s) = Gi,(s) = 5

0.2

A0k E s

1] TR O E R URRUE: TR SR UUUIN DO PTIUE SOUPITRPPI

220 i 1 1 i
-20 -10 0 30 40

Almost collide



Simulation: 3 agents, with L1 adaptive controller

A0 e . .................. ................... SRRRELEEE SRR SEEERRRE R . .




Simulation: 3 agents, with L1 adaptive controller

= Velocity tracking




Simulation: 3 agents, with L1 adaptive controller

Qi e e e st e e s i e G Y
B ST
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Simulation: 20 agents, with L1 adaptive controller
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Experimental results

= Ground robots




Experimental results

= Experimental configuration

Cameral | Camera 4

Image

Fusion Center

- Target
g

Wireless Network

~~» Information of all robots
) S g

Agent 1 Agent N




Experimental results

= A test run with 2 followers




Coordinated Road Search and Target Tracking — The Concept

2DoF P/T gimbal
with a video
camera enables
vision based UAV
guidance and target

tracking

Thermal seeking
soaring gliders is
used as a
Flying Antenna
to extend
communication
range

Single DOF
gimbal with high
resolution camera
delivers satellite
quality imagery well
suited for target ID

Remote
UAVs

Road of
interest



Flight Test: Coordinated Road Capture and Search

Coordination in “Road Search” mode (CPF) is represented by the results of stitching 4 consecutive
high resolution frames taken from the UAV above:
- UAVs are looking at the same virtual target on the road
- Successful coordination results in “encapsulating” second UAV in each frame

AV, path

UAV, path

Flight imagery of 4 consecutive
frames with coordinating UAV below



Flight Test: Coordinated Road Capture and Search

Coordinated Road Capture

e two UAVs generate real-time
capture paths

e coordination is used to robustly
achieve simultaneous arrival

-
Road capture < =

Coordinated Road Search

e two UAVs follow the road search
paths

e coordination is used to guarantee
nonzero intersection of the FOVs
between two cameras

Marth, m

2500

2000

1500

-500

Trajectaries

— UAY,
— UAvy

Sénsor patH

AT R |

\d search

Rr.;’-ad Search Start
1 |

i i 1
1000 1600 2000

________________________________

600 0 500 2500
East, m
CPF coordination states
D I | |
UAVA |
UAVB |
arrival error
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|
120
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Flight Test: Coordinated Road Capture and Search

If coordination is successful then both cameras
look at the same place

The video at the top is from the UAV with a
standard 2DOF gimbaled camera

The video at the bottom was generated by the
high rez camera stabilized by a 1DOF gimbal
(this was accounted for in the path generation)




Flight Test: Coordinated Target Tracking

Trajectaries
2000 :
1m|o0F------ UAVA track | _
—UA\-’B crmd
1600 - Tt track
“]ADD ...................... L
“]2|:||:| .......................
E .
Once the target is designated by the user £ woq— = e AR
= BDD ..................... ................... :
e two UAVs switch from road search to BOD oo A Lo\ Y N L --------------------
Coordinated target tracking mode juu—;—' ...... A ......................
I - - 11| T ..................... .................... _
500 1DiDD 15IDD QDiDD 2500
. . . East,
* the pre-assigned phase separation is e
pi/2, maintained by coordination CTTR phase separationicoordination errors
Dz T T U T T T
-~ o Coordination error is '

oL

CTTR

............

1200

200 400 OO 500

time, 5

1000 1400



Conclusions for Coordinated Road Search

e Coordinated Control of Multiple UAVs:

Theoretical Framework / Practice
L, adaptation
desired - i Onboard A/P
Path followin Pitch rate
S s Y > + UAV
Generation o Yaw rate
commands (Inner Ioop)

coordination Velocity T

Network M Coordination =) i

variables command

L, adaptation
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Real-Time Issues

Limited Communication Resource

» Transmission delays, discrete data transmission, packet loss, quantization

Sampled-Data Systems (Single Plant)

0 Periodically sampled system --- Chen 1995
0 Event-triggered control --- Arzén 1999IFAC, Tabuada 2007TAC

e Saves Communication Resource, but requires hardware detector

0 Self-triggered control --- Velasco 2002RTSS, Wang 2009TAC 2010TAC, Anta 2010TAC

e Predict the next execution time based on the past information. No need for hardware!

Real-Time Communication in Multi-Agent Systems

0 Physically Decoupled
e Consensus, Dimarogonas 2009CDC, 2011IFAC, Yu2011CDC
e Maximum Coverage, Nowzari, 2011Automatica 2012ACC

o Physically Coupled
e Stabilization, Wang 2009TAC 2011TAC » Perfect Model
e Network Utility Maximization, Wan 20091PSN * No Physical Uncertainty



Robust Control and Communication Co-Design

Input-to-state stability for robustness
o Periodic Transmission — Nesic 2004TAC
o Event-triggering broadcast — Wang 2008ACC, Mazo 2009CDC

o ISS only provides an upper bound on the state trajectory, without
quantifying the transient performance.

L1-adaptation-based event-triggering for performance

o State Feedback, linear interconnection, matched uncertainty, fixed
communication model — (presented in AFOSR in 2010)

Drawback: Event-triggering was defined to transmit the real system outputs
over the network, often measured by noisy sensors.

Desired Solution:
1.Network must be used for communication of information, NOT affected by
system uncertainties or noise.

2.The design of control and communication can be decoupled to the maximum
extent so that the existing techniques can be easily leveraged.




Problem Formulation

@ Ideal Model:
subsystem 1

..‘ 3-,.:5:1 — Ail&lld + B H“l + f? (ﬁ Zlidsyii,)
v = G, 9(0) = 2}
S“bs"“e'“ 2 Ideal Controller:
; g -id 1 _id _id
"‘ - / z':_( = O; (t A-:{ 1?};‘ 1 y" )
®;> subsystem 3 uifd = Ry (f, Mld ‘}'z EJI_C]..)

Subsystems are physically coupled
0 Unmatched uncertainties in the

system dynamics and
T = Az, H By @ interconnections
Ciz; Mz (0) 0O Uncertainties are Locally Lipschitz

i =
0 Output feedback
0 Nonlinear ideal interconnection

Real Subsystem:

Input is computed based on _ o o
discrete data over networks Uncertainties Limited Communication

0 Discrete data transmission
0 Delay and packet loss may exist



Decoupled Control Architecture

To what level can we decouple the design of control and
communication?

Solution:
Plant L Reference Model
A:’l:;i:? + Bu; + f; (f., y
i C%Tf

________ > o

| .

' NS
~s | Reference " (t!ﬂ: yﬁ P Network
y—z'! ——————— - Model hg (i; Et’:yi Data

Communication P 7%
Model *Doesn’t contain physical uncertainties.
*The information is “clean”.

[OCal data based on the data from the
reference model.




Control Design

Robust adaptive
Real Dynamics with control |
Robust Adaptive () Reference Model (umssssmmd |deal Model
Controller

Regard the real subsystem as a single system, with the signals from its
reference model as the reference signals;

Robust adaptive control ensures the closeness between signals inside the
real dynamics and the reference model inside each individual agent.



Communication Design

Real Dynamics with Comm. design
Robust Adaptive Reference Model () |deal Model
Controller

No physical uncertainties are involved in the communication model design;
If the signals over the network are bounded, the closeness between the
real dynamics and the reference model will NOT be affected by

» The type of communication models
> The network effects, such as delays, packet loss, etc.



Design Procedure

Given a multi-agent system
1.Model the system dynamics and obtain the ideal model
2.Design the ideal control algorithm based on the ideal model

3.Design the communication model based on the ideal model so
that

O The resulting closed-loop system (reference model) fulfills the same
objective that the ideal model does

O The input and the output of the resulting reference system are
bounded.

4.With the bounds obtained in Step 3, design the distributed local
robust adaptive controller

The only coupling between the control and the communication
design is that the bounds on the input and the output of the
reference model will be used in selecting the parameters of the
control generator.



The Difference between Reference and Ideal Models

The reference model:

# = AT+ Bl + fi (45 05)
yf = CE.I':'

< g; (£, 25,95, 155)

Ib: - hi (t? Z;?*y?}ﬁ‘ii) .

The combined closed-loop reference model:
0 = U (w7 (8), ()
The closed-loop ideal model:
W' = (¢, w (D), ¥ (1))
The closed-loop relerence model cann be writlen as:

0 = (0P 0), 1 () + ¥ (600, () — ¥ (¢ v (1), 4°(0)

Ideal 1‘[{){1{31 PertuBat iom

The key challenge in the communication model design is to ensure that the
difference hetween ¢* and 4* is not TOO large.



Performance Bound

Assume that

e (¢, w®, y°) and its first partial derivatives are continuous, bounded, and
Lipschitz in w®, uniformly in £, for all # > 0 and w'¢ in a compact set;

o Ut w®, ¢°) is piecewise continnons in #, locally Lipschitz in 4, #°;

e there exist continuous, positive definite class K functions oy, a9, az and
a continuously differentiable function V' such that

an ([} < V (¢, ™) < a([w']))

av oV Y < e (i)
o 2 (6 w) < —aa(fw);

e w'¥ =0 is an exponentially stable equilibrium point of the ideal model.

Then there exist 5,n > 0, such that if

"ya - @HH.{:W S T

Communication Constraints

we have

| — vz < Bu.



Enforcing Communication Constraint

Assume that

Example (to enforce the communication constraint):

Event Triggered Data Transmission:
pre-specified threshold

Transmit when the local measurement error
lu3(t) — 43(t)|| exceeds a pre-specified positive
local error

constant.
The sampled output of the reference model is / >

transmitted. The real output is not involved. transmitting instant

e w'¥ =0 is an exponentially stable equilibrium point of the ideal model.

Then there exist 5,n > 0, such that if

z "ya - 5}%";‘:9@ < 1 \

ieAN

Communication Constraints
we have

| — vz < Bu.



Local Networked L1 Adaptive Control Generator

physical coupling
State predictor

Subsystem
control output .
input &, = AP+ By +0 + fi (L5, 1)
- _ 0
data from the z:(0) = i,
- St;.te reference model
_ redictor Adaptive law
estimated estimated
uncertainty state - n
i(t) = Ui Cii(t) — yilt))
Adaptation ) ) )
[i: matrix adapt|ve gain
Adaptive input
Low-Pass
Filt : T AR 2 PR
@ = 05(5) = —Fi(s) ()" Hi()ie(s)

adaptive input
data from the

reference model Wlth Ei(S) = C‘{iiﬁf - A?é)_lr B’.,;(s) = gi(s)gi*

Nominal
nominal input | Feedback Nominal input
L1-based control generator vi(t) = ui(t)

This L1 adaptive control architecture uses data from the reference model that
carries the information from the network.



Main Results

Assume that the input and the output of the 2th reference model are bounded
by p¢ and p! , respectively. If 3p, such that

py > Gull2dl) + i) + v (ngg)

1

T = F(s)) HilsMlea (aimy +Bi) im0y

for any 4, then ||%(¢)|| and [[«(¢)|| are uniformly bounded and

- . 1
— 4’|z, < pA, I — Fi(s))H;(s + - . )’
= vllen, < o, (I~ BB e, + 50— e,

where ¢;, ¥, vi, o, 3 are class K, functions and o,,;,{-) denotes the minimal
singular value of a matrix.

We can always find py such that the stability condition holds.

The performance bound can be rendered arbitrarily small by
increasing the bandwidth of the low-pass filter.

Large bandwidth leads to small stability margin, which suggests a
tradeoff between performance and robustness.



Real-Time L, Adaptive Control Generator

When implementing the controller in digital processors, we seek real-time L1
adaptive controller and consider the problem of computational resource
management.

Assume that the £ stability condition holds. For each agent, if the time
intervals between two consecutive receptions of the data from the network are
lower bounded by a positive constant, then there exists a continuous function
oy satisfying «;(0,0,0,0,0) = 0 and a positive constant -; such that if

a; [ €omp. Period; Sensing Period; Actuation Period; <
" \| Sensing Delay; Actuation Delay '

Sensing Period > Sensing Delay
Actuation Period > Actuation Delay

hold, then |ly; — vz < 7i-

The performance is subject to the hardware limitations.



New Results on Cooperative Missions

Time-critical applications for multiple vehicles with spatial constraints:

e Sequential auto-landing (UAVs)
e Coordinated reconnaissance missions
e Simultaneous arrival at multiple locations

UAV1 Trajectory.

Courtesy: NPS Courtesy: LARSYS, IST

N
Coordinate on the arrival of a leader (or group of leaders) subject to
collision-avoidance, communications, and spatial constraints




Overall Conceptual Architecture: Decoupling Space and Time

Communications

Network
) L
coordination
variables
T B
| :
: desired . I speed
| speed Time i command
: Coordination | i
i ? E control
| Desired | i ™| £, Control Input | Vehicle with
i Trajectory | E | Augmentation " Autopilot
| I Y
i I i
: | _ Path | _
! | desired Following — attitude
E |  position/ 1 command local
] I attitude | | dynamic feedback
I ' 1
i | | :
: L1 i
b e e i local
Guidance Outer-Loop kinematic feedback

Xargay, Dobrokhodov, Kaminer, Pascoal, Hovakimyan, & Cao 2012



Time-Critical Coordination :: New Results and Extensions

Consensus problem: reach an agreement on some distributed
variables of interest (coordination states) as well as their rates

zi(t) —zi(t) =% 0, Vijel Synchronize in both
z;(t) s Viel, ‘position’ and ‘speed’

\ Reference rate

= New results:
* New coordination states that accommodate time-varying desired speed profiles;

* Performance guarantees in the presence of temporary link losses and disconnected graphs:

» Lower bound on the (exponential) convergence rate...

» ... asa function of the QoS of the network and the number of leaders;

* In the presence of quantization, existence of equilibrium points corresponding to undesirable

steady solutions with zero ‘speed’:
» Derivation of a bound on the quantizer step size to ensure that these equilibria do not exist;

e Performance improvement under low connectivity through ‘onboard estimators’;

e Performance improvement via emergent leaders.



*

’0

L)

*

Key Ideas & Previous Work

PI protocol: Critical to coordinate ‘speed

Allows agents to learn a reference rate command and reject constant disturbances.

* Kaminer, Yakimenko, Pascoal, & Ghabcheloo 2006 Fixed connected araohs:

* Carli, Chiuso, Schenato, & Zampieri 2008 N roed grapns, ;

* Bai, Arcak, & Wen 2008 (generalized Pl protocol) 0 gugrgnteea convergence rate
Virtual leaders: Allows to track a constant reference rate command with zero steady-state error

* Shi, Wang, & Chu 2006 } The ‘virtual leader’ is implemented : ‘Extra agent’ imposes a reference

* Ren & Beard 2007 as an isolated node rate and its dynamics are affected by
* Su, Wang, & Lin 2009 providing a reference trajector other agents ‘

Quantization can create equilibrium points corresponding to undesirable steady
solutions with zero ‘speed..

* Kashyap, Basar, & Srikant 2007

* Censi & Murray 2009

* Nedic, Olshevsky, Ozdaglar, & Tsitsiklis 2009
e Ceragioli, De Persis, & Frasca 2011

Quantized consensus:

In the ‘conventional’ agreement
problem, quantization leads to
‘practical consensus’

Guaranteed rate of convergence: Critical to ensure successful execution of the mission.

Convergence rates derived only for
‘conventional’ consensus problems

* Kashyap, Basar, & Srikant 2007

* Olfati Saber & Murray 2003
* Nedic, Olshevsky, Ozdaglar, & Tsitsiklis 2009




Coordination States :: Time-Varying Speed Profiles

= For constant desired speed profiles:

v" Normalized curvilinear abscissas:
£ [0,15] — [0, 1]

= For time-varying desired speed profiles:

v' Time variables:

- [03 H — [03 t;}

£6)

\/\ £y.i(ta)

&i(t) iy
|
|
|

: W € 5(ta)
g

T
H
H
i
H
H
H
H
H

Coordination error

& t-‘») la

‘ Cri p=va:i/lsi
TIME
£(1) £ mi(€(1) -
= Normalized abscissas: £;(t) — £3(f)
Desired

relative positions

= New time variables:  &;(t) — &;(t)

\Q Desired
\ relative positions

< In the case of spatially deconflicted paths, there is no risk of
collision; however, mission-specific goals will not be satisfied.




Agent Dynamics & Communications Network

Consider a network of n integrator-agents:
ig’(f) Z’&g‘(i) -|-dg'? 3333(0) = X450, ied, = {1,..,,?‘1‘5}

with dynamic information flow Gy (t) := (Vy, Eo(t)).

Communications network:

=Each agent can only exchange information with a set of neighboring agents;

sCommunications between agents are bidirectional and information is transmitted
continuously with no delays;

=Connectivity of the communications network at time  shtisfies:

t+T

11 ¢

W T / QnLo(T)Qudr > plp_1, Yt>0
t Arcak 2007

» Parameters 7" and p characterize the QoS of the network;
* Graph connected in an integral sense, not piecewise in time:

v’ The graph may be disconnected during some interval of time...
v’ ... or may even fail to be connected at all times.



Virtual Agents & Extended Network

Disturbance-free dynamics

=  We add 7y virtual agents with dynamics:

igé(t) = “ﬂlgg(ﬁ)? 2&"‘@;(0) = X¢i0, 1 e Ig = {1} .. ,ﬂg}

/

%+ To limit the amount of information transmitted over the network, both leaders
and followers only exchange one coordination state with their neighbors.

v Followers exchange their own actual states.
v Leaders only exchange the state of their virtual agents.

Having multiple leaders improves robustness to
single-point failures

Ren & Beard 2007

Adding virtual agents reduces the connectivity
level of the extended network

f QnL(M)QNdr > pnIn_1, V30
t

14

i} L i i I 1 I i 1 1
0 0.1 02 03 04 05 06 07 08 08 1 |

Xargay, Choe, Hovakimyan, & Kaminer 2012




Pl Protocol & Collective Dynamics

= Distributed protocol:  ug; = kp ng;@i (2 — ze) + p, €Iy
?ﬁg':]{?pszM (&'?j—il?g;)‘FXg, %:Ezn
Xi = k1D jen, (@i — i), xi(0) =xw0, €Iy

* Reference rate only available to the leaders;

* Proportional-integral control structure:
v" Disturbance rejection capabilities;
v’ Followers can learn the reference rate command;

* Each vehicle exchanges only its coordination state x4(t) with its neighbors.

= Closed-loop collective dynamics: [ Switched LTI system ]

(t) = —kpL(t)x(t) + [ﬁ?ﬁa] , 2(0) = zo
(t) = —kiC " L(t)=(t), x(0) = xo

@
X



Convergence Properties

= Define the consensus error state {(t) := [(1(£) T, ¢2(t) "]

t) = x(t
Ci(t) == Qn=(?) c) =0 o
C2(t) = x(t) — pln +d
Closed-loop collective dynamics:

Proof is constructive

=  There exist coordinatic

where

limypoo 2 (£) — 2;(8)
]-imt—)oo T L



Convergence under Quantization

= Pl protocol under quantized feedback: [

Only information exchanged over
the network is quantized

u=—kp (ﬁ(t)x = 131(?5) Q(ﬂf)) + [;ﬂ;;g ]

x=-kCT (Dt)e - A)a(®)), x(0)=xo

\
|
i

fixed links -————---‘i—' E‘”leader

_____ {____.-‘
leader @mfollower

e Carathéodory solutions might not exist;, need to consider solutions in the
sense of Krasovsky. (Ceragiolo, De Persis, & Frasca 2011)

* Potential existence of undesirable attractors/equilibria if:

2ng  |pl|
A >
“n{n—1) kp

* Uniform ultimate boundedness with ultimate bounds proportional to the step

size of the (uniform) quantizers:

|:(t) — z;(t)] <l
|£:(t) —p| <2l ’

Vi>T,



