The Use of Field Deployable Instrumentation for the Monitoring of Munitions Constituents in Groundwater

David Splichal, Anthony Bednar, Amber Russell, Tom Georgian, Charolett Hayes, Louise Parker, Robert Kirgan, Mitch Wells

March 2011
The Use of Field Deployable Instrumentation for the Monitoring of Munitions Constituents in Groundwater

1. REPORT DATE
31 MAR 2011

2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
The Use of Field Deployable Instrumentation for the Monitoring of Munitions Constituents in Groundwater

5. AUTHOR(S)

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Corps of Engineers, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180-6199

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

10. ABSTRACT
Presented at the 2011 DoD Environmental Monitoring & Data Quality Workshop (EMDQ 2011), 28 Mar ? 1 Apr, Arlington, VA.
Introduction

- Long Term Monitoring of Groundwater
 - Can be required for 30+ years
 - Long after activities at a site have ceased
 - Regulatory approved methods/detection limits
 - Laborious and expensive process
 - Sample collection, overnight shipment under COC
 - Over $160/cooler shipping costs alone
 - Fixed laboratory analysis can be slow and expensive
 - 30-60 days, $225/sample for explosives

- Field analysis goals
 - Rapid (near real time)
 - Cheaper (no shipment costs)
 - Comparable results
 - Absolute detection, confirmation, and quantitation
 - NB, 1,3-DNB, 2,4-DNT, TNB, TNT, RDX
 - Demonstrated at 2 field sites, Louisiana and Milan AAPs
Field Portable = Minimal support services, i.e. power from a 5 kW generator, instrumentation fits in the same 4 m trailer the groundwater sampling supplies are transported in.

GC-MS is approximately 2’ cube, weighs 35 kg
Field Extraction Methods

- Solid Phase Extraction Cartridges
 - Method 3535A
 - Compared to direct water analysis (values in ppm)
 - Same analytical method, HPLC, 8330B
Field Instrument Performance

- **Instrument calibration range (SIM) 0.3 – 2.5 mg/L**
 - Ground water concentration range 1.5 – 12.5 μg/L (CF of 200)
 - $R^2 > 0.95$ for all analytes
 - Quantitation limit 1 μg/L
 - Yields an effective analysis at 2 μg/L with SPE extraction concentration factor (~200x)
 - Time from analysis to data reporting is ~9 minutes

<table>
<thead>
<tr>
<th>Analyte</th>
<th>MDL</th>
<th>0.001 ppm Verification</th>
<th>% REC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>0.0026</td>
<td>0.0012</td>
<td>120.0</td>
</tr>
<tr>
<td>1,3-DNB</td>
<td>0.0005</td>
<td>0.0011</td>
<td>110.9</td>
</tr>
<tr>
<td>2,4-DNT</td>
<td>0.0006</td>
<td>0.0008</td>
<td>75.8</td>
</tr>
<tr>
<td>TNB</td>
<td>0.0003</td>
<td>0.0005</td>
<td>52.2</td>
</tr>
<tr>
<td>TNT</td>
<td>0.0003</td>
<td>0.0013</td>
<td>133.2</td>
</tr>
<tr>
<td>RDX</td>
<td>0.0016</td>
<td>0.0012</td>
<td>117.0</td>
</tr>
</tbody>
</table>
Field Instrument LCS Recoveries

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>1,3-DNB</th>
<th>2,4-DNT</th>
<th>TNB</th>
<th>TNT</th>
<th>RDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD QSM Limits</td>
<td>50-140</td>
<td>45-160</td>
<td>60-135</td>
<td>65-140</td>
<td>50-145</td>
<td>50-160</td>
</tr>
<tr>
<td>LAAP Day 1</td>
<td>78</td>
<td>73</td>
<td>82</td>
<td>83</td>
<td>74</td>
<td>57</td>
</tr>
<tr>
<td>LAAP Day 2</td>
<td>58</td>
<td>47</td>
<td>60</td>
<td>73</td>
<td>59</td>
<td>33</td>
</tr>
<tr>
<td>LAAP Day 3</td>
<td>110</td>
<td>65</td>
<td>96</td>
<td>91</td>
<td>83</td>
<td>69</td>
</tr>
<tr>
<td>MAAP Day 1</td>
<td>100</td>
<td>98</td>
<td>91</td>
<td>81</td>
<td>82</td>
<td>55</td>
</tr>
<tr>
<td>MAAP Day 2</td>
<td>110</td>
<td>93</td>
<td>100</td>
<td>72</td>
<td>67</td>
<td>41</td>
</tr>
<tr>
<td>MAAP Day 3</td>
<td>99</td>
<td>100</td>
<td>110</td>
<td>62</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>MAAP Day 4</td>
<td>77</td>
<td>110</td>
<td>100</td>
<td>79</td>
<td>88</td>
<td>110</td>
</tr>
</tbody>
</table>

LCS spike concentration 10 µg/L
Field Instrument MS Recoveries

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>1,3-DNB</th>
<th>2,4-DNT</th>
<th>TNB</th>
<th>TNT</th>
<th>RDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoD QSM Limits</td>
<td>50-140</td>
<td>45-160</td>
<td>60-135</td>
<td>65-140</td>
<td>50-145</td>
<td>50-160</td>
</tr>
<tr>
<td>LAAP Day 1</td>
<td>96</td>
<td>86</td>
<td>91</td>
<td>74</td>
<td>63</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>74</td>
<td>120</td>
<td>100</td>
<td>92</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>180</td>
<td>170</td>
<td>7000</td>
<td>3600</td>
<td>-2200</td>
</tr>
<tr>
<td>LAAP Day 2</td>
<td>99</td>
<td>240</td>
<td>200</td>
<td>5300</td>
<td>2200</td>
<td>-3800</td>
</tr>
<tr>
<td>LAAP Day 3</td>
<td>80</td>
<td>72</td>
<td>73</td>
<td>75</td>
<td>72</td>
<td>54</td>
</tr>
<tr>
<td>MAAP Day 1</td>
<td>96</td>
<td>100</td>
<td>93</td>
<td>88</td>
<td>81</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>110</td>
<td>110</td>
<td>66</td>
<td>55</td>
<td>9.8</td>
</tr>
<tr>
<td>MAAP Day 2</td>
<td>120</td>
<td>77</td>
<td>96</td>
<td>79</td>
<td>58</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>68</td>
<td>100</td>
<td>59</td>
<td>54</td>
<td>260</td>
</tr>
<tr>
<td>MAAP Day 3</td>
<td>160</td>
<td>110</td>
<td>110</td>
<td>22</td>
<td>61</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>93</td>
<td>110</td>
<td>23</td>
<td>66</td>
<td>37</td>
</tr>
<tr>
<td>MAAP Day 4</td>
<td>70</td>
<td>99</td>
<td>94</td>
<td>66</td>
<td>86</td>
<td>33</td>
</tr>
</tbody>
</table>

MS spike concentration 10 \(\mu \text{g/L} \)
Laboratory-Field Comparison

- 28 groundwater samples collected from LAAP and MAAP
 - Additional ‘synthetic groundwater’ samples created by dilution of elevated samples with clean groundwater to make water samples with lower concentrations in a natural matrix
- Nitrobenzene (NB) was not detected in any groundwater sample by the field or laboratory methods
 - Limited comparison, but no false positives or negatives for the matrices tested
Laboratory-Field Comparison

- 1,3-DNB results show excellent agreement
 - Limited concentration range and dataset due to several non-detects
 - Ordinary least squares fit: \(F = 0.86L + 0.018 \)
 - Kendall-Theil (K-T) Line: \(F = 1.0 L + 0.00039 \)
Laboratory-Field Comparison

- 2,4-DNT results show excellent agreement
 - Limited concentration range and dataset due to several non-detects
 - Ordinary least squares fit: \(F = 0.88L + 0.0034 \)
 - Kendall-Theil (K-T) Line: \(F = 0.94L + 0.000042 \)

![Kendall's line for censored data](image URL)

\[
2,4\text{-DNT}_F = 0.000425 + 0.943765\times2,4\text{-DNT}_L
\]
Laboratory-Field Comparison

- TNB results show positive bias
 - Possibly owing to TNT interference
 - (similar mass signatures and little chromatographic separation)
 - TNT was often an order of magnitude or more higher than TNB
 - Ordinary least squares fit: \(F = 1.5L - 0.026 \)
 - Kendall-Theil (K-T) Line: \(F = 1.3L + 0.0019 \)
Laboratory-Field Comparison

- TNT results show excellent agreement
 - Screening level data below approximately 0.05 mg/L
 - Ordinary least squares fit: $F = 1.0L - 0.013$
 - Kendall-Theil (K-T) Line: $F = 0.87L + 0.00071$

![Kendall's line for censored data](image-url)
Laboratory-Field Comparison

- RDX results had significant scatter
 - Stability of RDX during thermal separation likely limits utility
 - GC-ECD by Method 8095 also has RDX/HMX issues
 - Screening level data by field GC-MS
 - Ordinary least squares fit:
 \[F = 1.3L - 0.11 \]
 - Kendall-Theil (K-T) Line:
 \[F = 0.69 L + 0.0013 \]

![Kendall's line for censored data](image)
Other Applications

- PAH analysis in dredged material to identify oil spill residue during dredging
 - Deployed to Dredge BE Lindholm in August 2008
 - Analyzed water and sediment during operations
 - Near real time data lead to dredging decisions being made on scientific data rather than observations of ‘sheen’

Conclusions

- Field portable instrumentation can provide near real time analysis of munitions constituents in water
 - Quantitative Agreement for Most Analytes
 - TNB was positively biased
 - Possibly due to elevated TNT
 - RDX is difficult by thermal separation methods
 - Limited to screening level data without further refinement
- Method development and instrument optimization are critical
Future Work

- **Delineation of PCB contamination at Anniston Superfund Site**
 - Near real time analysis of sediments
- **Other organic compounds**
 - Pesticides, Gulf Oil Spill/PAH Analysis
- **Further development of MIMS for direct analysis of water samples**
 - No sample preparation/extraction needed
Funding

- ESTCP
 - ER-0922
- Environmental Quality and Installation Long Term Monitoring
Questions?

Thank You

Anthony.J.Bednar@usace.army.mil

David.E.Splichal@usace.army.mil
Laboratory-Field Cost Comparison

- Cost difference between the laboratory and field analysis
 - Breakeven point occurs at ~3.5 years
 - Assumes 12 5-day sampling trips/year and 25 samples analyzed per sampling trip. Total of 300 samples analyzed per year
 - Net present value (NPV) analysis
 - Savings of ~90K after 7 years (life expectancy of a field instrument)