Bullets Behaviour in Ballistic Simulants

Dr. Amal Bouamoul
DRDC Valcartier

Dr. Duane Cronin
University of Waterloo

WOUND BALLISTICS SYMPOSUM
Defence Academy of the United Kingdom
August, 17th 2012
Shrivenham, UK
Bullets Behaviour in Ballistic Simulants

17 AUG 2012

Defence R&D Canada - Valcartier, 2459 Pie-XI Blvd North, Quebec (Quebec) G3J 1X5 Canada,

Approved for public release; distribution unlimited

DRDC-VALCARTIER-SL-2012-249

Security classifications:
- a. REPORT: unclassified
- b. ABSTRACT: unclassified
- c. THIS PAGE: unclassified

Limitation of abstract: Same as Report (SAR)

Number of pages: 13
Goal

• Create a FE model capable of predicting the effect on the gelatin when stuck by different projectiles
• Perform a parametric study on the effect of calibre on wound track

• The FEM needs to account for damage in the gelatine
 – Velocity decay
 – Dynamic cavitation
 – Permanent cavitation
 – Final penetration depth
• And projectile fragmentations

• Increases *Physical Understanding* of impact events and wound effects
Modelling of Terminal Ballistic Events

• Terminal ballistics events include
 – Impact, shock and blast loading on targets
 – Blast, lethal and blunt impact on human and animals
 – Penetration and perforation of targets
 – Behind armour effects

• Hydrocodes are used to model numerically terminal ballistic events
 – Finite element code used for analyzing response of targets under static or dynamic loading conditions
Constitutive Model for 10% Gelatin

- The mechanical behaviour of ballistic gelatin is a typical hyperelastic.
- Under SHPB tests, samples typically fail through the initiation of radial cracks.
- Temperature has an effect.
- Increasing stiffness with increasing strain rate.
Constitutive Model Implementation

- Collect materials information at high strain rate
 - Compressive/tensile data
 - Penetration and wave speed
- Constitutive models
 - A traditional hyperelastic model was used but:
 - was insufficient for the intermediate and high strain rate
 - A rate-dependant hyperelastic constitutive model was used
 - Required tensile data
 - Sensitivity study demonstrated that the impact response was not significant dependant on the tensile response
Steel Sphere (BB) Impact Model

- The BB impact was used as a baseline to develop the material model and any associated failure criteria.
- The nominal diameter was: 4.5mm (BB-type).
- Lagrangian formulation was used.
BB Steel Sphere

- The resulting temporary and permanent cavities are in reasonable agreement with typical gelatin response.
- The permanent cavity is on the order of the projectile diameter, in agreement with Fackler.
- The overestimation of the permanent cavity is due to element erosion.

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>Target Penetration (mm)</th>
<th>Predicted Penetration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>25.2</td>
<td>28.5</td>
</tr>
<tr>
<td>90</td>
<td>43.6</td>
<td>45.2</td>
</tr>
<tr>
<td>120</td>
<td>61.9</td>
<td>58.2</td>
</tr>
</tbody>
</table>

Temporary cavity | Permanent cavity
9mm Ball

• Results for a 2D 9mm NATO Ball model
 – Projectile does not deform and begins to tumble after approximately 150 mm penetration (6po)
 – Initial temporary cavity is approximately 2x the projectile diameter
 – 2D axi-symmetric analysis was in agreement with the experimental data
5.56mm bullet, high velocity

- Results for 5.56mm
 - Projectile does fragment and began deforming at 3po DP
 - The steel core fragment and detached from the projectile
 - The steel core was stopped at approximately 6po DP, while the lead completely penetrated the gelatine
5.56 mm vs. 6.67 mm
Average Bullet Speed

- Only 5.56 mm releases all its E.K. on the block
- 5.56mm decelerate quickly, has small neck length and fragment early
- 6.67 mm exits with low velocity and releases most of its initial E.K.
- Calibers from 7.62 mm and up behave in the same way
Conclusion

- In general:
 - Numerical modelling plays an important role in the study of terminal effects of small arms
 - Better understanding of the phenomena that are difficult to examine using experimental methods
 - Optimization of the number of experimental trials and savings of time and money
 - Fast trade up analysis for bullet design