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Abstract

The ability to identify a stressed person is becoming an important aspect across

different work environments. Especially in higher-stress career fields, such as

first responders and air traffic controllers, mental stress can inhibit a person’s ability to

accomplish their job. A person’s efficiency and psychological state in the work environment

can be impeded due to poor mental health. Stress can result in harmful effects on the body,

both physically and mentally, including depression, lack of sleep, and fatigue, which can

lead to reduced work productivity.

Research is being conducted to detect stress in workload-intensive environments. This

thesis implements an imaging approach that utilizes hyperspectral data across the visible

through shortwave infrared electromagnetic spectrum. The data is applied to the feature

selection algorithms ReliefF, Support Vector Machine Attribute Evaluator (SVM AE),

and Non-Correlated Aided Simulated Annealing Feature Selection-Integrated Distribution

Function (NASAFS-IDF) to obtain features that discriminate between the classes, “stress”

and “non-stress.” This data is classified using naive Bayes, Support Vector Machine (SVM),

and decision tree methodologies.

The feature set and classifier that produce the highest classification results are

calculated using percent accuracy and area under the curve (AUC). The reported results are

divided into contact and non-contact (NC) validation sets. The contact validation returned

a high accuracy of 96.30% and high AUC of 0.979. Validation on NC models returned a

high accuracy of 99.64% and high AUC of 0.998.
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SPECTRAL DETECTION OF ACUTE MENTAL STRESS WITH VIS-SWIR

HYPERSPECTRAL IMAGERY

I. Introduction

Recognizing stress is an important aspect of monitoring a subject’s productivity and

psychological status in the work environment. Levels of stress vary depending on

the individual and the tasks encountered. Those in physically and emotionally demanding

career fields, such as emergency personnel or air traffic controllers, often experience a

higher workload and elevated stress levels compared to others in lower-stress environments.

While certain aspects of stress can be positive, such as increased physical strength and

alertness, negative results of stress, such as depression and reduced work efficiency are

also possible [6]. This is due to the fact that a high level of stress causes physiological

changes, releasing chemicals in the body that then affect cognitive processes and internal

functions [6].

Because the negative aspects of stress outweigh the positives and inhibit work

productivity, research is being conducted to examine the potential of detecting stress

in workload-intensive environments [3, 4]. One way to detect stress is by imaging

individuals in stressful situations with different types of cameras that can capture heat

dispersal, reflected energy, or radiance. A thermal imager detects stress due to an increased

temperature [4]. To capture reflected energy and radiance involves the use of hyperspectral

imagers that capitalize on the change in reflectance signature when stressed.

Previous researchers have discovered the possible implementation of hyperspectral

imaging (HSI) in stress detection [3, 4]. Yuen et al. [3] began exploration of HSI and its

potential in the area of stress detection. The research accomplished in this thesis continues
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HSI as a stress identification method and includes the use of a non-contact (NC) probe t o

provide a non-invasive form of stress detection.

1.1 Problem Statement

Hyperspectral cameras collect radiance from a scene across the visible through

the shortwave infrared (SWIR) spectrum [1]. The radiance is converted to reflectance,

providing a spectral response of wavelengths versus reflectance. Radiance is a measure

of the quantity of electromagnetic radiation that is emitted from the imaged surface [75].

Reflectance is the ratio of the radiation reflected from a surface to the total amount of

radiation on the surface [75]. Every object has its own unique spectral response and is

evident from the reflectance it produces. For example, the reflectance signature of skin

differs from that of wood or clothing; across the spectrum, each object has peaks and valleys

at different wavelengths.

The reflectance of skin has the same general shape independent of skin tones [7].

Nunez and Mendenhall [7] created an algorithm that successfully detects human skin

among a cluttered background using HSI. Examining the unique reflectance of skin could

prove viable in determining a method to perform stress detection.

Current research discusses the result of an increase in blood volume in skin at the

onset of stress [3]. This property leads to a change in the reflectance of the skin, though

only initial experiments have been conducted on this discovery [3, 4]. There are several

steps required to confirm the hypothesis that HSI can be applied to stress detection.

These include 1) Collecting hyperspectral data on a variety of skin tones under various

stress levels; 2) Evaluating the features to determine discriminating wavelengths; and 3)

Applying mathematical algorithms to separate stress from non-stress based on the selected

features. Feature selection is important due to the high dimensional data produced by

HSI. Hyperspectral data covers a large spectrum; the data collected in this work spans

from 350-2500nm, with a sampling interval of 1nm, which equals 2,150 wavelengths.
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Feature selection identifies features with the greatest discrimination between classes. Class

distinction is determined by the amount of separation between the two classes, stress and

non-stress. This thesis will test different feature selection and classification algorithms as

they apply to hyperspectral data for the purpose of mental stress detection in a person.

1.2 Justification

HSI is non-invasive and collects details that are not distinguishable to the naked

eye or to other types of technology, such as thermal and photoplethysmographic (PPG)

imaging. Common methods to detect stress include an oximeter [9], which measures blood

oxygen levels, a polygraph [8], which measures blood pressure, pulse, respiration, and skin

conductivity, and a blood pressure monitor, which can detect potential stress as it relates to

a change in blood pulse [10]. Thermal and PPG imaging have been implemented for stress

identification [2, 4]; however, HSI is able to characterize features of the human skin with

the ability to see below the epidermis [11]. HSI is a different type of imager than thermal or

PPG imagers; it is focused across the visible to SWIR electromagnetic spectrum. Thermal

imaging utilizes thermal heat produced and PPG imaging focuses on blood flow throughout

the body [2]. PPG technology produces pixilated images showing blood pulse throughout

the body, while HSI shows the reflectance of the skin.

Applying a stress detection method to the workforce and real-world scenarios

necessitates a non-invasive technique. In the application of emergency personnel, pilots, air

traffic controllers, or deep-sea divers, these individuals cannot be connected to a standstill

device that impedes their agility. HSI can collect and process information using non-contact

devices, to aid in stress detection.

1.3 Assumptions

Due to the complexity of detecting stress, several assumptions are made. These

assumptions include an increase in heart rate (HR), blood volume, and blood oxygen levels
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at the onset of stress. On average, a non-stressed subject has a temperate heart rate of 60

beats per minute (bpm). This provides a baseline reference for the HR measurements. The

baseline is a reference of what the reflectance signature should look like when the subject is

not stressed and can be used to compare the reflectance signature of a subject under stress.

Hyperspectral data from a spectroradiometer can be collected using two basic differing

fore optics: a contact probe and a NC probe. The contact probe has a built in illumination

source that spans the wavelength range of 350-2500nm. The NC fore optic can successfully

take images in the sunlight without any extra lighting, but requires artificial light (spanning

the range of 350-2500nm) if used indoors.

1.4 Approach

A subject’s biological response to stress results in increased blood flow and blood

oxygenation [4]. Therefore, the radiance from human skin under stress should hold a unique

spectral distribution as blood volume and oxygen levels change with stress.

This study will be performed indoors using artificial light, which is designed to

represent sunlight. Due to imperfections in the light source, when using the NC fore optic,

power is attenuated in the lower (350nm) and higher (2500nm) spectral range. The signal-

to-noise ratio (SNR) in these regions is not low enough to affect the results and will be

considered negligible.

The contact sensor is placed on the skin in the area of the carotid artery. This site is

chosen due to its ease of access for current testing and future implementation. The carotid is

one of the largest arteries in the cardiovascular system and holds a strong pulse close to the

surface of the skin, which increases imaging accuracy. The NC optic is positioned to collect

the reflectance of the skin in the area of the carotid artery also. The spectral responses from

these collections are applied to feature selection and classification algorithms in order to

detect stress.
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1.5 Equipment

Collecting hyperspectral data of the human stress response necessitates imaging

of human skin. To accomplish these collections, an Analytic Spectral Devices (ASD)

FieldSpec3®Pro spectroradiometer is used [12, 75]. The FieldSpec3 measures wavelength,

absolute reflectance, radiance, and irradiance.

The spectrum output of wavelengths and reflectance values from the spectroradiometer

is recorded and processed with RS3 5.7 software [12]. This software enables the user to

optimize the FieldSpec3 instrument and collect various data types. This software converts

the wavelength and reflectance data to a format compatible with the computer program

Matlab® [12]. Matlab® is used to preprocess the data.

To bring about an accepted level of mental stress, subjects will interact with the Air

Force Multi-Attribute Test Battery (AF MATB) [5]. The AF MATB provides a method to

manipulate a subject’s task load and impose different levels (high, medium, low) of mental

stress, though only the “high” level will be applied in this thesis [5]. The original MATB

software has become a mainstay for psychological research regarding cognitive workload

and the version used in this research has updated software to be compatible with modern

operating systems [5]. Subjects will use a standard laptop keyboard in addition to a USB

joystick to perform the tasks.

1.6 Results

This thesis presents classification results for stress detection using the feature

selection algorithms ReliefF [18–20], Support Vector Machine Attribute Evaluator (SVM

AE) [21, 22, 34, 45], and Non-Correlated Aided Simulated Annealing Feature Selection

- Integrated Distribution Function (NASAFS-IDF) [35, 77] and classification algorithms

naive Bayes [23–25], Support Vector Machine (SVM) [26, 28, 29, 45], and decision

tree [30–33]. Each algorithm is evaluated on datasets comprising subject’s normalized

reflectance and variance. Data is collected, trained, tested, and validated for each case: a
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contact probe and a NC fore optic. The top performing feature selection and classification

algorithm pairs are determined by average percent accuracy and average area under

the curve (AUC), calculated from a receiver operating characteristic (ROC) curve. For

validation using contact data with models trained/tested on contact data, NASAFS-IDF and

SVM AE feature sets with a decision tree and naive Bayes classifier were found to have

the highest accuracy and AUC. For validation using NC data with models trained/tested on

NC data, SVM AE and ReliefF feature sets with a SVM and decision tree classifier return

the highest results.
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II. Background

Certain concepts of stress and stress detection are introduced in order to understand the

work accomplished in this thesis. Stress detection has been researched for several

years, with a variety of different attempts at achieving a successful model. There are

some successes at detecting stress using various imaging techniques which are used as

a starting point for the theories presented in this thesis and discussed in the following

sections [3, 4, 36, 37]. Section 2.1 provides a brief introduction to the physiological

processes that produce stress detection characteristics. Different methods that have been

used for stress and human skin detection are reviewed in Section 2.2. The correlation

between stress attributes and detection methods is presented in Section 2.3. Sections 2.4

and 2.5 detail the feature selection and classification algorithms implemented in this thesis

and Section 2.6 addresses the classification training and output. Section 2.7 addresses

the feature generation method applied to the hyperspectral data, which produces stress

detection attributes.

2.1 Biological Effects of Stress

Stress is a rapid transformation of bodily chemicals that results from a perceived

threat or possible danger and that causes physical and physiological changes to the human

body [4]. Stress manifests in two forms: physical and emotional. Physical and emotional

stressors are caused by different effects and produce different physiological conditions.

Physical stress occurs when the body is directly affected by a physical outside source [3].

Common physical stressors include exercise, external strain, and environmental conditions,

e.g. heat, cold, or noise. Emotional stress is produced when the brain is overwhelmed with

psychological processes, as opposed to physical effectors [3]. An emotional stressor affects

the cognitive or emotional systems. A stressor involving the cognitive system manifests
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in the form of anxiety, for example, the reaction to a quiz or speech, whereas a stressor

involving the emotional system is produced by a reaction to a physiological event, for

example, an argument producing anger or intimidation [3]. In both of these forms of stress,

the body reacts with a surge of adrenaline to the bloodstream, which is produced by the

hypothalamus, the pituitary gland, and adrenal gland secretions [3]. This leads to the fight-

or-flight response, which induces biological changes; for example:

• accelerated heartbeat;

• elevated blood pressure;

• increase in red and white blood cells released by the spleen to deliver more oxygen

to the body;

• redirected blood to augment the brain, muscles, and heart;

• nutrient dispersal for increased muscle capability;

• blood vessel constriction in many parts of the body, such as the skin, stomach, and

intestines; and

• increased sweat [4].

The responses listed above represent the general reaction of a person when stress is

experienced. The degree of change for each physiological response varies from person

to person. However, previous clinical research [51] discovered that the combination of the

first five items results in an elevated blood volume during stress with an approximate 100%

increase.

Heart rate (HR) and heart rate variability (HRV) are also used as indicators of

stress [71]. Much research has been accomplished that indicates as mental workload

increases, HR increases [66, 71] and HRV decreases [66, 67, 71]. There is not a medically
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proven value or range of beats per minute (bpm) for which stress is determined to have

occurred, therefore the recorded HR will be compared to a baseline HR as a baseline

indication of stress. HRV (averaged over a five minute period) is a better indication

of stress because it is relatively constant at a resting state, especially compared to

HR, which is continuously vacillating [66]. HRV is the variations of instantaneous HR

and respiratory rate (RR) intervals [68]. RR fluctuation is one of the most commonly

investigated components of HRV because it primarily reflects respiration-driven vagal

modulation of sinus arrhythmia [69]. Respiratory sinus arrhythmia (RSA) is an innately

occurring variation in HR during the breathing cycle [70]. It is represented as an increase

in HR upon inhalation and decrease in HR upon exhalation [70]. This thesis utilizes a 3-lead

electrocardiogram (ECG) to continuously record HR and HRV throughout the experiment.

The ECG data is used to validate a subject’s state of stress.

2.2 Detection Methods

Detection of stress is accomplished by using various sensors to examine the

physiological changes listed in Section 2.1. Physiological changes occur simultaneously

when a body is stressed; this causes a rise in body temperature, rapid blood pulsations,

and a 100-200% increase in blood oxygenation [4]. Common methods used to detect

these three changes include a blood pressure monitor [10, 65], a thermometer [4],

and an oximeter [3, 9]. A blood pressure monitor detects the blood pulsation, which

spikes at the onset of stress [4]. A thermometer measures body temperature, providing

a baseline and the recognition of a change in thermal heat [4]. An oximeter measures

blood oxygen levels, which when elevated, indicate stress [3]. These methods identify

stress, but require direct contact, which is physically intrusive. Advanced imaging systems

that can detect these changes through non-contact (NC) methods include thermal infrared

sensors [4, 13–15], photoplethysmographic (PPG) imaging [2, 16, 17], and hyperspectral
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imaging (HSI) [1, 3, 7, 11, 38–40, 42–44]. These three approaches differ in their techniques

of detection, however, they all produce attributes that can be used for stress detection.

2.2.1 Thermal Imaging.

Thermal imaging [4, 13–15] is a technique that uses special cameras that are sensitive

to very small spectral changes. This process records radiation levels across the wavelengths

in the infrared spectrum. Radiation levels increase as temperature elevates, which allows

this method to be effective at stress detection. At the onset of stress, temperature throughout

the body tends to increase, which reflects a change in radiation; this change can be

captured by thermal imaging [4]. Dr. Ioannis Pavlidis, of the HoneyWell Corp Laboratory,

discovered that stress caused from a sudden excitement or a startle resulted in raised blood

volume levels in the facial region [4]. Using thermal imaging, an increase in blood volume

to the surface of the skin is detected as “hot” pixels in the image. Physical and emotional

stressors cause different physiological changes in the body as shown in Fig. 2.1 [4]. This

experiment demonstrates that there is a higher temperature increase in the forehead region

due to emotional stress than due to physical stress.
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Figure 2.1: The dual image shows the result of an experiment conducted by Yuen, et al., using thermal
imaging to show the outcome of different types of stressors. The left frame is a thermal image captured
after the subject experiences emotional stress. A high proportion of “hot” pixels (green) are detected
in the forehead region. In the right frame, a physical stressor is administered and a thermal image is
taken. The resulting thermal detection shows some “hot” pixels in the forehead, but not as many as
that of emotional stress. There are other “hot” pixels located in other regions of the face when stress
occurs [4].

2.2.2 Photoplethysmographic Imaging.

Photoplethysmographic imaging [2, 16, 17], with high spatial resolution, is used to

remotely record a blood pulse throughout the body. This method uses a light source for

illumination and a photodetector to record small changes in the reflected energy due to

the changing light intensity [2]. A relationship exists between the intensity modulations

of reflected light from the skin due to a person’s heartbeat. Kamshilin et al., from the

University of Finland, developed a method to show blood pulsations, represented as light-

intensity modulations, by manipulating image data in mathematical software, such as

Matlab® [2]. After recording several frames of data over a period of time, as in Fig. 2.2,

the authors create a reference function, RC(t), as in Eq. (2.3). This reference function is

of a specific region-of-interest (ROI) and results from averaging pixels for each reference

frame. Using this information, the fast Fourier transform, in Eq. (2.1), is applied to obtain

a cardiac pulsation and breathing reference function,
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Figure 2.2: This image, taken from Kamshilin’s et al. work on PPG imaging, provides an illustration of
the recorded frames in a specific ROI are for a given timeframe. The pixels in each recorded frame ROI
averaged to result in one pixel for that image, creating a vector of mean valued pixels. Using Fourier
analysis, the cardiac and respiration cycles are detected from this information [2].

Xk =

N−1∑
n=0

xne− j2πk n
N k = 0, ...,N − 1 (2.1)

where xn is a continuous-time signal, k is the frequency increment, n is the incrementing

sample number, and N is the total number of samples in the transform.
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Figure 2.3: A continuation of Kamshilin’s work, this is the power spectrum resulting from the fast
Fourier transform applied to the type of data shown in Fig 2.2. Two prominent spikes are indicated in
the graph, the first one at approximately 0.13Hz, which corresponds to the respiration rate, and the
second at approximately 1.0Hz, which corresponds to the heartbeat rate. The researchers select and
use these two narrow bands, B1-B2 and C1-C2, as reference functions for the breathing cycle, and the
cardiac cycle, respectively [2].

The specific frequency bands associated with heartbeat and breathing are selected and

all other bands are truncated. The power spectrum showing the frequency bands can be

seen in Fig. 2.3 with the breathing bands noted by B1 and B2 and heartbeat by C1 and C2.

The reference function is reconstructed with the inverse Fourier transform,

f (t) =
∫ ∞

−∞
f (ξ)e j2πξtdξ, (2.2)

where f (ξ) is the continuous-time function represented in the Fourier domain, t is a time,

and ξ is the frequency sample, which is then representative of heart pulsations [2]. A

normalized reference function with N samples and a frequency component, f , multiplied

by a time variable, t, is

RC(t) =
2
N

exp ( j2π f t). (2.3)

Next, RC(t) is multiplied by the set of image frames of the ROI and corresponding pixel

value at time t creating a correlation matrix, S C(x, y). Figure 2.4 gives a visualization of the
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mathematical process conducted. The correlation matrix is equal to

S C(x, y) =
∑

t

I(x, y, t)RC(t) (2.4)

where RC(t) is the reference function and I(x, y, t) is the pixel coordinate (x, y) at time t,

which is equal to

I(x, y, t) = A(x, y)cos[i2π f t + ψ] + B(x, y). (2.5)

In Eq. (2.5), A(x, y) is the amplitude of the pixel values at frequency f and time t, ψ is the

phase of the pixel oscillations, and B(x, y) is the mean pixel value. The correlation matrix

synchronously corresponds to the time variation of the pixel values with the heartbeat.

This matrix represents the PPG image since the modulated amplitude of the reflected light

is represented by each pixel value in the matrix. The authors determined that the blood

pulsations do not always occur with the same phase. Therefore, they implemented a new

series of frames, resulting in a new matrix of values that determine the phase shift [2],

Hc(x, y, t) = Re[S C(x, y)]cos[ϕ(t)] + Im[S C(x, y)]sin[ϕ(t)] (2.6)

where ϕ(t) = 2π fCt and fC is the mean rate of heartbeats.
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Figure 2.4: The images from Kamshilin et al. [2] of the palm with outlined ROI represent the recorded
frames that are multiplied by the reference function to create a correlation matrix, RC(t). RC(t) is
multiplied by the individual frame at each time increment. According to Eq. 2.4, the image frame
is modeled as the function I(x, y, t), which contains the pixel value coordinates (x, y) at time t [2].

In Cui et al. [36], PPG technology is used to examine the reflectance of blood and

tissue in human skin. The results of the mathematical equation for modulation of light,

δR
R
=

−1
√

w(w + 2k)

[w
k

(kt − kb) + (wba − wt)
]
δVb, (2.7)

show that blood-oxygen levels are less correlated with peak modulation of light in the

red and infrared range than modulation in the 630-940nm range [36]. In Eq. (2.7), (k,w)

are the scattering and absorption coefficients of human tissue respectively, (kb,wba) are

the scattering and absorption coefficients of blood in the skin tissue respectively, (kt,wt)

are the scattering and absorption coefficients of bloodless tissue respectively, and δVb

is a dimensionless quantity pertaining to the fractional volume of blood per volume of

tissue [36].
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Experimental data, collected using a contact probe, showed that non-pulsating blood

resulted in a decrease in reflectance for wavelengths 450-600nm [36]. The authors also

discovered that skin pigmentation does not affect the shape of the modulation spectrum,

since coloring only occurs in the epidermis, where no blood exists [36]. In general, Cui et

al. show that longer wavelengths result in deeper light penetration and that electromagnetic

energy ranging from 510-590nm provides the maximum pulsation modulation based on

reflectance measurements [36].

In a similar study performed using PPG imaging, specific cardiac and respiratory

bands across the spectrum were identified in the visible and near-infrared (NIR) range.

Corral et al. examined bands containing the greatest reflectance power relating to the heart

and breathing rates by imaging the forehead region [37]. The authors observed the power

spectrum output after filtering and extracting the desired features, which was obtained from

narrow frequency bands instead of single frequencies [37]. Figure 2.5 is a block diagram

detailing this process.

The recorded raw data was filtered to improve the signal-to-noise ratio (SNR) for

each parameter, HR and RR. This is performed using a 6th-order high-pass filter with

fc = 0.416Hz to obtain the HR parameter and a 6th-order band-pass filter with fl = 0.133Hz

and fh = 0.5Hz for the RR parameter [37].

To extract the HR and RR parameters, the authors obtained the power spectrum of each

parameter from 380-980nm [37]. Peak power occurred at approximately 590nm for the HR

and 710nm for the RR [37]. These numbers were verified from the average rates recorded

by the oximeter. Because the HR and RR were not constant, small bands surrounding the

mean frequency add to the frequency range. The cardiac representation adds ±3 bpm and

breathing adds ±1.5 repetitions per minute (rpm) [37]. After the bands were determined,

peak power is identified. The peak power is removed and the next highest value in the

power spectrum represents the peak noise signal.
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Figure 2.5: This block diagram, from Corral’s et al. [37] work on the PPG process, represents the
task flow required to identify maximum power signals from the HR and RR. The filtered data was the
recorded raw input. Both the HR and RR step through similar processes, but slightly different values
were used for identification. The HR bands are located around 590nm and the peak respiratory bands
around 710nm [37].

Figure 2.6 shows the results of the power spectrum plotted versus wavelength [37].

With reference values identified, Corral et al. examined the visible to NIR wavelengths

to determine the maximum power for each parameter [37]. Signal power was computed

across the bands 66 ± 3 bpm for cardiac and 14.5 ± 1.5 rpm for respiratory, then this value

is subtracted from the filtered data to extract the appropriate signal [37]. They calculate the

noise power using the maximum peak power values of the remaining bands and determine

the SNR for both the HR and the RR parameters [37]. Figure 2.7(b) and 2.8(b) highlight

wavelength bands that have the highest SNR [37]. The selected bands were 480-610nm and

800-925nm for HR detection and 450-490nm and 680-900nm for RR detection [37]. These

bands were identified from the requirement that the SNR be at least 50% greater than the

maximum noise power, providing an SNR of 1.5 [37].
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(a)

(b)

Figure 2.6: Taken from Corral et al. [37], this shows the power spectrum plotted with respect to the
frequency. (a) shows the HR with the highest spectral power for filtered data at 590nm at 66 bpm. The
RR in (b) has a peak at 710nm at 14.5 rpm.
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(a)

(b)

Figure 2.7: The two graphs from Corral et al. [37] show the final process for optimal wavelength
determination. The goal is to find the band of wavelengths that have the highest SNR. (a) is the HR
signal and maximum noise power. (b) shows the bands that have a SNR of at least 1.5, which means
there is 50% greater signal power than noise power. There are two bands that meet this criteria: 480-
610nm and 800-925nm [37].
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(a)

(b)

Figure 2.8: Taken from Corral et al. [37], the two graphs show the final process to determine optimal
wavelengths applied to the RR signal. This process is similar to finding the optimal wavelength for HR
in that the goal is to find the highest SNR. (a) shows the RR signal and maximum noise power. (b) shows
the bands that hold a SNR of at least 1.5, resulting in a signal power that is 50% greater than noise
power; these bands are 450-490nm and 600-980nm [37].
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2.2.3 Hyperspectral Imaging.

Hyperspectral imaging [1, 3, 7, 11, 38–40, 42–44] is a form of data collection that

uses hyperspectral cameras to collect radiance from a scene. Hyperspectral data contains

high spectral resolution information across the spectrum, from the visible to the shortwave

infrared [1]. This type of data displays unique characteristics of materials often missed by

multispectral images.

The reflectance of an object can be determined from its radiance [1]. Absolute

reflectance in a scene is characterized by Spectralon calibration panels. These panels allow

for proper normalization of the reflectance data. Huynh et al. discuss the images as a pixel-

based classification task, where each pixel has a different spectral signature [1]. These

spectral signatures are representative of the various materials in an image, each with their

own distinguishing characteristics across the wavelengths collected. Figure 2.9 shows an

example of a spectral response from an HSI collection on human skin, where four subjects

were imaged, each producing slightly different spectral responses depending on the amount

of melanin in their skin [38].

Figure 2.9: This image, taken from Beisley’s thesis on dismount detection shows the reflectance
response of four different dismounts with various skin pigments. This graph shows that as melanin
increases, the reflectance decreases [38].
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2.2.3.1 Hyperspectral Imaging Applications.

Hyperspectral imaging is implemented in a variety of research areas; this includes

various skin-related imaging applications, such as skin detection in a cluttered scene [42],

differentiating between ethnicities by examining varying properties of skin reflectance [1],

detecting various physical properties located in the skin and organ tissues [39], and non-

skin-related applications, such as imaging for food quality and safety [52–55]. In the

medical field, HSI is used to classify and detect blood vessels during surgery [39, 56,

57]. Current research shows that HSI has potential to assist physicians and surgeons

by providing previously unavailable information about their patients [42, 59–61]. The

hyperspectral information collected on a patient allows researchers to examine correlations

to medical problems, possibly aiding future diagnoses [39, 58, 62]. For example, a group

at the National Institutes of Health, Laboratory of Chemical Physics, examined brain and

breast tissue using NIR imaging and identified distinguishing features of organs and bodily

tissues [42].

Currently, there is a focus on conducting research of skin detection and recognition

using HSI. By employing HSI techniques, many discriminating features can be examined,

providing an improved detection method [3, 11]. Pan et al. [11] are finding that with HSI,

deeper skin layers can be imaged, producing results that are more distinguishing than those

from surface level collection. NIR wavelengths are able to penetrate the skin deeper than

the visible wavelengths [11]. The penetration depth is determined by the thickness of the

skin tissue at which light intensity is reduced to 37% of that at the surface [11]. By imaging

the subsurface skin features, distinguishing skin types becomes less complicated because

such features cannot easily be altered [11].

Researchers at Purdue University, in conjunction with Polytechnic Universities in

China, are using feature band selection to determine spectral response wavelengths that

contain the most information regarding distinguishable characteristics of skin [40]. Some
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of the features that they discovered include blood flow, hemoglobin oxygen level (HOL),

water concentration, melanin concentration, aging, perspiration, and cosmetic makeup [40].

From these common skin characteristics, the most contributing types of light-absorbing

chemical compounds of skin tone are carotene, melanin, and hemoglobin [40]. Of these,

carotene plays a relatively insignificant role when compared to hemoglobin (Hb) [40].

Melanin is mostly a product of environmental factors, such as sunlight exposure, and

therefore, it is not a major contributor to a common skin signature [40]. Figure 2.10

shows the absorption characteristics of hemoglobin and melanin across wavelengths

400-700nm [40]. Di et al. note two peak hemoglobin absorption bands, around 540nm

and 580nm [40]. They did not account for the peak around 420nm due to a low

SNR ratio of their system. The researchers implemented three types of 2-directional, 2-

dimensional principal component analysis ((2D)2PCA) feature selection methods that were

successfully used for facial recognition in images [41]. These methods validated that the

selected absorption bands are in fact the most significant. (2D)2PCA confirmed that these

wavelengths result in a higher degree of facial recognition than using a single band or the

entire band [40].

Figure 2.10: This graph, taken from Di’s et al. [40] work on hyperspectral facial recognition, shows the
absorption characteristics of hemoglobin and melanin in in vivo human skin. Notice two small peaks on
the oxy-hemoglobin line at the 540nm and 580nm range. These correspond to hemoglobin absorption
bands. The peak at 420nm is not considered because of a low SNR at this band. The melanin curve
shows that at lower wavelengths, the skin absorbs more light, resulting in a higher melanin reading [40].
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2.3 Hyperspectral Imaging for Stress Detection

Hyperspectral imaging produces data that identifies characteristics that are not visible

to the naked eye. Medicinal fields are using this type of data for classification and

identification of diseases, as well as for differentiation of physiological conditions that

are not easily distinguished by the human eye [43, 58, 60]. HSI has been proven to be

a viable collection method for accurate target detection [1, 3, 11, 39, 43]. HSI’s application

to security, surveillance, and target acquisition by Yuen et al. achieved 100% success of

target detection in a field of vegetation, but only 60% success in a desert environment [43].

A relatively new use of HSI involves the classification and detection of human stress.

Researchers are currently looking at the changes of blood oxygenation in the facial

region at the onset of stress [3, 4]. Yuen et al. [3] conducted an experiment to identify the

affects of stress on blood pressure, coronary venous flow, oxygen extraction, and oxygen

consumption by controlled adrenaline injections in a dog. These results are displayed in

Fig. 2.11 [3]. The adrenaline injection (2 µg/kg·min) is shown with the arrowed point in the

graph. Observations included a dramatic increase in blood pressure (top), an approximate

increase of 90% of oxygen in the blood (second), and a drop in the oxygen extraction ratio

(third) because the oxygenation consumption (fourth) remained relatively unchanged [3].

This work indicates stress can be successfully diagnosed based on the blood oxygenation

levels [3].
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Figure 2.11: Yuen et al. conducted an experiment to observe the affects of stress on blood pressure (top),
coronary venous flow (second), oxygenation extraction (third), and oxygen consumption (fourth). The
experiment involved injecting controlled amounts of adrenaline (2 µg/kg·min at the arrow) into a dog
while making observations. The researchers noticed an increase in blood pressure, a 90% increase of
oxygen in the blood, and a decrease in the oxygen extraction ratio, which is attributed to the fact that
the oxygenation consumption of tissues remained relatively constant [3]. Overall, there is an increase
in blood oxygenation of approximately 100-200% [3]. These observations support the theory of stress
detection using HOL [3].

Emotional and physical stress results in a surge of adrenaline into the bloodstream,

aids increased activity of the brain, muscles, and heart [3]. Along with this physiological

change, there is an elevated HOL (approximately twice the usual amount), which is the
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ratio of hemoglobin oxygen saturation (HbO2) to the total concentration of Hb and HbO2

in the blood [3]. HbO2 is formed when oxygen-depleted Hb binds to oxygen; each of

these molecules has differing optical properties that result in distinct electro-optic (EO)

characteristics [3]. Hb is naturally a purple-blue color and when it binds to oxygen, creating

HbO2, it becomes bright red [3]. The chemical difference between the two molecules is

exhibited by their molar extinction coefficients, as displayed in Fig. 2.12 [3]. The two

molecules have peak absorption regions in the 410nm range and 550nm range [3].

Figure 2.12: These are the molar extinction coefficients (proportional to absorptivity) of HbO2, Hb, and
melanin. This chart shows that HbO2 absorbs electromagnetic waves at wavelengths around 410, 545,
and 578nm, and Hb around wavelengths 415 and 555nm [3]. It shows that melanin’s absorption varies
linearly with wavelength [3].

Due to its optical properties, blood oxygenation, measured by HOL, provides

researchers with a possible method to detect stress [3]. HOL can be determined from

pixel reflectance values in a hyperspectral image [3]. In [3], researchers developed two

algorithms for stress detection using HOL and the Beer-Lambert formulation. The Beer-
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Lambert formula is,

A =
∑

αiCi, (2.8)

where A is the attenuation of probing light, α represents the wavelength dependent

absorption coefficients, and C represents the molecular concentrations of Hb and HbO2

for each sample i [3]. The researchers were able to identify both physical and emotional

stress using this technique, though they noted a need for further enhancement of the model

due to subjective baseline information [3]. The baseline recordings showed variations in

the HbO2, Hb, and oxygen saturation (SO2) concentrations between and among individual

subjects [3]. It was also noted that each collection depends on a subject’s personal health,

mood, and activity level at the time of the recording [3]. Figure 2.13 shows two images

representing the change in HbO2 in the facial region as a subject undergoes emotional

stress [3].

Figure 2.13: This displays the change in HbO2 located in the facial region as a subject undergoes
emotional stress: (left) baseline, (right) emotional stress [3]. The subject was imaged at rest (left), then
imaged after making a speech in order to bring about emotional stress. It is observed that there is an
increase in “hot” pixels in the regions of the forehead, cheek, and lip, indicated by the yellow to red
coloration. “Hot” pixels represent an increase in skin temperature.

Additionally, research involving blood volume levels has been proven successful using

remote HSI [3, 4]. Yuen et al. [4] found that the facial region shows a distinctive increase
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in HOL that can be detected through HSI. One study that examined HbO2 in relation to

sickle cell disease patients found that there is a linear relationship between HbO2 in skin

tissue and oxygen saturation in venous blood [44]. They examined HbO2 in the small blood

vessels that are responsible for distribution of blood within tissues. The authors concluded

that this can correlate HbO2 with oxygen saturation of venous blood in underlying skin

tissue. They also discovered that the normal percentage of skin HbO2 is about 77.5 ± 0.2%

for African-Americans and similarly, 78.2 ± 0.2% for Caucasians [44].

Overall, there has only been initial research accomplished on stress detection using

HSI. Of the research accomplished, there has not been a grave attempt at feature reduction,

via feature selection or classification using common machine learning techniques. This

thesis applies three feature selection algorithms, three classification algorithms, and a

feature generation technique to hyperspectral data. These are discussed in the following

sections.

2.4 Feature Selection Algorithms

Feature selection algorithms create a subset of a particular dataset that is comprised

of attributes that best discriminate between classes [76]. This process can reduce the

cost of classification by using fewer features and can lead to superior classification

accuracy by discarding irrelevant features [76]. Three feature selection algorithms are

implemented in this thesis: ReliefF [18–20], Support Vector Machine Attribute Evaluator

(SVM AE) [21, 22, 34, 45], and Non-Correlated Aided Simulated Annealing Feature

Selection–Integrated Distribution Function (NASAFS-IDF) [35, 77]. The first two are

processed in Waikato Environment for Knowledge Analysis (WEKA) and NASAFS-IDF

is processed in Matlab®. WEKA is a machine learning program that runs on Java [34].

WEKA has numerous data mining tools for analysis and modeling. This thesis uses WEKA

to discover discriminating features, and to build, train, and test classification models.
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2.4.1 ReliefF.

ReliefF [18–20] uses supervised learning to determine feature ranking based on an

assigned feature weight value. The algorithm calculates a weight for a particular feature

based on the distance between the nearest within-class sample and nearest out-of-class

sample [20]. Relief is a two-class methodology, where ReliefF is extended to multiple

classes; for example, if there are C classes, Relief distinguishes Class A from all other

classes, opposed to ReliefF, which distinguishes Class A from Class B from Class C,

etc. [20]. The weighted output falls into the range of [-1,1], with 1 as the most favorable

rank [20].

ReliefF randomly chooses one sample from the dataset and calculates the Euclidean

distance between the chosen sample and the remaining samples [20]. This distance

measurement determines which samples are labeled as a “hit” or “miss” [49]. A “hit”

is considered a sample that is in the same class as the selected sample and also has a

minimum Euclidean distance among samples in the same class [20]. A “miss” is a sample

from a different class that has a minimum Euclidean distance among the samples of that

class [20]. The weight vector for a specific randomly selected sample, R, is calculated as

W[A] = W[A] −
k∑

j=1

diff(A; R; H j)
mk

+ (2.9)

+

 ∑
C,class(R)

P(C)
1 − P(class(R))

 ∗ k∑
j=1

diff(A; R; M j)
mk

, (2.10)

where W [A] is the current weight, A is a feature vector, m is the number of randomly

selected samples, which is one in Eq. (2.10), k is the user-defined number of nearest hits (H)

or misses (M), R is the selected sample, P(C) is the probability of each class, P(class(R))

is the probability of the class of the sample selected, and the diff (·) function calculates

differences between features [49].
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2.4.2 Support Vector Machine Attribute Evaluator.

The SVM algorithm [21, 22, 26, 28, 29, 34] is designed to locate the maximum

separation between the two classes. This is accomplished by selecting samples from each

class that become a support vector defining a maximum margin between the classes [21].

Fig. 2.14 shows a two-class problem of circles and squares where the shaded squares and

shaded circle are support vectors for their class [21].

Figure 2.14: The three data points that are shaded in are the support vectors for this data set. A support
vector is a data point that exists on the very edge of the decision boundary margin, thus defining the
width of the margin [21].

Equation (2.11) represents the constraint of a support vector, where yi is the class label

of the data point, either +1 or -1, xi the selected data point, w is the normal vector to the

hyperplane, indicated by M in Fig. 2.14, and b is a constant [21],

yi(w · xi + b) = 1. (2.11)

A point is a support vector if Eq. (2.11) is satisfied, whereas points lying within the margin

width will have a value between 0 and 1, 0 being on the decision line and 1 being at the

very edge of the margin [26]. A point at the very edge of the margin is a support vector.
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The SVM AE feature selection algorithm is an extension of the SVM classifier. The

SVM AE selects features that correspond to samples chosen as support vectors. Therefore,

the features that correspond to the two shaded data points in Fig. 2.14 would be selected

with the SVM AE as relevant features.

2.4.3 Non-Correlated Aided Simulated Annealing Feature Selection - Integrated

Distribution Function.

Non-Correlated Aided Simulated Annealing Feature Selection-Integrated Distribution

Function (NASAFS-IDF) [35, 77] is a stochastic feature selection algorithm that

implements simulated annealing to optimize a heuristic. This algorithm has been applied

to hyperspectral data to select discriminating features for textiles [35]. The output

of NASAFS-IDF is a feature set for each class containing a user-defined number of

features [35]. The algorithm produces a feature set for each class because it uses a one-

versus-all methodology [35]. Therefore, a class-specific feature set best distinguishes that

class from the others. Because the datasets in this thesis only have two classes, either feature

set produced by NASAFS-IDF should be able to be used to discriminate between the two

classes.

There are three stages to NASAFS-IDF: selection, evaluation, and competition [35].

In the selection stage, the algorithm chooses a feature set at random from the available

attributes of a sample. The heuristic calculation is accomplished in the evaluation stage

and optimized by the simulated annealing method in the competition stage. The heuristic

is calculated using a distance measure between classes and the covariance value of the

selected feature sets [35]. This calculation determines if a given feature set is a good

discriminator between classes [35]. A new feature set is determined by a random pick

and replaces a feature of the previous set. This new feature set is sent to the heuristic to

repeat the process as outlined above. The selection, evaluation, and competition process

is repeated until convergence occurs, which is defined as meeting a minimum error
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requirement [35]. Due to the stochastic nature of this process, a Monte Carlo method is

employed to repeat the entire process [35]. The output is a histogram of features as selected

by the prior process due to the Monte Carlo algorithm. The features among all sets are

plotted as a histogram in order to evaluate the feature ranking [35]. Features that were

chosen more often during the selection, evaluation, and competition process have a higher

magnitude on the histogram [35]. These features are evaluated as superior discriminators

and result in the final feature set. Another aspect of NASAFS-IDF is that it is programmed

to choose highly discriminating features from across the dataset, rather than choosing

features in close proximity to one another, as ReliefF and other common feature selection

methods often do [35].

2.5 Classification Algorithms

For this thesis, three classification algorithms are implemented in WEKA: naive

Bayes [23–25], SVM [21, 22, 26, 28, 29, 34, 45], and a decision tree [30–33]. The classifiers

are applied to datasets of only the selected features from ReliefF, SVM AE, and NASAFS-

IDF.

2.5.1 Naive Bayes Classifier.

Naive Bayes classifier [23–25] is based on Bayesian theory that utilizes prior

probabilities to distinguish between classes. This method bases its classification on the

assumption of independence between features. Naive Bayes looks at each individual

feature’s contribution to the classification independent of the other features [23].

Naive Bayes creates a model based on the probability of data being in a particular

class and the likelihood of future data being in that class. The general formula is

posterior =
prior × likelihood

evidence
,
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and

p(X|Y1, · · · ,Yn) =
p(X)p(Y1, ..., Yn|X)

p(Y1, ..., Yn)
. (2.12)

The mathematical version of naive Bayes in Eq. (2.12) relies on a dependent class variable,

X, which is conditional on a feature set, Y1, ..., Yn, of size n, and where p(·) represents

the probability. The “naive” assumption of the algorithm means each feature (Yi) is

conditionally independent of every other feature (Y j) for i , j, in class X [24]. This

assumption results in the following distribution [24],

p(X|Y1, ..., Yn) =
1
Z

p(X)
n∏

i=1

p(Yi|X) (2.13)

where Z is a constant [49].

2.5.2 Support Vector Machine Classifier.

The SVM classifier [21, 22, 26, 28, 29, 34, 45] implements supervised learning to

distinguish patterns. SVM builds a model to classify samples into one of two classes [45].

The goal of SVM in a two-class problem is to achieve a maximized margin between

classes [45].

With linearly separated data, there are several ways to classify samples. In Fig. 2.15,

there are many different classifiers that would successfully differentiate between circles and

squares, but only one of these is optimal: the one that maximizes the margin between the

two classes [26]. Therefore, the SVM algorithm finds this optimal decision boundary using

support vectors, as in Fig. 2.14 [26].
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Figure 2.15: For most linearly separable classes, there will be a number of different options for a
decision boundary. The solid lines (red) show the possibilities of classifiers, but only one maximizes
the distance between the two classes (circles, squares), which creates an optimal decision boundary.
The SVM classifier maximizes the margin between the two classes [26].

A linearly separable two-class case is the simplest example that shows how the SVM

operates. For this case, x ∈ Rn, y ∈ ±1, where the classification equations are represented

as follows:
wT xi + b > +1 for di = +1,

wT xi + b ≤ −1 for di = −1,

therefore,

di(wT xi + b) ≥ +1 ∀ i, (2.14)

where xi is an input sample, w is a weight, which is normal to the decision line, b is a bias,

and di is the desired output [45]. The decision boundary is any hyperplane that satisfies the

constraint [45]

wTx − b = 0. (2.15)

The line formed from Eq. (2.15) represents the center line in Fig. 2.14.

To achieve the widest margin between classes (the distance defined by M in Fig. 2.14),

the width from the hyperplane to each support vector is maximized [45]. This margin width,

M, of the boundary is the maximum distance between the hyperplanes created by support
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vectors for Class 1, x+ and Class 2, x− [45]. The margin width is equal to

M = 2
√

wT w (2.16)

where w is a weight vector that is normal to the separating hyperplane [45].

Non-linearly separable patterns, as in Fig 2.16, require a kernel trick to achieve

classification [27]. The kernel trick involves preprocessing the data by mapping the input

data points, (x1, x2),

K(x1, x2)→ (Φ(x1) · Φ(x2)), (2.17)

where Φ represents the kernel function [27].

Figure 2.16: The data collection is melded together such that the two classes, red triangles and blue
circles, are not linearly separable. Therefore, different methods, such as the kernel trick and Lagrange
multipliers are used to preprocess the data, allowing the SVM algorithm to accomplish separation [27].

There are several different types of kernel functions. The default kernel in WEKA,

which is implemented in this thesis, is the polynomial kernel. The PolyKernel is equal to

K(x1, x2) =< x, y >p (2.18)
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where < · > represents the inner product and p is an exponential, that has a default of 1.0.

By choosing an optimal kernel function, the feature space becomes linearly separable, as

in Fig. 2.17. From this point, the SVM algorithm can proceed.

Figure 2.17: Shows that non-linear preprocessing data can help transform the input space to a new
feature space that has linearly separable data points.

2.5.3 Decision Tree Classifier.

Decision tree representation [30–33] uses a supervised learning method and has the

ability to produce a binary output in terms of classification or regression. Decision trees

are commonly employed due to their rules based methodology [30]. The algorithm is used

to discern the class of a sample by stepping through decisions based on threshold values

that are set based on the separation of the dataset. Figure 2.18 shows an example of a basic

decision tree [30]. In the tree structure, the decision node (“root”) represents a specific

attribute, the branches represent the value of that attribute, and the leaves at the end of the

tree assign the classification value [30]. The goal of the tree is to step through each attribute,

moving down the branches to come closer to the leaf node that finalizes classification [30].
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Figure 2.18: This is an example of a basic decision tree. There are four decision nodes and five leaf
nodes. The decision nodes pose the question to the attribute, thus calling for a decision to be made
that leads to another decision node or a leaf node. The leaf nodes result in the classification of the
sample [30].

Similar to other classifiers, the decision tree algorithm accepts an input vector, which

contains numerous different features [32]. The decision tree algorithm is most often

developed as a top-down (greedy) search [33]. It starts at the first decision node and

proceeds down through the different features until it reaches a leaf node [33].

Entropy is used to select the feature with the most information in regards to

producing efficient results for decision trees [33]. Entropy is defined as a measure of the

unpredictability of a variable and is graphed in Fig. 2.19 for a two-class problem [63].

Entropy calculates the amount of uncertainty in a set of outcomes from a random

drawing [63]. If all samples belong to the same class, the entropy is 0 because there is

no uncertainty of the outcome. Given a binary output y ∈ ±1, entropy falls between [0, 1]

and is equal to

Hn(p1, p2, ..., pn) = −
n∑

i=1

pi log2
1
pi

(2.19)
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where pi, (i = 1, 2, ..., n) represents the probabilities and

n∑
i=1

pi = 1, 0 < pi < 1, (2.20)

and n is the number of samples [63].

Figure 2.19: Entropy is plotted in relation to the probability of a positive sample selected. As entropy
increases, the variability of the sample decreases. When entropy is equal to one, there is an equal
number of positive and negative samples [33].

Entropy is used to determine information gain, which is a measure of the feature’s

effectiveness in classification [33]. Information gain is used to narrow down the feature

selection process throughout the decision tree methodology, increasing efficiency [64]. The

definition of information gain is

I(Y; X) = H(Y) − H(Y | X) (2.21)

where H(Y) is the entropy of Y and H(Y |X) is the conditional entropy of Y given X, and

where,

H(Y | X) =
∑

v: values of X

P(X = v) H(Y | X = v) (2.22)
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where Y is a label value, X is a feature, and v is an answer to a question about the

feature [64].

2.6 Classification Training and Output

The classifiers are trained and tested with cross-validation in WEKA Explorer. Once a

model is built, the “supplied test set” option in WEKA is implemented with the validation

set. Cross-validation, using either five or ten folds, depending on the size of the dataset,

separates the entire supplied train/test set into five or ten buckets and alternates training

and testing across the different buckets. For example, if buckets one through four are used

to train the dataset, the fifth bucket is used for testing; the next “fold” would train the dataset

on buckets one through three and bucket five, and test on the fourth bucket. This continues

until the training model is tested against every bucket.

Explorer outputs three important items following classification: numbers of correct

and incorrect classification, percent accuracy, and a receiver operating characteristic (ROC)

curve. The numbers of correct and incorrect classification form a confusion matrix,

illustrated as a general example in Table 2.1. The confusion matrix provides more

knowledge on how the classifier performs with a specific dataset. The false positive and

false negative boxes indicate how many samples are misclassified. Ideally, the true positive

and negative boxes contain the highest values because these represent correct classification.

A ROC curve is determined in WEKA using data from confusion matrices. Data from one

confusion matrix represents one point on a ROC curve. Each point is calculated and plotted

as follows,
T P

T P + FN
vs.

FP
FP + T N

, (2.23)

where TP means true positive, FN means false negative, FP means false positive, and TN

means true negative [88]. The overall curve is built using predictions made by the classifier

for each sample [34, 86, 87]. The predictions are sorted in descending order according
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to the likelihood of the positive class [34, 86, 87]. WEKA generates the curve by going

through the list and counting the number of TPs and FPs up to that point [34, 86, 87].

Therefore, the threshold value at each point on the curve is the probability of the positive

class at that location in the list [34, 86, 87].

The percent classification accuracy may sometimes be an inaccurate quantifier if one

class has more samples and is easier to distinguish than the other class. Table 2.2 gives an

example. In this situation, a ROC curve is an appropriate evaluator of accuracy. The area

under the curve (AUC) is calculated based off the ROC curve for an accuracy measurement.

Table 2.1: Confusion Matrix Description.

Classified as: Class1 Class2 Total
Class1 True Positive False Positive # Class1
Class2 False Negative True Negative # Class2
Total: classified Class1 classified Class2 # correct

Table 2.2: Confusion matrix for naive Bayes classification results on Subject 5 validation dataset with
features from NASAFS-IDF1. The overall accuracy for this model is 78.57%. For this case, the classifier
misidentified 24 samples overall, but because the Non-Stress class is more than double the size of the
Stress class, and all of the Non-Stress samples are correctly identified, the percent accuracy is skewed.
The ROC returned an AUC value of 0.6830, which is a better indicator of the model’s accuracy.

Stress Non-Stress
S 5 24 29

NS 0 83 83
5 107 88

Accuracy: 78.57%

2.7 Feature Generation

Feature generation [46, 47] processes features, creating new features. Features can be

generated using statistical measures, e.g. mean, median, and mode, or a transformation,

e.g. Fourier coefficients [49]. Once features are generated, they can be applied to feature

selection and classification algorithms.
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Variance is a statistical feature that can be generated from a dataset. It is the amount of

spread in a set of numbers and is equal to the square of the standard deviation [48]. There

are two different calculations of variance: biased and unbiased [48]. A biased variance

estimator represents the variance of a sample mean and an unbiased variance estimator

is the sample variance [48]. This thesis implements the default variance calculated in

Matlab®, which uses an unbiased estimator. Eq. (2.24) and (2.25) represent biased and

unbiased variance, respectively [48],

s2 =
1
n

n∑
i=1

(xi − x̄)2, (2.24)

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2, (2.25)

where n is the number of samples, xi is a sample, and x̄ is the sample mean. The sample

mean is calculated as [48]:

x̄ =
1
n

n∑
i=1

xi. (2.26)

2.8 Summary

HSI plays an important role in specific object recognition, where it is often difficult to

detect targets among a cluttered background. For example, in a search-and-rescue scenario,

the ocean or desert creates a difficult recovery environment in regards to target detection.

This type of scenario proves to be very difficult due to vastness of the background. HSI

is proving to be a common solution to this problem. HSI has been and is currently used

for detection of specific targets in a cluttered background [43]. By implementing these

techniques, an image highlighting the desired target is produced, making the objective

more attainable. In aspects of stress detection, HSI could be used to assist pilots, air traffic

controllers, deep-sea divers, and emergency medical personnel. To this extent, un-intrusive

means of detecting stress is essential in such applications. With previous methods that
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utilized contact probes, mobility and agility of body movement are limited for such tasks.

By implementing non-contact means of stress detection, the dismount can continue their

task with no interference or distraction, while oversight is provided, allowing actions to be

taken to ensure mission success.

There are different ways to carry out stress detection: thermal imaging, PPG imaging,

and HSI. HSI shows great potential due to its wide range of characteristics produced.

Specific features of the skin that change at the onset of stress, particularly hemoglobin,

are used to identify and classify stress. By implementing the feature selection algorithms,

ReliefF, SVM AE, and NASAFS-IDF, discriminating wavelengths are extracted and

applied to the datasets. These optimal datasets are processed through three classification

algorithms: naive Bayes, SVM, and a decision tree. Feature generation is also applied by

calculating the variance of each class. These new features are also processed through the

feature selection and classification algorithms. All of these methods are examined in this

thesis to determine their viability to produce accurate stress detection.
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III. Methodology

The evaluation of hyperspectral data as a practical means to detect stress is

accomplished with several different techniques. Using a hyperspectral camera

can eliminate the burden of intrusive equipment, which allows an individual to be

unencumbered during data collection. This thesis uses hyperspectral data to detect stress

by means of feature selection and classification algorithms.

Data collection, which is discussed in Section 3.1, details the experimental procedures

and the data captured. Section 3.2 addresses the preprocessing of the data. Feature selection

and classification algorithms applied to the data are discussed in Sections 3.3 and 3.4.

Section 3.5 presents the results of the feature selection and classification algorithms.

3.1 Data Collection Stage

Hyperspectral data is collected at nominal and accelerated heart rate levels, producing

a two-class problem. Section 3.1.1 explains how to characterize the emotional states of non-

stress and stress. Sections 3.1.2 and 3.1.3 address the application of hyperspectral imaging

(HSI) and electrocardiogram (ECG) recording. The procedures followed to accomplish data

collection are discussed in Section 3.1.4.

3.1.1 Characterizing “Stress” and “Non-Stress” .

Data is collected on subjects under two different emotional states: stress and non-

stress. These states are characterized based off heart rate (HR) and heart rate variability

(HRV). HR is affected by age, general activity level, and breathing pattern [72]. Yuen et

al. [4] noted that part of the body’s physiological response to stress includes an elevated HR,

though there is not a medically determined range of beats per minute (bpm) to characterize

stress. Therefore, an increased HR in comparison to the baseline reading is one technique

that is used in this thesis to characterize a state of increased stress. The optimum baseline
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HR is collected when the subject is completely relaxed. Relaxation procedures are used to

obtain a resting HR prior to a subject beginning the stress-inducing activity, as discussed in

3.1.4. HRV is proven to decrease as a subject’s work load increases [66, 67, 71]. An ECG

is attached to the torso to continuously record HR and HRV throughout the experiment.

By comparing the baseline HR to the HR during the “stress” portion of the experiment,

combined with comparing the overall HRV for each session allows the experimenters to

validate whether a subject is experiencing stress.

3.1.2 Hyperspectral Data Collection.

There are two available ways to collect hyperspectral data with an Analytic Spectral

Devices (ASD) FieldSpec3® Pro spectroradiometer [12]: contact and non-contact (NC)

fore optic. Both probes are used to record reflectance of the skin in the area above the

carotid artery; the location of this artery is referenced in Fig. 3.1.

The carotid artery is a large artery on the side of the neck. The carotid is one of the

larger arteries in the body, with a diameter of 6.10 ± 0.80mm in women and 6.52 ± 0.98mm

in men [79]. Collecting data in the area of an artery is useful since arteries are the largest

blood vessels and are responsible for transporting clean, oxygen-rich blood to the rest of the

body [78]. This thesis considers the physiological changes that occur as a result of stress,

specifically the change in the hemoglobin oxygen level (HOL), therefore, it is necessary to

image oxygen-rich blood.

44



Figure 3.1: This image of the carotid artery [73] is one of the major arteries in the human body. This
location is a common place to measure pulse because the artery is near the skin surface and the side of
the neck offers a wide, flat plane to place a sensor. The carotid, one of the larger arteries, is generally
greater than 10mm in diameter, compared to smaller arteries, which range from 0.1-10mm [78].

The contact and NC probes are both used to train the learning algorithms. The contact

probe provides a clean, noiseless collection of the reflectance signature. The NC optic is

necessary to provide the conditions of a real-world scenario by introducing atmospheric

noise with a non-invasive stress detection technique. The NC data collected is used two

different ways: as “real-world” validation of models trained with contact data and to train

and build models on noisy data.

The contact probe contains an internal light source that illuminates the target area with

visible through infrared energy. The contact probe is placed on the skin a total of four times

per subject per data collect, with each collection lasting 20 seconds or less. To discover

the exact positioning of the contact probe, the subject is asked to locate and identify the

location of their carotid artery on the side of their neck, directly under their jaw line.

Collecting data with the NC optic creates the challenge of ensuring only the desired

surface is recorded. This issue is mitigated by calculating a field-of-view (FOV) of the

fore optic to include only the region-of-interest (ROI). The FOV is determined by the lens

viewing angle of the sensor and the distance between the probe and the surface of the ROI.
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Equations (3.1) and (3.2) calculate the FOV in squared inches, as:

r = h ∗ tan
[(
α

2

)
∗ π

180

]
(3.1)

FOV = π ∗ r2, (3.2)

where h is the distance between the probe lens and the surface of the ROI in inches and

α is the viewing angle in degrees [12]. Figure 3.2 shows a visualization of the required

variables.

Figure 3.2: This is an illustration of the variables that are used to calculate the FOV as described in
Eq. (3.1) and (3.2). The FOV is a product of the radius, r, height, h, and viewing angle, α.

The ASD provides a pistol grip NC probe with a bare fiber optic cable that has a 25

degree viewing angle. For this thesis, a 1 degree viewing lens is attached to provide an

approximate FOV radius of 0.5 inches at a 12-inch distance.

3.1.3 Electrocardiogram Data Collection.

An ECG is a medical device used to monitor the heart’s electrical activity [80].

Electrical signals travel through the heart, causing the muscle to expand and contract, and

causing the heart to circulate blood throughout the body [80]. A 3-lead ECG is used to

provide the basic information pertaining to the heart: the HR and HRV [80]. The leads

corresponding to the ECG machine are placed across the torso, as in Fig. 3.3. The lead
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locations are positioned to capture the electric current as it crosses the heart, one on the left

shoulder, one on the right shoulder, and the last on the left side, directly below the lead on

the left shoulder, and in line with the umbilicus.

Figure 3.3: The ECG implements a 3-lead configuration, as displayed here. The leads are positioned
such that they can capture the electrical signal passing across the heart: white (diamond) on the upper
left of the chest, red (circle) on the upper right, and black (square) on the lower right torso [74].

Throughout the experiment, the ECG collects information on the heart. The ECG

shows a continuous time waveform of the subject’s heartbeat, as in Fig. 3.4 [80]. The HR

and HRV values are processed and viewed after the collection. HR is output as a list of bpm

with a timestamp and HRV is given as a value for each experimental session. An example

of the HR output is in Appendix A.

Figure 3.4: The ECG continuously records the HR waveform. The software then computes a HR
that corresponds to each pulse, which is output as a list of bpm and the associated time of each
recording [80].
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3.1.4 Data Collection.

Six subjects are used for testing in this thesis. The experiment roster can be found in

Appendix B. Skin reflectance curves are relatively the same shape, however, with a range

of melanin concentrations, the reflectance amplitudes will vary at certain wavelengths, as

shown in Fig. 2.9. The subject population consists of both male and female 23- to 26-years-

old.

The subject is outfitted with the ECG leads and allowed to relax to a restful state. The

ECG begins a constant recording and the ASD contact probe and NC fore optic are used to

collect hyperspectral reflectance, recording non-stress and stress data.

The non-stressed state consists of a subject sitting in a chair, relaxed. To achieve the

optimum state of relaxation, each test subject is provided calming images to visualize as

they focus on slow, controlled breathing. The test subject applies the relaxing techniques for

5 minutes after the ECG leads are attached. While the subject is still focused on relaxing,

the experimenters start recording data with the ECG and ASD contact and NC probes.

To bring about emotional stress, subjects engage in the interactive computer program,

Air Force Mutli-Attribute Test Battery (AF MATB) [5]. This program offers a method to

introduce different levels of mental workload with varying task requirements. The software

implemented in this thesis is based off the original MATB software, developed in 1992,

which has become a foundation for psychological and psychophysiological research on

cognitive workload [5].

AF MATB operates on a standard laptop, where the test subject uses the keyboard and

a USB joystick to perform certain tasks. The program has three pre-determined difficulty

levels, low, medium, and high, to change the mental workload levels, but this thesis will

only involve imaging during the high level. AF MATB’s viewing screen, as seen in Fig. 3.5,

includes four tasks [5]. The tasks, which are the two leftmost windows and two middle

windows, consist of System Monitoring, Resource Management, Communications, and
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Tracking. System Monitoring, located in the upper-left corner, involves monitoring four

gauges and two lights. Once a gauge or light experiences a malfunction, the user provides

corrective action via the keyboard appropriately. The bottom-middle window is Resource

Management. The goal of this task is to maintain and balance the fuel supply in two

consumption tanks (Tank A and Tank B).

Figure 3.5: The viewing screen of the AF MATB computer software. The program consists of four
tasks, which are represented by the two windows on the left and two middle windows. The windows
from left-to-right top-to-bottom are System Monitoring, Tracking, Scheduling, Communications,
Resource Management, and Pump Status [5].

This is accomplished by opening and closing eight different pumps. To adjust these

pumps, the user presses the corresponding number on the keyboard. The window directly

to the right of the Resource Management window is the Pump Status window. Pump

Status indicates the current flow rates of all the pumps in the Resource Management. This

information can be referenced by the user to improve the overall performance of resource

allocation. The Tracking task, located in the upper-middle window, requires the user to

control the joystick to keep the unstable crosshairs within the rectangular box and as close
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to the center crosshairs as possible. Lastly, Communications, in the bottom-left corner,

involves listening for the appropriate call sign and then making changes based on what is

heard. A radio call will come in first stating a call sign, which may or may not refer to

the test subject, which is followed by directions to change to a certain frequency, which

the test subject accomplishes with the up, down, left, and right arrows. The last window is

Scheduling, which involves information for future developments in the areas of Tracking

(“T” line) and Communications (“C” line). However, this control window is turned off

for the experiment so that the user does not have any knowledge about the upcoming

levels of difficulty. The combination of these controls running concurrently simulates tasks

analogous to a flight crewmember.

Each subject is introduced to the AF MATB program and allowed a ten-minute session

to familiarize themselves with the software on a low workload setting. At this time, they

are encouraged to ask questions about the operation of the software. After the training

is completed and upon confirmation from the subject that they are comfortable with

AF MATB, the program officially begins. The low workload level is only used for training;

the high level is used for testing. The subject accomplishes a five-minute session at the high

workload level. The ECG is set to constantly monitor and record heartbeat during the entire

experiment. While the subject accomplishes each level, the contact probe is applied to the

skin above the carotid artery to collect HSI data. The subject then repeats the entire process

so reflectance using the NC optic can be recorded. For more information and details on the

experimental procedures, especially referencing the ECG collection and analysis, see Capt.

Splawn’s thesis [82].

3.2 Data Pre-processing

The data pre-processing consists of two steps, pre-processing accomplished with the

ASD before and during data collection and the pre-processing accomplished in Matlab®
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post-collection. After data is recorded, the RS3 software is used to convert raw radiance to

reflectance data [12].

Prior to every data collect, two actions are accomplished to adjust the hyperspectral

camera’s sensitivity to light: optimization and white reference (WR) collection. Optimiza-

tion is necessary to ensure the detectors do not saturate due to changing downwelling irradi-

ance levels [75]. Downwelling irradiance is the diffuse and direct radiant energy emanating

downwards [75]. A WR collection calibrates the spectroradiometer to register 100% reflec-

tion from surfaces that are nearly 100% reflectant [12]. The calibration is needed due to the

differences in the light sources and their effects on the collected radiance values [12]. Tak-

ing an independent reading of the light source’s illumination on a known reference material

provides a means to attain relative the reflectance of the sample alone [12]. Such a material

is required to have 95-99% reflectance across the entire spectrum and is called a WR panel

or WR standard [12]. Spectralon from Labsphere is a type of WR standard that is character-

istic of being nearly 100% reflective across the visible-to-near-infrared (VNIR) and short-

wave infrared (SWIR) spectral ranges [75]. The material is made of polytetraflouroethylene

and cintered halon [12].

There are three detectors within the ASD spectroradiometer: one VNIR and two

SWIR detectors [12]. The VNIR (wavelengths 350-1000nm) detector converts received

photons to electrons [12]. This electric current is continually converted to a voltage and

digitized by a 16-big analog-to-digital (A/D) converter at regular intervals. The digitized

data is transferred to the device controller for processing and analysis [12]. Unlike the

VNIR spectrometer, which holds an array of 512 detectors and scans in parallel, the

SWIR has two detectors, scanning from wavelengths 1000-1830nm (SWIR1) and 1830-

2500nm (SWIR2) [12]. Thus, these detectors gather wavelength data sequentially. The

SWIR detectors follow the same conversion path as a VNIR detector after the data is

collected.
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Another important difference between the detectors is the aspect of dark current (DC).

DC is the amount of electrical current produced by electrons within the spectroradiometer

when there are no other external photons present at the detector. This additional electrical

signal is a type of additive noise that must be corrected. The two SWIR detectors

automatically correct for dark current, but the VNIR detector requires a frequent DC

measurement update, which is set in the software options.

One issue that emerges when using the NC optic is atmospheric noise due to water

absorption bands [12]. These bands are located approximately between 1350-1400nm and

1810-1940nm [12]. The energy in these zones drops to zero, or nearly zero, in a typical

outdoor setting [12]. Since the collection is held indoors, the resulting noise should not

result in this degree of change assuming the humidity level is controlled to a low value.

Therefore, the energy should remain constant with little resulting noise. One option is to

discard the reflectance values between these two bands. A second option is to consider the

noise negligible and continue analysis using all wavelengths. Choosing to discard certain

groups of wavelengths would result in the loss of data that could prove important for

analysis, so the low levels of noise generated are ignored.

The RS3 software, used in conjunction with the ASD spectroradiometer, converts

the raw output from the spectroradiometer recording to reflectance data in the form of

text files that can be imported into Matlab®. The ASD spectroradiometer collects the

electromagnetic reflectance for wavelengths 350-2500nm with a sampling interval of 1nm,

which equals 2,150 features, for each sample it records [12]. Figure 3.6 is an example of

wavelength versus reflectance.

The ECG outputs a continuous HR waveform, as in Fig. 3.4, bpm, and HRV. The

bpm are analyzed to determine whether significant changes in HR occurred during each

experimental session and how the changes are correlated with the reflectance data collected

from the spectroradiometer. An example of the output bpm is in Appendix A.
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Figure 3.6: The RS3 software is used to process raw radiance data from the spectroradiometer into
reflectance. This data is output as text files that can be imported into Matlab®. Each text file is a
sample, which consists of electromagnetic reflectance values for wavelengths 350-2500nm, sampled at
1nm [12]. The result is a signature spectral response.

The HR is used to give a general idea of the level of stress experienced by the subject,

but is not used to confirm that stress is induced. The HRV numbers are used to indicate that

stress has occurred. HRV is a better indicator of stress than HR based on extensive research

in this field [66, 67, 71]. Therefore, if a subject’s HRV for a “stress” response is less than

that of their baseline, this will be annotated as a state of “stress,” otherwise the sample is

discarded.

Matlab® is implemented to normalize the data and change the format to comma-

separated value (CSV). Normalization is necessary to ensure all the samples in the dataset

are proportioned between [0,1] for consistency. The dataset, S , is normalized via the

Euclidean distance with the equation,

S norm =
S
∥S ∥ , (3.3)
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where

∥S ∥ =
√

x2
1 + x2

2 + . . . + x2
n,

for

{xi}ni=1,

where xi is a sample and n is the total number of samples.

The contact probe is used to obtain the most accurate reflectance data. Since the

contact probe is in contact with the skin, the atmospheric attenuation is negligible. The

feature selection and classification algorithms are trained on both contact and NC data,

and the NC data is also used for validating a “real-world” situation with models trained on

contact data.

The normalized reflectance data files, CSV files, are imported into the data mining

software Waikato Environment for Knowledge Analysis (WEKA). WEKA contains an

assortment of different machine learning algorithms for data pre-processing, classification,

regression, clustering, association rules, and visualization [34]. WEKA requires the data

to be in a matrix format such that each row is a sample and each column a feature. The

features are reflectances at the wavelengths 350-2500nm, thus each data matrix has 2,151

columns, where the last column is the class designator. A total of 16 datasets resulted from

the data collection, where eight sets were determined from the contact probe (C) and eight

sets determined from the NC probe. The datasets consist of:

• Subject 1-6: each subject’s reflectance dataset, (C) and (NC),

• Combo: a combination of all subject’s data, (C) and (NC),

• Var: the variance of all subjects, (C) and (NC),

The datasets listed above are broken down into training/testing and validation sets for

both contact and NC collections for two different cases. Figures 3.7 and 3.8 outline the
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process of the two cases used in this thesis. The figures annotate where feature selection

and classification algorithms are introduced and applied to each dataset. In Fig. 3.7 (case

I), two original datasets are used: contact and NC. The contact is used to build the model

(training/testing with 5-fold cross-validation) and to validate with the holdout set of the

data. The NC portion is also used to validate the models based on a “real-world” scenario.

Figure 3.8 illustrates case II, the progression of the original NC dataset, which includes

building a model with 10-fold cross-validation and validating with a holdout set.

Figure 3.7: This flowchart represents the progression of the contact test/train, validation, and “real-
world” validation datasets. Models are trained, built, and tested with two-thirds of the data and
validated with the remaining one-third of the contact data. Data collected with the NC probe is used as
a “real-world” validation.
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Figure 3.8: This flowchart represents the progression of the NC test/train and validation datasets.
Models are trained, built, and tested with two-thirds of the data and validated with the remaining
one-third.

For completeness, Fig. 3.9 displays the feature set selection/classification process

for all available datasets. A model is created for each of the feature set/classification

combinations in the figure (nine total). Figure. 3.10 further illustrates the breakdown of

the datasets from the collected data. This equals 144 total models that are trained/tested

and validated.
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Figure 3.9: This chart organizes and shows all combinations of feature selection and classification
algorithms that are applied in this thesis. A model is built for each combination, both contact and
NC datasets. There are a total of nine pairings of feature selection and classification algorithm per
dataset.

Figure 3.10: This chart shows how the collected data is organized as specific datasets: Subject 1-6,
Combo, and Var. Where the rectangular container is considered a different dataset that is individually
applied to Fig. 3.9 for feature selection and classification. Each set consists of both contact and NC
collections.

57



3.3 Feature Selection Stage

Each hyperspectral sample contains 2,150 features; however, not all features are

necessary to distinguish between the two classes. Feature selection algorithms are

applied to the datasets to indicate the features that best separate the classes [76]. The

feature selection algorithms implemented in this thesis are ReliefF [18–20], Support

Vector Machine Attribute Evaluator (SVM AE) [21, 22, 34, 45], and Non-Correlated

Aided Simulated Annealing Feature Selection–Integrated Distribution Function (NASAFS-

IDF) [35, 77]. These algorithms are chosen in order to span the feature selection taxonomy

presented by Blum and Langley, who delineate algorithms into three categories: filters,

wrappers, or embedded [81]. ReliefF is identified as a filter method, SVM AE is in the

embedded category [81], and NASAFS-IDF possesses a hybrid methodology [35, 81].

NASAFS-IDF utilizes simulated annealing, which is a type of wrapper according to [81],

but the algorithm also contains a heuristic, which falls under filter methodologies [35, 81].

The algorithms are implemented on the datasets listed in Section 3.2. The combination

datasets provide a global feature set to distinguish stress from non-stress. Feature selection

is performed on data from both contact and NC collections.

ReliefF [18–20] and SVM AE [21, 22, 34, 45] are both implemented in WEKA

and NASAFS-IDF [35, 77] is implemented in Matlab®. ReliefF is a multi-class feature

selection algorithm that calculates the distance between classes to determine feature

rank [19]. In this thesis, a two-class methodology is used. The farther apart the two classes

are for a particular feature, the higher the rank assigned to that feature. The issue that

often happens with ReliefF is that the features with the highest ranks are often spatially

located close to each other [19]. This may be acceptable, but often the result is a feature

set containing similar features, which may be limiting. SVM AE is based off the support

vector machine (SVM) classification algorithm. The SVM AE searches for features that

contribute the most to the support vectors that produce the largest margin separating the two

58



classes [21]. Similarly to ReliefF, the features that result in the farthest distance between

classes receive the higher rank. NASAFS-IDF is a feature selection algorithm that selects

highly discriminating features that are non-redundant. This algorithm selects a group of

features at random across the entire dataset and evaluates the group with a simulated

annealing process that optimizes a heuristic. The output of NASAFS-IDF is a feature set

per class based on a one-versus-all method for determining class separation [35]. NASAFS-

IDF compares each individual class to all other classes and determines the best features to

distinguish that class from the others. In this thesis, there are two classes, thus NASAFS-

IDF produced two feature sets. The two feature sets are evaluated as Class1-versus-Class2

(feature set 1) and Class2-versus-Class1 (feature set 2). Since NASAFS-IDF is a stochastic

process, the two feature sets are not equivalent, though they are similar. Either of the feature

sets are appropriate to apply to the data for classification because each set is evaluated based

on its ability to separate two classes.

In WEKA, both ReliefF and SVM AE are applied to the dataset and WEKA outputs

features in rank order. The two feature selection methods are applied to each group of data:

sets containing each individual subject’s reflectance signature (labeled Subjects 1-6), sets of

all subjects’ reflectance (labeled Combo), a set of all subjects’ reflectance variance (labeled

Var), and the same sets, but with data collected using a NC probe (with “NC” attached to

the label). Figures 3.11-3.13 show examples of spectral responses from each dataset. Each

dataset contains the entire available spectrum of wavelengths, 350-2500nm. The top six

features from ReliefF, SVM AE, and NASAFS-IDF are displayed in Table 3.1.
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Figure 3.11: Feature selection and classification algorithms are applied to three types of datasets. This
is one sample from a subject’s skin reflectance signature showing “stress” (red solid line) and “non-
stress” (blue dashed line). There are six subjects, resulting in six datasets that process through feature
selection and classification algorithms.

Figure 3.12: Feature selection and classification algorithms are applied to three types of datasets. This
shows the averaged combination of all six subject’s reflectance response in “stress” (red solid line)
and “non-stress” (blue dashed line). Though this shows the average, all samples from all subjects’
reflectance results are processed with the feature selection and classification algorithms.
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Table 3.1: Feature selection results for (a) Subject 1, (b) Combo, and (c) Var datasets. The remaining
five subjects’ feature selection results and NC feature selection results are located in Appendix C, Each
dataset is collected using a contact probe and is processed through the feature selection algorithms
ReliefF, SVM AE, and NASAFS-IDF to achieve a feature set of six features.

(a) Subject 1 dataset

ReliefF SVM NASAFS-IDF1 NASAFS-IDF2

w
av

el
en

gt
h

[n
m

] 1211 1211 1205 585
1210 1210 585 1335
1212 1209 415 1635
1209 1208 1625 415
1215 1212 1945 385
1214 1207 1385 1165

(b) Combo dataset

ReliefF SVM NASAFS-IDF1 NASAFS-IDF2

w
av

el
en

gt
h

[n
m

] 557 1534 575 565
558 1531 1315 1315
556 2496 1025 1145
559 1521 1745 975
560 1535 395 395
555 2455 385 2495

(c) Variance dataset

ReliefF SVM NASAFS-IDF1 NASAFS-IDF2

w
av

el
en

gt
h

[n
m

] 2491 582 575 575
2492 583 1105 1115
2489 603 2495 925
2490 581 1315 2495
586 584 2485 405
585 2489 1725 1585
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Figure 3.13: Feature selection and classification algorithms are applied to three types of datasets. This
displays the averaged variance of “stress” (solid red line) and “non-stress” (dashed blue line) for all
subjects. Though this shows the average, all samples from all subjects’ variance results are processed
with the feature selection and classification algorithms.

After the feature sets are sent through classification algorithms, the sets that return

the highest accuracy and area under the curve (AUC) are noted as wavelengths of

discrimination. One of the objectives in applying feature selection algorithms is to discover

wavelengths that indicate universal distinction between the two classes, stress and non-

stress.

3.4 Classification Stage

Features from ReliefF, SVM AE, and NASAFS-IDF are selected from the datasets

listed in Section 3.2 and processed through the classification algorithms, naive Bayes [23–

25], SVM [26, 28, 29, 45], and a decision tree [30–33]. Table 3.2 displays all dataset

combinations used for classification. The holdout method is used on the contact dataset and

is labeled: validation set. The train/test set consists of about 66.66% of the data and is used

to build and test the models. The remaining 33.33% of the data is the validation set and is
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used to evaluate the accuracy of the models built. Validation sets provide a way to evaluate

classifier accuracy on new, previously unseen contact data. NC data is implemented for a

second form of validation: “real-world” validation. Once models are validated, the “real-

world” validation datasets are used to determine the generalization of the models for data

containing atmospheric noise. The NC data is also used for training/testing purposes.

Training/testing a classifier on data collected using a NC fore optic allows another option

for modeling. The NC datasets contain many more samples than the contact datasets. This

is because recording time is limited with a contact probe due to heat produced by the

internal light source. The NC collection utilizes artificial lights, but the heat produced by

these lights is negligible, thus the spectroradiometer can record for longer periods of time.

Table 3.2: Datasets used for classification. Each dataset consists of a variety of samples collected with
either a contact probe or a NC fore optic. Each dataset is comprised of six features selected from the
feature selection algorithms ReliefF, SVM AE (SVM AE), and NASAFS-IDF (NAS1/2).

Dataset: Sub1−6 All Subjects Var
ReliefF Subi−RF Combo−RF Var−RF

SVM AE Subi−SVM Combo−SVM Var−SVM
NASAFS-IDF1 Subi−NAS1 Combo−NAS1 Var−NAS1
NASAFS-IDF2 Subi−NAS2 Combo−NAS2 Var−NAS2

Dataset: Sub1−6NC All SubsNC VarNC
ReliefF SubiNC−RF ComboNC−RF VarNC−RF

SVM AE SubiNC−SVM ComboNC−SVM VarNC−SVM
NASAFS-IDF1 SubiNC−NAS1 ComboNC−NAS1 VarNC−NAS1
NASAFS-IDF2 SubiNC−NAS2 ComboNC−NAS2 VarNC−NAS2

3.5 Results

The features listed in Section 3.3 are selected and processed with the classification

algorithms discussed. To create the models, the datasets, Subject 1-6, Combo, Var, Subject

1-6NC, ComboNC, and VarNC, are divided into four datasets according to each feature

set, ReliefF, SVM, NASAFS-IDF1, and NASAFS-IDF2, as outlined in Table 3.2. It is

pertinent to note here that one of Subject 3’s experiment sessions returned HRV values

that do not indicate stress; the baseline HRV is lower than the stress trial. Therefore, this
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portion of Subject 3’s dataset (non-contact data) is discarded. Each feature set is used with

each of the three classifiers for training. An example of the results is shown in Table 3.3.

This represents the classification accuracies for training models on the datasets Subject 1,

Combo, and Var. Table 3.4 displays a sampling from different datasets of the confusion

matrices calculated with the annotated feature selection and classification methods.

Table 3.3: Percent accuracy on train/test sets Subject 1, Combo, and Var. The sets are comprised of two-
thirds of the samples in each dataset. The sets include six features selected using the feature selection
algorithms, ReliefF, SVM AE, and NASAFS-IDF and are evaluated using the classifiers, naive Bayes,
SVM, and decision tree.

Subject1 ReliefF SVM NASAFS-IDF1 NASAFS-IDF2
Naive Bayes 100 100 100 100

SVM 100 100 100 100
Decision Tree 95.00 95.00 95.00 95.00

Combo
Naive Bayes 65.95 82.97 78.72 78.72

SVM 65.95 80.85 76.59 78.72
Decision Tree 80.85 90.42 88.29 89.36

Var
Naive Bayes 76.05 78.87 54.92 50.70

SVM 73.23 78.87 66.19 66.19
Decision Tree 71.83 73.23 76.05 80.28
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Table 3.4: Selected confusion matrices for classification on train/test sets. The sets include (a) Subject
1 with ReliefF features and a naive Bayes classifier, (b) Combo with SVM AE and a SVM classifier, (c)
Var with NASAFS-IDF1 features and a decision tree classifier, and (d) ComboNC with NASAFS-IDF2
features and a naive Bayes classifier. The train/test sets are comprised of 66.66% of the contact data.

(a) Classification train/test results on
Subject 1 dataset using ReliefF fea-
tures and naive Bayes classifier.

Non-stress Stress
NS 14 0 14

S 0 6 6
14 6 20

(b) Classification train/test results on
Combo dataset using SVM Attribute
Evaluator features and SVM classifier.

Non-stress Stress
NS 46 12 58

S 4 32 36
50 44 78

(c) Classification train/test results on
Var dataset using NASAFS-IDF1 fea-
tures and a decision tree classifier.

Non-stress Stress
NS 17 29 46

S 3 22 25
20 51 39

(d) Classification train/test results on
ComboNC dataset using NASAFS-IDF2
features and naive Bayes classifier.

Non-stress Stress
NS 99 0 99

S 11 290 311
110 290 389

65



IV. Results and Analysis

This chapter covers the results and analysis of the experimental procedures conducted

in this thesis. The experiment is executed according to Section 3.1.4 with results

from training and testing outlined in Section 3.5. Features are chosen from the feature

selection algorithms ReliefF, Support Vector Machine Attribute Evaluator (SVM AE),

and Non-Correlated Aided Simulated Annealing Feature Selection–Integrated Distribution

Function (NASAFS-IDF). The classification algorithms, naive Bayes, support vector

machine (SVM), and decision tree, are trained and tested on two-thirds of the samples

in the datasets outlined in Table 3.2. These datasets come from the processed reflectance of

hyperspectral imaging (HSI) using both the contact and non-contact (NC) probes. A contact

probe is used for training because the data does not contain atmospheric noise that occurs

with a NC fore optic. The NC data is implemented for training purposes to provide other

potential models. The NC collection is also used for a “real-world” validation of models

trained on contact data. The validation sets are comprised of numerous samples at six

different wavelengths. Validation results from the contact data are discussed in Section 4.1

and “real-world” validation results using the NC collections in Section 4.1.1. Section 4.3

begins analysis of the results by comparing the different feature selection and classification

algorithms’ results.

4.1 Contact Data

Validation sets evaluate the ability of models to classify previously unseen data. While

two-thirds of the samples in the datasets defined by Table 3.2 are used for training/testing

classifiers, the remaining one-third are implemented for validation.

A visual representation of a dataset is seen in Fig. 4.1. This represents the normalized

reflectance of the Combo contact validation set, which includes six features and 46 samples.
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The samples are comprised of the “stress” (red circles) and “non-stress” (blue x’s) response

collected with a contact probe. The features in this specific validation set are from the

ReliefF feature selection algorithm.

Figure 4.1: This set represents six features and 46 samples from the Combo contact validation set,
which includes the normalized skin reflectance of all subjects. The set consists of “stress” (red circles)
and “non-stress” (blue x’s) that denote each sample. These particular features are from the ReliefF
feature selection algorithm.

By examining the separation between classes from a particular contact feature set,

wavelengths of importance are identified. For Subjects 1-6 datasets, there is sufficient class

separation and consistency that led to high validation results. Because of this, there was

not a particular feature set that indicated better class separation than another. Out of all the

Combo and Var feature sets, the NASAFS-IDF sets provided features indicating the best

classification. These wavelengths are noted in Table 4.1.
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Table 4.1: Wavelengths of maximum discrimination between classes for Combo and Var contact
datasets from NASAFS-IDF2 feature sets.

Combo Var

w
av

el
en

gt
h

[n
m

] 575 565 575
1315 1315 1115
1025 1145 925
1745 975 2495
395 395 405
385 2495 1585

Literature indicates there is peak absorption of oxygenated hemoglobin in the

400, 550, and 575nm ranges and peaks in deoxygenated hemoglobin around 400 and

580nm [85]. These numbers do not directly reflect the wavelengths values discovered with

the feature selection algorithms, but some of the numbers are located within a similar

range. Also, the peak absorption of water is located at 1025nm, which was selected as

a discriminating feature [83]. Literature does not indicate prominent wavelengths in the

regions of 1100, 1300, 1500, and 1700nm, but these may provide additional opportunities

for differentiation.

For each feature selection/classification algorithm pair, the accuracies for contact

validation results on individual subjects are consistently 100% with a few exceptions, noted

in Table 4.2. Notice that Subject 5 shows an accuracy of 83.33%, but an area under the curve

(AUC) of 1.000. This resulted because the validation dataset is very small (six samples),

so one misclassification leads to a misleading accuracy value. The corresponding receiver

operating characteristic (ROC) curves are shown in Fig. 4.2. These curves are calculated

in Waikato Environment for Knowledge Analysis (WEKA) and are associated with AUC

values in Table 4.2.
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(a) Subject 1, ReliefF, Decision Tree (b) Subject 3, NASAFS-IDF1, Decision Tree

(c) Subject 5, NASAFS-IDF2, Naive Bayes (d) Subject 6, ReliefF, Decision Tree

(e) Subject 6, SVM, Decision Tree

Figure 4.2: Selected ROC curve results on subject contact validation sets that correspond to accuracy
and AUC in Table 4.2. (a) is Subject 1 with ReliefF features and a decision tree classifier; (b) is Subject 3
with NASAFS-IDF1 features and a decision tree classifier; (c) is Subject 5 with NASAFS-IDF2 features
and a naive Bayes classifier; (d) is Subject 6 with ReliefF features and a decision tree classifier; and (e)
is Subject 6 with SVM AE features and a decision tree classifier.
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Table 4.2: Percent accuracy and AUC for Subject contact validation sets with less than 100% accuracy.
The AUC is calculated as the area under the ROC curve. The associated ROC curves can be found in
Fig. 4.2. The sets include six features selected using the feature selection (FS) algorithms, ReliefF (RF),
SVM AE, and NASAFS-IDF (NAS1/2) and are evaluated using the classifiers, naive Bayes (NB), SVM,
and a decision tree (DT).

Dataset FS Classifier Accuracy AUC
Subject 1 RF DT 88.88 0.9167
Subject 3 NAS1 DT 83.33 0.9444
Subject 5 NAS2 NB 83.33 1.000
Subject 6 RF DT 88.88 0.9167
Subject 6 SVM AE DT 88.88 0.9167

On the average, the Combo contact validation set has a decreased accuracy in

comparison to contact validation results on individual subjects. Across the combination

sets, most accuracies are above 80%. The validation accuracies of datasets corresponding

to those train/test datasets selected in Table 3.3 are shown in Table 4.3. To allow direct

comparison between training/testing and validation, the accuracies and confusion matrices

for the same four datasets listed in Table 4.3 are shown throughout this chapter. Table 4.4

displays the appropriate confusion matrices for the four selected datasets.

Table 4.3: Classification results on selected validation sets that correspond to the selected sets in
Table 3.3: (a) Subject 1 with ReliefF features and a naive Bayes classifier, (b) Combo with SVM AE and
SVM classifier, (c) Var with NASAFS-IDF1 features and a decision tree classifier, and (d) ComboNC
with NASAFS-IDF2 features and a naive Bayes classifier.

Dataset Accuracy AUC
(a) 100.00 1.000
(b) 84.78 0.865
(c) 51.42 0.833
(d) 97.00 0.998

70



Table 4.4: Selected confusion matrices for classification on validation sets that correspond to the
selected sets in Table 3.3. The sets include (a) Subject 1 with ReliefF features and a naive Bayes
classifier, (b) Combo with SVM AE and SVM classifier, (c) Var with NASAFS-IDF1 features and a
decision tree classifier, and (d) ComboNC with NASAFS-IDF2 features and a naive Bayes classifier.
The test sets are comprised of 33.33% of the contact data. Each set has different numbers of samples
and six features.

(a) Classification contact validation
results on Subject 1 dataset using Re-
liefF features and naive Bayes classi-
fier.

Non-stress Stress
NS 6 0 6

S 0 3 3
6 3 9

(b) Classification contact validation re-
sults on Combo dataset using SVM
Attribute Evaluator features and SVM
classifier.

Non-stress Stress
NS 22 6 28

S 1 17 18
23 23 38

(c) Classification contact validation re-
sults on Var dataset using NASAFS-
IDF1 features and a decision tree clas-
sifier.

Non-stress Stress
NS 7 16 23

S 1 11 12
8 27 18

(d) Classification NC validation results
on ComboNC dataset using NASAFS-
IDF2 features and naive Bayes classifier.

Non-stress Stress
NS 49 0 49

S 6 145 151
55 145 194

On average, the accuracy of individual subject’s contact validation results across the

different feature sets and classifiers is higher than that of the Combo contact validation. This

is because the amplitude of the reflectance of skin varies between subjects. Figure 4.3 shows

three averaged “stress” and “non-stress” skin signatures for three different subjects. These

figures show that even the “stress” and “non-stress” spectral responses differ across the

subjects, which makes group classification difficult. For completeness, group classification

is still performed. The combination set is plotted in Fig. 3.12. This set shows the average

“stress” and average “non-stress” signatures for Subjects 1-6; however, for classification,

all individual samples are used.
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(a) Three different subject’s stress skin signatures.

(b) Three different subject’s non-stress skin signatures.

Figure 4.3: Three different subject’s spectral responses to show that reflectance of both stress and non-
stress has inconsistent amplitude. (a) shows the stress skin signature of three different subjects (Subject
1 solid red, Subject 2 dashed black, Subject 3 dotted blue) and (b) shows the non-stress skin signature
of the same three subjects. Because the amplitudes vary, group classification is difficult and the most
accurate results occur when detecting stress on an individual basis.
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The accuracy, confusion matrix, and ROC curve for the top performing Combo

contact validation feature set and classifier pair are in Table 4.5 and Fig. 4.4. The results

include 95.65% accuracy with an AUC of 0.9620 for the NASAFS-IDF2 feature set

and a decision tree classifier. The second-best performing feature selection algorithm

and classifier combination is NASAFS-IDF1 features with a decision tree classifier. This

returned an accuracy of 95.65% also, but the AUC is 0.9610.

Table 4.5: Accuracy, AUC, and confusion matrix for the top performing feature set and classifier on
the Combo contact validation set: NASAFS-IDF2 features and a decision tree classifier.

Stress Non-stress
S 27 1 28

NS 1 17 18
28 18 44

Accuracy: 95.65%
AUC: 0.962

Figure 4.4: ROC curve from the top performing contact validation feature selection and classifier pair
on the Combo contact validation set: NASAFS-IDF2 features and a decision tree classifier. The Combo
dataset is validated with one-third of the contact data used to build a model. The set includes all
subjects’ normalized reflectance, comprising 46 samples of “stress” and “non-stress” and six features.
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Normalized reflectance data is processed in Matlab® to obtain the variance of

skin reflectance under “stress” and “non-stress” conditions. All subjects’ variances are

combined into one dataset for evaluation. Figure 4.5 shows the variance of all subjects’

data collected using a contact probe. On average, the variance of “stress” (red solid lines)

tends to be lower than that of “non-stress” (blue dashed lines) because as heart rate (HR)

increases, heart rate variability (HRV) decreases [66, 71]. Like the normalized reflectance

data, two-thirds of this data is separated and used for training/testing, with the remaining

one-third saved for validation. The variance data is collected with both the contact and NC

probe.

Figure 4.5: All subjects’ variances of reflectance collected with a contact probe. The variance of “stress”
(red solid lines) is lower on average than “non-stress” (blue dashed lines) because the HRV decreases
as stress increases [66, 71]. Two-thirds of these samples are used for training models and the remaining
one-third is used for testing the models built.
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Table 4.6 shows the results from the top performing feature set (NASAFS-IDF2) and

classifier (decision tree) on the Var contact validation sets. Figure 4.6 shows the associated

ROC curve. Similar results were obtained using ReliefF features with a decision tree and

SVM AE features with naive Bayes. These pairs both returned 85.71% accuracy and an

AUC of 0.9350.

Table 4.6: Accuracy, AUC, and confusion matrix for the top performing feature set and classifier on
the Var contact validation set. The validation set is classified with a decision tree and is comprised of
35 samples of “stress” and “non-stress” and six features from NASAFS-IDF2.

Stress Non-stress
S 22 1 23

NS 0 12 12
22 13 34

Accuracy: 97.14%
AUC: 0.996

Figure 4.6: ROC curve from the top performing feature selection algorithm (NASAFS-IDF2) and
classifier (decision tree) on the Var contact validation set. The Var dataset is validated with one-third of
the contact data. The set includes all subjects’ normalized reflectance variance, comprising 35 samples
of “stress” and “non-stress” and six features from NASAFS-IDF2 feature set.
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4.1.1 Validation on Contact Models with “Real-World” Non-Contact Data.

The NC validation results provide a means of judging the applicability and accuracy of

the models using real-world data. Validation datasets are comprised of reflectance recorded

with the NC fore optic, which introduces atmospheric noise and is less consistent. All

sets are evaluated using the models built from the naive Bayes, SVM, and decision tree

classifiers. Each set consists of six features selected from ReliefF, SVM AE, and NASAFS-

IDF.

When using a NC optic, the potential for inaccurate readings increases. The

positioning of the probe relies heavily on the subject’s posture while performing tasks.

Since the data collection occurs while the subject performs the computer program, Air

Force Multi-Attribute Test Battery (AF MATB), movements could cause the camera’s

field-of-view (FOV) to deviate from the target location. The target location, about an inch

diameter of the skin in the area of the carotid artery, can be held consistent with a contact

probe, but is difficult to ensure exactness with the NC fore optic.

Table 4.7: Percent accuracy on Subject 1, Combo, and Var NC validation datasets The sets are
comprised of previously unseen data collected using a NC fore optic on six different subjects. The sets
include six features selected using the feature selection algorithms, ReliefF, SVM AE, and NASAFS-
IDF and are evaluated using the classifiers, naive Bayes, SVM, and decision tree.

Subject 1 ReliefF SVM NASAFS-IDF1 NASAFS-IDF2
Naive Bayes 20.68 20.68 20.68 20.68

SVM 20.68 20.68 20.68 20.68
Decision Tree 20.68 20.68 20.68 20.68

Combo
Naive Bayes 24.66 24.66 24.66 24.50

SVM 24.66 24.66 24.66 24.66
Decision Tree 21.66 24.66 43.00 24.66

Var
Naive Bayes 65.09 34.52 36.30 41.50

SVM 50.75 32.07 20.56 21.50
Decision Tree 69.24 27.35 21.69 22.64

The “real-world” NC validation results decrease significantly in accuracy compared to

the contact validation results, as observed in Table 4.7. One reason for this is the additional
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noise created using a NC probe, as well as numerous situational opportunities that are

introduced with a NC recording. As discussed, excess movement from the subject causes

changes in reflectance and, since the “stress” and “non-stress” collections are not recorded

at the same time and the light source is turned off in between collections, the lighting could

be inconsistent between collects.

Table 4.8 shows the confusion matrices of “real-world” validation sets corresponding

to the datasets selected in Table 4.3 (Subject 1, Combo, Var, ComboNC), which displays

results from contact validation. The same datasets chosen for training/testing in Table 3.4

and contact validation in Table 4.4 are chosen to allow comparison between training/testing,

contact validation, and “real-world” NC validation results.

Table 4.8: Selected confusion matrices for classification on “real-world” validation sets that correspond
to Tables 3.4 and 4.4 to allow direct comparison. The sets include (a) Subject 1 with ReliefF features
and a naive Bayes classifier, (b) Combo with SVM AE, (c) Var with NASAFS-IDF1 features and a
decision tree classifier, and (d) ComboNC with NASAFS-IDF2 features and a naive Bayes classifier. The
validation sets are comprised of data collected with a NC fore optic. Each set has different numbers of
samples and six features.

(a) ReliefF features, naive Bayes classi-
fier.

Non-stress Stress
NS 30 0 30

S 115 0 115
145 0 30

(b) SVM Attribute Evaluator features,
SVM classifier.

Non-stress Stress
NS 148 0 148

S 452 0 452
600 0 148

(c) NASAFS-IDF1 features, decision tree
classifier.

Non-stress Stress
NS 108 5 112

S 410 7 417
518 12 115

(d) NASAFS-IDF2 features, naive Bayes
classifier.

Non-stress Stress
NS 49 0 49

S 6 145 151
55 145 194

Table 4.9 contains the confusion matrices for the top results in each category of the

“real-world” validation sets (Subject 1-6NC, ComboNC, VarNC). These sets are from

models trained on contact data that are validated again with NC data. The first validation

was accomplished using the holdout method. NASAFS-IDF2 features provided the highest

77



NC validation accuracy on the normalized reflectance data (Subject 1-6NC and ComboNC),

while the ReliefF feature set had the highest NC validation accuracy on the VarNC set.

The decision tree classifier was most successful for both the ComboNC and VarNC NC

validation sets, while naive Bayes returned the highest accuracy on the SubjectNC NC

validation set. Figures 4.7-4.9 display the corresponding ROC curves.
Table 4.9: Confusion matrix for the top performing feature sets and classifiers on (a) Subject 5NC,
(b) ComboNC, and (c) VarNC “real-world” NC validation set. The models are trained/tested on contact
data, validated using the holdout method with contact data, and then validated again, with results
shown here, using NC data.

(a) Confusion matrix for Subject 5NC
“real-world” validation set of the
top performing feature set (NASAFS-
IDF1) and classifier (naive Bayes).

Stress Non-stress
S 5 24 29

NS 0 83 83
5 107 88

Accuracy: 78.57%
AUC: 0.683

(b) Confusion matrix for ComboNC
“real-world” validation set of the
top performing feature set (NASAFS-
IDF1) and classifier (decision tree).

Stress Non-stress
S 119 29 148
S 313 139 452

432 168 258
Accuracy: 43.00%

AUC: 0.556

(c) Confusion matrix for VarNC “real-
world” validation set of the top perform-
ing feature set (ReliefF) and classifier
(decision tree).

Stress Non-stress
S 19 94 113

NS 69 348 417
88 442 367

Accuracy: 69.24%
AUC: 0.452
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Figure 4.7: ROC curve for the most successful validation result (Subject 5) among the subjects’
validation sets, which results from NASAFS-IDF1 features and a naive Bayes classifier. Subject 5
dataset is validated with data collected with a NC fore optic. The set is comprised of 600 samples
of “stress” and “non-stress” and six features.

Figure 4.8: ROC curve for the most successful validation result among the Combo validation sets, which
results from NASAFS-IDF1 features and a decision tree classifier. The Combo dataset is validated with
data collected with a NC fore optic. The set is comprised of 112 samples of “stress” and “non-stress”
and six features.
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Figure 4.9: ROC curve for the most successful validation result among the Var validation sets, which
results from ReliefF features and a decision tree classifier. The Var dataset is validated with data
collected with a NC fore optic. The set is comprised of 530 samples of “stress” and “non-stress” and six
features.

4.2 Validation on Non-Contact Data

The data recorded using the NC fore optic is used for two functions: to validate models

built from contact data and to build new models. Because the NC collections resulted in

different responses compared to the contact collections, new models are trained and tested.

Figure 4.10 shows the comparison of one subject’s contact and NC reflectance spectral

responses. Notice that the “non-stress” (dashed blue) reflectance values are lower than

“stress” (solid red) for a contact recording and higher for the NC recording. This could be

an artifact of the test setup and collection and should be investigated in the future. The NC

collection contains many more samples than the contact dataset; for example, the contact

Combo set has 19 samples and NC has 600 samples. This is because the amount of time

the contact probe rests on a subject’s skin is limited due to warmth felt from the probe’s

illumination source, while the NC optic can record for longer time periods.
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(a) Normalized reflectance response recorded with a contact probe for one subject.

(b) Normalized reflectance response recorded with a NC fore optic for one subject.

Figure 4.10: (a) is a normalized reflectance response recorded with a contact probe on one subject (b) is
the normalized reflectance response of the same subject with the data recorded using a NC fore optic.
The red solid lines are “stress” and blue dashed lines “non-stress.” This shows the difference that can
exist for one subject between a contact and NC data collection. Because of this difference, models are
trained and built for both datasets.
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Similarly to the contact data feature sets, all the SubjectsNC 1-6 feature sets provided

class separation, leading to high classification results across all twenty sets (five subjects

because one subject was thrown out and four feature sets for each subject). The three feature

selection algorithms all returned high classification results for the ComboNC dataset. These

wavelengths are listed in Table 4.10 along with the wavelengths of the most discrimination

between classes for the VarNC dataset, from the SVM AE feature set.

Table 4.10: Wavelengths of maximum discrimination between classes for ComboNC and VarNC
datasets.

ComboNC VarNC
ReliefF SVM AE NASAFS-IDF1 NASAFS-IDF2 SVM AE

w
av

el
en

gt
h

[n
m

] 1203 830 605 985 2382
1206 833 995 595 1974
1202 1201 365 365 2108
1207 922 355 1615 2327
1201 1202 1385 1655 2381
1204 831 1615 1285 1960

Based on prior literature, oxygenated hemoglobin is known to have a lower reflectance

than deoxygenated hemoglobin at 830nm, which appears in Table 4.10 [84]. Interestingly,

the literature also indicates that there is a dip in oxygenated hemoglobin with respect to

deoxygenated hemoglobin at 690nm [84]; however, this wavelength was not identified in

any of the feature sets.

Overall, the results from NC validation on models trained with NC data returned high

accuracies for all datasets, with 100% accuracy for most individual SubjectNC reflectance.

This is because there is good separation between classes on an individual subject basis. For

the ComboNC and VarNC validation sets, the highest accuracy and AUC results across the

three feature selection algorithms are displayed in Table 4.11. The ComboNC validation

set has several feature set/classifier pairs that give 100% accuracy. The highest returning

ComboNC validation results are mostly 100% because the features selected offer wide class
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separation, as can be seen in Fig. 4.11. One of these pairs is chosen (SVM and naive Bayes)

and the confusion matrix is given in Table 4.12.

Figure 4.11: This is the ComboNC validation set with six features from SVM AE. There is a wide
margin between classes, thus making 100% accuracy achievable, as displayed in Table 4.11 The
features include the wavelengths (in nm): 830, 833, 1201, 922, 1202, 831..
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Table 4.11: Validation percent accuracy and AUC on ComboNC and VarNC models built using NC
data. The sets with results displayed returned the highest accuracy for each feature selection algorithm,
across the three classifiers. The sets include six features selected using the feature selection (FS)
algorithms, ReliefF (RF), SVM AE (SVM), and NASAFS-IDF (NAS1/2) and are evaluated using the
classifiers, naive Bayes (NB), SVM, and a decision tree (DT).

Dataset FS Classifier Accuracy AUC
ComboNC RF NB 98.00 1.000
ComboNC SVM AE NB 100.00 1.000
ComboNC SVM AE SVM 100.00 1.000
ComboNC NAS1 SVM 100.00 1.000
ComboNC NAS2 SVM 100.00 1.000

VarNC RF NB 64.77 0.870
VarNC SVM AE SVM 90.90 0.968
VarNC NAS1 DT 88.06 0.806
VarNC NAS2 DT 89.77 0.903

Table 4.12: A selected confusion matrix for one of the top performing feature set (SVM AE) and
classifier (naive Bayes) on the ComboNC validation set. Several other pairs (ReliefF/naive Bayes, SVM
AE/SVM, NASAFS-IDF1/SVM, NASAFS-IDF2/SVM) also returned an accuracy and/or AUC of 100%
and 1.000.

Stress Non-stress
S 49 0 49

NS 0 151 151
49 151 200

Accuracy: 100.00%
AUC: 1.000

The VarNC validation set results varied based on feature set. The SVM AE feature set

returned the highest results, averaging 94.31% accuracy with an average AUC of 0.954. The

NASAFS-IDF feature sets returned accuracies in the mid-to-high eighties with an average

AUC of 0.765. The SVM AE with a SVM classifier has the highest accuracy, at 97.15%,

but the same feature set combined with a naive Bayes classifier has a higher AUC at 0.968,

compared to 0.952 for the SVM classifier. Table 4.13 summarizes results and Fig. 4.12

provides the ROC curve for the VarNC test set.
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Table 4.13: Confusion matrix for the most successful feature set (SVM AE) and classifier (naive Bayes)
on the VarNC validation set. The validation set is comprised of 176 samples of “stress” and “non-stress”
and six features.

Stress Non-stress
S 32 5 37

NS 11 128 139
43 133 160

Accuracy: 90.90%
AUC: 0.968

Figure 4.12: ROC curve from most successful validation result on the VarNC validation set, which is
SVM AE features and a naive Bayes classifier. The set includes all subjects’ normalized reflectance
variance, comprising 176 samples of “stress” and “non-stress” and six features.

4.3 Analysis

The datasets described in Table 3.2 are first processed through the three classifiers to

build, train, and test models. Following this, an unseen portion of the contact dataset is used

for validation purposes. For a comparison to a real-world scenario, the models are validated

again using data from a NC collection. The train/test and contact validation results returned

an average accuracy of above 90% on all datasets. The NC validation results are low overall,
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with a few exceptions. The next step is to analyze the outcome of each algorithm in order

to introduce a potential model for stress detection.

There are two aspects of the stress detection process that need analysis: the feature

selection algorithms and classification algorithms. A total of sixteen datasets are processed

through three types of feature selection algorithms. This results in four feature sets (because

NASAFS-IDF provides two feature sets) of six features for each dataset. Table 4.14

displays the average accuracies for contact validation (using one-third of the contact

dataset) and NC validation on NC data (using one-third of the NC dataset). Table 4.15

displays the average AUC for each validation dataset.

Table 4.14: Percent accuracy for each respective feature selection and classification algorithm as they
apply to each contact and NC validation dataset. The datasets include the average results of Subject
1-6(C/NC), Combo(C/NC), and Var(C/NC) datasets. The contact data is validated on one-third of the
contact dataset and the NC data is validated on one-third of the NC dataset.

Dataset: Sub1−6 Combo Var SubNC ComboNC VarNC Average
ReliefF 98.76 74.36 80.95 100.00 99.00 41.10 82.36

SVM FS 98.76 83.33 89.52 100.00 99.83 94.31 94.29
NASAFS-IDF1 99.07 86.95 71.42 99.69 98.67 86.36 90.36
NASAFS-IDF2 93.52 85.50 73.33 99.69 98.67 88.70 89.90

Naive Bayes 97.92 77.51 66.42 100 97.88 81.15 86.81
SVM 98.61 79.35 78.57 100 99.88 74.75 88.53

Decision Tree 96.06 90.76 91.42 99.51 99.38 78.07 92.53

Table 4.15: AUC for each respective feature selection and classification algorithm as they apply to each
validation dataset. The datasets include the average results of Subject 1-6(C/NC), Combo(C/NC), and
Var(C/NC) datasets. The contact data is validated on one-third of the contact dataset and the NC data
is validated on one-third of the NC dataset.

Dataset: Sub1−6 Combo Var SubNC ComboNC VarNC Average
ReliefF 0.9907 0.8041 0.8250 1.0000 0.9980 0.8843 0.9170

SVM FS 0.9907 0.8887 0.8950 1.0000 0.9990 0.9536 0.9545
NASAFS-IDF1 0.9969 0.8944 0.7637 0.9979 0.9976 0.7673 0.9030
NASAFS-IDF2 0.9167 0.8850 0.8040 0.9979 0.9970 0.7626 0.8939

Naive Bayes 0.9791 0.8719 0.8533 1.0000 0.9985 0.7682 0.9254
SVM 0.9773 0.7908 0.6923 1.0000 0.9992 0.7682 0.8713

Decision Tree 0.9630 0.9415 0.9203 0.9969 0.9960 0.9082 0.9543
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A feature selection algorithm that returns features maximizing class separation is

essential because the classification algorithms applied rely on a distinction between classes.

By averaging the accuracies and AUC values from each feature set on contact and NC

validation datasets, the SVM AE returns the highest results at 94.29% and an AUC of

0.9545. By averaging the accuracies and AUC values from each classifier on contact and

NC validation datasets, the decision tree classifier returned the highest results at 92.53%

accuracy and an AUC of 0.9543. The six algorithms are further analyzed.

ReliefF returns six wavelengths that are located within close proximity to each other

on the electromagnetic spectrum. A small grouping of features can be functional if the

majority of the dataset does not provide class separation or if such features selected result

in significantly wider class separation. ReliefF could pose the issue of overcompensating

by selecting all similar features. In such a case, one feature may accomplish the same level

of accuracy as the entire selected feature set. Then, it would be more efficient to select

features across the dataset to take advantage of the contributions of other features, which

is a specific goal in the NASAFS-IDF feature selection algorithm. In general, the ReliefF

algorithm returned results similar to the other feature selection algorithms. This is because

skin has a distinct reflectance signature that results in consistent separation between classes

at certain points for each subject. When comparing results of individual subjects (Subject 1-

6) using ReliefF features to results on the Combo datasets, the ReliefF features do not return

as high accuracies. ReliefF features average the lowest accuracy across the three classifiers

on the Combo dataset for both contact and “real-world” validation. The average accuracy

for classifying variance with ReliefF feature set is second highest for validation and highest

for “real-world” validation. The results from models trained/tested on NC data are high

using ReliefF features from individual subject’s reflectance responses and the Combo

validation set, but the accuracy of the NC variance validation set is as low as 41.10%, which
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is significantly lower than that of the other two feature selection algorithms. Table 4.16

summarizes the classification results for each dataset and classification algorithm.

Table 4.16: This table summarizes the classification results on contact validation sets using the ReliefF
feature set. The results include the accuracy and AUC for each dataset and all accuracies and AUC
values averaged.

ReliefF
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 66.56 0.830
Var 77.14 0.812

Average 92.96 0.955
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 67.39 0.643
Var 80.00 0.728

Average 93.42 0.921
Decision Tree Sub1 88.88 0.917

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 88.88 0.917

Combo 89.13 0.939
Var 85.71 0.935

Average 94.08 0.964

The SVM AE selects features based off an area of widest separation between classes.

The feature sets can be categorized in between the results of ReliefF and NASAFS-IDF

because the algorithm selects groups of features in close proximity, but also selects some

wavelengths across the dataset. The SVM AE’s features returned similar results to that of
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ReliefF and NASAFS-IDF for the individual subject’s reflectance classification (Subject 1-

6), as well as the Combo dataset. SVM AE returned higher accuracies than NASAFS-IDF

when classifying variance contact validation sets, but did not succeed ReliefF’s variance

contact validation results. SVM AE features are the most accurate on all NC validation sets

from models built using the NC data. Table 4.17 outlines the accuracies and AUC values

for contact validation using SVM AE features.

Table 4.17: This table summarizes the classification results on contact validation sets using the SVM
AE feature set (FS). The results include the accuracy and AUC for each dataset and all accuracies and
AUC values averaged.

SVM Attribute Evaluator
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 82.60 0.897
Var 85.71 0.935

Average 96.04 0.979
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 84.78 0.865
Var 91.42 0.875

Average 97.03 0.968
Decision Tree Sub1 88.88 0.917

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 88.88 0.917

Combo 82.60 0.904
Var 91.42 0.875

Average 93.97 0.952
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NASAFS-IDF provides the widest range of features across the electromagnetic

spectrum. When classifying the combination of all subjects’ reflectance, NASAFS-IDF

features result in an improvement in classification accuracy from ReliefF and SVM AE.

For Subject 1-6 classification, NASAFS-IDF does not differ significantly compared to the

other two feature selection algorithms. The features selected for classifying variance data

do not return as of high accuracies compared to ReliefF and SVM AE. This could be due to

the fact that across the electromagnetic spectrum, there is not significant separation between

classes for all samples, as can be observed in Fig. 4.5. ReliefF and SVM AE select features

grouped together that lead to the greatest separation between classes. NASAFS-IDF omits

the possibility of selecting features grouped together, so the algorithm forces the selection

of a wider range of features. This affected classifying variance more so than classifying

the normalized reflectance of subjects because the normalized reflectance data has greater

separation between classes across the entire dataset. NASAFS-IDF’s feature sets gave high

accuracies on all sets validated on models built with NC data. The “real-world” validation

results for Subjects 1-6 datasets and the Combo dataset are similar to the results using

ReliefF and SVM AE. Features from NASAFS-IDF evaluated on the NC variance data

returned results second highest at 88.27% accuracy compared to 94.31% accuracy of SVM

AE.

Both feature sets from NASAFS-IDF perform similarly overall. Since NASAFS-IDF

compares the two classes to each other, the feature sets should return similar results. The

algorithm is stochastic, so there are differences in the selected features. Table 4.18 and 4.19

outline the classification results for the NASAFS-IDF feature sets.
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Table 4.18: This table summarizes the classification results on contact validation sets using the
NASAFS-IDF1 feature set. The results include the accuracy and AUC for each dataset and all
accuracies and AUC values averaged.

NASAFS-IDF1
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 80.43 0.877
Var 51.42 0.833

Average 91.48 0.964
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 84.78 0.845
Var 71.42 0.583

Average 94.53 0.929
Decision Tree Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 83.33 0.944
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 95.65 0.961
Var 91.42 0.875

Average 96.30 0.973
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Table 4.19: This table summarizes the classification results on contact validation sets using the
NASAFS-IDF2 feature set. The results include the accuracy and AUC for each dataset and all
accuracies and AUC values averaged.

NASAFS-IDF2
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 83.33 1.000
Sub6 66.66 0.500

Combo 80.43 0.883
Var 51.42 0.833

Average 85.23 0.902
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 66.66 0.500

Combo 80.43 0.810
Var 71.42 0.583

Average 89.81 0.862
Decision Tree Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 66.66 0.500

Combo 95.65 0.962
Var 97.14 0.996

Average 94.93 0.932

The three classification algorithms each perform well on certain datasets and poorly

on others. Overall, the classifiers returned high accuracies on contact validation sets and

validation sets from models trained on NC data, but not on “real-world” validation sets,

which are from models trained on contact data and validated with NC data.

For the contact validation sets, Subjects 1-6 classification had similar results across all

three classifiers in the range of above 95%, with the SVM classifier as the highest average

accuracy at 98.61%. The Combo contact validation set accuracies ranged from an average
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of 77.51% for the naive Bayes classifier to 90.76% for the decision tree classifier. Similarly

for variance contact validation sets, naive Bayes gave the lowest accuracy on average and

decision tree the highest. For the contact validation sets, the top performers were the naive

Bayes classifier, with SVM AE features.

Classification on the models trained/tested with NC data gave high accuracies on

Subjects 1-6 and Combo validation sets, with an average of over 99% across the three

classifiers. The variance processed and tested from the NC collection did not return as high

of accuracies, though still gave an average of 81.15% with the naive Bayes classifier as

the highest. The models that are trained and tested on NC data are used to report overall

results for the most accurate feature selection and classification algorithm. This is because

this type of data collection represents a real-world scenario: recording data using a NC

probe and testing that data against unseen data recording with a NC probe. Results for each

feature selection and classifier pair are in Tables 4.20-4.23.
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Table 4.20: This table summarizes the classification results on contact validation sets using the ReliefF
feature set. The results include the accuracy and AUC for each dataset and all accuracies and AUC
values averaged.

ReliefF
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 98.00 1.000
Var 64.77 0.870

Average 95.35 0.984
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 99.50 0.997
Var 30.68 0.800

Average 91.27 0.975
Decision Tree Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 99.50 0.997
Var 27.84 0.983

Average 90.92 0.998
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Table 4.21: This table summarizes the classification results on contact validation sets using the SVM
AE feature set (FS). The results include the accuracy and AUC for each dataset and all accuracies and
AUC values averaged.

SVM Attribute Evaluator
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 100.00 1.000
Var 90.90 0.968

Average 98.86 0.996
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 100.00 1.000
Var 97.15 0.952

Average 99.64 0.994
Decision Tree Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 99.50 0.997
Var 94.88 0.941

Average 99.30 0.992
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Table 4.22: This table summarizes the classification results on contact validation sets using the
NASAFS-IDF1 feature set. The results include the accuracy and AUC for each dataset and all
accuracies and AUC values averaged.

NASAFS-IDF1
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 96.50 0.996
Var 85.22 0.834

Average 97.71 0.958
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 100.00 1.000
Var 85.79 0.662

Average 98.22 0.958
Decision Tree Sub1 97.91 0.987

Sub2 100.00 1.000
Sub3 83.33 0.944
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 0.982

Combo 99.50 0.997
Var 88.06 0.806

Average 98.45 0.975
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Table 4.23: This table summarizes the classification results on contact validation sets using the
NASAFS-IDF2 feature set. The results include the accuracy and AUC for each dataset and all
accuracies and AUC values averaged.

NASAFS-IDF2
Classifier Dataset Accuracy AUC

Naive Bayes Sub1 100.00 1.000
Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 97.00 0.982
Var 84.65 0.726

Average 97.71 0.964
SVM Sub1 100.00 1.000

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 100.00 1.000

Combo 100.00 1.000
Var 85.22 0.659

Average 98.15 0.957
Decision Tree Sub1 97.91 0.987

Sub2 100.00 1.000
Sub3 100.00 1.000
Sub4 100.00 1.000
Sub5 100.00 1.000
Sub6 97.43 0.982

Combo 99.00 0.993
Var 89.77 0.903

Average 98.60 0.987

To summarize findings, Table 4.24 outlines the most accurate feature selection and

classification algorithms based off the average percent accuracies and average AUC for NC

validation sets.

4.4 Summary

This chapter detailed the results and analysis of the experiment and initial training

completed in Chapter 3. Numerous datasets were created according to Table 3.2 using data

collected from a contact probe and a NC fore optic and features selected using ReliefF,
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SVM AE, and NASAFS-IDF. These datasets were trained and models were built, with

initial results presented in Chapter 3. The models were validated using contact data and

with data collected using a NC probe. The NC data is also utilized for training/testing

models to allow a real-world scenario for stress detection.

Based off results from validating models built on the NC data, the SVM AE features

combined with a SVM classifier returned the highest accuracy, though ReliefF features

with a decision tree classifier gave the highest AUC. This feature selection algorithm and

classification algorithm did not consistently provide the highest classification results for

every dataset. When examining the results from models built and validated with contact

data, SVM AE and a naive Bayes classifier gave the highest accuracy and the NASAFS-

IDF1 feature set with a decision tree gave the highest AUC. These differences are most

likely a result from the inconsistencies that arise using a NC probe. Using the contact

models, Subjects 1-6 classification accuracies remained in the high 90’s for all feature

selection and classification algorithms, Combo accuracies in the high 80’s for NASAFS-

IDF features and decision tree classifier, and Var accuracies in the low 90’s for SVM

AE features and SVM and decision tree classifiers. The NC models also returned high

results for all feature selection and classification algorithms on all datasets except the

VarNC, where only the SVM AE feature set provided good results with the three classifiers.

Table 4.24 summarizes the top performing feature selection and classification algorithms

for both contact and NC models. The winners are determined based on the average accuracy

and AUC over all datasets (Subject 1-6, Combo, Var).
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Table 4.24: A conclusion of the classification results to reveal the top performing feature selection
(FS) and classification algorithms. The algorithms are chosen from validation results on models
trained/tested with contact data and models trained/tested with NC data, which best simulates a
real-world scenario. The results are based off the average percent accuracies and average AUC. The
feature selection algorithms evaluated are ReliefF, SVM AE (SVM), and NASAFS-IDF1/2 (NAS1/2).
The classification algorithms evaluated are naive Bayes (NB), SVM, and decision tree (DT).

Contact
FS Classifier Accuracy AUC

Highest accuracy: NAS1 DT 96.30 0.973
Highest AUC: SVM AE NB 96.04 0.979

Non-Contact
Highest accuracy: SVM AE SVM 99.64 0.994

Highest AUC: ReliefF DT 90.92 0.998
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V. Conclusion

This chapter summarizes the methods, results, and important points of stress detection

by hyperspectral imaging (HSI) and proposes ideas for future work. Section 5.1

summarizes the method followed and the results discovered in this thesis. Future research

in the areas of stress detection using hyperspectral data is discussed in Section 5.2 and

contributions of this work are discussed in Section 5.3.

5.1 Summary of Methodology and Conclusions

This thesis presents a method of stress detection using HSI by analyzing normalized

reflectance and reflectance variance curves. The research explores three feature selection

algorithms and three classifiers to distinguish the reflectance signatures of stressed from

non-stressed subjects. The feature selection algorithms include, ReliefF, Support Vector

Machine Attribute Evaluator (SVM AE), and Non-Correlated Aided Simulated Annealing

Feature Selection–Integrated Distribution Function (NASAFS-IDF). The classification

algorithms include, naive Bayes, SVM, and decision tree. Each feature selection algorithm

and classifier processes data differently, so three of each are chosen and evaluated. The

feature selection algorithms and classifiers are compared to each other based on their

accuracy and receiver operating characteristic (ROC) curve results, to include the area

under the curve (AUC).

First, skin reflectance was recorded on six different subjects as hyperspectral data in

the area of the carotid artery. The carotid was imaged because it is one of the largest blood

vessels in the body and its’ location is easily accessible for contact and non-contact (NC)

imaging purposes. The carotid is responsible for delivering oxygen rich blood, which is

relevant because previous research confirms a change in the hemoglobin oxygen saturation

(HbO2) at the onset of stress [44]. One of the main focuses of this thesis was based on
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the change of the amount of oxygen in the blood, resulting in changes in the reflectance

signature of skin between stress and non-stress states. A contact probe was used to collect

clean, noiseless data that was used for training models and a NC fore optic collection

was used for validation of the models built, as well as training NC models. The data

was processed in Matlab® to acquire datasets of normalized reflectance and reflectance

variance and Waikato Environment for Knowledge Analysis (WEKA) was used to select

features and build and test models. After training classifiers, testing was accomplished

using an unused portion of the contact datasets. Then the validation sets were applied to the

models. Validation sets included data recorded with the NC fore optic.

The accuracies and AUC were calculated for each feature selection and classification

algorithm pair. Over all contact validation sets, the NASAFS-IDF1 feature set with a

decision tree classifier gave the highest accuracy at 96.30% and the SVM AE feature set

with a naive Bayes classifier gave the highest AUC at 0.979. The NC validation results had

a high accuracy of 99.64% with SVM features and a SVM classifier. The highest AUC for

NC validation sets was 0.998 with ReliefF features and a decision tree classifier.

5.2 Future Work

The following introduces potential topics of future work to expand on the research

covered in this thesis. First, increasing the size of the database used for training and testing

would provide more robust models. The feature selection and classification algorithms that

returned the highest success rates should be retrained and evaluated with new data. Second,

the aspect of skin tone diversity was not emphasized in this research, but could play a

role in stress detection and should be examined. As discussed in previous literature [38],

the concentration of melanin in the skin alters skin reflectance. Also, aspects of consistency

throughout the data collection and further applications of reflectance variance are discussed

in Sections 5.2.1 and 5.2.2, respectively. The overall contributions from this thesis to stress

detection and analysis are given in Section 5.3.
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5.2.1 Non-Contact Data Collection.

The results from contact data testing and validating have high accuracies and AUC,

offering potential for stress detection. However, one of the goals of this thesis was to design

a model that can differentiate between individuals experiencing stress from those that are

not via non-invasive methods. Certain aspects of the NC data collection can be improved

for more accurate results, such as consistency and imaging location on the skin.

Consistency of probe placement for each subject is essential to acquire data relevant

to across-subject classification. Areas for improved consistency for a NC collection include

lighting, placement of the probe, and timing of the collection. It is important to keep

lighting consistent throughout collections because scene illumination has a direct impact

on reflectance. A recording taken with poor lighting results in an attenuated skin signature

that affects classification results. For example, if a “non-stress” recording has proper

illumination, but for the second collection, the “stress” case, the illumination is different,

the resulting data is not completely accurate; the two datasets do not have comparable

reflectance values.

The NC fore optic is in the shape of a pistol that is mounted on a tripod. The probe

has a laser sight to assist in alignment for data collection. Even with the ability to align

the camera with a specific region-of-interest (ROI), if the subject being imaged moves, the

field-of-view (FOV) is disrupted. In this regard, there is potential for research to investigate

different areas of the skin to image, with a focus on increasing the ROI to allow subject

movement. One area that may provide improved results is the cheek, which contains

numerous capillaries at the surface of the skin and is a large and relatively flat surface.

The “stress” data is collected while the subject accomplishes a level of Air Force

Multi-Attribute Test Battery (AF MATB), which lasts five minutes. In this study, the

spectroradiometer began recording with the NC fore optic shortly after one minute elapsed

and stopped recording near the end of the level. Possible areas of research are to examine

102



the results based on when recordings begin and end and to analyze the length of recording

necessary to identify a detection.

5.2.2 Variance.

There are more potential applications of reflectance variance that can be explored to

aid in stress detection. In this thesis, a sliding window approach was used to calculate

variance. The window ranged in number of samples from five to ten, depending on the

dataset size. Future implementation of a stress detection method using variance may require

more or less samples and/or may utilize an improved method for calculating variance

instead of a sliding window.

The variance graphs presented display calculated variance across all features. In

examining variance graphed with error bars, the shape suggests the likeness of a speech

waveform, as in Fig. 5.1. If these waveforms can be processed through voice analysis, this

response has the potential to provide an audio alert when someone reaches a state of stress.

This type of detection would work well if the variance results are consistent across multiple

subjects.
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(a)

(b)

Figure 5.1: (a) is the variance waveform with error bars. This plot shows “stress” variance (red) and
“non-stress” variance (blue). (b) is an example of a speech waveform. The similarities indicate the
potential for variance to be used as an audio indicator of acute stress.

Lastly, though there has been an emphasis on stress detection in the workplace

environment, heart rate variability (HRV) may provide some insight to detect a subject

falling asleep, which is also related to workplace productivity. It is known that HRV is

high when a subject is awake and in a rested state and that HRV is low when a subject

experiences a high workload [71]. When one falls asleep, the heart rate (HR) decreases

as the body enters a new state of rest, where, potentially, the HRV also decreases. Initial

testing has been accomplished on this method [67], where there was a gradual increase
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in HRV when fatigue decreased a subject’s attention. Further research on the HRV during

sleep and the reflectance variance during sleep can be accomplished.

5.3 Contributions

This thesis provided results and analysis on different feature selection and classifica-

tion algorithms applied to “stress” and “non-stress” hyperspectral data. Testing a range of

algorithms allowed the ability to compare results to lead to the best model. This research

showed that a SVM AE feature set and naive Bayes classifier built the most successful

model for contact validation and a ReliefF feature set and decision tree classifier built the

most successful model for NC validation on NC models. The NC data provides a real-

world scenario of data collection and testing that can be used in further research in the

area of stress detection. The variance of reflectance introduced another probable avenue of

stress detection that has not been demonstrated prior to this work.
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Appendix A: Sample heart rate (HR) collected with the electrocardiogram (ECG).

Table A.1: After processing the HR waveform produced by the ECG, time-stamped beats per minute
(bpm) are output. Below is an example of an ECG recording lasting approximately 10 seconds. The
cycle number indicates each QRS pulse.

Cycle Time Heart Rate
1 0.817 60.181
2 1.814 67.189
3 2.707 57.526
4 3.750 60.667
5 4.739 61.038
6 5.722 61.038
7 6.705 61.350
8 7.683 69.124
9 8.551 68.886

10 9.422 66.152
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Appendix B: Roster of subjects who participated in the experiment.

Table B.1: This list encompasses all subjects that participated in the experiment of this thesis.

Subject # Age Gender Skin Tone
1 26 M White
2 23 F White
3 24 F White
4 22 F White
5 24 M White
6 23 M White
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Appendix C: Feature selection results for Subjects 2-6, ComboNC, and VarNC.

C.1 Feature selection results for Subjects 2-6.
Table C.1: Feature selection results on the datasets of Subjects 2-6. Each dataset contains samples of
”stress” and ”non-stress” collected using a contact probe and is processed through the feature selection
algorithms ReliefF, SVM AE, and NASAFS-IDF to achieve a feature set of six features.

Dataset ReliefF SVM AE NASAFS-IDF1 NASAFS-IDF2

Sub2 593 593 545 575

w
av

el
en

gt
h

[n
m

] 592 592 1315 1315

594 1121 865 2495

591 594 375 1685

595 591 2495 1925

1123 590 2035 845

Sub3 1610 1706 575 575

w
av

el
en

gt
h

[n
m

] 1611 1712 1285 1625

1609 1711 995 985

1593 1713 2375 375

1600 1287 2045 2495

1614 1730 1885 2325

Sub4 1213 1213 575 575

w
av

el
en

gt
h

[n
m

] 1212 1212 1305 1305

1214 1211 2265 365

1215 560 395 1745

1211 1210 365 1665

1210 1214 1925 1135

Sub5 2095 2079 1895 1895

2096 2080 445 445

Continued on Next Page. . .
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Table C.1 – Continued

Dataset ReliefF SVM AE NASAFS-IDF1 NASAFS-IDF2

w
av

el
en

gt
h

[n
m

]

2099 1211 2245 2065

2098 357 2075 2245

2138 1212 1015 1575

1936 381 1345 1385

Sub6 1006 1006 585 575

w
av

el
en

gt
h

[n
m

] 1007 1004 1365 1335

1005 1005 355 355

1017 1007 1665 1655

1016 1003 1835 2475

1018 1013 1175 2025

C.2 Feature selection results for Subjects 1-6NC.
Table C.2: Feature selection results on the datasets of Subjects 2-6NC. Each dataset contains samples
of ”stress” and ”non-stress” from data collected with a stand-off fore optic. The datasets are processed
through the feature selection algorithms ReliefF, SVM AE, and NASAFS-IDF to achieve a feature set
of six features.

Dataset ReliefF SVM AE NASAFS-IDF1 NASAFS-IDF2

Sub1NC 369 535 375 375

w
av

el
en

gt
h

[n
m

] 497 544 1635 1495

489 545 1365 1365

488 542 2495 1655

496 546 1895 565

490 586 545 1995

Sub2NC 544 544 2495 2415

Continued on Next Page. . .
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Table C.2 – Continued

Dataset ReliefF SVM AE NASAFS-IDF1 NASAFS-IDF2

w
av

el
en

gt
h

[n
m

] 543 543 2035 1995

545 545 2305 2215

542 542 1285 1295

546 546 1265 1185

547 547 915 1755

Sub4NC 611 611 2475 2475

w
av

el
en

gt
h

[n
m

] 612 612 2075 2065

610 610 635 615

613 613 1065 935

614 614 915 2295

615 544 1895 1895

Sub5NC 544 545 545 465

w
av

el
en

gt
h

[n
m

] 545 544 1065 1555

543 543 1305 1195

542 611 1295 975

546 612 895 2045

541 546 1675 1955

Sub6NC 886 821 2485 2475

w
av

el
en

gt
h

[n
m

] 911 820 2145 355

892 830 355 2095

890 829 1675 2265

912 822 1445 1765

876 819 2315 1575
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Table C.3: Feature selection results on the datasets of ComboNC and VarNC. Each dataset contains
samples of ”stress” and ”non-stress” from data collected with a stand-off fore optic. The datasets are
processed through the feature selection algorithms ReliefF, SVM AE, and NASAFS-IDF to achieve a
feature set of six features.

Dataset ReliefF SVM AE NASAFS-IDF1 NASAFS-IDF2

ComboNC 1203 830 605 985

w
av

el
en

gt
h

[n
m

] 1206 833 995 595

1202 1201 365 365

1207 922 355 1615

1201 1202 1385 1655

1204 831 1615 1285

VarNC 2385 2382 2485 2485

w
av

el
en

gt
h

[n
m

] 2386 1974 615 615

2382 2108 1115 1115

2368 2327 795 855

2490 2381 1305 2045

2383 1960 2085 1815
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