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AFIT-ENY-13-M-08 
 

Abstract 

This thesis describes the development of a series of models utilizing the 

commercial finite element suite ABAQUS specifically to apply towards the study of 

biological tissue.  The end goal is to be able to obtain the material properties of the 

Manducca Sexta, a biological inspiration for flapping wing micro-air vehicles.   

Two finite element models were used to analyze the results of two prior studies of 

other researchers.  A flat punch elastic model examined boundary effects and confirmed 

that the point of indentation was far enough removed from the boundary.  The 

hyperelastic spherical indentation experiment examined the effects of coefficient of 

friction on the indentation.  Another algorithm was reproduced to analyze the elastic, 

power law-hardening properties of a wide range of material properties.   

 A nanoindentation system was used to investigate the modulus of the M. Sexta.  

Due to instrument limitations, useful data was not able to be collected.  An upper bound 

on the modulus was analytically established at approximately 3 MPa using the noise level 

of the equipment.  A uniaxial tension test of the M.Sexta was used to obtain a reported 

initial modulus of elasticity values of 343 kPa. 
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APPLICATION OF FINITE ELEMENT TO EVALUATE MATERIAL WITH 
SMALL MODULUS OF ELASTICITY 

 
I. Introduction 

         

1.1 Objective 

This study describe a series of models utilizing the commercial finite element 

suite ABAQUS which allow hyperelastic materials to be considered for an application 

towards soft biological tissue.  Specifically, this present study attempts to apply the 

models developed within this study to evaluate the material properties of the muscles of 

the Manducca Sexta.  This insect, known as the hawkmoth, is of interest for study as a 

biological inspiration for flapping wing micro-air vehicles [1]. Attempts to model the 

entire moth have been made by Demasi [2]; however, deficiencies remain in the accuracy 

of the input material to that model. The present study attempted to correct that deficiency 

through finite element modeling and experimentation with nanoindentation, along with a 

uniaxial tensile test.  As part of the study, the structure of the muscle and information on 

the mechanics of insect flight are discussed.  Also, to ensure full understanding of the 

process on nanoindentation, models using standard engineering materials such as 

aluminum are examined as these materials have better-characterized properties than 

hyperelastic materials. 

1.2 Research focus 

Nanoindentation is a technique that can be used to analyze problems on a small 

length scale problems.  It is a popular method for evaluating the mechanical properties of 

materials and structures, including elastic modulus, yield strength, hardening coefficient, 
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residual stress, fracture toughness, and viscoelastic behavior.  In addition to its usefulness 

in examining problems on a small length scale, the preparation required for these tests 

can be less intensive than traditional tests, such as uniaxial or biaxial tests. 

Typically, commercial indenters are set up as “black-box” instruments that 

automatically calculate the elastic-plastic properties of the material.  However, many 

materials do not conform to the elastic-plastic theories and additional analysis of the 

force-indentation data is required.  Finite element (FE) modeling can aid in this additional 

analysis by correlating the shape of the indentation curve with the desired properties. 

  The hawkmoth muscles, called the dorsal longitudinal muscles (DLMs) and 

dorsal ventral muscles (DVMs), can be described as behaving as an orthotropic, 

viscoelastic material.  Spherical indentation experiments (utilizing the developed finite 

element model) were attempted to examine the transverse elastic properties and the finite 

element models were use to show why they failed.  Uniaxial tension tests were used to 

attempt to obtain the longitudinal properties of the specimen. 

1.3 Methodology 

 All finite element modeling was accomplished using the ABAQUS finite element 

program from Dassault Systems.  FE models were developed then validated with 

experimental data and closed form analytic solutions, when available.  Experiments 

involving nanoindentation were attempted using the MTS Nanoindenter XP.  This 

equipment was used with the permission of the Air Force Research Laboratories (AFRL) 

Materials and Manufacturing Directorate.  All uniaxial tensile tests were performed using 

the MTS Nano Universal Testing Machine.  Moth specimens used to obtain the muscle 
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samples were provided by Case Western University.  More information on the equipment 

used in this study and instructions for raising the moths can be found in the Appendix. 

1.4 Literature Review  

1.4.1 Indentation Testing Introduction   

 In this section, a brief overview of nanoindentation is given to introduce what it is 

and what a typical experiment involves.   

In nanoindentation testing, a probe is pressed into a material surface under either 

load- or displacement-control.  The load and displacement data can be used to determine 

various material properties of the sample.  Useful results from nanoindentation 

experiments require measurement of extremely small forces and displacements with great 

accuracy and sensitivity. A simple indentation diagram (a) and a typical load-

displacement curve (b) can be seen in Figure 1. 

 

Figure 1: (a) Simple Diagram of Indentation (b) Example Load-Displacement Plot 

for a Standard Instumented Indentation 
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Oliver and Pharr pioneered the effective use of a small-scale version of the 

standard indentation test for an elastic-plastic material [3].  Nanoindentation had been 

around for a decade at that point, but the results had not been as precise or repeatable as 

other, more established methods for testing material properties. One of the most 

significant contributions of their work was the realization that the unloading curve of the 

load-displacement plot was not linear, as had previously been assumed.  The 

mathematical relationships used to determine the properties are discussed in depth in 

Chapter 2. 

As mentioned, two types of indenters were examined in this study: cylindrical and 

spherical (Figure 2).  The geometry of the probe is important because the shape 

determines the deformation profiles obtained during the test.  The cylindrical, flat-tips are 

convenient because they have a constant contact area with the sample.  This simplifies 

much of the analysis, however, for small-scale tests  it can be difficult to align the probe 

surface with the surface of the sample.  Spherical tips are advantageous in that they delay 

the immediate onset of plastic deformation.  This is one of the reasons this indenter tip is 

popular with evaluation of biological tissues.   
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Figure 2: Cartoon Schematic of Common Indenter Geometries, (a) Cylindrical (b) 

Spherical, Indenting a Flat Half-space 

 

1.4.2 Elastic-Plastic Spherical Finite Element Model 

 A single sharp indentation cannot yield a unique solution [4] through the standard 

indentation technique. For a power-law hardening material with properties σy (yield 

strength), E, ν, and n (work-hardening coefficient), only 2 of the properties can be 

determined while the other 2 have to be known a priori.  However, researchers have been 

able to take advantage of a concept called representative strain to simplify the problem 

using finite element analysis. [5] Zhao, et al. used spherical indentation along with 

representative strain to determine the unique properties from one indentation. From that 

one indentation they selected two points on the force-displacement loading curve and the 

contact stiffness (slope of the unloading curve) to produce 3 equations to be able to solve 

for σy, E, and n (ν was found to vary little for the analysis and was assumed to be 0.3).   
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Figure 3: Representative Location of 2 Points Required for the Elastic-Plastic 

Spherical Model Shown on a Generic Loading and Unloading Diagram  

The goal of this study was to utilize the algorithm developed by Zhao for a wide range of 

materials.  Possible applications to the exoskeleton of the hawkmoth are examined.  The 

formulation of these equations is discussed in Chapter 2 and the finite element model is 

reproduced in Chapter 3. 

1.4.3 Biomechanics Introduction   

Experiments to determine the material properties of muscles and other soft tissues 

have been documented for centuries.  Many of the famous physical relationships that are 

used in engineering today had their origins in scientists investigating biomechanics.  

Leonhard Euler was the first to examine propagation of pulse waves in arteries.  Thomas 

Young (of Young’s Modulus fame) studied the formation of human voice and connected 

it with the elasticity of the vocal cords.  Poiseulle studied the pressure in the aortas of 

dogs which led to the establishment of the no-slip condition in pipe flow. [6] 
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The determination of mechanical properties of soft tissues in biomechanics is 

often challenging.  Isolating the tissue from the subject for testing is often very difficult.  

The small size of the samples and the need to maintain hydration and in normal living 

conditions can cause complications as well.  In addition, biological tissues are often 

nonlinear and dependent on the history of the loading and unloading cycle.  More of these 

characteristics are discussed in Chapter 2. 

Uniaxial, along with biaxial (longitudinal and transverse direction), tension tests 

are some of the more common methods to characterize the properties of soft tissues. The 

tension test is often used as baseline from which other experiments branch off.  Early 

experiments by Wertheim (1847) showed the elastic nature of soft tissue. Hill (1938) 

applied data from uniaxial tests for his first models of the contraction of muscles [5].  

Other tests of note: Moss and Halpern (1977) [7] determined the viscous and elastic 

properties of resting frog muscle; Van Locke et al., (2006) [8] examined the compressive 

behavior of muscle; and Lally et al., (2004) [9] studied the effects of biaxial and uniaxial 

tension on pig artery 

The popularity of indentation tests for biological materials has grown quickly in 

the last decade as the machinery and techniques required for the tests has advanced.  In 

the following few sections, several different indentation and uniaxial experiments with 

soft tissues are reviewed.  The techniques used in these examples were the basis for the 

finite element models and the attempted experiments in this present study are described 

in more detail in Chapters 2 and 3. 
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1.4.4 Soft Tissue Indentation FE and Experimentation   

Conducting a nanoindentation experiment with a biological tissue sample is a 

very challenging task.  There are many factors that can influence the experiment.  The 

factors influencing sample preparation and tip preparation described in this section are 

selected from the Handbook of Nanoindentation with Biological Applications [10], [11]. 

One of the most influential factors in indenting biological tissue is maintaining its 

hydration.  Soft tissues are made up of mainly water and exposure to air results in tissue 

desiccation.  This desiccation can change the material properties of the sample. 

Biological tissue samples also have a surface roughness that would otherwise be 

removed through a polishing process for indention of a standard engineering material.  

This technique is not available when testing soft tissues as their microstructures could be 

substantially disrupted.  This roughness influences the tip selection.  The low modulus of 

the tissue normally requires the use of cylindrical flat punch or spherical tips.  However, 

the spherical tip allows for some inaccuracy in the approach to the sample and is 

therefore often used for testing soft tissues with irregular surfaces.   

Also, many soft tissues are not isotropic.  The anisotropic nature doesn’t meet 

many of the assumptions for standard indentation theory.  Since the muscle sample has 

properties that are transversely orthotropic, the results of this test would produce an 

indentation elastic modulus that is a function of the transverse and longitudinal moduli, 

weighted in the direction of the indentation, the transverse direction.  The materials also 

have large displacements for a given load due to their hyperelastic nature. 

Instrumentation also presents limitations on testing soft tissues.  Most commercial 

instrumented nanoindentation devices are calibrated for testing materials with a modulus 
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in the GPa or MPa range.  Most biological soft materials have elastic moduli in the range 

of tens to hundreds of kPa’s and can present problems with finding the surface of the 

material.  As is discussed in Chapter 5, the resolution of the chosen instrumentation 

proved to be the source of the difficulty in completing this experiment. 

To aid in the development of the procedures for the experiment, several 

previously-conducted experiments and their associated finite element models (if used) 

were examined.  The first indentation test described in this section comes from a group at 

the National Institute of Health who investigated the spherical indentation of soft matter 

in the hyperelastic regime. [12] Researchers conducting spherical nanoindentation 

experiments for Hookean elastic materials compare their results to the classical Hertz 

solution for a sphere impacting a flat plane.  This study focuses on developing a 

relationship for hyperelastic materials through finite element modeling with several 

different hyperelastic strain energy potential functions.  Lin, et al. compared the resulting 

functions to synthetic gels and mouse cartilage.  The mouse cartilage test yielded a shear 

modulus of 14.3 kPa (µ) and a fitting parameter (α) of 7.3.  The derivations of Hertzian 

contact and the hyperelastic relations are discussed in Chapter 2. The hyperelastic finite 

element model used in this study was based on the Lin paper.  

Another indentation test that was examined was one by V.T. Nayar et al. [13] and 

examined porcine sclera (the white of the pig’s eye).  The results from this study are not 

useful for comparison to the muscles of the hawkmoth as the sclera has a planar isotropic 

structure.  However, the methods used in this study were helpful.  The sclera 

(approximately 1–1.2 mm thick) was removed from the pig in approximately 1 cm 

squares and secured to a glass slide with cyanoacrylate (superglue).  A shallow well was 
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built up around the outside of the sample to form a ring.  This ring (shown in Figure 4) 

was then filled with saline solution to maintain hydration of the sample.  Testing was 

accomplished with an 80 µm cylindrical punch. Load controlled indentations were 

conducted to 375, 750, and 1500 µN.  Shear modulus reported was approximately 30 

kPa. 

 

Figure 4: Experimental Setup for Porcine Sclera Indentation Experiment From 

Nayer et al. [13] 

 A third indentation test was accomplished with the skinned cardiac muscle fibers 

of a cow.  The cardiac muscles were isolated from the adult cow, rinsed thoroughly, and 

secured in a mica sheet.  This experiment used atomic force microscopy (AFM) so the 

experimental protocols would not be comparable.  Their results from this technique were 

on the order of 20 kPa for the shear modulus. [14] 
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1.4.5 Soft Tissue Uniaxial Experimentation   

 The first uniaxial tension study discussed in depth here from Laure-Lise Gras, et 

al. [16], examined the passive response of human sternocleidomastoideus muscle (located 

in the neck) to tension.  Their study was performed in vitro therefore the muscle samples 

were removed from cadavers and placed into a uniaxial testing machine.  Boundary 

conditions were maintained by removing portions of the jaw and allowing the entire 

muscle to be tested.  Typical specimens were 134 mm long with a cross-sectional area of 

300 mm2.  3D reconstructions can be seen in Figure 5. 

 

Figure 5: Muscle 3D-reconstruction and mesh. (A) Example of a 3D reconstruction. 

(B) Its associated finite-element model. (C) Superposition of the 3D reconstruction 

and the finite- element model. 

In order to prevent the specimen from desiccating, Laure-Lise Gras, et al. would 

moisten the surface of the muscles regularly with a saline solution.  After 

preconditioning, the specimens were subjected to a maximum deformation of 15% at a 

strain rate of 0.00125s-1.  After assuming an incompressible (ν = 0.5) and isochoric 

material, results were fitted to an exponential hyperelastic form from Stern-Knudsen and 

also to the Ogden hyperelastic constitutive law.  These results were compared to finite 
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element models obtained by iterating the parameters of the function.  For their results, 

they were able to obtain a value for shear modulus of 37 kPa.   

 Another uniaxial tension test was accomplished by Calvo, et al. [17] only their 

specimen of interest was rat muscle (Figure 6). The tendons of the rat were also examined 

my Calvo, et al. but this is not discussed here.  The samples studied by Calvo, et al. were 

much closer to the size of the muscle samples of the hawkmoth. Specimens averaged a 

length of 6.6 mm and a cross sectional area of 1.8 mm2.  The samples were glued to 

pieces of sandpaper to be placed into the grips of a displacement controlled microtester.  

A testing velocity of 0.2*L/100 mm min-1 was used, which for the average muscle length 

corresponded to 3.3e-5 s-1 strain rate, which is slower than the previous study. Sample 

hydration was maintained through a cooled ultrasonic humidifier.  The Calvo study used 

a modified form of the Weiss strain-energy density function to fit the experimental data.  

Again, isochoric and incompressible assumptions were made.  One thing that stands out 

in their test is that they make no mention of preconditioning the sample prior to testing.  

This differs from standard practice outlined and could be a source of variability in their 

data due to viscoelastic effects. [5] 

 

Figure 6: Rat Muscle Sample with Sandpaper Grips from Calvo, et al. 
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 A third uniaxial tensile actually uses M. Sexta as a subject, only with a very 

important distinction.  The group from Tufts University [18] studied the muscle of the 

species when it was in its caterpillar state prior to its metamorphosis.  An initial thought 

would be that a direct comparison could be made between this muscle and the muscle of 

the flying insect.  However, these muscles are used for entirely different tasks.  The 

muscle of the caterpillar undergoes strains of 30% in approximately 1 second.  This 

differs greatly from that on the moth where strains of 7% in around 0.018 s are the norm.  

The techniques used in the Tufts study, however, are useful for application to the current 

study.  Both passive and active muscles were studied which provides a useful comparison 

between the two states. 

 Muscle samples from the caterpillars in the Tufts study were approximately 4-5 

mm long.  Cross sectional area was not reported.  Muscles were pinned by the attached 

cuticle at each end in a horizontal bath of saline to prevent dehydration. One end of the 

muscle was secured by a hook to a displacement controlled testing machine.  The 

samples were preconditioned for between 6-10 cycles to remove the hysteresis.   The 

Dorfman model applied a modified pseudo-elastic model from Dorfmann and Ogden 

(2003). Shear modulus reported in the 0.78 kPa range was much lower than the other 

experiments. 

1.4.6 Biological Specimen   

In order to understand the reason for investigating the hawkmoth muscle, it is 

useful to know more about the species and how the muscles induce flight.  This is 

described in this section. 
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The biological species chosen to be studied for the experimentation portion of this 

study is the Manduca Sexta. The species, which will be referred to as the hawkmoth for 

the remainder of the study, is shown in Figure 7.  The size, weight, and flight 

performance characteristics of the hawkmoth made it an ideal candidate of study as a 

natural MAV.  The hawkmoth weighs approximately 1.5 to 2 g and has a wingspan 

between 9.5 and 12 cm. [19] As such, it is one of the larger flying insects in nature.   

 

Figure 7: A Natural Flapping-wing MAV, Manduca Sexta  

The hawkmoth anatomy can be divided into 4 main parts: head, wings, thorax and 

abdomen.  The head contains the primary nervous system control organ, two eyes and 

antennas, and a coiled proboscis for feeding on plant nectar.  The abdomen contains 

many of the body’s organs for digestion and reproduction. [20] Two sets of wings, the 

forewings (larger and towards head) and hind wings (smaller and closer to abdomen), 

consist of a thin, flexible membrane overlaying a network of rigid veins.  The wing’s 

membrane is covered with scales that are used for camouflage and possibly influence 

flow patterns during flapping [20]. The thorax is located at the intersection of the other 
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main parts and contains the mechanism to generate and control flight.  A cross-sectional 

diagram of the thorax can be seen in Figure 8.  Within the exoskeleton of the thorax are 

the DVMs and DLMs as well as a bundle of nerves called the ganglia that act as a 

secondary brain to control the movement of the muscles.  On top of the thorax is a much 

thicker and more rigid section called the tergal plate.  The interaction of the tergal plate 

and the flight muscles results in the wings flapping as is shown in the next section. A 

simplified, 3-dimensional diagram of the thorax and the flight muscles can be seen in 

Figure 9. 

 

Figure 8: Cross-sectional diagram of thorax highlighting the various muscle groups 

in the Hawkmoth and the interaction with Exoskeleton 
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Figure 9: 3D Diagram of Thorax and Flight Muscles 

The hawkmoth is known for its impressive ability to hover.  Its rapid wingbeat 

has often led to it being misidentified as a hummingbird.  The hawkmoth accomplishes 

its hover through what is known as synchronous, indirect flight.  During synchronous 

flight, for every pulse from a neuron there is a contraction of the muscles and one 

corresponding flapping motion of the wings.  Asynchronous flight differs from 

synchronous flight in that one neuron pulse will cause multiple contractions of the 

muscles which will produce multiple cycles of flapping.  Synchronous flight is common 

in insects with flapping frequency below 100 Hz.  An indirect flapping mechanism is one 

in which the muscles do not directly attach to the wings.  They pull on the exoskeleton 

which then translates that motion into flapping via a hinge.  Direct flight is produced by 

the flight muscles attaching directly to the wing. 

The indirect flight of the hawkmoth begins with the DVMs.  The DVMs (shown 

in Figure 10 in the brown) are oriented vertically and at an angle.  These muscles contract 

and compress the exoskeleton.  The compression causes the inner portion of the wing 
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hinge to drop and the wing to rise.  To produce the downstroke, the DLMs (shown in 

pink) contract and cause the exoskeleton to bow upward.  The bowed exoskeleton raises 

the hinge and lowers the wings.  The DLMs are the much larger, and therefore more 

powerful, of the two sets.  The DLMs relatively powerful downstroke produces the 

majority of the lift.  It has been shown in several studies of the moth that both the 

upstroke and downstroke will produce lift via changing the camber of the wing.  The 

change in camber is passive; the moth does not directly control it.  A typical hawkmoth 

will flap its wings at a frequency around 20 or 25 Hz. 

 

Figure 10: Diagram of Flight Mechanics of Hawkmoth: (A) DVM 

Contraction/Upstroke; (B) DLM Contraction/Downstroke [23] 

The most basic contractile unit of the muscle is the sarcomere.   The sarcomere is 

a region of interaction of two myofilaments, one thick and one thin.  The thick filaments 

are myosin molecules, while the thin ones are actin molecules. (Diagram shown in Figure 

11)  The sarcomere is approximately 2.5 µm long, with the exact length dependent on the 

force acting in the muscle and the state of excitation. [6]   When the muscle receives a 

signal from the motoneuron, the molecules attached to the myosin filaments extend out, 
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pulling on the actin filaments.  This causes the two filaments to slide past each other and 

contract the muscle.  Neither the myosin or actin filament shortens during the contraction.  

[6]   

 

Figure 11: Diagram of the basic functional unit of Muscle Tissue (Sarcomere) made 

up of Interlocking Actin and Myosin Filaments. 

 The rest of the structural arrangement on the muscle can analogous to a Russian 

nesting doll. The myofilaments are bound into groups of called muscle fibrils.  Muscle 

fibers contain groups of these fibrils. All of the muscle fibers that are innervated from a 

single motoneuron are called muscle motor units.  The complete muscle (the outermost 

doll) is made up of all the motor units.  As mentioned earlier, in the hawkmoth there are 

two sets of flight muscles: the DVMs and DLMs.  Each DLM is composed of 5 motor 

units, numbered 1 through five on the right hand side of Figure 12.  The DVMs contain 6 

motor units each; however, they are less massive than the powerful DLMs. 
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Figure 12: Side View Schematic (Left) and CT scan (Right) of M. Sexta Primary 

Flight Muscles 

Other members of the research team here at AFIT have analyzed different aspects 

of this species physiology to investigate these flight mechanics.  Most recently Major 

Ryan O’Hara researched the material properties and structural dynamics of the forewing. 

[20] Lt Alex Hollenbeck [21] and Brian Cranston [22] investigated the exoskeleton of the 

thorax material properties and how compression in the vertical and longitudinal 

directions affected the flapping motion of the wings and related it to power output from 

the muscles.  Also, Captain Travis Tubbs explored the timing of the muscle neurons 

through electromyography. [23]   This study is the first here at AFIT to attempt to 

directly look at the material properties of the muscles. 

1.5 Research Implications 

The finite element models developed during this study are valuable to other 

researchers here at AFIT.  The finite element models have been validated using 

experimental data and analytic equations so there will be considerable time savings for 

another student and aid them in their research. 



20 

One possible application of the insight gained from the experimental portion of 

this study could be to develop artificial muscles that could power an artificial flapping-

wing MAV.  Muscles have been used for inspiration in design since the 1950s and 60s.  

The McKibben pneumatic artificial muscles, developed by the Bridgestone Rubber 

Company of Japan, were an early example. [24] These devices pumped pressurized air 

into a rubber bladders enclosed in a mesh shell to mimic a muscle contraction.  These 

devices produced narrower dynamic range, but higher force intensity than natural 

muscles.  Applications for MAV development would not be very practical due to the size 

and power constraints of the devices. 

 More recently, new electroactive polymers (EAPs) have been developed that have 

the properties required to simulate the contraction of muscles [25], [26]. EAPs are 

materials which can change shape in response to an electrical stimulus.  Since the 1990s, 

the strains capable of being produced by these materials have increased thereby 

expanding their usefulness. Two of the latest advances in EAP technology within the last 

year involve carbon nanotube aerogels [27] and telescopic polymer chains [28].   

1.6 Thesis Preview 

In Chapter 2, the theory behind nanoindentation is outlined.  The analytic 

solutions for indentations into an elastic material are outlined.  These equations are used 

to compare against the finite element models in Chapter 3. Additionally the constitutive 

equations for the elastic, hyperelastic, and elastic-plastic material properties are described 

as well as the material structure of the hawkmoth muscle. 
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In Chapter 3, the development of the finite element models is described.  The 

boundary conditions, element types, and the model type are discussed for each of the 2 

types of indenters (spherical and cylindrical flat punch). 

In Chapter, 4 the hawkmoth muscle experimentation methodology is discussed for 

the nanoindenter and the uniaxial tensile experimentation.  The process of dissection for 

the moths is also outlined. 

In Chapter 5, the 3 models are used in scenarios with applications to testing 

biological tissues. Additionally, problems with the nanoindentation experiment are 

attempted to be explained.  Lastly, the uniaxial tension test results is reported and 

discussed. Chapter 6 summarizes the results of this study and gives recommendations for 

future research. 

II. Theory 

 

2.1 Chapter Overview 

The purpose of this Chapter is to outline the analytic solutions of the interaction 

between the indenter geometry and the materials in the models developed.  These theories 

are the foundation for the models of nanoindentation developed in Chapter 3.  The first 

section describes a fully elastic material indented by a probe with 2 different shapes 

(spherical and cylindrical flat punch).  In the second section, the elastic material model 

material properties of the sample are changed to a hyperelastic material.  This indenter 

model is compared to equations derived from Lin et al [12].  The third and fourth 

sections are models of indentation into elastic-plastic materials by a sharp and spherical 
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indenter, respectively.  The spherical indenter model was developed to obtain the entire 

stress-strain curve from a single indentation. 

Additionally, as mentioned in the objective, an overview of the muscle material of 

the hawkmoth is laid out.  That final section outlines the models of the tissue structure.  

The equations used in a uniaxial tensile test are also described. 

2.2 FE Models Material Theory  

2.2.1 Elastic Indentation Theory 

 The first finite element model described in this research study is a linear elastic, 

isotropic material that behaves according to the following:  

(2.1) 
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where, εij and σij are the strains and stresses of the material, and E and ν are the elastic 

modulus and Poisson’s ratio. 

The analytic solutions to be used to compare against the elastic finite element 

model can be modeled as contact between two elastic bodies.  These solutions, which can 

serve as a reference point for the interaction, were first studied by Hertz in 1881.  

Equations given in this section are derived from Fischer-Cripps Introduction to Contact 

Mechanics [29].  For his formulations Hertz assumed: 
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i. The displacements and stresses must satisfy the differential 

equations of equilibrium for elastic bodies and the stresses 

must vanish at a great distance from the contact surface.  

ii. The bodies are in frictionless contact.  

iii. At the surface of the bodies, the normal pressure is zero 

outside and equal and opposite inside the circle of contact.  

iv. The distance between the surfaces of the two bodies is zero 

inside and greater than zero outside the circle of contact.  

v. The integral of the pressure distribution within the circle of 

contact with respect to the area of the circle of contact gives 

the force acting between the two bodies.  

  

The elastic modulus of the contact can be expressed as a sum of the two bodies by 

the following relation: 

(2.2) 
2 21 11 i s

R i sE E E

  
   

where ER is the reduced modulus, Ei and Es are the elastic moduli of the indenter and 

sample, respectively, and vi and vs are Poisson’s ratios of the indenter and sample, 

respectively.   If the indenter is assumed to have a much larger modulus than the sample, 

the equation simplifies to: 

(2.3) 21
s

R
s

E
E





 

For a spherical indenter as shown in Figure 13, the force-displacement relationship is: 
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(2.4) 
34

3 R

a
P E

R
  

where P is the force applied, R is the sphere radius, and a is the contact radius.  For a 

sphere, the contact radius can be expressed as a Rh , where h is the indentation depth.  

Substituting this into (2.4) gives: 

(2.5) 
1 3

2 2
4

3 RP E R h  

 

Figure 13: Elastic Spherical Indentation 

In addition to force-displacement relationship, Hertz also developed equations for the 

stresses from the indentation. In the following equation, r is defined as a point along the 

contact between the two bodies that originates from the centerline (i.e. r=0 at centerline).   

(2.6) 
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For the spherical indenter geometry presented here, the indentation stress (or 

mean pressure, σ*) and strain (ε*) are given by 

(2.7) 
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where 0.2 is an empirically determined constant by Tabor (1951). [12] This constant has 

been verified by other investigations as well.  Substituting the force-displacement into 

(2.7) yields: 

(2.8) * *20

3 RE 


  

This is the stress strain curve for a linear elastic solid indented by a rigid sphere. 

For a cylindrical, flat punch as shown in Figure 14, the force-displacement 

relationship and the stress field equation are: 

(2.9) 2 RP aE h  

(2.10) 
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Figure 14: Cylindrical Flat Punch Indentation 

For the cylindrical indenter geometry presented here, the indentation stress (or 

mean pressure, σ*) and strain (ε*) are given by 

(2.11) 
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These equations for the P and z are used to find the force required for the depth 

of the indenter at the centerline and the stress along the bottom edge of the indenter, 

respectively. 

2.2.2 Nonlinear Spherical Elastic Indentation Theory 

As mentioned in Chapter 1, Lin et al. [12] developed a finite element model in 

order to derive force-displacement relations for spherical indentation of soft modulus 

materials for several hyperelastic functions.  For the present study, the single-term Ogden 

function Lin used in his derivation is the primary focus.  The single-term Ogden has an 

energy function (W) of form: 

(2.12) 
2

2
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x y zW      
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(2.13) 1 /2 12
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
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where µ0 and α are fitting parameters and λ= λy= λz= λx are the stretch ratios.  µ0 also has 

the physical meaning of the initial shear modulus.  The stretch ratio is related to the strain 

by the equation: 1   . Taking these functions, Lin implemented the following 

approach: 

1. Assumed stress of form  

(2.14) ( , )f C   

2. Resolved the sign differences between standard engineering and common 

indentation notation by redefining 

(2.15) 
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3. Divide (2.15) by  * to obtain 

(2.16) 
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4. For incompressible materials G0 is equal to E0/3 and taking *  to 0 and 

comparing that to (2.8) gives 
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5. Applying the (2.7) yields 

(2.18) 
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6. Finally, the contact radius no longer maintains the relationship a Rh for 

hyperelastic functions, therefore a new relation is assumed 

(2.19) x h y za R h  

where x, y, and z are constants.  This relationship was formed by performing finite 

element analysis of the scenario.  These models were studied for insight to be used in 

developing the models in this present study. 

From these steps, a new force-displacement function was developed as described 

in Lin, et al.’s paper; 

(2.20) 
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This force-displacement equation is compared against the output from the nonlinear 

elastic finite element models. 
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2.2.3 Standard Sharp Indentation Theory 

 In order to fully understand the indentation process, the theory and application to 

the elastic-plastic materials was investigated.  The finite element model is a power-law 

hardening, isotropic material that behaves according to the following equation:  

(2.22) 
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Where: ε is the total strain, σy is the yield stress of the material, and n is a work hardening 

exponent.   

 

Figure 15: Elastic-plastic Power- Hardening Stress Strain Curve 
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In the present research, a total of 2200 points are used to describe the relationship 

between the flow stresses and the plastic strains with the plastic strains within the range 

of 0 ≤ εp < 200%. According to Y. Cao et al., [30] this amount of the points is sufficient 

to well determine the plastic behavior of power law materials. 

The standard method of using instrumented indentation was developed by Oliver 

and Pharr [3].  The load displacement curve shown in Chapter 1 is reprinted here for 

convenience in Figure 16.   

 

Figure 16: Standard Indentation Curve 

One of the most common indenter geometries is the Berkovich Pyramid, shown in Figure 

17. It is a three-sided pyramid with. Many indentation experiments are carried out with a 

Berkovich indenter made of diamond, which is the most common material for an indenter 

tip due to its high modulus (1170 GPa) and low Poisson ratio (0.07).  In order to simplify 

the analysis, the Berkovich indenter head can be modeled as an analytically rigid cone 
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with a half apex angle of 70.3 degrees so that the cross sectional contact area is the same 

for a given depth. 

 

Figure 17: Geometry of a common Indenter head: Berkovich Pyramid 

The data from the load-displacement curve is used to calculate the material properties of 

the specimen. This section begins with the equations for the desired properties (hardness 

H and elastic modulus E) and then presents the supporting calculations for those 

equations. Hardness is found by: 

(2.23) P
H

A
  

where P is the applied force and A is the projected contact area (defined in Eqn. 11). The 

Young’s modulus (the modulus of elasticity, E) of the specimen is calculated from the 

reduced modulus ER by rearranging equation (2.2) to the following; 
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The reduced modulus can be found using the relationship developed by Oliver and Pharr:  
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(2.25) 
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where S is the initial slope of the unloading curve, also referred to as the contact stiffness, 

and β is the slope of the indenter tip. 

2.2.4 Elastic-Plastic Spherical Theory 

 Furthering the investigation into standard engineering materials, another 

algorithm was studied and reproduced.  This finite element model and accompanying 

coding analysis is based on a system developed by the civil engineering department at 

Columbia University. [5] For other similar processes using a sharp indenter, in order to 

find the complete range of the stress strain curve (to include the plastic regime) several 

indentations must be made with various indenter angles.  This is because different 

materials can produce the same indentation curve.  These are known as meta-materials. 

This can be very cumbersome and time consuming.  This study used the mathematical 

method of representative stress and strain to find a unique solution for the stress-strain 

curve with a single, deep indentation. The authors, Zhao, et al. defined the representative 

strain to be the plastic strain, p .   

(2.26) e p e R         ( e is the elastic strain) 

Correspondingly, the representative stress is: 
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The representative stress is shown in Figure 15 in the previous as σR and there are two 

selections of σR in the analysis.  For spherical indentation, dimensional analysis leads to 
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From equations (2.28) and(2.29), Zhao et al. were able to produce the constants required 

to model the stress-strain curve for a material up to the ultimate yield point.  They used 

extensive finite element analysis to find equations for the f and g.  Two points were 

chosen from the loading portion of the force-indentation curve: one at h1 =  0.13*h/R and 

one at h2 =  0.3*h/R.  The point h2 also corresponded to the maximum indentation depth. 

Figure 3 shows a rough approximation of their locations.  These 2 points were substituted 

into equation (2.28)  to produce, along with (2.29), the 3 surfaces required to find the 

solution for ER, n, and σy.   
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The forward analysis used by Zhao, et al., produced fittings for the values of f1, f2, and 

g. They are: 

(2.33) 1 1 1 1 1( , ) ( ) ( )f m n h m k n   
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(2.38) 2 3
1( ) 1.001 0.2610 0.5217 0.1547k n n n n     

(2.39) 2 3
2( ) 1.002 0.7637 1.920 1.255k n n n n     

(2.40) 1( ) 3.66556 0.0244179A n n   

(2.41) 2( ) 6.06122 2.15891A n n   

(2.42) ( ) 29.0856 24.3547q n n   

(2.43) ( ) 1.31861 0.154675p n n   

For this present study the reverse analysis Zhao, et al. developed using these set of 

equations, (2.30) - (2.43), is investigated.  This is discussed further in Chapter 5. 

2.3 Muscle Structure and Tensile Tests Theory  

 In order to understand the strength of a muscle, it is important to understand how 

it works.  The force required to stretch a muscle to a given length can be divided into two 

components: active and passive.  The passive component is the contribution from the 
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material structure and the properties of the myofilaments.  The active force component is 

the contribution from the contraction of the myofilaments.  An example force-length 

curve is shown in Figure 18.  The active component cannot be measured directly.  The 

passive and total forces of the muscle are measured separately and the difference between 

the two represents the contribution of the active state.  For the purposes of this study, the 

properties of the individual muscle motor units are examined in the passive state (i.e. no 

electrically stimulated contraction of the muscles).   

 

Figure 18: Force-Length Example Diagram for Muscles showing the Total force-

length response is a sum of the Active and Passive Properties of the muscle 

 Passive muscle tissue is a viscoelastic, hyperelastic, anisotropic material.  

However, after preconditioning, the viscoelastic nature of the material becomes minimal 

and the material is then regarded as pseudo-elastic.  Pseudo-elastic materials behave as 

one elastic material during loading and another one during unloading. [5] Additionally, 

the organization of the muscle fibers simplifies the material to a transversely isotropic 

material and is assumed to be incompressible. 
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 In addition to the indentation tests, the theory of which has already been discussed 

at length, uniaxial tensile tests were also attempted on the muscle samples.  Tensile tests 

involve applying a force to a sample in one direction and observing the change in its 

length.  It is one of the fundamental tests of materials strength.  For a uniaxial load the 

material described in equation (2.1) simplifies the engineering stress and engineering 

strain described by: 

(2.44) E   

where 
o

L

L
 
  and 

o

P

A
  . L0 and A0 are the initial length and area of the specimen 

being tested [31].  

2.4 Summary 

In this Chapter the mathematical formulations for the finite element model 

materials were outlined.  The derivations of the nonlinear elastic and the elastic-plastic 

models were discussed.  These equations and the Hertzian linear elastic equations are 

used to verify the models developed in Chapter 3. 

In addition to the mathematical formulas for indentation, the structure of the 

hawkmoth muscle was explained.  The flight mechanics of the moth and how the muscles 

drive that motion were diagramed.  This information is used to analyze the experimental 

data.   
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III. Finite Element Model Development  

3.1 Chapter Overview 

In this chapter the development and validation of the FE models are discussed. 

Issues such as element type and number, boundary conditions, analysis techniques, and 

contact type are analyzed.  The mesh resolution of the sample and the given indenter for 

the elastic sample will be compared to Hertz contact equations from Chapter 2 to show 

convergence.   

3.2 Finite Element Overview 

In this section the finite element models of the three indenter head geometries 

probing into an elastic half-space is explained.  The factors going into the mesh are 

explored and the results are validated against the analytic Hertzian solutions to ensure 

mesh refinement so that the models may be used in the analysis section in Chapter 5. 

The commercial finite element analysis software package ABAQUS, version 6.10 

is used in the indentation simulation. Information in this section about the finite element 

model comes from the ABAQUS Users Manual [32].  ABAQUS is a suite of powerful 

engineering simulation programs, based on the finite element method, which can solve 

problems ranging from relatively simple linear analysis to the most challenging nonlinear 

simulations. 

3.3 Analysis Considerations 

ABAQUS consists of two main analysis modules: ABAQUS/Standard and 

ABAQUS/Explicit. ABAQUS/Standard is a general-purpose analysis module that can 

solve a wide range of linear and nonlinear problems efficiently, accurately and reliably. 
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ABAQUS/Explicit is a special-purpose analysis module that uses an explicit dynamic 

finite element formulation. It is suitable for short, transient dynamic events. The 

indentation procedure is assumed to be quasi-static problem, in which no rate effect is 

considered, therefore ABAQUS/Standard is employed in this work. 

In the indentation simulation, there are two sources of nonlinearity: material 

nonlinearity and geometric nonlinearity. The indentation procedure can produce large 

deformation in the solids underneath and near the indenter. The magnitude of 

displacement can affect the response of the structure (geometry nonlinearity).  ABAQUS 

uses the modified Newton-Raphson method to obtain solutions for nonlinear problems in 

the Standard module. 

3.4 Models  

For all of the simulations in this study the indenter head is much stiffer than the 

medium being indented.  This allows the indenter head to be modeled as an analytically 

rigid solid.  The rigid surface is associated with a rigid body reference node, whose 

motion governs the motion of the surface.  Since only one node is computed, this saves 

computer resources and simplifies analysis. 

Both the indenter and half space are modeled as axisymmetric geometry.  The bottom 

of the model is fixed and the remaining two sides are free as shown in Figure 19. Four-node 

axisymmetric linear quadrilateral elements are utilized for the half-space. Reduced 

integration is employed to spare calculation time. The element type for the elastic and 

elastic-plastic materials used in ABAQUS is ‘CAX4R’, in which the letter or number 

indicates the element is continuum, axisymmetric, 4-node bilinear, reduced integration 
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with hourglass control respectively.  This element is not able to be used for hyperelastic 

material problems.  The hybrid version of the CAX4R is used in this case called 

CAX4RH.  The axisymmetric elements are shown in Figure 20. 

 

Figure 19: Model Boundary Conditions: Y-axis Symmetry (Left side) and Fixed 

(Bottom) 
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Figure 20: Diagram of simplification made by assuming no variation in the angular 

direction for the CAX4R and CAX4RH elements 

The mesh is designed so that the meshing is refined near the indenter (in order to 

resolve the contact conditions and allow for accurate contact area determination), but also 

is sufficiently large so that it approximates a semi-infinite solid. Accordingly, the mesh is 

chosen large enough for each calculation so that the results obtained are insensitive to the 

movement of the outer boundaries of the mesh. For all three models, a structured grid is 

used in order to decrease computational time and to resolve the fine mesh required at the 

point of indentation.  The grid can be seen in Figure 21 and Figure 22 for the flat punch 

and sphere, respectively.  Size of the sample half space (LxW) in the figures) is 

determined for each scenario due to varying indentation depths and material effects. 
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Figure 21: ABAQUS Axisymmetric Model of Cylindrical Flat Punch indenting a 

sample with partition lines to divide sample in order to refine the mesh. Inset: 

axisymmetric assumption diagram 
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Figure 22: ABAQUS Axisymmetric Model of Sphere indenting a sample with 

partition lines to divide sample in order to refine the mesh. Inset: axisymmetric 

assumption diagram 

A 3D representation of the 2 types of models can be seen in Figure 23. An example mesh 

can be seen in Figure 24 with note of the additional refinement of the mesh on the right-

hand side of the figure.  

 

Figure 23: Close up View of 3D revolution of Axisymmetric Models:   
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Flat Punch (Left) & Spherical (Right) 

 

Figure 24: Example mesh of a sample as a whole (left) and close up showing the 

refined area underneath the indenter (right) 

3.7 Summary 

In summary, for a given scenario, an axisymmetric model is used with either a 

spherical or cylindrical flat punch indenter.  The scenarios are considered to be quasi-

static to simulate the rate-independent nature of preconditioned biological tissues.  The 

mesh and dimensions of the models are varied according to the experiment to be 

evaluated. 
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IV. Experimentation Methodology 

4.1 Chapter Overview 

 In this Chapter the methodology for the attempted experiments is outlined.  The 

thought behind this methodology is explained and the assumptions for the data gathered 

are discussed.  

4.2 Nanoindentation Experimentation 

Hawkmoth pupae were maintained in a temperature controlled room with a 14 

hour on/ 10 hour off light/dark cycle until they hatched.  More information of the raising 

of the hawkmoth can be found in the appendix.  Once the moths hatched, they were 

moved to a secondary cage until they were needed.  The moths could last up to 

approximately a week in this cage before they died. 

Prior to the dissection, a glass slide was attached to a metal puck with 

Crystalbond™ (Crystalbond, AREMCO, Valley Cottage, NY).  (Figure 25)  

Crystalbond™ is a heat-activated adhesive material.  A thin ring was attached to the glass 

slide with cyanoacrylate adhesive (super glue).  This ring contains the saline solution so 

that the sample will not desiccate during the experiment.  Small pieces of glass are also 

adhered to glass slide.  These are approximately the same height as the tissue sample.  It 

was hoped that these glass blocks could be used as a guide for the nanoindenter to gauge 

the distance to the surface. 
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Figure 25: Sample Puck for indentation experiment with rubber ring attached to 

glass slide to hold saline solution 

The moths were taken out of their cage approximately 1 hour before the test was 

conducted and asphyxiated using a paper towel dipped in acetone in a small closed off 

container.  This was to maintain the freshness of the sample and an attempt to prevent 

decomposition as much as possible. 

Once the insects were dead, the wings, head, abdomen, and legs were all removed 

using small scissors. This left only the thorax remaining.  The thorax was held under a 

slow stream of running water and scrubbed with a toothbrush to remove the small scales.  

This allowed the exoskeleton to be clearly visible to aid in the dissection.  The scissors 

were again used to clip the thorax along the dashed line shown in Figure 26. 
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Figure 26: Partially Dissected Moth highlighting the point of incision of the 

exoskeleton (wings are removed) 

The bottom of the exoskeleton was removed, leaving the top of the exoskeleton 

and exposed muscles.  A cut was made at the front and rear of the thorax, slicing through 

the DLMs.  As the DLMs are not attached to the top of the thorax, this allowed the 

bundle to be removed with tweezers.  Care was taken to cut the muscles as close to the 

exoskeleton as possible to remove the largest amount of tissue. Isolated muscle tissue can 

be seen in Figure 27.  Drops of saline solution were applied to the tissue samples to 

maintain moisture until they were ready. 
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Figure 27: Isolated Individual muscle units of the Hawkmoth DLMs  

When ready to test, the muscle sample was patted dry to remove excess moisture 

and weighed to the nearest 0.001 g.  A small bit of cyanoacrylate was placed on the glass 

slide next to glass surface find aide. The muscle sample was placed on top of the 

adhesive as shown in Figure 28.  The sample was covered with a moist paper towel and 

allowed to sit for several minutes.   This allowed the adhesive to dry while maintaining 

the moisture of the muscle.  Once dry, the ring was filled with saline.  This setup is much 

like that used by V.T. Nayar et al. [13] indentation of porcine sclera mentioned in 

Chapter 1. 
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Figure 28: (left) Cartoon showing sample/adhesive interaction and (right) muscle 

sample in solution adhered to slide with glass block flush with its right edge. 

 

The puck as a whole was weighed in order to be weighed again following the test 

to determine if there was any water lost from the sample.  The sample puck was then 

placed in the Nanoindenter G200 test rack as shown in Figure 22.   

  

Figure 29: (a) Agilent G200 Nanoindenter (b) Sample Puck in Test Rack of Indenter  
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Two indenter heads were used: 120µm and 300µm radius spherical head.  The 

Standard XP Indentation Head was used.  The surface sensitivity was set at “very fine” 

with an approach distance of 1 mm.  Through the nanovideo camera microscope, 

locations on the sample and on the glass near the sample were chosen.  The indenter was 

programmed to indent the glass and then use the height location to zero in on the surface 

of the sample.  It was unable to find the surface of the muscle for either the 120µm or 

300µm indenter head.  Discussion of this outcome is in Chapter 5. 

4.3 Uniaxial Tensile Experimentation 

The second experiment with the hawkmoth muscle fiber examined the tensile 

properties of the specimen.  Dissection and isolation of the muscle units occurred as in 

section 3.3.1.  Each sample was weighed and measured.  Length and the width at three 

discrete points were measured using a digital microscope.  The three widths were 

averaged and treated as approximately the diameter muscle.  This diameter was used to 

find the cross sectional area used for the stress calculations. 

The material was tested using the Agilent T150 Universal Testing Machine 

(UTM) shown in Figure 30 along with its specifications.  The T150 has the necessary 

displacement and load resolution required for a sample of this size with this low of an 

expected modulus.   
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Figure 30: Agilent T150 UTM and Specifications 

In order to attach the samples to the machine, an interface is needed between the 

grips and the tissue sample.  As was done by Calvo, et al. [17], the specimen is attached 

using cyanoacrylate to small pieces of sandpaper which in turn are attached to paper 

templates.  These pieces of sandpaper prevent slippage between the sample and the 

clamps.  The applicability of the sandpaper/glue combination is confirmed in Ng et al. 

study in 2005 [33].  The paper templates allow for the handling of the samples with 

placing too much stress on them before the testing starts.  The templates are connected 

with tape.  Once the sample is clamped into the testing apparatus, the tape is cut, allowing 

for the machine stress-strain analysis to start. Setup can be seen in Figure 31. 
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Figure 31: Template card technique showing Sample in Testing Machine. Edges of 

card have been cut, allowing the sample to be stretched. 

 Due to the size limitations of the sample and the restrictive nature of the template, 

each of the gauge lengths for the tests was restricted to approximately 2 mm.  Sample 

hydration was limited to the beginning of each, much in the way that Gras, et al. [16], did 

in their testing of the sternocleidomastoideus muscle.  This lack of hydration throughout 

the test resulted in the inability to perform a preconditioning cycle to the specimen.  

According to theory in Chapter 2, the elastic properties of the muscle would vary with 

different strain rates due to the viscoelastic nature of the unconditioned material.  To 

investigate this, three strain rates were to be tested (3e-4, 1e-4, and 1e-3 mm/mm/s), 

however, the uniaxial testing was only completed for 4 samples at strain rates of 3e-4 

mm/mm/s.  The clamps for the testing machine split and new ones were unable to be 

procured in time to complete the remainder of the planned tests.  Results that were 

obtained as well as improvements on the testing method are discussed in Chapter 5.   
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V. Analysis and Results 

5.1 Chapter Overview 

In this Chapter, the validity and usefulness of the finite element models are 

analyzed and their results commented on.  The nanoindentation experiment was analyzed 

to determine why the experiment failed and whether the Agilent G200 is useful for 

materials with similar properties as the muscle.  Results from the uniaxial tension tests 

are reported and the results critiqued to determine better testing methods. 

5.3 Results of Finite Element Simulations  

In this section, 3 scenarios are analyzed. The first looks at the algorithm 

developed for elastic-plastic spherical indentations. The second looks at the porcine 

sclera experiment discussed in the literature review and how boundary effects could come 

into play for similar future experiments.  The third example looks at the effect of friction 

on the results of Lin, et al. in their analysis of mouse cartilage. 

5.3.1 Spherical Indenter into Elastic Plastic Medium 

 In this scenario, the elastic plastic properties of a material are determined by the 

analysis method developed by Zhao et al. [5] described in Chapter 2.  The forward 

analysis fitting functions shown in equations (2.30) - (2.43) are used.  Equations  (2.30) 

through (2.32) are repeated here for convenience. 

(2.30) 1 1
11 1 2 1 1 1 1

1

( , )R

R R R R R R

C P E
f n

h     
   

(2.31) 2 2
22 2 2 2 2 2 2

2

( , )R

R R R R R R
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h     
   
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(2.32) 
2 2

2

( , )R

R R R

ES
g n

h E  
  

 The reverse analysis requires inputs for P1, P2, h1, h2, and S.  These inputs can be 

measured from an experiment.  However, in the absence of experimental data finite 

element analysis may be used to produce these values.  Materials with known values for 

σy, E, and n (υ is assumed to be 0.3) can be input into a finite element model.  The force-

indentation data may be extracted from the results of this analysis and the values for P1, 

P2, h1, h2, and S can be found.   

For example, the properties for A533-B steel are approximately E = 210 GPa, σy = 

400 MPa, and n = 0.127 [5]. These values were input into the model outlined in Chapter 

3 for the spherical indentation.  The radius of the indenter was set to be 788 µm and the 

sample to be 50 times the radius to remove any boundary condition effects. 

 The first step was to check the mesh refinement against the spherical elastic 

analytic equations shown in Chapter 2.  The depth of indentation is set to the maximum 

value required for the algorithm, h=0.3R, or h = 236.4 µm. This indentation can be seen 

in Figure 32. 
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Figure 32: Spherical Elastic Maximum Indentation, 2D (left) and 3D (right). Colors 

indicate stress in the vertical direction (MPa) 

 

The force indentation curve for 4 mesh sizes are compared in Figure 33.  The ‘100x100’ 

refers to the number of elements in the corner square of the mesh.  The larger the number 

is, the finer the mesh. 

 

Figure 33: Mesh Resolution Comparison, F-d Elastic Spherical 
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The stress under the indenter at the maximum depth is compared with the analytic 

solution in Figure 34.  The maximum stress at the middle of the indenter is predicted 

better using the coarse mesh. Due to there being such a large displacement, the material is 

out of the linear range.  Since the force-displacement diagram is the driver for the 

analysis, that refinement is the primary mesh. 

 

Figure 34: Mesh Resolution Comparison, F-d Elastic Spherical 
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indentation depth in Figure 35 and after the indenter has separated from the surface in 

Figure 36. Residual stresses can be seen in the in the sample.  The force indentation curve 

for this scenario can be seen in Figure 37. 

 

 

Figure 35: Spherical Plastic Maximum Indentation, 2D (left) and 3D (right) 

 

Figure 36: Spherical Plastic Residual Indentation, 2D (left) and 3D (right) 
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Figure 37: Force Displacement Curve for Forward Analysis (R=788 µm) 

 The values for P1, P2, h1, h2, and S are extracted from Figure 37 and are shown in Table 

1.  These values are used to determine the constants to be input into the algorithm shown 

in Table 2. 

Table 1: Measured Values from Force Indentation Curve 

h1 (µm)  h2 (µm) P1 (N)  P2 (N) 

102.44  236.4  1023.8  2280.4 

Table 2: Input Values to Zhao Algorithm 

C1 
(GPa) 

C2  
(GPa) 

S  
(MPa*m) 

97.56  40.81  349.3 
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  From here the flow chart shown in Figure 38 may be followed to determine the 

material properties.  The steps in this flow chart are solved using the code found in 

Appendix B. The range for E/σy was initially set to be 100 to 1000, the range for n was 0 

to 0.6, and the σy/σ0 range was set to 0.5 to 1.5.  This allowed for a wide range of 

engineering materials to be in consideration for this analysis. 

 

 

Figure 38: Flow Chart for Determining Material Properties 

The output values from the analysis are listed in Figure 39.  In Table 3, the results 

for each of the materials are compared to those found by Zhao, et al. in their model.   
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Figure 39: Comparison of Force Indentation for Forward and Reverse Analysis 

Table 3: Zhao Algorithm Output Comparison with Symbolic Solver 

   E (GPa)  σy (MPa)  n 

Input Parameter  210 400 0.127 

Zhao Output  206 402 0.125 

Percent 
Difference  2% 1% 2% 

Dauby Output  247 396 0.125 

Percent 
Difference  18% 1% 2% 
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for the difference could be the choice of a symbolic solver.  During the analysis, in order 

to find the reference stress a nonlinear, explicit equation must be solved.  The analysis 

was then repeated using a numerical solver to determine the reference stress.  These 

results are shown in Table 4.  The E value produced was more in line with input values 

with slight uptick in the yield stress and n value. 

Table 4: Zhao Algorithm Output Comparison with Numerical Solver 

   E (GPa)  σy (MPa)  n 

Input Parameter  210 400 0.127 

Zhao Output  206 402 0.125 

Percent 
Difference  2% 1% 2% 

Dauby Output  235 380 0.13 

Percent 
Difference  12% 2% 5% 

 

One potential application for this technique to biological tissues is for harder 

materials such bone.  The hawkmoth exoskeleton would seem to be a possible candidate 

for this analysis.  Since the approximate thickness of the exoskeleton in 30 µm [21], there 

would be limitations to the size of the indenter when setting up this experiment.  In order 

to model a half space approximately 50 times the maximum depth of the indentation 

(0.3R), one would be limited to an indenter with a radius of approximately 2 µm.  Any 

larger and substrate effects would be at risk of influencing results.  

5.3.2 Flat Punch to Elastic Medium  

 In this scenario, how the boundary affects the experiment conducted by Nayar et 

al. [13] was analyzed using the elastic finite element model.  As mentioned previously, 

this experiment involved an 80 micron diameter cylindrical flat punch indenting porcine 
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sclera.  The indentation chosen was only 4 µm deep, therefore, according to (2.11), the 

strain resulting from this experiment is approximately 0.1 and falls within the accepted 

region for elasticity.  The linearity of this region could be verified by a hyperelastic finite 

element analysis; however, the only data that could be found for the sclera was elastic. 

 In their experiment, the sclera samples were cut into 1 cm squares with a 

thickness of approximately 1 to 1.2 mm.  This would appear to be a large enough sample 

to remove effects of the boundary on the analysis.  However, finite element model can 

help in ensuring that there is no discrepancy.  For the purpose of this simulation, the 

sample was set to 1.2 mm (1200 µm) on each side to match the thickness of the real life 

sample. 

 First, the flat punch model was modified to simulate the scenario of the sclera 

experiment so that the geometry (40µm radius indenter) and material properties 

(E=30kPa) are made to match.  The mesh is varied and the force displacement curve and 

the stress field under the indenter are mapped in Figure 40 and Figure 41, respectively.   
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Figure 40: Mesh Refinement for Flat Punch using Force-Displacement Relation 

 

 

Figure 41: Mesh Refinement for Flat Punch using Stress-Radius Relation 
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The force-displacement curve produced stiffer results as the mesh became finer, 

however the stress field under the indenter more closely matched the analytic solution.  

The stress field is the primary means of measuring the boundary effects so the finer mesh 

was used as the model. 

Next the boundary conditions were modified to have rollers on the left and right 

side of the sample as in Figure 42.  This modification verifies that the 1200 by 1200 µm 

sample adequately represents an infinite half-space.  Additionally, the sample was 

increased to 4800 by 4800 µm as a second check.  These results are used for comparison 

as the width and depth of the sample are adjusted. 

 

Figure 42: Model Boundary Conditions: Y-axis Symmetry (Left side, Right side) 

and Fixed (bottom) 

 As shown in Figure 21, Figure 22, and Figure 42, W represents the horizontal 

distance from the point of indention to the vertical boundary and L represents the vertical 

distance from the surface of the sample to the bottom of the sample.  The bottom is fixed, 

representing a hard surface underneath the sample.  Typically the rule of thumb for 
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thickness of a sample is to maintain an indentation depth that is no more than 10-20% of 

the thickness of the sample. [34] 

 To analyze what effect the horizontal boundary distance has on the measurement 

of the elastic modulus, the simulation was run using W values of 600 µm and 300 µm and 

again with L values of 600 µm and 300 µm.  The stress underneath the indenter and the 

force-displacement relationship were plotted in Figure 43 and Figure 44, respectively, for 

varying W values.  The stress and force-displacement relationship for varying L values 

are shown in Figure 45and Figure 46. 

 

Figure 43: Comparison of the stress along the bottom of a flat punch indenting 

several sample sizes 
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Figure 44: Comparison of the force-displacement relationship for a flat punch 

indenting several sample sizes with varying horizontal distance (W)  

 

Figure 45: Comparison of the stress along the bottom of a flat punch indenting 

several sample sizes 
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Figure 46: Comparison of the force-displacement relationship for a flat punch 

indenting several sample sizes with varying vertical distance (L) 

 In Table 5, the effects of the smallest boundary condition are compared to the 

large sample and the Hertzian solution.  The Hertzian solution is treated as truth for the 

percent error calculations.  As can be seen from Table 5, the smaller boundary can have a 

large effect on the calculation of the elastic modulus.  Errors were most noticeable for the 

thickness of the sample at 21.9%.  This shows that for low modulus materials, the 

thickness of the sample should be more carefully monitored than for a similarly sized 

stiffer material. 
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Table 5: Summary of effects of E from the smallest sample boundary length 

compared to Hertzian analytic solution and a large sample  

  
σ (kPa) 

(Midpoint)  % Error  E (kPa)  % Error 

Hertz  ‐1.3929  0.0%  30.0  0.0% 

1200x1200  ‐1.3144  5.6%  30.1  0.4% 

1200x300  ‐1.5065  8.2%  34.2  14.1% 

300x1200  ‐1.0368  25.6%  23.4  21.9% 

 

5.3.3 Spherical Indenter into Hyperelastic Medium 

 In this scenario, a rigid spherical indenter is indented into a hyperelastic half-

space.  Up until now, the coefficient of friction between the sample and the indenter has 

been assumed to be frictionless.  For the vast majority of indentation experiments the 

effect of friction is assumed to be negligible.  According to Shacham S, et al., [35] for 

muscle tissues in contact with bone the coefficient of friction could be as high as 0.36. 

This is not a one-to-one relationship with a diamond or sapphire indenter in contact with 

a tissue, however, the relationship this factor has for a hyperelastic material is worth 

investigating. 

 The model begins with the frictionless scenario established previously.  The mesh 

from section 5.3.1 that was verified using the elastic space is used for this analysis as 

well.  The indenter size is adjusted to 5 µm and the sample size was correspondingly 

decreased to 125 µm square.  Per Lin et al. experiment, the indentation is 1 µm.   

 In order to gauge the effects of friction on this model, the coefficient was 

increased to 0.1, 0.2 and 0.3.  The indentation stress field is shown in Figure 47. 
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Figure 47: Stress Field for Hyperelastic Material 

The effects on the force indentation curve are shown in Figure 48.  The elastic force-

displacement model and the hertz analytic solution were also plotted for comparison. 
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Figure 48: Friction Comparison Force Indentation Curve (h=1µm) 

 As can be seen from Figure 48, friction had no effect on the force-displacement 

relation whatsoever.  In Figure 49, the contact area is compared for the differing friction 

values as well.  Again, there is no change. The frictionless assumption is valid for this 

indentation depth. 
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Figure 49: Friction Comparison Contact Radius (h=1µm) 
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al., the scenario was conducted again for an indentation of 4 µm. As can be seen in 
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Figure 50: Friction Comparison Force Indentation (h=4µm) 

 

Figure 51: Friction Comparison Contact Radius (h=4µm) 
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5.3.4 Extraction of Ogden Parameters from Force-Indentation Curve 

The spherical indentation model described n section 5.3.3 can also be used to 

extract parameters from experimental data.  As in section 5.3.1, experimental data was 

not available so the finite element model was used to produce simulated data.  Initial 

shear modulus (µ0) and curvature parameters (α) were input in the ABAQUS model.  The 

parameters chose were: µ0 = 7.89kPa and α = 20.  The radius of the spherical indenter 

was set at R = 120 µm and size of the sample was set at 50 times the radius.  The 

indentation depth was set at 0.4R, or 48 µm.  The resulting stress-strain curve can be seen 

in Figure 52 and long with the solution for the linear elastic medium shown in blue for 

comparison.  The nonlinearity of the solution is apparent. 

 

Figure 52: Representative stress and strain from a spherical indenter into a 

hyperelastic medium simulation compared against an elastic medium  
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 In order to determine the coefficients or this simulated data, the force-

displacement relationship in equation (2.20) presented by Lin, et al. was fitted to the data 

using a nonlinear-least squares data fit.  The code for this extraction is in Appendix B. 

(2.20)   
2

/2 1 1[(1 0.2 ) (1 0.2 ) ]
B a a a

P
R R

 


       

Equation (2.20) was rearranged to express the stress-strain relationship using the 

equations * 2/P a   and * 0.2* /a R   to the form: 

(5.1) * * /2 1 * 1[(1 ) (1 ) ]
B    


       

The fit to this equation is shown in Figure 53. 

 

Figure 53: Representative stress and strain from a spherical indenter into a 

hyperelastic medium simulation with a curve fit to extract Ogden parameters 
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The parameters as determined by the least squares method are:  µ0 = 7.369 kPa and α = 

23.2.  This represents a 7.55% and 16.10% percent difference from the input µ0 and α, 

respectively. The new parameters were input into the finite element model to compare 

against the initial simulation. The results are shown in Figure 54 and match well. 

 

Figure 54; Comparison of the simulation results from initial material parameters 

and material parameters from a curve fit 
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made contact.  It soon became apparent the primary reason was that the load vs. 

displacement slope for the material was too low.  The surface stiffness of the sample was 

too low to escape the noise of the machine. 

 

Figure 55: Noise from Load vs Displacement Channel for G200 during Surface Find 

 To investigate whether this was the cause, the elastic Hertz contact equations 

were revisited.  Since the surface contact involves the initial depth of indentation, the 

material can be assumed to be elastic without the hyperelastic effects dominating.  

Considering first the force-displacement equation (reprinted from Chapter 2): 

(2.5) 
1 3

2 2
4

3 RP E R h  

And taking the derivative with respect to depth yields 

(5.2) 
1 1

2 22 R

P
E R h

h





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Substituting in the definition of reduced modulus, 2/ (1 )RE E    and υ=0.5 

(incompressible assumption) gives; 

(5.3) 
1 1

2 2
8

3

P
ER h

h





 

This function was plotted by varying the elastic modulus while holding the indenter 

radius constant for select values.  This can be seen in Figure 56.  Additionally, from 

Figure 55, the approximate noise level for the Agilent G200 was approximately 10 N/m 

and also was plotted as the thick horizontal line. 

 

Figure 56: Load/Displacement Slope vs. Elastic Modulus for Varied Indenter 

Radius with noise level shown as black horizontal line. 
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From the graph, the smallest modulus that would be able to be measured for this range of 

indenter sizes would be approximately 3 to 6 MPa.  This is approximately 100 times the 

values for soft tissue found in the literature.  

 Returning to the hyperelastic spherical indentation model from section 5.3.4, the 

force indentation relationship can be seen in Figure 57.The initial slope for the first 

0.5µm of the indentation is approximately 0.3.  This shows that the soft material used in 

the Lin, et al. experiment would not be able to be measured with the G200 nanoindenter.

 

Figure 57: Force-displacement relationship for spherical indenting a hyperelastic 

medium with 1st order Ogden potential parameters µ0=7.97kPa and α=20 
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 Improvements to the equipment for this test are needed.  One possibility is to use 

the DCM II Indentation Head Option for the Agilent G200.  This option provides greater 

resolution for the indentations and sensitivity in the analysis with load resolution of 3 nN.  

However, this option was not functioning for the test system and future researchers would 

need to have it replaced. 

 The more likely solution to this problem is to use AFM instrumentation to 

conduct the experiment.  AFM instruments have a much lower force and displacement 

resolution.  Spherical tips are available for AFM machines as well, so the finite element 

development for the indentation experiments would still be applicable, only on a smaller 

scale. 

5.5 Results of Tensile Experiment 

The results of the tensile experimental investigation are presented in this section.  

As mentioned at the end of Chapter 4, the clamps for the T150 broke before the 

completion of the planned tests could be completed.  A summary of those tests that were 

able to be completed is given in Table 6.  It should be noted that Test 1 was aborted after 

a strain of only approximately 0.03 due to a disturbance to the test fixture.  The results 

have also been presented in Figure 58. The elastic modulus was extracted by applying a 

linear bet fit line to the portion of data.  The overall modulus was calculated by applying 

linear regression to the entire data set (only the linear portions of the data were used).  

Table 6: Results for 4 Tests of Initial Modulus Elastic for Hawkmoth Muscle 

Test  E, kPa  A0,mm^2 l0, mm 

Test 1  802.17  1.5394  1.6 

Test 2  39.80  1.131  1.6 
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Test 3  998.32  1.3273  2 

Test 4  801.92  1.5394  2 

 

   

Figure 58: Stress-Strain Diagram for all 4 tests of Hawkmoth DLM motor unit and 

their individual linear regression fits and the overall regression fit. 

As can be seen from the Table 6 and from Figure 58, 3 of the tests (1, 3, and 4) 
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test (2) is approximately 20 times smaller than the other three tests.  Looking at Table 7, 
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it falls outside of standard deviation of the remaining tests, the overall elastic modulus 

becomes 982 kPa.  These results are plotted in Figure 59. 

 

Table 7: Summary Statistics of the 4 Uniaxial Tension Tests 

Test  E, kPa  A0,mm^2 l0, mm 

Overall Average  660.56  1.38  1.80 

Overall SD  424.05  0.20  0.23 

Overall Regression 343.72       

Average w/o T2  867.47  1.47  1.87 

SD without T2  113.32  0.12  0.23 

Regression w/o T2  982.3       

 

 

Figure 59: Hawkmoth DLM Stress-strain curve with Outlier Removed 
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 However, the Test 2 outlier may not necessarily have been an invalid test.  Most 

importantly, the small sample size precludes making too many inferences about which 

test is valid and which is not.  Additionally, the level of hydration of the samples can 

cause variability in their elastic properties.  A desiccation test was devised to determine 

how much weight the muscles lost when exposed to the air.  A single muscle unit was 

extracted as described in Section 4.2.  It was patted dry to remove excess moisture and 

placed on a scale and weighed to the nearest milligram.  The sample was reweighed at 

regular intervals for a period of 16 minutes.  The results of this experiment can be seen in 

Figure 60.  The muscle unit lost over half its weight in only a period of 16 minutes. On 

average the tests lasted approximately 6 minutes there for approximately 12-15% of the 

muscles water weight could have evaporated during that time.  
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Figure 60: Chart of desiccation of Hawkmoth muscle over time while exposed to air 

Qualitatively, as the samples become less hydrated, they become much harder to 

the touch and would most likely have a higher value for E.  It is possible that the other 3 

tests lost more moisture than test 2.  Additionally, this idea that the other three lost 

moisture looks like more of a possibility when compared to the results of other tensile 

tests of muscles as shown in Table 8. 

 

 

 

0 2 4 6 8 10 12 14 16
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

time, min

W
ei

g
h

t,
 m

g



82 

Table 8: Summary Comparison with prior Muscle Tensile Experiments 

Study 
Modulus 
(kPa)  Animal 

Gras, et al.  [16]  111  Human 

Dorfman et al. [18]  2.34  Caterpillar 

Collinsworth, et al. 
[37]  45.6  Rabbit 

Fung [6]  20‐160  Rabbit 

Dauby  334  Moth 

 

 Better ways of keeping the sample hydrated need to be used for this type of test.  

The sample dried out prior to the conclusion of the test.  As mentioned previously, the 

hydration method used was similar to that used by Gras, et al.  Their study was able to 

hydrate only at certain points in the test because their samples were much larger.  The 

smaller surface area to volume ratio of their samples did not allow for as much 

desiccation.  A better way of testing the samples would be to keep them completely 

submerged in the saline solution.   

The small length of the sample with respect to the diameter can also affect the 

results.  In order to estimate what this effect might be, a new finite element code was 

developed.  This model was again axisymmetric, with element type CA4XR.  The first 

1.5 mm of the sample was fixed along the edges of one end while the displacement was 

applied to the edges of the other end.  This simulates the glue holding the ends of the 

sample.  The mesh was refined near these boundary points. The mesh and boundary 

conditions for this model can be seen in Figure 61. The diameter of each sample was 

fixed at 2mm, which is approximately the diameter of the muscle unit.  Four different 

gauge lengths were analyzed: 2, 4, 7, and 10 mm. 
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Figure 61: Boundary Conditions (left) and Mesh (right) for Uniaxial Tension Model 

(2mm gauge length shown) 

In the simulations in Figure 62, the bottom right figure has a gauge length of 2mm 

which is approximately the situation in this experiment. For a large strain of 0.5, there is 

a much larger stress variation across the midsection of the sample.  The gauge length is 

increased going clockwise.  As can be seen, the further away from the boundary 

conditions, the more uniform the stress field in the sample.   
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Figure 62: Stress cross sections for all tests to 50% strain. (Clockwise from bottom 

left: 2mm gauge length, 4 mm gauge length, 7 mm gauge length, and 10 mm gauge 

length.)  

New ways of securing the sample are recommended by this report to be 

investigated.  One possible way is to dissect the moth in a way to keep the attachment 

points of the exoskeleton intact.  This would keep the full 10mm length of the muscle to 

be used as the gauge length.  Also the boundary conditions would remain intact, thereby 

better simulating the natural environment.   Better dissecting skills would be required to 

accomplish this new method. 

5.6 Summary 

Three finite element models were developed with possible applications to 

biological tissue and possible applications to the hawkmoth.  One model determined the 
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elastic-plastic properties of a wide range of materials from one single spherical 

indentation.  The second examined the boundary effects of the experiment with porcine 

sclera.  The third examined the effect of coefficient of friction on a hyperelastic material. 

The experimentation portion of the analysis returned a mixed bag of results.  The 

nanoindentation experiment was unable to gather any data, although an upper bound was 

found on the indentation modulus of a material able to be characterized by the Agilent 

G200 Nanoindenter with a spherical tip.  The tensile testing was able to gather data on 

the longitudinal modulus of the hawkmoth muscle.  Compared to literature, the modulus 

was high most likely due to desiccation of the sample on the test device. 

VI. Conclusions and Recommendations 

6.1 Chapter Overview 

In this chapter the conclusions that were obtained as a result of this research are 

outlined.  Additionally, recommendations for future research are discussed.  A summary 

of the study concludes the report. 

6.2 Conclusions of Research 

A finite element model was developed to analyze the elastic, power law-

hardening properties of a wide range of material properties.  The values reported from the 

analysis differed from the actual values by approximately 18%.  This was slightly higher 

than the reported values from Zhao, et al. 

The second finite element model was developed to analyze the boundary effects 

of an experiment analyzing the flat punch indentation of the material.  It showed that the 

sample Nayer, et al. used was more than satisfactory for conducting the experiment.  
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Additionally it was shown that reducing the horizontal boundary to 300 µm could cause 

as much as a 23% error in the evaluation of the elastic modulus.  The third model looked 

in the experiment by Lin, et al. to see what effects friction may have had on the analysis.  

For the indentation depth in the Lin study, friction would have had little to no impact on 

the results.  Had the choice of indentation been deeper, a more pronounced effect could 

have been seen.  

The experimental nanoindentation experiment was unable to gather data due to 

the limitations in the instrument in measuring a material with as low a modulus of 

elasticity as the hawkmoth.  An upper bound on the modulus was established of 

approximately 3 MPa.  This is consistent with literature values of modulus in the range of 

1-50 kPa for soft tissues from other experimentation. 

The uniaxial tension test was able to map the stress strain curve for strains up to 

10%.  Reported initial modulus of elasticity values were 343 kPa although only three 

experiments and one partial experiment were able to be conducted before the test fixture 

broke.  Additional concerns for the testing methodology are centered on the dehydration 

of the samples during testing.  This loss of water most likely had an increase in the 

stiffness of the samples and larger vales for modulus. An additional concern for the test 

involves the small gauge length with respect to size of the specimen.  Finite element 

models show probable uneven stress values throughout the specimen. 

6.3 Recommendations for Future Research 

The algorithm developed for the elastic-plastic model could be applied to a 

variety of materials.  However, in relation to the problem of the material properties of the 
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hawkmoth, it could be used to determine the entire stress strain curve if instrumentation 

could be found with an indenter of radius small enough to go 0.3R into the material while 

not going into the substrate of the moth exoskeleton. 

 For future research involving indentation experiments with biological tissues, the 

Agilent G200 with the Standard XP Indentation Head should not be used. It should not be 

used because the load-displacement slope of the material is too low to be recorded by the 

machine. Other options such as an Atomic Force Microscope should be considered.  

Should the Nanoindentation experimentation data become available, the finite element 

models should be used to analyze and isolate the material properties. 

Future research into the uniaxial tension test should account the hydration of the 

sample better.  Applying saline solution directly prior to the test is not adequate and 

spraying the samples during test causes the test to be aborted.  A horizontal testing 

apparatus with the sample completely submerged would be a preferable solution to the 

current testing system.  This improved hydration would allow for preconditioning of the 

sample.  Additionally, improved dissection technique could allow for a longer gauge 

length which would improve both handling of the samples and reduce boundary condition 

effects. 

6.4 Summary 

In summary, this study described a software package utilizing the commercial 

finite element suite ABAQUS to allow hyperelastic materials to be considered with the 

application towards soft biological tissue.   
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Two soft tissue models were developed and used to investigate boundary effects 

and coefficient of friction on two experiments conducted by outside researchers.  The 

third model used a technique by Zhao, et al. to determine the elastic-plastic properties of  

Another model successfully computed the material properties of an elastic-plastic 

material using only one spherical indentation.  This model could be applied to the 

hawkmoth exoskeleton. 

Two experiments were attempted.  The first, a Nanoindentation experiment with 

the flight muscle of a hawkmoth was unsuccessful. The instrumentation was unable to 

measure the modulus of the material.  The second experiment was a uniaxial tension test 

on the muscle.  This experiment was able to obtain an initial elastic modus of the 

material; however the results may skew high due to loss of moisture in the sample during 

the experiment. 
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Appendix A: Finite Element ABAQUS Input Files 

Sphere (Elastic-Plastic) 

*Heading 
** Job name: zhao788 Model name: zhao-788mm 
** Generated by: Abaqus/CAE 6.10-1 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Sample 
*End Part 
**   
*Part, name=Spherical 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Sample-1, part=Sample 
          0., -40246.7628172297,           0. 
*Node 
      1,        1970.,   38276.7617 
      2,        1970.,   40246.7617 
      3,           0.,   40246.7617 
      4,           0.,   38276.7617 
      5,       39400.,   38276.7617 
      6,       39400.,   40246.7617 
etc 
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Friction, slip tolerance=0.005 
 0., 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Axi Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet33, YASYMM 
** Name: Bottom Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet34, ENCASTRE 
**  
** INTERACTIONS 
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**  
** Interaction: Int-1 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO 
SURFACE 
Sample-1."Sample top", Spherical."Sphere Surf" 
** --------------------------------------------------------
-------- 
**  
** STEP: Down 
**  
*Step, name=Down, nlgeom=YES, inc=10000 
*Static 
0.001, 1., 1e-06, 0.01 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Down Type: Displacement/Rotation 
*Boundary 
_PickedSet21, 1, 1 
_PickedSet21, 2, 2, -236.4 
_PickedSet21, 6, 6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: Down 
**  
*Output, history 
*Node Output, nset=Spherical."Sphere RP Set" 
RF2, U2 
*Node Print,  nset=Spherical."Sphere RP Set", SUMMARY=NO 
RF2, U2 
*End Step 
** --------------------------------------------------------
-------- 
**  
** STEP: Up 
**  
*Step, name=Up, nlgeom=YES, inc=10000 
*Static 
0.001, 1., 1e-05, 0.05 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Axi Type: Symmetry/Antisymmetry/Encastre 
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*Boundary, op=NEW 
_PickedSet33, YASYMM 
** Name: Bottom Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
_PickedSet34, ENCASTRE 
** Name: Down Type: Displacement/Rotation 
*Boundary, op=NEW 
** Name: Up Type: Displacement/Rotation 
*Boundary, op=NEW 
_PickedSet22, 1, 1 
_PickedSet22, 2, 2, 236.4 
_PickedSet22, 6, 6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: Down, Up 
**  
*Output, history 
*Node Output, nset=Spherical."Sphere RP Set" 
RF2, U2 
*Node Print,  nset=Spherical."Sphere RP Set", SUMMARY=NO 
RF2, U2 
*End Step 

 
Flat Punch (Elastic) 

*Heading 
** Job name: FP4-refine100 Model name: Flat Punch-refine-
Copy 
** Generated by: Abaqus/CAE 6.10-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Cone 
*End Part 
**   
*Part, name=Sample 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
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**   
*Instance, name=Cone-1, part=Cone 
          0.,       -1500.,           0. 
*Node 
      1,           0.,        1500.,           0. 
*Nset, nset=Cone-1-RefPt_, internal 
1,  
*Nset, nset="Cone RP Set" 
 1, 
*Surface, type=SEGMENTS, name="Cone surf" 
START,          40.,        1580. 
 LINE,          40.,        1501. 
 CIRCL,          39.,        1500.,          39.,        
1501. 
 LINE,           0.,        1500. 
*Rigid Body, ref node=Cone-1-RefPt_, analytical 
surface="Cone surf" 
*End Instance 
**   
*Instance, name=Sample-1, part=Sample 
          0., -3846.76281722965,           0. 
*Node 
      1,          80.,    3766.7627 
      2,          80.,    3846.7627 
      3,           0.,    3846.7627 
      4,           0.,    3766.7627 
      5,         800.,    3766.7627 
      6,         800.,    3846.7627 
      7,          80.,    3046.7627 
      8,           0.,    3046.7627 
      9,         800.,    3046.7627 
More nodes, etc 

203, 204, 205, 206, 207 
*Elset, elset=surface_set, instance=Sample-1, generate 
   100,  10000,    100 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=Sample 
*Density 
 2.65e-15,70. 
*Elastic 
 0.03, 0.499 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
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*Friction, slip tolerance=0.005 
 0.1, 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Axi Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet8, YASYMM 
** Name: Bottom Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet7, ENCASTRE 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO 
SURFACE 
Sample-1."Sample top", Cone-1."Cone surf" 
** --------------------------------------------------------
-------- 
**  
** STEP: Down 
**  
*Step, name=Down, nlgeom=YES, inc=1000 
*Static 
0.01, 1., 1e-05, 0.1 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Down Type: Displacement/Rotation 
*Boundary 
_PickedSet39, 1, 1 
_PickedSet39, 2, 2, -4. 
_PickedSet39, 6, 6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: Contact1 
**  
*Output, history 
*Contact Output 
CAREA,  
**  
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** HISTORY OUTPUT: Down 
**  
*Node Output, nset=Cone-1."Cone RP Set" 
RF2, U2 
*Node Print, nset=Cone-1."Cone RP Set", summary=no 
RF2, U2 
*Contact Print, summary=no 
CAREA, 
*End Step 
** --------------------------------------------------------
-------- 
**  
** STEP: Up 
**  
*Step, name=Up, nlgeom=YES, inc=1000 
*Static 
0.01, 1., 1e-05, 0.1 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Axi Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
_PickedSet8, YASYMM 
** Name: Bottom Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
_PickedSet7, ENCASTRE 
** Name: Down Type: Displacement/Rotation 
*Boundary, op=NEW 
** Name: Up Type: Displacement/Rotation 
*Boundary, op=NEW 
_PickedSet40, 1, 1 
_PickedSet40, 2, 2, 4. 
_PickedSet40, 6, 6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: Contact1 
**  
*Output, history 
*Contact Output 
CAREA,  
**  
** HISTORY OUTPUT: Down 
**  
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*Node Output, nset=Cone-1."Cone RP Set" 
RF2, U2 
*End Step 

 

Sphere (Hyperelastic) 

*Heading 
** Job name: Spherefinalcf0 Model name: Sphere_new 
** Generated by: Abaqus/CAE 6.10-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Cone 
*End Part 
**   
*Part, name=Sample 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Cone-1, part=Cone 
          0.,       -1500.,           0. 
*Node 
      1,  -9.18485047e-16,        1500.,           0. 
*Nset, nset=Cone-1-RefPt_, internal 
1,  
*Nset, nset="Cone RP Set" 
 1, 
*Surface, type=SEGMENTS, name="Cone surf" 
START, 2.63692888321968, 1509.24812971375 
 CIRCL,           0.,        1500.,           0.,        
1505. 
*Rigid Body, ref node=Cone-1-RefPt_, analytical 
surface="Cone surf" 
*End Instance 
**   
*Instance, name=Sample-1, part=Sample 
          0., -3846.76281722965,           0. 
*Node 
      1,          12.,    3834.7627 
      2,          12.,    3846.7627 
      3,           0.,    3846.7627 
      4,           0.,    3834.7627 
      5,         125.,    3834.7627 
      6,         125.,    3846.7627 
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      7,          12.,    3721.7627 
      8,           0.,    3721.7627 
      9,         125.,    3721.7627 
     10,          12.,   3834.88281 
     11,          12.,   3835.00293 
     12,          12.,    3835.1228 
     13,          12.,   3835.24292 
     14,          12.,   3835.36279 
     15,          12.,   3835.48291 
     16,          12.,   3835.60278 
     17,          12.,    3835.7229 
     18,          12.,   3835.84277 
     19,          12.,   3835.96289 
More nodes, etc 

*Nset, nset=_PickedSet39, internal, instance=Cone-1 
 1, 
*Nset, nset=_PickedSet40, internal, instance=Cone-1 
 1, 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=Sample 
*Hyperelastic, ogden 
 0.0143, 7.3,  0. 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Friction, slip tolerance=0.005 
0., 
*Surface Behavior, pressure-overclosure=HARD 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Axi Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet8, YASYMM 
** Name: Bottom Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet7, ENCASTRE 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact Pair, interaction=IntProp-1, type=SURFACE TO 
SURFACE 
Sample-1."Sample top", Cone-1."Cone surf" 
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** --------------------------------------------------------
-------- 
**  
** STEP: Down 
**  
*Step, name=Down, nlgeom=YES, inc=1000 
*Static 
0.01, 1., 1e-05, 0.1 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Down Type: Displacement/Rotation 
*Boundary 
_PickedSet39, 1, 1 
_PickedSet39, 2, 2, -1. 
_PickedSet39, 6, 6 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: contact 
**  
*Output, history 
*Contact Output 
CAREA,  
**  
** HISTORY OUTPUT: Down 
**  
*Node Output, nset=Cone-1."Cone RP Set" 
RF2, U2 
*Node Print, nset = Cone-1."Cone RP Set", summary=no 
RF2, U2 
*Contact Print, summary=no 
CAREA 
*End Step 
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Appendix B: MATLAB Codes 

Spherical (Elastic Plastic) 

This code will find the values from the force-indentation curve 

clear 
hold on 
file3 = 'zhao788elastic40.dat'%['SphereE' 
num2str(ctrE),'s',num2str(ctrs),'n', num2str(ctrn),'.dat']; 
fid=fopen(file3,'r'); % Opens .dat file for Reading 
ctr = 1; 
ctr2 = 1; 
while ~feof(fid) 
    tline=fgetl(fid); 
    if isempty(strfind(tline,'N O D E   O U T P U T')) == 0 %Scan till 
header 
        for i=1:9 
            tline=fgetl(fid); % Read 10 lines of junk lines 
        end 
        dataLine=fgetl(fid);%Grabs the reaction force and displacement 
        data = sscanf(dataLine,'%i %f %f'); 
        P(ctr)=-data(2)/10^6;% extracts force data and converts to N 
        del(ctr)=-data(3)/10^6;% extracts disp data and converts to m 
        ctr = ctr+1; 
    end 
    if isempty(strfind(tline,'C O N T A C T   O U T P U T')) == 0 %Scan 
till header 
        for i=1:11 
            tline=fgetl(fid); % Read 10 lines of junk lines 
        end 
        dataLine=fgetl(fid)%Grabs the contact stress 
        if dataLine >0 
            % data = sscanf(dataLine,'%i %s %f %f') 
            data = sscanf(dataLine,'%f') 
            CAd(ctr2)=data(1)/(10^6)^2 % extracts contact area data and 
converts to m^2 
        end 
        ctr2 = ctr2+1; 
    end 
end 
fclose(fid); 
R = 788; 
del = del(find(del>=0))*10^6; 
P = P(find(del>=0)); 
plot(del,P,'s') 
  
max_del = max(del); 
max_P = max(P); 
ind_max_P = find(P==max_P); 
ind_zero_P = find(P==0); 
unload_P = P(ind_max_P:ind_zero_P(1)); 
unload_del = del(ind_max_P:ind_zero_P(1)); 
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load_P = P(1:ind_max_P); 
load_del = del(1:ind_max_P); 
% figure 
% plot(unload_del-unload_del(end),unload_P,'o') 
S = [diff(unload_P)./diff(unload_del)]' 
diff_del_13=abs((0.13*R-load_del))' 
ind_del_13=find(diff_del_13==min(diff_del_13)) 
del_13=load_del(ind_del_13) 
P_13 = load_P(ind_del_13) 
  
s = fitoptions('Method','NonlinearLeastSquares',... 
    'Lower',[0,0],... 
    'Upper',[max_del,max_P],... 
    'StartPoint', [1.1 31],... 
    'TolX', eps) 
form = ['B*d^m'] 
f = fittype(form, 'independent', 'd', 'coefficients', {'m','B'}, 
'options',s); 
fitobj =  fit((unload_del-unload_del(end))', unload_P', f) 
cf = coeffvalues(fitobj) 
max_P 
max_del 
S_real  = 1e6*cf(1)*cf(2)*(max_del-unload_del(end))^(cf(1)-1) 
hold on  
% plot(unload_del-unload_del(end),cf(2)*(unload_del-
unload_del(end)).^cf(1),'k') 
%101.1,1003   103.1,1034 
slope = (1034-1003)/(103.1-101.1); 
P_13_int = slope*(102.44-101.1) +1003 % Interpolates between the points 
to get at 0.13R 
 
 
This code is for solving the Zhao algorithm 
 
%Starting values 
  
% %fine9 
E_sigy = linspace(300,800,100); 
n = .1:.005:.15 
sigy_sig0 = linspace(.5,1.5,100); 
sig0 = 400e6; 
  
v = 0.3; 
  
eR1 = 0.0374; 
eR2 = 0.0674; 
  
ER_sigy = E_sigy/(1-v^2); 
R = 788e-6; 
del1 = 0.13*R; 
del2 = 0.3*R; 
% Outputs from FE analysis or from experiment 
P1 = 1.0238e+03 +0 ; 
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P2 =  2.2804e+03 +0 ; 
S = 3.4932e+08 +0 ; 
  
C1 = P1/del1^2; 
C2 = P2/del2^2; 
  
  
% make 1 if it is the first time running the program 
% make it any number greater than 1 after that 
run_num = 12 
  
%Builds the reference stress matrix and saves to matrix.mat 
if run_num==1 
    sigR1 = ones(length(E_sigy),length(sigy_sig0),length(n)); 
    sigR2 = ones(length(E_sigy),length(sigy_sig0),length(n)); 
    Ep = ones(length(E_sigy),length(sigy_sig0),length(n)); 
    Sp = ones(length(E_sigy),length(sigy_sig0),length(n)); 
    np = ones(length(E_sigy),length(sigy_sig0),length(n)); 
    count =0; 
    for ctrE = 1:length(E_sigy) 
        for ctrS = 1:length(sigy_sig0) 
            for ctrN = 1:length(n) 
                 
                 
                nn =n(ctrN); 
                sigy = sigy_sig0(ctrS)*sig0; 
                E = E_sigy(ctrE)*sigy_sig0(ctrS)*sig0; 
                options = optimset('TolFun',1e-12,'Display','off'); 
                sigR1(ctrE,ctrS,ctrN) = fsolve(@(x) (sigy*(E/sigy* 
(x/E+ eR1) )^nn -x), sig0,options); 
                sigR2(ctrE,ctrS,ctrN) = fsolve(@(x) (sigy*(E/sigy* 
(x/E+ eR2) )^nn -x), sig0,options); 
                Ep(ctrE,ctrS,ctrN) = ER_sigy(ctrE); 
                Sp(ctrE,ctrS,ctrN) = sigy_sig0(ctrS); 
                np(ctrE,ctrS,ctrN) = n(ctrN); 
                count= count+1 
            end 
        end 
    end 
    save 'matrix_redo2'  
      
else 
    % loads the resfence stress matrix and continues the program 
    %     load 'matrix_fine4' 
    %         load 'matrix_coarse' 
    load 'matrix_redo2'  
end 
  
check1 = sigR1(4,6,2) / (sigR1(4,6,2) + 
E_sigy(4)*sigy_sig0(6)*sig0*eR1)^n(2)... 
    - sigR2(4,6,2) / (sigR2(4,6,2) + 
E_sigy(4)*sigy_sig0(6)*sig0*eR2)^n(2) 
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% [Ep,Sp,np] = meshgrid(sigy_sig0,ER_sigy,n); 
  
m1 = Ep.*Sp.*sig0./sigR1; 
m2 = Ep.*Sp.*sig0./sigR2; 
  
%Evaluate the fitting functions 
A1 = 3.66556 + 0.0244179*np; 
A2 = 6.06122-2.15891*np; 
q = 29.0856 - 24.3547*np; 
p = 1.31861-0.154675*np; 
k1 = 1.001 +0.2610*np - 0.5217*np.^2 + 0.1547*np.^3; 
k2 = 1.002 +0.7637*np - 1.9200*np.^2 + 1.255*np.^3; 
  
j1 = 32.77 - 52.59*log(m1) + 33.46*(log(m1)).^2 -4.8*(log(m1)).^3 ... 
    +0.2147*(log(m1)).^4; 
  
j2 = 8.817 - 12.73*log(m1) + 11.99*(log(m1)).^2 -2.032*(log(m1)).^3 ... 
    +0.1049*(log(m1)).^4; 
  
g = A2 + (A1-A2)./(1+(m2./q).^p); 
fp1 = k1.*j1; 
  
fp2 = k2.*j2; 
 
% Calculate Errors 
e1 = C1./sigR1 - fp1; 
e2 = C2./sigR2 - fp2; 
e3 = S./(Ep.*Sp.*sig0.*del2) - g; 
e = abs(e1) +abs(e2) + abs(e3); 
 
%Find location of values 
[r,c,u] = ind2sub(size(e),find(e == min(min(min(e))) ) ); 
 
%Output new values of E, sig_y, and n 
new_E = Ep(r,c,u)*Sp(r,c,u)*sig0*(1-v^2) 
new_n = np(r,c,u) 
new_sigy = Sp(r,c,u)*sig0 
  
min_e1 = min(abs(e1(:))) 
min_e2 = min(abs(e2(:))) 
min_e3 = min(abs(e3(:))) 
min_e = min(abs(e(:))) 
Pd = abs(round([(new_E-210e9)/210e9,(new_n-.127)/.127,(new_sigy-
400e6)/400e6]*100)) 
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Spherical (Hyperlastic) 

file = {'mu8sphere3.dat';'mu8sphere3-reverse.dat'} 
  
  
for ctr_l = 1:length(file) 
    fid=fopen(file{ctr_l},'r'); % Opens .dat file for Reading 
     
    ctr = 1; 
    ctr2 = 1; 
    ctr3 = 1; 
    while ~feof(fid) 
        tline=fgetl(fid); 
         
        if isempty(strfind(tline,'N O D E   O U T P U T')) == 0 %Scan 
till header 
            for i=1:9 
                tline=fgetl(fid); % Read 10 lines of junk lines 
            end 
            dataLine=fgetl(fid);%Grabs the reaction force and 
displacement 
            data = sscanf(dataLine,'%i %f %f'); 
            F(ctr)=-data(2)/10^6;% extracts force data and converts to 
N 
            d(ctr)=-data(3)/10^6;% extracts disp data and converts to m 
            ctr = ctr+1; 
        end 
         
        if isempty(strfind(tline,'C O N T A C T   O U T P U T')) == 0 
%Scan till header 
            for i=1:11 
                tline=fgetl(fid); % Read 10 lines of junk lines 
            end 
            dataLine=fgetl(fid);%Grabs the contact stress 
            if dataLine >0 
                % data = sscanf(dataLine,'%i %s %f %f') 
                data = sscanf(dataLine,'%f'); 
                CA(ctr2)=data(1)/(10^6)^2; % extracts contact area data 
and converts to m^2 
            end 
            ctr2 = ctr2+1; 
        end 
        if isempty(strfind(tline,'E N E R G Y   O U T P U T')) == 0 
%Scan till header 
            for i=1:22 
                tline=fgetl(fid); % Read 10 lines of junk lines 
            end 
            dataLine=fgetl(fid);%Grabs the contact stress 
            if dataLine >0 
                % data = sscanf(dataLine,'%i %s %f %f') 
                data = sscanf(dataLine,'%s %s %s %s %s  %f'); 
                E(ctr3)=data(end)/(10^6)^2; % extracts strain energy 
data and converts to m^2 
            end 
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            ctr3 = ctr3+1; 
        end 
    end 
     
    matrix.F{ctr_l,:} = [0, F(find(d>=0))]; %N 
    matrix.d{ctr_l,:} = [0, d(find(d>=0))]; %m 
    matrix.CA{ctr_l,:} =[0, CA(find(d>=0))]; %m^2 
    matrix.E{ctr_l,:} = [0, E(find(d>=0))]; % 
end 
%% 
% Force Displacement plot and analysis 
R =120e-6; 
h = linspace(0,0.4*R,100); 
E = 3*7.97e3; 
v = 0.499; 
ER = E/(1-v^2); 
  
alpha = 20; 
  
ac = sqrt(R*h); 
P = 4/3*ER*R^.5*h.^1.5; 
  
plot(h,P,'--') 
hold on 
gr_str = ['r+';'kx'; 'ko';'bs';'mo']; 
for ctr = 1:length(file) 
    plot(matrix.d{ctr,:},matrix.F{ctr,:},gr_str(ctr,:)) 
end 
grid on 
xlabel('Displacement, h') 
ylabel('Force, N') 
grid on 
legend('Analytic',file{1},'Location','Northwest') 
% legend('\alpha = 97.1100 ','\alpha = 61.9200 ','\alpha = 59.2200 
','Location','Northwest') 
figurehandle = gcf; 
set(findall(figurehandle,'type','text'),'fontsize',14,'fontweight','bol
d') 
  
%  Fitting and plotting the stress strain curve 
  
  
figure 
hold on 
for ctr = 1:length(file) 
    Fs = matrix.F{ctr} 
    CAs = matrix.CA{ctr} 
    ds = matrix.d{ctr} 
 
    matrix.strain{ctr,:} = [0, 0.2*sqrt(ds(2:end)./R) ]; 
    matrix.stress{ctr,:} = [0, Fs(2:end) ./ CAs(2:end)] 
     
    plot(matrix.strain{ctr,:},matrix.stress{ctr,:},gr_str(ctr,:)) 
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    init = diff(matrix.stress{ctr,:})./diff(matrix.strain{ctr,:}) 
    initE = init(1) 
  
  
s = fitoptions('Method','NonlinearLeastSquares',... 
    'Robust','Bisquare' ,... 
    'Lower',[0,0],... 
    'Upper',[],... 
    'StartPoint', [initE*40/3/pi/0.75,5],... 
    'DiffMinChange',1e-8,... 
    'DiffMaxChange',.1,... 
    'MaxIter',1000,... 
    'TolFun',eps,... 
    'TolX', eps); 
  
form = ['B/a*( -(1-x).^(a-1 )+ (1-x).^ (-a/2-1))']; 
 
f = fittype(form, 'independent', 'x', 'coefficients', {'B','a'}, 
'options',s); 
    [fitobj,gof] =  fit(matrix.strain{ctr,:}', matrix.stress{ctr,:}', 
f) 
    cf(ctr,:) = coeffvalues(fitobj); 
    plot(matrix.strain{ctr,:}, cf(ctr,1)/cf(ctr,2)*... 
        ( - (1-matrix.strain{ctr,:}).^(cf(ctr,2)-1)... 
          + (1-matrix.strain{ctr,:}).^(-cf(ctr,2)/2-1)),'k' ); 
end 
mu0_out_sig = cf(:,1)*3/40*pi*(1-v^2) 
alpha_out_sig = cf(:,2) 
hold on 
  
plot(matrix.strain{1,:},matrix.strain{1,:}*ER*20/3/pi) %plots the 
%linear elastic solution 
grid on 
xlabel('Strain') 
ylabel('Stress, Pa') 
grid on 
legend('\mu_0 = 7.97kPa, \alpha = 20','Reverse Analysis','Linear 
Elastic','Location','Northwest') 
% legend('\alpha = 97.1100 ','\alpha = 61.9200 ','\alpha = 59.2200 
','Location','Northwest') 
figurehandle = gcf; 
set(findall(figurehandle,'type','text'),'fontsize',14,'fontweight','bol
d') 
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Appendix C: Hawkmoth Rearing [21] 

The AFIT Flapping wing MAV research group receives hawkmoth pupae on a 

regular basis from Dr. Mark Willis at Case Western University. Dr. Willis’ lab contains a 

thriving colony of Manduca Sexta, which produces scores of moths each week. The most 

challenging part of raising the hawkmoths, hatching the eggs and feeding the caterpillars, 

is already complete when we receive the pupae in the mail. All they need are a proper 

light cycle and the right temperature in order to eclose (hatch into adulthood). Figure 63 

shows a hawkmoth pupa. The specimen is on its back with the head pointed toward the 

left. The right forewing can be seen wrapped around midsection of the body. The 

abdomen with its many segments and spiracles, points to the right. The “handle” object 

protruding from the head is the proboscis, folded several times. When extended, the 

proboscis of the adult M.sexta can be as long as it’s body, and is used for feeding on 

flower nectar while hovering. 

 

Figure 63: Typical M. sexta pupa and diagram of individual parts 
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A 1x1x1 foot cubic terrarium holds the pupae prior to eclosion. The bottom of the 

terrarium is lined with approximately 1 inch of wood shavings beneath a layer of paper 

towels. This, along with frequent cleaning, is necessary because with each moth’s 

eclosion comes a release of large quantities of waste (meconium) which is the by-product 

of the transformation from caterpillar to moth (Reinecke, Buckner and Grugel 1980). The 

front of the terrarium has doors which can swing open for access from the front and the 

entire top glass pane can be removed for access from the top. The most important feature 

is the back wall made of textured foam. This wall gives the freshly eclosed moth a 

surface to climb up, which is an absolute necessity. The moth must climb off of the 

ground in order to pump fluids through the veins in its wings to stretch them out before 

they harden. Typically, the moth finds a position on the wall in about 10 minutes and has 

fully inflated its wings 20 minutes later. Figure 64 shows two young adult hawkmoths 

which hatched only a few minutes apart. 

 

Figure 64: Two freshly-enclosed M. Sexta specimens. One is only 10 minutes old and 

has not inflated its wings. 
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M.sexta thrives in the warm temperatures of the southern North American 

summer. The pupae prefer a summertime light cycle of long days and short nights, as 

well as warm summertime temperatures. The light cycle for the AFIT moths has been set 

to 14 hours of light and 10 hours of darkness (Willis 2011). The light cycle is 

accomplished using a standard outlet timer wired to a string of LED lights secured around 

the inner walls of a cardboard box (Figure 65). The terrarium with the pupae is placed 

within this box and the lid is then closed, allowing no light from the outside. The 

temperature of the vivarium is set to 80 degrees Fahrenheit and the humidity is kept at 40 

percent in order to replicate summertime conditions. 

 

Figure 65: Enclosure for the pupae: (Left) Closed box creates day/night conditions 

with a timer controlling the LED lights, shown in part (Right) 

The terrarium is checked daily for newly emerged adult moths. They tend to 

eclose at “dusk,” or shortly after their light cycle switches from light to dark. Since the 

cardboard box enclosure around the terrarium allows this light cycle to be set for any 
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time of day, the light-to-dark transition has been set to occur mid-afternoon. That way, 

the moths will eclose in the afternoon and the terrarium can be checked for adults when 

heading home for the day. When an adult moth is found in the pupa terrarium during 

daily inspections, it is transferred to a mesh cage which is constantly open to the light of 

the vivarium. M.sexta is a nocturnal species, and as such is inactive during daylight. The 

adults are therefore docile and essentially dormant as long as the lights are kept on. If the 

lights are switched off, however, the adults will fly for hours against the walls of the 

enclosure and damage their wings. This is to be avoided because much of the research 

that goes on among the AFIT FWMAV research group requires intact forewings.  
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