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Statement of the Problem Studied

The development of standalone, compact fuel cell systems to replace batteries for soldier applications critically depends on the 

emergence of robust reforming approaches for extracting hydrogen from hydrocarbons. For the Army, the ability to effectively 

process logistical fuels like JP-8 and others into useable feed streams for fuel cells would be of great benefit. Microplasma 

reforming, that is, processing in plasmas with sub-millimeter geometries, is an emerging approach for compact and efficient 

chemical processing, and has the potential to enable the transition to a new generation of power sources based on efficient fuel 

cell technology.

A variety of hydrocarbon reforming approaches have been developed, the most important of which are shown in Table 1[1]. 

While these processes have met with varying degrees of success, all the approaches listed share one or more of the following 

limitations: (1) catalysts are required which are subject to the limitations in lifetime imposed by deactivation associated with 

carbon deposition and/or sulfur sensitivity[2, 3], (2) the temperature requirement is so high that it precludes the use of common 

materials, results in thermal expansion mismatch problems, and presents significant thermal integration challenges  for a 

compact unit, or (3) the scheme requires further system complexity in the form of additional processing units. For example, 

pre-reforming may reduce coking and help to reduce sulfur compounds to more easily adsorbed species [4], but it introduces 

additional processing units to the system, is itself subject to catalytic degradation, requires more energy input, adds cost, 

decreases reliability, and significantly increases the initial start-up time[5].

Microplasma reforming is attractive because it does not rely on either catalysts or high temperatures for activation[6]. 

Consequently it does not display sensitivity to catalyst deactivation through poisoning, coking, or coarsening. Since it can be 

carried out near room temperature, the requirements of the materials of construction of reactors are less stringent. It differs 

from conventional plasma processing (as found in semiconductor wafer deposition and etching, for example) in that 

microplasmas have ion and electron densities several orders higher, enabling significantly greater volumetric capacity to break 

hydrocarbon bonds. Presently, knowledge of the mechanisms controlling the efficiency of microplasma-mediated reactions is 

sorely lacking; we propose to ameliorate this situation through a basic study of the details of the mechanisms and factors 

behind these chemical reactions.

A microplasma can be defined as a plasma confined in at least one dimension to 1 mm or less, and is a promising approach to 

the generation and maintenance of stable, glow discharges at atmospheric pressure [7, 8]. Microplasmas have pd values (p, 

operating pressure, and d, characteristic plasma dimension) comparable to those of large-volume, low-pressure processing 

plasmas, but achieve much higher power densities (exceeding 1 kW/cm3) and are generated under conditions that promote the 

efficient production of reactive radicals and transient molecular species formed via three-body collisions. Pulsed excitation on a 

sub-microsecond time scale can create microplasmas with significant shifts in both the temperature and energy distribution 

functions associated with the ions and electrons. This allows for the selective production of chemically reactive species and 

opens the door to a wide range of new plasma chemical reaction pathways, independent of catalysts. Miniaturization bestows 

microplasmas with other advantages over conventional plasmas such as higher electron density (up to and even exceeding 

1015 cm-3), and a high surface-to-volume ratio which yields extraordinarily low resistances to heat and mass transport. 

Consequently, plasma microchemical systems have excellent thermal management characteristics and will mix rapidly, 

producing homogeneous reacting volumes [9]. Despite the strong potential for compact fuel processors, to date we know of no 

other group investigating this extremely attractive approach to conversion of hydrocarbons to hydrogen.

Due to the robustness of this approach, the overall scheme for a microplasma fuel processor to supply a feed stream to a fuel 

cell can be simpler than equivalent schemes based on the conventional reforming technologies listed in Table 1. Shown in 

Figure 1, is a block diagram of a possible implementation example of a solid oxide fuel cell (SOFC)-based power source 

implementing a microplasma reformer for a DoD application. The fuel is JP-8, a high-energy content logistical fuel consisting of 

mixed hydrocarbons of several types. The fuel is vaporized and mixed with a secondary gas (air, steam, or other) serving as a 

diluent or an oxidizer depending on the reaction chemistry to be   targeted. The mixture is aspirated into the microplasma 

reactor which is operating at atmospheric pressure and approximately 50-100°C. The effluent from the reactor is rich in 

hydrogen, and may also possess some C1 and C2 hydrocarbons, as well as sulfur species largely in the form of H2S. This 

effluent passes through a ZnO H2S absorber[4], then directly to the SOFC which can process most of these chemical species 

as fuel or minimally as benign diluents. This basic schematic could be implemented to serve a variety of systems at different 



scales and uses including portable (<500 W), vehicular auxiliary (<5000 W), and stationary (>5000 W) applications. The 

inherent versatility and scalability of the microplasma reforming approach would make these implementations possible.

Another significant benefit of microplasma reforming relates to the environmental compatibility relative to the growing 

importance of minimizing CO2 emissions.  At present there is great pressure to develop new energy sources which in addition 

to making efficient use of fuel, produce no emissions which could impact the environment or the climate. Every established fuel 

processing approach results in the generation of CO2 with the associated negative impacts. Moreover, the emission of CO2 in 

certain DoD applications, such as in Unmanned Undersea Vehicles (UUVs), is undesirable for maintaining stealth operation.  

Our experimental results indicate that reforming of simple hydrocarbons can be accomplished without appreciable generation of 

oxides of carbon. Going forward, this suggests that eventual systems based on this approach can be simpler and cheaper than 

systems which must include measures for CO2 capture in both military and non-military applications.

Summary of Work Completed

We have gained considerable experience with hydrocarbon microplasmas and have significantly increased our knowledge of 

them as reflected in several presentations and publications [10-15]. In the work to date, we have created functional 

microplasma reactors and have used them to carry out reaction experiments with hydrocarbon species. Before constructing a 

reactor, a simple electrostatic model was created (Figure 1) which served as a guide to the design of the initial experimental 

microplasma reactor chip. These reactors (Figure 2) were fabricated and their operation verified with inert gases (Figure 3). 

Discerning the instantaneous input of electrical energy into the microplasma reactor is imperative to evaluating the key metrics 

of energy efficiency, and the creation of an interface of hardware and software which could sample at kilohertz rates and record 

high voltages (>500 V) and low currents (< 1 mA). We successfully created the functional experimental setup shown in Figure 

4.

Hydrocarbon microplasmas were formed using butane and methane (separately), and the current-voltage behavior recorded. 

We believe that we are the first group to explore butane microplasmas as we find no previous reports in the literature. 

Chemistry experiments ensued by sampling the microplasma reaction environments with mass spectrometry, and later gas 

chromatography.

Key results of these experiments are the following: the microplasma environment of butane alone does not produce a net 

chemical reaction under the conditions we assessed; however, introducing air leads to hydrogen production (Figure 5) which 

increases with input power (Figure 6). Curiously, the conversion produces no oxides of carbon, and pure nitrogen alone is as 

effective in causing conversion as air. We conclude that the reaction is a decomposition process rather than an oxidation, and 

that nitrogen serves to improve plasma reaction efficiency [16]. 

In order to estimate overall thermal efficiency, we did an energy balance on the microplasma reactor in operation. This involved 

instrumenting the reactor chip with a downstream thermocouple to assess convective heat transfer and to determine enthalpies 

of the exiting species. The result of this measurement was an efficiency of 35%, defined as the heating value of the hydrogen 

produced divided by the combined heating value of butane fuel fed and electrical energy supplied to the plasma. While the 

efficiency is insufficient for a high-performance compact electrical generation system, it is an encouraging result given the 

non-optimized system represented by the experiment.

Evidence for conversion by decomposition without generation of CO2 is indicated in Figure 7. The figure shows two mass 

spectra; before (blue) and after (red) ignition of the butane plasma mixed with diluents. What is remarkable in this case is that 

the diluent is air. Despite the presence of O2, there is no appreciable formation of oxygenated species, especially oxides of 

carbon. At the resolution of the measurement, there is no evidence for increase in either the CO2 or the CO signals. Partial 

pressure values reflect those inside the analyzer, and not inside the reactor; ratios are equivalent in both locations. The 

hydrogen production is indicated by evolution of the peak at mass = 2 amu; lack of CO2 production is indicated by the 

unchanged peak height at mass = 44 amu. Nitrogen is responsible for the peak at 28 amu, which shows no change in signal, 

indicating no CO formation (also 28 amu).
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Table 1: Reforming processes used to convert hydrocarbons into hydrogen-rich feed streams for 
fuel cells [1]. 

 

Table 2: Comparison between basic attributes of catalytic and plasma-driven hydrocarbon 
conversion processes. 

Attribute Catalytic Process Plasma Process
Sulfur Compounds Highly Sensitive Insensitive 

Carbon Deposition (Coking) Highly Sensitive Insensitive 

Reactor Temperature High Low 

HDS Reactor Required Not Required 

 

 

Figure 1: Example of a solid-oxide fuel cell (SOFC) power source having a microplasma-based 
fuel processor. The hydrocarbon source is high energy content logistical fuel JP-8.  

 

Process Summary 

Partial Oxidation 1200-1500o C process without catalyst or water, difficult to control and 
downscale; catalytic process more attractive with lower T, lower contact time 

Steam Reforming Catalytic process requiring water, >500o C, endothermic-heat transfer limited 

Autothermal Reforming Catalytic process with water; heat is from partial combustion of fuel, system is 
simple 

Internal Reforming Process within SOFC anode compartment, on added catalyst or anode 
Thermal Cracking of 
Hydrocarbons High T process that separates H and C, carbon deposition difficult to control 

Pre-reforming 250-500o C catalytic process; cracks high MW hydrocarbons to help reduce 
coking later 



 
Figure 2: Electrostatic model of microplasma reactor geometry, created to guide design of 
experimental reactor.  

 

 

Figure 3: Microplasma reactor chip made by silicon microfabrication. 

 

 

Figure 4: Xenon microplasma formed in reactor chip to characterize plasma operation. 



 

Figure 5: Experimental setup for characterization of microplasma reactor. 

 

 

 

 

 

 
Figure 6: Hydrogen production occurs when air is introduced into the butane plasma. 

 

 
 
 
 
 
 
 

 



 

Figure 7: Production of hydrogen from butane in a mixture with air; hydrogen output scales with 
power. Vertical scale is linear in both partial pressure and plasma power. 

 

 

Figure 8: Mass spectra of butane/air mixture (approximately 1:1 ratio by mass) before and after 
ignition of microplasma [17]. 
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