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Chapter 12

Agent-based models and optimal control in biology: a discrete approach

NON-PRINT ITEMS

Abstract: Agent-based modeling is an increasingly important tool in computational biology,

since it allows the construction of mathematical models for systems for which it is difficult

or impossible to give a global description through, e.g., a system of differential equations.

Agent-based models are particularly well-suited for capturing phenomena of “emergent”

global dynamics from local interaction rules. Balancing these features are some drawbacks.

An important one is the difficulty of analyzing such models through mathematical tools,

so that simulation is often the only available methodology. This shortcoming represents

a particular hindrance when it comes to the use of such models for the purpose of optimal

control, frequently an objective in ecology and in biomedicine, for instance. Without rigorous

mathematical methods, the discovery of optimal control strategies becomes a purely heuristic

process relying solely on simulation.

This chapter will outline an approach to providing some mathematical analysis tools

for agent-based models by translating them into the framework of polynomial dynamical

systems over a finite field. Through a faithful translation, what is essentially a computer

program now becomes a rigorously described dynamical system within the framework of

computational algebraic geometry which provides many theoretical and computational tools

for finding the long-term dynamic behavior of an agent-based model and for finding and

implementing optimal control strategies.

Keywords Agent-based model, global dynamics, polynomial dynamical system, algebraic

framework, discrete mathematics, optimal control, optimization, heuristic
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1. Introduction

The need to control complex systems, both engineered and natural, pervades our lives.

From the thermostat that controls the temperature in our homes to the software that controls

flight characteristics of the space shuttle during landing, the vast majority of engineered

systems have built-in control mechanisms. Being able to control certain biological systems

is no less important. For instance, we need to control ecosystems for agriculture and wildlife

management. We need to control different parts of the human body to cure diseases such

as hypertension, cancer, or heart disease. And we need to control microbes for the efficient

production of a vast array of biomaterials. With the need for control comes the need to carry

it out in a fashion that is optimal with respect to a given objective. For instance, we need

to devise a schedule for administering radiation therapy to cancer patients in a way that

maximizes the number of cancer cells killed while minimizing side effects. We need to apply

pesticides to fields in a way that minimizes environmental damage. And we need to control

the metabolism of engineered strains of microbes so they produce the maximal amount of

biofuel. Thus, the need for optimal control is a problem we face everywhere. This chapter

will focus on optimal control of biological systems.

The most common approach to optimal control is through the use of mathematical mod-

els, often consisting of one or more (ordinary or partial) differential equations. These equa-

tions model key features of the system to be controlled and include one or more variables that

represent control inputs. The following example illustrates this approach, taken from [21],

where more details can be found. The focus is on the optimization of cancer chemotherapy,

taking into account certain immunological activity. The two relevant variables are x, which

represents the volume of the tumor to be treated, and y, the immunocompetent cell density

capturing various types of T-cells activated during the immune reaction to the tumor. These
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two variables are governed by the system of ordinary differential equations

dx/dt = µCF (x)− γxy,

dy/dt = µI(x− βx2)y − δy + α.

Here, F is a function that represents the carrying capacity of the tumor, a concept adapted

from ecology, which represents that ability of the environment to sustain the tumor. The

Greek letters are constant parameters of the models. For instance, δ represents the rate of

natural death of T-cells. For our purposes the exact model structure is not important, and

details can be found in [21]. For instance, the term −βx2 represents the observation that

tumors suppress the activity of the immune system.

The control objective here is to reduce the tumor volume through the use of a chemother-

apeutic agent. We implement this control with a term −xu, where u = u(t) represents the

control input, namely the amount of the chemotherapeutic agent administered. The factor x

takes account of the assumption that the effect of chemotherapy on the tumor is proportional

to the tumor volume. Thus, the first equation becomes

dx/dt = µCF (x)− γxy − κxu.

What kind of drug regime is appropriate for a given cancer patient depends in part on

the particular state of this patient’s disease. Our goal now is to optimize this treatment

with respect to several factors. On the one hand we want to shrink the tumor through the

administration of a maximal dose of the agent, and on the other hand we need to take into

account the toxic side effects of the medication. Also, the treatment should be as short as

possible. All this can be combined into the cost function

J(u) = ax(T )− by(T ) +

∫ T

0

(cu(t) + d)dt.

This equation represents the cost of applying treatment schedule u for a length of time T . The

optimal control problem now is to find a control u that minimizes this cost function. Solving
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such control problems is an active area of research, and algorithms have been developed to

find u [24]. See also [13] for optimal control problems in systems biology.

Modeling biological systems through differential equations has its limitations, however.

In many cases, the processes involved might be fundamentally discrete rather than contin-

uous. For instance, in the case of a predator-prey relationship between two species inside

an ecosystem, both populations are comprised of discrete individuals that engage in typi-

cally binary discrete interactions. Thus, it is not immediately clear whether one can apply

methods such as differential equations, which assume that the quantities modeled vary con-

tinuously. In molecular biology, when we study regulatory relationships between genes inside

a cell, these relationships are based on the interactions of discrete molecules. Modeling such

systems using differential equations is based on two assumptions: first, there are many in-

dividuals involved, so that we can view them collectively as a continuous quantity; second,

that we are able to describe the individual interactions in a “global” manner, as a term in a

differential equations, usually involving one or more global parameters. Sometimes, both of

these assumptions are justified, such as for large populations of bacteria or large quantities of

chemicals in a fermenter. But at other times, one or the other, or both, of these assumptions

fail. In a cell, there might only be 2 or 3 molecules of a particular protein present at any

given time, so that its role in a regulatory network becomes discrete and stochastic, and

cannot be accurately modeled with continuous functions. And in an ecosystem with several

species, continuous models sometimes cannot accurately capture extinction events, when one

species reaches a very low count.

For these reasons, and others, several other frameworks have been used to model biological

systems. One of these relies on so-called “agent-based” or “individual-based” models. This

type of model has a long history, going back to the 1940s and the work of John von Neumann

[27].

Von Neumann was interested in the process of self-replication and aimed to construct a

machine that could faithfully replicate itself. A theoretical instantiation of such a machine
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turned into the concept of a cellular automaton as a computational model. A very well-

known example of a cellular automaton is John Conway’s Game of Life [4]. Since it includes

many of the basic concepts of agent-based models, we describe it briefly.

The Game of Life takes place on a chess-board-like 2-dimensional grid. This grid can

either be finite or extend infinitely in all directions, thereby obtaining two different versions

of the game. Each square, or cell, on the grid can be either black or white. Since the Game

of Life is intended to simulate life, a cell is instead referred to as either alive (black) or dead

(white). Each cell away from the boundary of the grid has 8 neighbors on the grid that

physically touch it, 4 with which it shares an edge, and 4 that touch only on the corners.

Cells on the boundary have fewer neighbors. To make all cells uniform, one can make the

assumption that a cell at an edge of the grid, but away from the corner, has as additional

neighbors the corresponding cells on the opposite edge of the grid. Thus, we effectively

“glue” opposite edges together, so that the grid is situated on a torus rather than in the

plane. Now that all cells have 8 neighbors we establish a rule that determines the evolution

of the cells on the grid by determining what the status of a given cell is, depending on the

status of its 8 neighbors. The rule is quite simple.

• Any live cell with fewer than 2 live neighbors dies;

• Any live cell with 2 or 3 live neighbors stays alive;

• Any live cell with more than 3 live neighbors dies;

• Any dead cell with 3 live neighbors comes alive.

Thus, the rules are reminiscent of a population whose survival is affected by under- and

overpopulation. If we now initialize this “Game” by assigning a “live” or “dead” status to

each of the cells, then we can use this rule to evolve life on this grid by updating the status

of all the cells in discrete time steps. The result is a vast array of different dynamics that

can be observed, which is largely unpredictable. There is a rich literature on this topic and

many websites with Game of Life simulators.
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General agent-based models have many features similar to this set-up. There is a col-

lection of agents that are distributed across a spatial landscape. In the Game of Life, the

spatial landscape is the grid, and there is one agent per cell. Each agent can be in one of a

(typically finite) number of states, such as “dead” or “alive,” and has a set of rules attached

to it that it uses to determine its state based on the state of those other agents it interacts

with at any given time. In general, agents are able to move around in the spatial landscape,

and there are rules that determine the agents’ movement patterns. Typically, the rules are

stochastic rather than deterministic and are governed by a collection of probabilities. For

instance, agents might be predisposed to follow a certain gradient, representing, e.g., nutrient

availability, but there is some chance that they might move in a different direction. While

there are many other variations and features in particular agent-based models, these few

basic features characterize the agent-based modeling framework. They also are sufficient to

explain the basic differences between agent-based models and equation-based models, such

as ordinary differential equations.

Agent-based models lend themselves very well to a description of dynamical systems that

arise from local interactions of many parts/agents, based on local rules only rather than on

the configuration of the entire system at any given time. And it is very easy to represent

a rich heterogeneous spatial environment that the agents navigate. Thus, the dynamics of

the entire system, or its so-called global dynamics, “emerges” from these local interactions

by applying the local rules repeatedly. In contrast, a system of differential equations, for

instance, explicitly describes the global dynamics of the system up front. Furthermore, all

the specifications for an agent-based model are intuitive, in the sense that they are direct

computational representations of recognizable features in the actual system. This leads to

models that are more faithful to the system to be modeled and that are more accessible to

domain experts. With existing software for model building, they can even be built by domain

experts directly, without the intervention of a modeler or mathematician. But, as always,

there are no free lunches. These advantages come with some significant costs attached.
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The reason that agent-based modeling became widespread only in the last 15 years or

so is due to the fact that larger models with more features require extensive computational

resources that were not available until recently. It is only now possible, barely, to build and

analyze models that might have hundreds of millions of agents and tens of millions of spatial

locations, with agents being very complex in terms of the states they can take on and the rules

they follow. Even moderately complex models require high performance computing facilities

for their analysis, which makes it difficult for individual researchers to use them. High

computational complexity is compounded by the fact that there are very few mathematical

tools available for the analysis of agent-based models. In essence, the only approach to

model analysis is model simulation. That is, from given initializations of agent states and

environmental parameters, one observes the time evolution of the system to draw conclusions

about, e.g., steady states of the model. Through choosing many initializations and doing

many simulation runs from a given initialization in the case of a stochastic model, one aims

to obtain global dynamic information about the model. Little else can be done because,

in essence, the model consists of a computer program rather than a set of mathematical

equations, and there are few things one can do with a computer program other than run it.

The lack of mathematical analysis tools extends in particular to optimal control. Existing

approaches are heuristic in nature, based on domain knowledge. The goal of this chapter

is to describe some of these approaches and to outline steps one can take to expand the

repertoire of available tools to include techniques based on mathematics. The way to do

this is to translate an agent-based model into a mathematical object, such as a system of

equations of some sort, that makes it amenable to mathematical analysis tools. There are

several possible ways in which to do this, and research is only in its early stages. Thus,

the reader should see this chapter as a snapshot of an exciting research area that is evolving

rapidly and provides rich opportunities for contributions at all levels. This chapter showcases

one possible approach and the steps that have been accomplished on the road to developing

mathematical tools for optimal control of agent-based models.
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2. A First Example

Go to http://ccl.northwestern.edu/netlogo/models/RabbitsGrassWeeds. There you will

find an agent-based model of rabbits in a field of grass and weeds. At each time step (or

‘tick’) the rabbits move in a random direction (they lose energy by moving). If there is

grass at their location, they eat it and gain energy. If their energy level climbs above a

certain threshold, they give birth (in this model, a new rabbit is spontaneously created at

the location of the parent). Upon birth, the parents’ energy is halved, and the offspring is

created with this halved energy level. Upon each tick, empty squares (or ‘patches’) have a

certain fixed probability of grass re-generating. Weeds can also be introduced in order to

further complicate the dynamics; their behavior is similar to that of the grass.

Near the top of the page you will find an option that allows you to run this model in

your web browser. Spend some time reading through the description in order to get a feel

for how this model works. Click setup and then go to run the simulation (press go again

to stop the simulation). Note that you can speed up or slow down the model by using the

slider at the top of the interface. Each time you wish to re-initialize the model and start

over, you must click setup again.

In this model, each of the grid squares (henceforth referred to as patches) are agents, and

each rabbit is an agent as well. Notice that the rabbits move around randomly, eating grass

as they encounter it. Note too that the patches are colored green when grass is present, and

black when it is absent. Notice the sliders on the left-hand side: these values can be changed

as the simulation proceeds, or prior to starting a simulation. What do you expect to happen

to the rabbit population if the grass growth is set to a very low rate? What if the grass

grows quickly? What effect would altering the birth threshold have on the amount of grass

present at each time step? Do you think it is possible for the rabbit population and grass

level to stabilize over time? Play around with the sliders to determine if your predictions

are correct. Note that you may need to let the simulation run for several hundred time steps
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(or ‘ticks’ in Netlogo) in order to observe consistent dynamics. Do the populations stabilize?

Do they oscillate?

3. Netlogo: an introduction

Hopefully, the example in Section 2 has given you an idea of what an agent-based model

is: a computer simulation wherein agents interact with their local environment (possibly in-

cluding other agents) based on simple rules. In this section we guide you through several exer-

cises involving agent-based models using Netlogo [28], a software tool developed to work with

agent-based models. Netlogo can be downloaded for free at http://ccl.northwestern.edu/netlogo/.

There you will find detailed instructions on how to install it. Netlogo is its own program-

ming language, so named because it is a variation of the Logo language. While many key

features are unique to Netlogo, users familiar with Logo will likely note similarities. Note

too that Netlogo is continually updated and newer versions released. As of the time of

this writing, the latest version is Netlogo 5.0. All files and exercises associated with this

chapter will be conducted using this version; some adjustment may be necessary for newer

(or older) versions. While there are many other software platforms available and in use

for agent-based modeling, for the remainder of this chapter we will use Netlogo to intro-

duce and examine agent-based models. It has the convenient advantage of providing the

user with an intuitive graphical interface, which we will use to aid our understanding of

the models we will examine. In addition, the standard installation comes with a library

of models, all of which are open-source. Thus we may build models from scratch or we

may choose to alter an existing model. You may wish to go through the tutorials found at

http://ccl.northwestern.edu/netlogo/docs/. A complete dictionary of programming terms

can be found at http://ccl.northwestern.edu/netlogo/docs/dictionary.html. All exercises in

this section refer to the “Rabbits Grass Weeds” model introduced in Section 2. It should

be noted that for Exercises 12.1 and 12.2, the web-based version of the model can be used

(via http://ccl.northwestern.edu/netlogo/models/RabbitsGrassWeeds), but Exercises 12.3

and 12.4 require installation of the Netlogo software.
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Exercise 12.1. Note the two sliders weeds-grow-rate and weed-energy. By setting

weeds-grow-rate to be any non-zero value, you will notice that the landscape of the model

has been altered, as there are now patches containing weeds interspersed with the grass

(represented as purple patches). What effect does this have on the rabbit population?

How about on the grass population? What happens when you increase weed-energy? Set

grass-grow-rate and weed-grow-rate to be equal, and set grass-energy and weed-energy

to be equal as well. What do you think will happen to the population levels now? Determine

slider values so that the following situations occur:

(a) The grass and weeds stay at (roughly) the same level (as shown in the plot window).

(b) The weed levels (as shown in the plot window) are higher than the rabbit levels and the

rabbits die out.

(c) The weed levels (as shown in the plot window) are higher than the rabbit levels and the

rabbits do not die out.

Exercise 12.2. Set weed-grow-rate and weed-energy-level to 0, and grass-grow-rate

and grass-energy to 5 if they are not already at those levels. Set birth-threshold to 15,

and press setup and go to restart the simulation. As the simulation runs, gradually decrease

birth-threshold to 10, and then to 5. You will notice in the plot window that the rabbit

population oscillates at a higher amplitude as you decrease birth-threshold. Why does

this happen? As you further decrease birth-threshold to 2 or 1, the rabbits die out. Why

does this happen?

Exercise 12.3. Right-click on the graphical interface and select Edit.... Notice that

the boxes labeled ‘World wraps horizontally’ and ‘World wraps vertically’ are checked.

This means that when a rabbit moves left from a left-most patch, it will reappear on the

corresponding right-most patch (and similarly if the rabbit moves vertically from a top-most

patch). If you uncheck those boxes, the rabbits will be bound by the edges of the map (so

we can think of them as being ‘fenced in’). What effect does checking these boxes have on

the rabbit population? What effect does it have on the grass?
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Exercise 12.4. By altering the code in the ‘Code’ tab, change the patches in the model

so that there is a river that separates the field into two halves. Further alter the code so that

grass and weeds cannot grow in the river, and rabbits cannot move across the river. What

effect does this have on the rabbit population over time? What if weeds are introduced on

one side of the river but not on the other? What happens if we do not allow the world to

wrap vertically or horizontally (see Ex. 12.4)?

4. An Introduction to Agent-Based Models

Mathematical modeling is a method of encoding relationships and interactions in a nat-

ural or engineered system into a formalized system; the models can then be studied and

analyzed using a variety of mathematical approaches. Models allow researchers from a wide

variety of disciplines to examine systems and their emergent behavior. For example, a model

may be used in order to make predictions about the future behavior of a system, or it may be

used to solve a complicated problem explicitly. Agent-based models are a class of computer

models in which entities (referred to as agents) interact with each other and/or their local

environment. Formally:

Definition 12.1 (Agent-based model). A computer model that consists of a collection

of agents/variables that can take on a typically finite collection of states. The state of an

agent at a given point in time is determined through a collection of rules that describe the

agent’s interaction with other agents. These rules may be deterministic or stochastic. The

agent’s state depends on the agent’s previous state and the state of a collection of other

agents with whom it interacts. [19]

By allowing agents to assume only a finite number of possible states and by placing

the dependence of those states on a series of rules, agent-based models are well-suited for

computer implementation. Systems such as the human immune system are increasingly

being implemented in the form of agent-based models (with individual cells as the agents,
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of which there may be many types) as more and more research involves the use of in silico

simulation to study the properties of this and other similarly complex systems.

Agent-based models have the advantage of being well-suited for modeling many different

types of systems. They have been used to study social interactions among individuals,

the spread of disease through populations, scheduling and efficiency of factory processes,

how cells react to drug treatments, and many other systems. It is perhaps worth noting that

many of the current issues in the scientific community are interdisciplinary. Finding a cure for

cancer will involve geneticists, biologists, mathematicians, chemists, and perhaps many other

specialists. Agent-based models have an intuitive formulation and can often be examined via

a graphical interface. Thus they are a natural tool for promoting interdisciplinary research,

as the mathematics underlying the models is hidden in the programming; in other words, it

is possible for biologists, chemists, and other researchers to make use of agent-based models

without a full background in the mathematics that are involved in creating the model. At

the same time, the mathematical structure remains and can be explored concurrently by

mathematicians.

In developing the best drug to administer to treat a particular disease, researchers in the

past have relied on trial-and-error methods via repeated experimentation on live subjects.

With an accurate model of the subject, however, such experiments can often be faithfully

reproduced in silico; that is, they can be run on a computer and analyzed with far less

preparation and expense. In addition, computer simulation saves time: given an accurate

model of the immune system, a year’s worth of real time can be simulated in several minutes.

Experimentation remains part of the process - a model will always have a limited ability to

predict and must be correlated against empirical data in order to ensure that the models

are indeed faithful simulations of the actual physical system. Thus, models are best used to

inform in vivo experimentation, which in turn produces results that can be used to calibrate

the model further.
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Even within the scope of mathematical modeling, there are several noteworthy advan-

tages to agent-based modeling. One such advantage is that they are effective for modeling

systems wherein many agents follow the same set of rules (e.g., rabbit populations or blood

cell types). In particular, models containing spatial heterogeneity can be effectively repre-

sented via agent-based models while perhaps not so easily using, for example, ordinary or

partial differential equations (ODEs). Altering the spatial dynamics of an agent-based model

consists of changing several lines of code or less, while such changes can be difficult (and

perhaps even impossible) to implement in an ODE model.

While agent-based models provide a convenient and natural setting for studying complex

systems, there are several issues within the research community that are currently unresolved.

A 2006 paper [9] written by a large group of researchers identified two main obstacles: the

first is the lack of standardization of the description of agent-based models, and the second is

a lack of rigorous mathematical formulation of the system itself. Descriptions of agent-based

models can vary in different settings, and as of this writing there is no standard definition that

is universally agreed upon. Some models are developed to simulate physical processes, and

others are developed in the framework of graph theory. In some cases models are developed

in order to study only a certain aspect of the given system; thus the model may have more

variables pertaining to certain processes than others. A research article may begin with the

statement of an objective, or it may begin with a description of the model itself. In some

cases, the rules that govern the updating of the agents’ state variables are deterministic,

and in other cases they are stochastic. All of these issues would be resolved if there was a

standard protocol for describing agent-based models (indeed, one such protocol is proposed

in [9]). The need for an agreed-upon structure to be followed is perhaps most clearly felt

in the model’s presentation. In particular, the layout of the model presentation ought to be

standardized so that a reader immediately knows where to look in the description in order to

learn what the model describes and what its rules are. In the current literature models are

presented in myriad forms, and the descriptions of the agents, environments, and rules come
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in no particular order. Thus a reader is required to scour the paper for pertinent details that

might otherwise be presented in some standard way.

The second major issue concerns the lack of rigor in the formulation of the model. In

many cases, the description of a model is given in several paragraphs, describing in some

imprecise manner what the agents are and how they interact with each other. In fact, in order

for agent-based models to be implemented on computer software, there are intricate rules

embedded in the programming of the models. These rules and equations are often glossed

over if not entirely omitted; if they are given, it is typically through a verbal description

rather than a strict mathematical formulation. Looking back on the example in Section 2,

the precise way in which the rabbits move is not described. For example, it is unclear from

a simple description whether the rabbits can move diagonally, or whether the distance they

move at each time step is variable or constant. In fact, even running the model does not

immediately answer this question - it is only made explicitly clear by thorough examination

of the code. In order to describe such a model rigorously, it is necessary that this information

(and other similarly imprecise descriptions) be presented clearly and unambiguously.

In addition to these issues, an author may spend several paragraphs explaining how the

model was formulated that could just have easily been given in one or two equations. Short

and precise definitions can save time for the reader and also make the author’s intentions

explicit. One proposition to overcome this lack of formalization is presented in [10]; this

work proposes a rigorous mathematical representation for agent-based models as polynomial

dynamical systems. A further description of such systems can be found in [26] and is

described in Section 8.

5. Optimization and optimal control

Agent-based models are typically created to simulate some real-world process in order to

aid investigation. Once a model has been created, a natural next step is to ask: what are we

to do with it? In this section we give a brief overview of optimal control and optimization,

and introduce these ideas as they apply to agent-based models.
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Optimization is the process of finding the best solution with respect to a particular goal.

For example, suppose we have a model of the immune system battling a bacterial infection,

and we wish to study the effects of certain drugs on this battle. We may wish to find

out which drug does the least amount of tissue damage while curing the infection - this is

an optimization problem, because we are searching for the best drug with respect to the

stated goal. On the other hand, perhaps our goal is to cure the infection in the shortest

time possible, regardless of the tissue damage caused. This would be another optimization

problem. It is likely, then, that the solution to the optimization problem depends on the

optimization goal. In this scenario, the drug which cures the infection the quickest may

consequently do more tissue damage than other drugs (though not necessarily); on the other

hand, the drug that causes the least tissue damage might not cure the infection in the shortest

possible time. In this example, optimization is a process of minimization: in one case we wish

to minimize tissue damage and in the other we wish to minimize the healing time. However,

it is also possible that the solution of an optimization problem is a process of maximization:

given a model of an immune system fighting a fatal illness, what treatment will enable the

patient to survive the longest? In fact, it may be that the goal of the optimization problem

is to minimize one value while maximizing another. For example, our optimization goal

may be to minimize tissue damage and maximize the expected lifespan of the patient, given

that we can only administer a particular drug a fixed number of times. In general, however,

optimization is the process of finding the best solution, depending on the objective.

Typically, optimization is a complicated process, and becomes even more so when realistic

constraints are put in place. Through the use of agent-based models it may be possible to

obtain a solution to an optimization problem that is not feasible in actuality: for example,

the solution may exceed monetary limitations, may require actions that are not permitted

by health care regulations, or may require interaction with the patient in an impractical way

(e.g., if the solution calls for treatment every hour for 100 consecutive hours, or for 100% of

the population to receive vaccination). Nevertheless, optimization remains a natural means
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of applying mathematics to solve real-world problems. Such problems are often framed as

questions of optimization: what is the best outcome that can be produced based on the

properties of the model?

Optimal control is a slightly different notion. In an optimal control problem, we ask the

following question: given a particular state that we hope to reach, what is the most efficient

way of reaching that state? In other words, we know the state of the system that we hope to

reach, and the control problem is to find the solution that steers the system to that state in

the best manner. Using the model of the immune system fighting an infection as an example,

we may formulate an optimal control problem as follows: given that we wish to eliminate

the number of infected cells in one month, what is the best drug treatment schedule we can

devise? To summarize: in an optimal control problem we know the state we hope to reach

and we search for the best way to reach it, whereas in an optimization problem, a goal is

stated and we compare solutions to see which solution maximizes or minimizes the stated

goal of the problem.

We now present an example, explaining several terms related to optimization and optimal

control that will be used in Sections 6 and 7. We then conclude this section with definitions

of said terms. We do this in order to standardize and clarify the terminology within this

chapter. Note that while many terms are also used in optimal control for continuous systems,

there might be subtle differences in their meanings when applied to agent-based models.

Furthermore, as this chapter is meant to provide an introduction to the topic, lengthy formal

definitions are outside the scope of this text. For a more formal treatment see [16].

Example. Suppose that we are modeling lung cancer and we wish to study the effect

of a certain drug. We formulate our optimal control problem as follows: which treatment

schedule should we choose in order to reduce the number of cancer cells so that it remains

below some fixed threshold over the course of one year, given that we wish to minimize the

number of times the drug is administered and maximize the number of healthy cells? (See

the example given in the chapter introduction.)
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In this case, there will be many variables: the number of healthy cells, the number of

cancer cells, the rate at which cancer cells grow, the rate at which healthy cells regenerate,

the expected lifespan of the patient, the frequency with which the drug is administered, the

type of drug, and so on. Some of these variables will have fixed values: for example, the rate

at which healthy cells regenerate (when no treatment is administered) can be determined

through experimental measurements, and in fact this rate helps to define the model itself.

Such variables are referred to as model parameters - they are a part of the specification of

the model. The repeated interactions of the entities in the model, such as immune cells or

rabbits, is referred to as the model dynamics. Note that we will only have direct control

over some of the variables, and others we will simply measure by observation. For example,

during each day of the simulated treatment we can decide whether or not to administer the

drug; thus we have direct control over the value of this variable. We refer to these as control

variables, because we have direct control over their values and they exercise control over

certain aspects of the model. On the other hand, we might not be able to control over other

aspects, such as the number of white blood cells present at the site of an infection. We refer

to variables of this type as state variables because they help to describe the state of the

system at any given time.

In this example, our only control variable is a binary decision whether or not to administer

the drug on a given day, thus there are only two possible values for this control variable at

each time step. For any given day, we may represent that the drug was administered that

day by assigning that variable the value 1, and represent that the drug was not administered

by assigning that variable the value 0. In this situation, then, a control schedule is a vector

of length 365, of which each entry is either 0 or 1. Thus there are a total of 2365 possible

treatment schedules. However, it is likely that not all possible treatments will reduce the

number of infected cells below the fixed level. The control schedules that do achieve this are

solutions to the optimal control problem. The solution space is the set of all such solutions.
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Recall that we are trying to find the best solution among many candidates. In order to

do this, we must have some way of ranking individual solutions. We do this by introducing

a cost function. We are attempting to steer the system to a particular state, and each

solution achieves that goal at a certain cost. We wish to determine the best solution (i.e.,

the optimal control); thus we wish to find the solution that minimizes the cost function.

Earlier we noted that in the immune system example the best solution was the solution that

involved the least number of treatments; thus, in this example a reasonable cost function

might involve the sum of the entries in the solution (i.e., the number of days on which the

drug was administered). For the purposes of this chapter, the goal of the optimization and

the optimal control problems will always be to minimize the associated cost function.

In our example, we wish to minimize T , the total number of days the drug is taken,

and maximize I, the number of healthy cells. Then a reasonable cost function might be

c(T, I) = T − I. Here we want to maximize I; this is the same as minimizing −I (in this

way we can always formulate our problem so that the goal is to minimize the cost function).

However, it is perhaps more realistic that one of our optimization goals has a higher priority

than the other. For example, we may suppose that maximizing the number of healthy cells is

more important than minimizing the number of treatment days. In that case, we introduce

weighting coefficients to alter the cost function. For example, it may become c(T, I) = T−5I.

This has the effect of increasing the importance of the healthy cell count when evaluating

the cost of a control schedule. It is important, however, that we use the same cost function

for each control schedule in order to maintain consistency.

In order to use our model to obtain results, we simulate the model a number of times

and make observations on the results. We might, for example, administer a treatment every

day. This particular solution is represented as a string of 365 consecutive 1’s; we implement

this in the agent-based model and count how many healthy cells there are after one year of

simulated time. We then evaluate the cost function based on this information. Given that

agent-based models are often stochastic in nature (meaning that while the rules are fixed, the
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model dynamics depend on many random variables), results obtained from one simulation

are typically not reliable. We eliminate such variation by simulating a given control schedule

many times and using averages for evaluation in the cost function.

Of all the possible 2365 solutions, there must be one that is better (or at least no worse)

than every other solution. Strictly speaking, such a solution is referred to as an optimal

solution. However, in many cases we cannot run all possible solutions because of the monu-

mental amount of computing time involved. Thus, for the purposes of this chapter, we refer

to the best solution we are able to find as the optimal solution, with the caveat that there

may indeed be a better solution elsewhere in the solution space.

We now define the following terms, each of which have been illustrated in this example.

Definition 12.2 (Terms).

• Model parameters: quantities that are part of the model specification. They have

fixed values.

• Model dynamics: the interaction between the state variables in a model. In

general, the model dynamics will be affected by the model parameters and the rules

that govern the interaction of the variables.

• State variable: a variable whose value cannot be specified. State variable values

affect the model dynamics; they are affected by the value of other state variables,

model parameters, and control variable values.

• Control variable: variables whose value can be specified by the user. Altering the

value of a control variable will (in general) have some effect on the resulting model

dynamics.

• Solution: a sequence of inputs to the control variables. A full solution assigns a

value to each control variable at each time step; a partial solution is a sequence

wherein values are either only assigned to some of the control variables, or are

assigned to the control variables at only certain time steps.
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• Solution space: the set of all possible solutions. If p1, p2, . . . , pn are the control

variables and each parameter pi (for 1 ≤ i ≤ n) can take on ai possible values, and

there are a total of t time steps, then the solution space will consist of

n∏
i=1

at
i = at

1 · at
2 · . . . · at

n = (a1a2 · · · an)t

solutions (thus each solution is a vector of length t).

• Population: a subset of the solution space. The population may be the entire

solution space or a proper subset.

• Cost function: a function that assigns a value to each possible solution. In gen-

eral, the cost function will depend upon a combination of state variables and other

quantifiable aspects of the model dynamics.

• Optimal solution: In a general optimization problem the optimal solution is a

solution that achieves the stated optimization goal in the best way. In an optimal

control problem, it is the solution that is associated with the minimum value of the

cost function.

Use the modified rabbit and grass model file RabbitsGrass.nlogo at http://admg.vbi.vt.edu/software/rabbitsgrass-

netlogo-files/ to answer the questions in this section. Once you have opened the file, you

will find a description of the interface settings under the Info tab.

Exercise 12.5. On the left-hand side of the model, you will notice sliders for the follow-

ing values: initial-rabbits, initial-grass, birth-threshold, grass-grow-rate, grass-energy,

move-cost, world-size, poison-strength. Are these model parameters or state vari-

ables? Explain.

Exercise 12.6. List three state variables and one control variable for this model.

Exercise 12.7. Suppose the control objective is to minimize the number of rabbits while

also minimizing the number of days on which poison is used. What is the difference between

a solution and the optimal solution?
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Exercise 12.8. Click restore-defaults, set poison-strength to 0.5, and then click

setup. Now, click poison repeatedly until you have run through the entire simulation time.

Note the cost. Now click degrade-poison so that it is in the On position. Click setup and

then repeatedly click poison again. What do you notice about the cost this time? Is it

higher or lower? How can you explain the difference?

Exercise 12.9. Using the buttons poison and don’t poison as you wish, run through

the simulation several times, taking note of the cost for each solution. What is the lowest

cost you are able to achieve? If you now reduce poison-cost to 5 and increase rabbit-cost

to 15, you will notice that the cost when using the same schedule is now different. Is it lower

or higher? Why do you think this is? Try to find a schedule that reduces the cost to less

than 10, 000. How about less than 5, 000? Turn degrade-poison? to the On position and

try to achieve similarly low costs. Do you notice any patterns in the solutions in each case?

Exercise 12.10. Run the same schedule twice (for 1 run each time). You should notice

that the costs are different each time. Why does this happen? Explain why this is an

important issue, and suggest a method for dealing with this issue.

Exercise 12.11. Click restore-defaults, then setup. Change num-runs to 10, then

click go. Note the average cost over these 10 runs. Now change the number of runs to 20,

then 40. What do you notice about the cost? Is it stabilizing? What is the least number

of runs required in order to achieve a reliable cost? How would you justify your answer

mathematically?

Exercise 12.12. What effect does altering poison-cost have on the cost of a fixed

schedule? What effect does rabbit-cost have? What do you think are reasonable choices

for these values if this were an actual field containing rabbits and grass? Justify your answer.

6. Scaling and aggregation

Our investigation of agent-based models and how to formulate control problems for them

motivates this section and the next. Searching for an optimal solution in such models often
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requires running many thousands of simulations, thus performing such simulations as quickly

as possible is a primary concern. In this section, we discuss means of reducing the run-time

and complexity of agent-based models via scaling and aggregation.

Scaling is a method of shrinking the size of an agent-based model in order to improve run

time. In Exercise 12.1, we explored the “Rabbits Grass Weeds” model. The dimensions of

this model are 43× 45 patches for a total of 1935 patches. The default number of rabbits is

150. In an attempt to scale this model, we may reduce the dimensions (and correspondingly,

the initial number of rabbits). If we change the dimensions to 25 × 25 for a total of 625

patches, we may choose the initial number of rabbits to be 150× 625
1935
≈ 48. Our hope, then,

is that the pertinent model dynamics remain the same at this reduced size, since in that case

we can run all subsequent trials at this reduced size for a substantial decrease in run time.

The first question we need to answer is exactly what it means for the model dynamics

to remain the same, and how we can verify that this is indeed the case. Since we are using

the model with a specific control objective in mind, and the value of a solution relies on the

associated cost function, this cost function will help us determine how to quantify whether

our scaled model retains the pertinent dynamics. In Section 5, we used the “Rabbits and

Grass” model to determine control schedules for poisoning the rabbits. In that case, our

cost function relied on two parameters: the rabbit population, and the number of days in

which poison was used. In particular, the day-by-day grass levels are not relevant to the

cost function, nor are the energy levels of the rabbits; thus these parameters need not be

preserved in the scaled model. In the scaled model, the number of days in which poison is

used is unchanged, so this variable is also unaffected by scaling. Then the only parameter

we need to preserve is the rabbit population. To be more specific, we need to answer the

following question: what are the smallest dimensions we can use in the model (by scaling

down the number of rabbits accordingly) so that the average day-by-day rabbit population

dynamics in the scaled model follow the same pattern as those dynamics in the original

model? We answer this question by simulating many runs at each size and keeping track of
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the population levels for each. We can then calculate the correlation using any of a number

of statistical methods; one such method is now presented.

6.1. Correlating data sets. Suppose we obtain two sets of data and wish to know

how closely related they are. The absolute numbers may not tell the whole story, since

the patterns in the data may remain similar even if the magnitude of the values change.

Here we describe how to calculate Pearson’s sample correlation coefficient, a real number

r ∈ [−1, 1], which estimates how closely correlated two data sets are. At r = 1, there is

perfect correlation, such as between the ordered data sets {1, 2, 3} and {2, 4, 6}. At r = −1,

there is perfect negative correlation, meaning that as the data increase in one set, they

decrease by precisely the same proportional amount in the second data set (this value is

obtained for data sets {1, 2, 3} and {−8,−9,−10}, for example). At r = 0, there is no

connection between the two data sets at all (this value is obtained for data sets {1, 2, 3} and

{1, 2, 1}). Naturally, the larger the data sets the more informative the correlation coefficient.

We now describe how to calculate r in general and then provide an example.

Definition 12.3 (Pearson’s sample correlation coefficient). Let x, y be data sets con-

sisting of n points (labeled sequentially as x1, . . . , xn and y1, . . . , yn), and let x̄ and ȳ be the

mean value of x and y respectively. Then Pearson’s sample correlation coefficient r is defined

as

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2

n∑
i=1

(yi − ȳ)2

.
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Example. Let x = {150, 30, 40, 54, 72} and y = {72, 18, 10, 30, 40}. Then x̄ = 69.2

and ȳ = 34. Then

r =

5∑
i=1

(xi − x̄)(yi − ȳ)√√√√ 5∑
i=1

(xi − x̄)2

5∑
i=1

(yi − ȳ)2

=
(80.8 · 38) + (−39.2 · −16) + (−29.2 · −24) + (−15.2 · −4) + (2.8 · 6)√

(80.82 + (−39.2)2 + (−29.2)2 + (−15.2)2 + 2.82)(382 + (−16)2 + (−24)2 + (−4)2 + 62)

=
4476√

9156.8 · 2328
≈ 0.969.

Thus we see that these two sets of data are in fact very closely positively correlated, even

though the values in y are approximately one half of the corresponding values in x. Since

agent-based models are generally stochastic in nature, the data obtained will seldom present

a perfect description of the system, because an infinite number of simulations would be

required. Thus sample correlation coefficients of 1 or −1 are very highly unlikely. Then we

may choose our desired correlation coefficient r, and when scaling the model we simply select

the smallest dimensions that produce data whose correlation coefficient is at or above this

level.

6.2. Cost function analysis when scaling. Once we have determined how small we

can safely scale our model, we must also be cautious about numerical results obtained from

this model, as indicated in the following example.

Example. Let ri be the number of rabbits alive on day i, and let ui be the control decision on

day i (thus if we use poison then ui = 1 and if not, ui = 0). Let ~u = [u1 u2 . . . un], where n is

the total number of simulated days. Suppose our cost function is c(~u) = a·
∑n

i=1 ri+b·
∑n

i=1 ui,

where a, b ∈ R are constants. Once we have scaled our model, we attempt to use it to de-

termine the control schedule which minimizes this cost function. When doing so, we must
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be careful to scale the constants a, b as well, since otherwise, we may obtain meaningless or

misleading results, as the following results suggest.

Example. Let a = 100, b = 2000, n = 5, ~u = [0 1 1 0 1], ~v = [1 0 0 0 0]. Suppose the aver-

age rabbit numbers for ~u for the five simulated days are {150, 30, 40, 54, 72} and by scaling,

we are able to reduce the model size and achieve average rabbit numbers {75, 15, 20, 27, 36}.

Using another control schedule ~v we obtain population levels {150, 200, 40, 8, 10} (and the

corresponding scaled population values are {75, 100, 20, 4, 5}).

Comparing the cost of the two schedules at the original size, we have:

c(~u) = 100(150 + 30 + 40 + 54 + 72) + 2000(0 + 1 + 1 + 0 + 1) = 40600,

c(~v) = 100(150 + 200 + 40 + 8 + 10) + 2000(1 + 0 + 0 + 0 + 0) = 42800.

Without scaling coefficients a, b, we would obtain the following costs using the scaled model:

c(~u) = 100(75 + 15 + 20 + 27 + 36) + 2000(0 + 1 + 1 + 0 + 1) = 23300,

c(~v) = 100(75 + 100 + 20 + 4 + 5) + 2000(1 + 0 + 0 + 0 + 0) = 22400.

From the original model, we conclude that ~u is a better solution than ~v (since the associated

cost is lower), but from the reduced model we conclude that in fact ~v is better than ~u.

This is due to the fact that when scaling the population values, even though the dynamics

correlated perfectly, the coefficients now give less weight to the rabbit values, since these

numbers are smaller in magnitude. In order to compensate for this, we must account for the

rabbit numbers being halved by doubling a. At the same time, we need not scale b because

the number of days remains constant at all model sizes. Scaling a and b accordingly gives

the following revised costs for the scaled model:

c(~u) = 200(75 + 15 + 20 + 27 + 36) + 2000(0 + 1 + 1 + 0 + 1) = 40600,

c(~v) = 200(75 + 100 + 20 + 4 + 5) + 2000(1 + 0 + 0 + 0 + 0) = 42800.
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Here we obtain essentially the same cost as the original model, and thus eliminate the

discrepancy in cost.

The “Rabbits and Grass” model lends itself nicely to scaling because the initial distri-

bution and location of rabbits and grass is random. Thus, when reducing the dimensions,

we may still choose which patches have grass at random, and likewise may randomly choose

where to place our rabbits at the start of the simulation. But what about models that are

not so spatially homogeneous? Suppose the landscape included a river, or a rocky area in

the upper right-hand corner of the map? In such cases, we cannot simply reduce dimensions

because the spatial layout of the model may be critical to the dynamics. Thus in general, a

more sophisticated approach is required for spatially heterogeneous models.

Suppose that in the “Rabbits and Grass” model, the field consists of a hill whose peak is

at the center of the field. Going out from the peak of the hill, the altitude decreases; thus at

the periphery of the map, the land is flat. Suppose further that we now distinguish between

various levels of grass: each patch may have little or no grass, some grass, or a lot of grass.

Finally, suppose the grass grows more abundantly at higher altitudes: thus at the peak of

the hill there is a lot of grass, and at the periphery there is less. If we wish to model rabbits

on such a landscape, it is important to maintain these characteristics as we scale the field.

The first step of our approach is to create a matrix that represents the physical landscape.

We may do this by using the values 0, 1, 2, 3 (for example) to represent how much grass a

given patch contains (with 3 being the most abundant and 0 representing little or no grass).

Suppose our original model is 10× 10 and has layout as shown in Figure ??.

** Insert Figure 12-original Here **

In order to scale the model, we reduce the landscape using the nearest neighbor algo-

rithm. First, we decide what dimensions we would like our reduced model to have; suppose

it is n×n. We then overlay an evenly-spaced grid of n×n points over the original landscape

(see Figure ??). Finally, we select values for each point by choosing the value of the neighbor

nearest to that point (see Figure ??).
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** Insert Figure 12-overlay Here **

** Insert Figure 12-scaling Here **

Note that this is only one algorithm that can be used for scaling a spatially heterogeneous

model. Other methods include bilinear interpolation and bicubic interpolation; the reader is

urged to explore the details of these algorithms on their own as this chapter provides only

an introductory look at scaling.

Aggregation is another method of reducing computation and run time by simplification of

the agent-based model. Rather than physically scaling the entire model, we may aggregate

certain agents into groups and view each group as an agent. Thus there are fewer entities to

keep track of, and fewer decisions that need to be made. This strategy is particularly helpful

in models consisting of many agents of the same type, or many agents that follow the same

set of rules. In modeling seasonal animal migration, for example, we may choose to aggregate

a herd of antelope into one agent: the location of this agent would thus represent the average

location of each individual in the herd. We can even represent certain antelope dying off and

others being born by altering the size of the agent (e.g., as the antelope herd interacts with

an aggregated prey agent such as cheetahs or lions, the size of each may expand or contract

accordingly). Of course, such methods may not be possible depending on the aim of the

model, and certain agents may not be amenable to aggregation. In particular, this strategy

tends to be more difficult to implement in models with a high level of spatial heterogeneity

or a high level of specification at the agent level.

Whereas scaling requires the dimensions of the model to be reduced (and other model

parameters accordingly scaled), aggregation generally requires reconstruction of the model,

since the scope of the model is altered as the agent structure is reformulated. In that sense,

aggregation can be more involved than scaling. On the other hand, the long-term goal of

both techniques is to improve run time and reduce computation, so the extra steps may be

well worth the effort. A combination of both techniques can provide substantial decreases

in run time and simplification without loss of pertinent model dynamics or detail.
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The following exercises refer to the modified Rabbits and Grass model, RabbitsGrass.nlogo,

available at http://admg.vbi.vt.edu/software/rabbitsgrass-netlogo-files/. Please read the

Info tab to familiarize yourself with the details of this model.

Exercise 12.13. Run the model with the default values for world-size 44, 22, 5. Take

a snapshot for each case, and examine the population plots. What differences do you notice?

Do you think it is safe to run the model at size 22? How about at size 5? What is the

smallest reliable size, based on the population graphs?

Exercise 12.14. Note in the cost function that we multiply by 150
initial-rabbits

. Why is

this?

Exercise 12.15. Turn scale-rabbits? off and run the model several times at various

sizes. What differences do you notice in the population graphs? What is the effect of this

option? Are results at smaller sizes more or less reliable when scale-rabbits? is off?

Exercise 12.16. When scaling-rabbits is on and the world size is reduced, the rabbits

become larger (graphically). Is reducing the number of rabbits an example of scaling or of

aggregation? Justify your answer.

Exercise 12.17. What other methods besides those mentioned in this section could be

used to improve the run time of this model (i.e., to make it more computationally efficient)?

7. A heuristic approach

In previous sections we have discussed optimal control as it relates to agent-based models,

and techniques for improving the run time of such models. In theory, the process of finding

the optimal solution requires only that we evaluate the entire solution space and choose the

solution that minimizes the cost function. In practice, however, this remains unfeasible. For

one thing, it is quite possible that the solution space is infinite; and even if it is finite, it is

often the case that there are far too many solutions to possibly implement them all (in terms
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of realistic run times), even in models that have been subjected to scaling and aggregation

techniques.

For example, a discrete model of the immune system might involve many millions of

cells each will have its own rules describing its interaction with other cells, and may also

have many variables attributed to it. Analytic methods fail in these cases, and exhaustive

enumeration by computer is unfeasible due to the limitations of computer processing speeds.

In fact, as the processing power of computers grows, so too does the possibility for creating

models that increase in complexity, so that it is impossible to be certain that computers will

ever be able to ‘catch up’ to the complexity of the models.

For this reason, most of the optimization and optimal control methods currently used in

discrete modeling (and with agent-based models in particular) are in the form of heuristic

algorithms. An algorithm is a formal set of rules used in order to obtain a solution to a

problem. A heuristic algorithm is a specific type of algorithm that conducts a ‘smart’ search

of the solution space. It may make use of certain aspects of the problem to avoid having

to search through every possible solution, or it may update its search method based on the

input it receives from previously found solutions. These algorithms begin with a choice of

control input values (i.e., full or partial solutions) and use various methods to refine the

values so as to decrease the value of the associated cost function until no better solution

can be found. While these methods do not guarantee an optimal solution, they do provide

opportunity for analysis. In particular, if constructed and executed correctly, they are a vast

improvement upon random searches of the solution space. One advantage to the heuristic

approach is that it can be used with virtually any model. Since heuristic algorithms rely

on results from simulation, it is not necessary to transform the model in any way in order

to implement them. They provide a ‘brute force’ technique that, while not always optimal,

can always be used when other methods may fail. In particular, heuristic algorithms provide

a baseline for results obtained via other more rigorous methods. While a mathematician

may be concerned with developing an algorithmic theory for explicitly finding a true optimal
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solution, in practice scientists and other researchers are often satisfied with a solution that

is better than any previously known. As such, the heuristic approach to optimal control is

a valuable option.

Of course, every heuristic algorithm has associated risks and advantages, and the par-

ticular algorithm that is best suited for a given model or problem will depend on these. As

an introduction to the heuristic approach, we describe a so-called genetic algorithm in some

detail, in the context of the “Rabbits and Grass” model. We conclude this section with a

list of other heuristic algorithms.

7.1. Genetic algorithms. Genetic algorithms (sometimes referred to as evolutionary

algorithms) were originally developed as a means of studying the natural evolution process,

and have been adapted for use in optimization since the 1960s [8, 12, 18]. Each solution

is viewed as a chromosome. The chromosome is a string of values, or genes, each of which

represents the value of one of the parameters. Each chromosome, then, represents an indi-

vidual solution that can be implemented and whose associated cost can then be evaluated.

A typical genetic algorithm functions in the following way: several chromosomes are selected

to form a population. The cost of each is then evaluated. The chromosomes are ordered,

beginning with the chromosome that produces the minimum cost. Half of the chromosomes

are then selected to carry on to the next generation; that is, they will be kept in the list to

be evaluated later. Then the process of breeding comes in to play: two random chromosomes

from those that have been carried over are selected to serve as parents. A ‘child’ chromosome

(i.e., a new solution) is then bred from these parents by some method of crossover (uniform

crossover is a typical method in which there is an equally likely chance that the child will

take each particular gene from either parent). The next step is mutation: each gene has the

possibility of being mutated at random, changing from its current value to any admissible

value of that gene. The child chromosome produced from such breeding is added to the

next generation of solutions. This process is repeated until the remaining half of the new

population has been re-populated with new child chromosomes. The entire process is then
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repeated: the chromosomes are evaluated and the best are set aside, new chromosomes are

bred from them, and so on.

The control objective with the “Rabbits and Grass” model was to determine a control

schedule that minimized the number of rabbits while also minimizing the number of days on

which poison was used. Suppose we wish to achieve this goal over the course of ten days.

Then a solution is a vector of length 10, each entry of which is either 0 or 1. Suppose we

begin with two randomly chosen solutions, p1 = [0 1 0 1 0 1 0 1 0 1], p2 = [1 1 1 0 1 1 0 0 1 0]. We

create a ‘child’ solution by going through each gene (i.e., each entry in the parent solutions)

and randomly selecting one of the values. See Figure ?? for an example of such a ‘child’

solution. The child solution is then subjected to mutation; see Figure ?? for an example.

** Insert Figure 12-crossover Here **

** Insert Figure 12-mutation Here **

The algorithm continues for a pre-determined number of steps, or until a certain condition

is met. For example, we may choose to run the algorithm for 50 generations. Another method

is to repeat the process until no better solution has been found for, say, ten consecutive

generations. When the algorithm terminates, we choose the best current solution as our

candidate for an optimal solution (note that there is no guarantee that the best solution

found by the algorithm is actually the optimal solution; recall that we use optimal solution

to mean the best solution we are able to find).

As with other heuristic algorithms, there are many variations and the one presented here

is provided as a standard procedure. We may modify the algorithm, for example, so that

the initial chromosomes are selected in a certain way: perhaps we wish to choose them at

random, or perhaps we wish to choose chromosomes that are very different from one another

(i.e., solutions that come from different regions of the solution space). We may modify the

crossover process so that one parent is favored over another, or we may forego the mutation

step altogether. The likelihood of mutation is another area where user input is important: a

high level of mutation will result in more variation of child chromosomes, and thus will not
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incorporate the relative fitness of the parent chromosomes as much. On the other hand, if

the mutation step is not included then we run a greater risk of our solution converging to

some solution that is only locally minimal; that is, it may be better than all of the solutions

that are similar to it, but not necessarily better than solutions that are radically different

(we may think of these solutions as being farther away in the solution space). The advantage

of using a genetic algorithm is that there is inherently some level of stochasticity; that is,

there is always the possibility of mutating to a better solution (as long as the mutation rate

is nonzero).

For the following exercises, use Netlogo to open the file entitled RabbitsGrass-GA.nlogo,

available at http://admg.vbi.vt.edu/software/rabbitsgrass-netlogo-files/. This file runs a

genetic algorithm to attempt to determine the best poison schedule based on the cost function

given in the model (the schedule which minimizes the number of rabbits and the days on

which poison is used). Read the ‘Info’ tab for information on each of the options. In addition,

you may need to examine the code in this model in order to complete all exercises.

Exercise 12.18. Explain the difference between roulette and tournament selection. How

would roulette selection be different if we were interested in schedules with the highest cost?

Exercise 12.19. Explain the difference between uniform and 1-point crossover. Describe

a control problem for which uniform crossover is more appropriate, and another for which

n-point crossover is more appropriate.

Exercise 12.20. Explain the mutation methods invert and neighbor swap. Explain

the advantages and disadvantages of each.

Exercise 12.21. Devise and explain methods for selection, crossover, and mutation other

than those available in the model. Describe advantages of each.

Exercise 12.22. The retention slider determines how many of the top solutions should

be carried over to the next generation. Describe a potential pitfall of setting this value to 0.

Describe a potential pitfall of setting this value too high.
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Exercise 12.23. Notice that the default number of runs is 100. What benefit is there

to setting this value lower? What is the risk? What are the risks and benefits of setting this

value higher?

Exercise 12.24. Run the algorithm at all default values, then run it again, only changing

the poison so that it degrades. Take note of the best schedule found. What differences do

you notice? Why do you think this is?

Exercise 12.25. Choose values for the various sliders and methods in an attempt to

minimize the cost. Use your intuition as a starting point, then revise the values based on

the output (make sure write-to-file? is turned on). What is the minimum cost you are

able to achieve? What pattern (if any) do you notice in the best schedule found?

Exercise 12.26. Implement your ideas from Exercise 12.21 into the code and run the

genetic algorithm using them. Do they perform better or worse than the original methods?

Exercise 12.27. Suppose the objective is simplified so that the goal is to simply minimize

the number of rabbits, without regard to the poison cost. What do you think the best solution

would be in this case? Alter the cost function in the code accordingly, and run the GA. Does

the outcome reflect your intuition?

Exercise 12.28. Determine a new objective and alter the cost function accordingly. Run

the GA. Discuss the pattern of the best schedule found, and state whether or not this seems

to make sense in light of your cost function.

7.2. Other heuristic algorithms. Genetic algorithms represent only one class of heuris-

tic algorithms. There are many others, and as mentioned earlier, each have their own ad-

vantages and disadvantages. The purpose of this section is to provide you with an overview

of how heuristic algorithms can be used as a brute force approach to optimal control of

agent-based models. Depending on the nature of the model and the control objective, the

reader may also be interested in simulated annealing [17, 23], tabu search [5, 6, 7], ant
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colony optimization [2, 3], and ‘squeaky wheel’ optimization [15, 22] (to name just a few).

The combinations of these algorithms and the fine-tuning therein provide a large framework

from which to apply heuristic algorithms to agent-based models, and new algorithms are

constantly being developed. While more rigorous mathematical theory is currently being

developed, this approach is sometimes the best available analytical tool.

8. Mathematical Framework for Representing Agent-based Models

As addressed earlier, many agent-based models are too complex to find global optimal

control purely by simulation. One option one might pursue in this case is to translate agent-

based models into a different type of mathematical object for which more mathematical tools

are available. This is similar to the approach pioneered by Descartes and his introduction

of a coordinate system. In the plane, for instance, a Cartesian coordinate system allows us

to represent lines by linear equations, circles by quadratic equations, etc. If we now want

to find out whether two lines in the plane intersect we can either carry out an inspection of

the two lines as geometric objects or, alternatively, we can determine whether the resulting

system of linear equations has a solution. Translating agent-based models into a formal

mathematical framework then opens up the possibilities to use theory from mathematics to

analyze them from a different angle rather than just with simulations. One framework that

has been studied is that of so-called polynomial dynamical systems (PDS).

As in our running examples of rabbits and grass, agents in the models we consider here

take on a finite number of states, such as a rabbit’s position on the grid or the amount of

grass on a patch. This finite set of states can be viewed as the analog of the points that

make up a line in the plane, to continue with the analogy of the Cartesian coordinate system.

Applying the rules of the model in order to update the states of all the agents can be thought

of as a function that maps the collection of discrete states to itself. Since the state sets do

not carry any kind of structure we are simply dealing with a function from a finite set to

itself, about which we can say little. However, let us now introduce the analog of a Cartesian

coordinate system into this set in a way that provides extra tools for us, analogous to the
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ability to use algebra to decide whether two lines in the plane intersect. We do this by way

of an example.

Suppose that our set of states equals {low,medium, high}, which we can represent as

{0, 1, 2}. We can easily turn this set into a number system by using so-called arithmetic

modulo 3. That is, we can add and multiply the elements of this set according to rules that

are identical to those used to multiply real numbers. Notice that the numbers in the set are

all the remainders one can obtain under division by 3. Now we add and multiply “modulo

3,” that is, 2 + 2 = 1 and 2 · 2 = 1 as well, that is the remainder of 2 + 2 = 4 under division

by 3 is 1. The number system we obtain in this way is an example of a “finite field,” which

we will use for the remainder of the chapter.

Given rules from an ABM that describe how the agents or variables change their states,

we can find for every agent a polynomial that describes the given rule using element of the

finite field such as {0, 1, 2} rather than {low,medium, high}. By constructing a polynomial

for every single agent, we obtain a set of polynomials that describes the same behavior as

the original ABM. The set is called a polynomial dynamical system.

Definition 12.4 (Polynomial dynamical system). Let k be a finite field and f1, ..., fn ∈

k[x1, ...xn] be polynomials. Then F = (f1, . . . , fn) : kn → kn is an n-dimensional polynomial

dynamical system over k [25].

Here, kn denotes the Cartesian product k×k×· · ·×k with n copies of k. For (a1, . . . , an) ∈

kn the function F is evaluated by

F (a1, . . . , an) = (f1(a1, . . . , an), . . . , fn(a1, . . . , an)).
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Example. Let k = F3 = {0, 1, 2} and F = (f1, f2, f3), where

f1 = x1 + x2

f2 = x1x2 + x3 + 1

f3 = x1 + x2 + x2
3.

The PDS F maps points in F3
3 to other points in F3

3, iteration of F results in a dynami-

cal system. F has one fixed points, or steady state, namely (1, 0, 2) because F (1, 0, 2) =

(f1(1, 0, 2), f2(1, 0, 2), f3(1, 0, 2)) = (1, 0, 2), note that all calculation are done “modulo 3”

because F is over F3. Furthermore, F has a limit cycle or oscillation of length five: applying

F repeatedly to (0, 2, 1) yields

(0, 2, 1)→ (2, 2, 0)→ (1, 2, 1)→ (0, 1, 1)→ (1, 2, 2)→ (0, 2, 1)→ (2, 2, 0)→ · · ·

With software packages such as ADAM [11], one can compute the dynamics of a PDS and

visualize it.

Most agent-based models can be translated into a polynomial dynamical system of this

type. Each variable xi represents an agent, a patch, or some other entity in the model. Each

element in the finite field k represents a different state or condition of the variables. The

corresponding polynomials fi encode the behavior of the agent or patch as described in the

model. In the rabbit and grass model, one could assign a variable xi for each patch. The

values of the finite field k = {0, 1, 2, . . . , p − 1} then represent how many rabbits and how

much grass is currently on the patch. The polynomials fi determine the number of rabbits

and amount of grass on patch i at the next iteration, given the current number of rabbits

and grass.

Theorem 12.5 ([20]). Let f : kr → k, k a finite field. Then there exists a unique

polynomial g : kr → k, such that ∀x ∈ kr, f(x) = g(x).
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Any such mapping over a finite field can be described by a unique polynomial. Using

Lagrange interpolation, we can easily determine the polynomial. Let f : kr → k. Then

g(x) =
∑

(ci1,...,cir)∈kr

f(ci1, . . . , cir)
r∏

j=1

(
1− (xj − cij)p−1

)
(12.1)

is the unique polynomial that defines the same mapping as f .

Example. Suppose k = F3, r = 2, and the mapping f is defined on F2
3 = {0, 1, 2} ×

{0, 1, 2} as follows:

f(0, 0) = 0

f(0, 1) = 1

f(0, 2) = 2

f(1, 0) = 1

f(1, 1) = 2

f(1, 2) = 0

f(2, 0) = 2

f(2, 1) = 0

f(2, 2) = 1



40

Then the polynomial g that defines the same mapping as f is constructed as following:

g(x, y) = 0 +

1
(
(1− x2)(1− (y − 1)2)

)
+

2
(
(1− x2)(1− (y − 2)2)

)
+

1
(
(1− (x− 1)2)(1− y2)

)
+

2
(
(1− (x− 1)2)(1− (y − 1)2)

)
+

0 +

2
(
(1− (x− 2)2)(1− y2)

)
+

0 +

1
(
(1− (x− 2)2)(1− (y − 2)2)

)
= x+ y.

Converting an agent-based model into a polynomial dynamical system provides us with

a conceptual advantage, rather than being limited to working with a computer simulation

as our only means of analysis, methods and theory from abstract algebra and algebraic

geometry can be used. For example, one might be interested in the steady states of a

model, i.e., all the configurations of the system that do not change over time. Written as a

polynomial dynamical system F : kn → kn, these states are exactly the solutions to F (x) =

x, the n-dimensional system of equations f1(x) = x1, . . . , fn(x) = xn [11]. Equivalently,

the solutions are the points in the variety V of the ideal generated by the polynomials

f1(x)− x1, . . . , fn(x)− xn. For an introduction to varieties, we recommend [1].

When the polynomials describing the biological system have a special structure, other

analysis methods are available. For example, for conjunctive networks, i.e., a PDS over F2

where each polynomials is a monomial, the dynamics can be completely inferred by looking
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at the dependency graph or wiring diagram of the PDS [14]. We can determine the fixed

point and limit cycle structure of this PDS without using any simulation.

8.1. Conway’s Game of Life. We have mentioned Conway’s Game of Life, a cellular

automaton as a special case of agent based models earlier in this chapter. Cells are agents

that die or come to life based on a rule including their eight neighbors [4]. The Game of Life

can be translated into a polynomial dynamical system. Each variable xi represents a cell

on the grid. Each polynomial fi : F9
2 → F2 depends on xi’s eight neighbors and itself and

describes whether xi will be dead (0) or alive (1) at the next iteration given the values of its

neighboring cells. The fixed points of this system correspond to still lives such as blocks and

beehives, 2 cycles to oscillators, e.g., blinkers and beacons. Working with the mathematical

representation of the game, one can for example study still lives by using concepts from

invariant theory using the symmetry of the rules as group actions.

It is straightforward to construct the polynomials using Lagrange’s interpolation formula

(12.1). The function gi to interpolate describes the state of xi based on its neighbors and

itself according to the rules of over- and underpopulation. The polynomial fi : F9
2 → F2

describing the behavior of cell x1 with neighbors x2, . . . , x9 is shown here:

f1 = x1x2x3x4x5x6x7x8+x1x2x3x4x5x6x7x9+x1x2x3x4x5x6x8x9+x1x2x3x4x5x7x8x9+x1x2x3x4x6x7x8x9+

x1x2x3x5x6x7x8x9+x1x2x4x5x6x7x8x9+x1x3x4x5x6x7x8x9+x1x2x3x4x5x6x7+x1x2x3x4x5x6x8+

x1x2x3x4x5x7x8 + x1x2x3x4x6x7x8 + x1x2x3x5x6x7x8 + x1x2x4x5x6x7x8 + x1x3x4x5x6x7x8 +

x2x3x4x5x6x7x8 + x1x2x3x4x5x6x9 + x1x2x3x4x5x7x9 + x1x2x3x4x6x7x9 + x1x2x3x5x6x7x9 +

x1x2x4x5x6x7x9 + x1x3x4x5x6x7x9 + x2x3x4x5x6x7x9 + x1x2x3x4x5x8x9 + x1x2x3x4x6x8x9 +

x1x2x3x5x6x8x9 + x1x2x4x5x6x8x9 + x1x3x4x5x6x8x9 + x2x3x4x5x6x8x9 + x1x2x3x4x7x8x9 +

x1x2x3x5x7x8x9 + x1x2x4x5x7x8x9 + x1x3x4x5x7x8x9 + x2x3x4x5x7x8x9 + x1x2x3x6x7x8x9 +

x1x2x4x6x7x8x9 + x1x3x4x6x7x8x9 + x2x3x4x6x7x8x9 + x1x2x5x6x7x8x9 + x1x3x5x6x7x8x9 +

x2x3x5x6x7x8x9+x1x4x5x6x7x8x9+x2x4x5x6x7x8x9+x3x4x5x6x7x8x9+x1x2x3x4+x1x2x3x5+

x1x2x4x5 + x1x3x4x5 + x1x2x3x6 + x1x2x4x6 + x1x3x4x6 + x1x2x5x6 + x1x3x5x6 + x1x4x5x6 +

x1x2x3x7 + x1x2x4x7 + x1x3x4x7 + x1x2x5x7 + x1x3x5x7 + x1x4x5x7 + x1x2x6x7 + x1x3x6x7 +
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x1x4x6x7 + x1x5x6x7 + x1x2x3x8 + x1x2x4x8 + x1x3x4x8 + x1x2x5x8 + x1x3x5x8 + x1x4x5x8 +

x1x2x6x8 + x1x3x6x8 + x1x4x6x8 + x1x5x6x8 + x1x2x7x8 + x1x3x7x8 + x1x4x7x8 + x1x5x7x8 +

x1x6x7x8 + x1x2x3x9 + x1x2x4x9 + x1x3x4x9 + x1x2x5x9 + x1x3x5x9 + x1x4x5x9 + x1x2x6x9 +

x1x3x6x9 + x1x4x6x9 + x1x5x6x9 + x1x2x7x9 + x1x3x7x9 + x1x4x7x9 + x1x5x7x9 + x1x6x7x9 +

x1x2x8x9 + x1x3x8x9 + x1x4x8x9 + x1x5x8x9 + x1x6x8x9 + x1x7x8x9 + x1x2x3 + x1x2x4 +

x1x3x4 +x2x3x4 +x1x2x5 +x1x3x5 +x2x3x5 +x1x4x5 +x2x4x5 +x3x4x5 +x1x2x6 +x1x3x6 +

x2x3x6 +x1x4x6 +x2x4x6 +x3x4x6 +x1x5x6 +x2x5x6 +x3x5x6 +x4x5x6 +x1x2x7 +x1x3x7 +

x2x3x7 +x1x4x7 +x2x4x7 +x3x4x7 +x1x5x7 +x2x5x7 +x3x5x7 +x4x5x7 +x1x6x7 +x2x6x7 +

x3x6x7 +x4x6x7 +x5x6x7 +x1x2x8 +x1x3x8 +x2x3x8 +x1x4x8 +x2x4x8 +x3x4x8 +x1x5x8 +

x2x5x8 +x3x5x8 +x4x5x8 +x1x6x8 +x2x6x8 +x3x6x8 +x4x6x8 +x5x6x8 +x1x7x8 +x2x7x8 +

x3x7x8 +x4x7x8 +x5x7x8 +x6x7x8 +x1x2x9 +x1x3x9 +x2x3x9 +x1x4x9 +x2x4x9 +x3x4x9 +

x1x5x9 +x2x5x9 +x3x5x9 +x4x5x9 +x1x6x9 +x2x6x9 +x3x6x9 +x4x6x9 +x5x6x9 +x1x7x9 +

x2x7x9 +x3x7x9 +x4x7x9 +x5x7x9 +x6x7x9 +x1x8x9 +x2x8x9 +x3x8x9 +x4x8x9 +x5x8x9 +

x6x8x9 + x7x8x9.

In the next section, we provide some polynomials for common rules in agent-based models.

By providing such rules, we hope to simplify the process of translating an ABM to a PDS.

The polynomials can be used as given or as a starting point to construct functions that

represent more complex behavior.

9. Translating Agent-Based Models into Polynomial Dynamical Systems

This section is authored jointly by Franziska Hinkelmann, Matt Oremland, Hussein Al-

Asadi, Atsya Kumano, Laurel Ohm, Alice Toms, Reinhard Laubenbacher

Discrete models, including agent-based models, are important tools for modeling biolog-

ical systems, but model complexity may hinder complete analysis. Representation as a PDS

provides a framework for efficient analysis using theory from abstract algebra. In this section,

we provide polynomials that describe common agent interactions. In the previous section

we describe how to interpolate agent behavior and to generate the appropriate polynomial.
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However, for a variable with many different states, this method of interpolation results in

long and complex polynomials that are difficult to expand, simplify, or alter. Thus we pro-

vide some general “shortcut rules” for constructing polynomials that describe key agent and

patch interactions present in many ABMs. Each of the following polynomials exists in the

finite field Fp.

Since we are particularly interested in ABMs describing complex biological systems, we

use the term concentration to describe the states of a patch variable (for example, concen-

tration of white blood cells on a patch). In this chapter we describe several polynomials

that describe both basic movement, and movement according to the state of the neighboring

patches.

9.1. Basic movement function. We constructed various polynomials to describe the

movement of an agent on an n-by-n grid with torus topology, i.e., there are no boundaries

to the grid, if an agent on the left most patch moves to the left, he appears on the right side

of the grid, similarly for top and bottom. The where the x and y-coordinates of patches are

numbered 0 to n− 1.

For an agent moving forward one patch per time step, we want an agent on patch x

to move to patch x + 1 unless the agent is on patch x = n − 1, in which case the agent

will move to patch x = 0 on the next step due to the torus topology of the grid, see Table

12.1. We constructed a similar polynomial for an agent moving backward one step per time

At time t at time (t+ 1)
patch 0 patch 1
patch 1 patch 2
patch 2 patch 3

...
...

patch i patch i+ 1
...

...
patch n− 1 patch 0

Table 12.1. Movement of an agent on a grid with n patches.

step, and using this polynomial along with the forward movement created a polynomial to
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describe movement of one patch per time step in the x-direction when a vector u specifies

direction each step (forward, backward, or no movement). We generalized these polynomials

to describe movement of a fixed step length m.

• Agent moves forward one patch per time step:

f(x) = x+ 1 + n

p−1∏
i=0,i 6=n−1

(i− x). (12.2)

• Agent moves backward one patch per time step:

f(x) = x− 1− n
p−1∏
i=1

(i− x). (12.3)

• We can use these equations to construct a more general movement function f(x, u),

where u ∈ {−1, 0, 1} specifies the direction of the agent (u = −1 backward 1, u = 0

stay, u = 1 forward 1). Note that ap−1 = 1 for all a 6= 0 ∈ Fp.

f(x, u) = x+ u+ un(u+ 1)p−1
p−1∏

i=0,i 6=n−1

(i− x) + un(u− 1)p−1
p−1∏
i=1

(i− x).

• Agent moves forward m patches per time step:

f(x,m) = x+m+ n

m∑
j=1

(
p−1∏

i=0,i 6=n−j

(i− x)

)
.

• Agent moves backward m patches per time step:

f(x,m) = x−m− n
m−1∑
j=0

(
p−1∏

i=0,i 6=j

(i− x)

)
.

Proof. In order to show that equation (12.2) is the polynomial over Fp that describes

moving one space forward on an n-by-n grid, we need to show that f(x) = x + 1 for all

x 6= n = 1 and f(x) = 0 for x = n− 1. Note that p = 0 and (p− 1)! = −1 in Fp.
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• Case: x 6= n− 1: f(x) = 1 + x+ n(0) = 1 + x.

• Case: x = n− 1:

f(n− 1) = 1 + n− 1 + n

p−1∏
i=0,i 6=n−1

i− n+ 1

= n+ n(1− n)(2− n) · · · (n− 2− n+ 1)(n− n+ 1)(n+ 1− n+ 1) · · · (p− 1− n+ 1)

= n+ n(p+ 1− n)(p+ 2− n) · · · (p− 1)(1)(2) · · · (p− n)

= n+ n(1)(2) · · · (p− n)(p+ 1− n) · · · (p− 1)

= n+ n(p− 1)! = n+ n(−1) = n− n

= 0.

The proofs for the other movement functions are similar and left as an exercise to the

reader. �

9.2. Uphill and downhill movement. In many applications, agents can scan their

close environment and move towards a desired resource. Netlogo has this behavior imple-

mented as “uphill” and “downhill”. “Uphill” moves an agent to the neighboring patch with

the highest value of the desired variable. If no neighboring patch has a higher value than

the current patch, the agent stays put. Since the variables are discrete, there may exist

a tie between neighboring patches for highest (or lowest) concentration, in which case the

agent moves towards the lowest arbitrarily numbered neighboring patch i. The polynomials

describing the movement of agent x are the following.

• Uphill:

f(x) =
8∑

i=1

(
(1− (C − Ii)p−1)li

i−1∏
j=0

(C − Ij)p−1

)
+ (1− (C − I0)p−1) · l0+ (12.4)

C−1∑
m=0

( C∏
k=m+1

8∏
j=i

(k − Ii)

)p−1

·

(
8∑

i=1

(1− (m− Ii)p−1)li

i−1∏
j=0

(m− Ij)p−1 + (1− (m− I0)p−1)l0

)
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• Downhill:

f(x) =
8∑

i=1

(
(1− Ip−1

i )li

i−1∏
j=0

Ip−1
j

)
+ (1− Ip−1

0 ) · l0+ (12.5)

C∑
m=1

(m−1∏
k=0

8∏
j=i

(k − Ii)

)p−1

·

(
8∑

i=1

(1− (m− Ii)p−1)li

i−1∏
j=0

(m− Ij)p−1 + (1− (m− I0)p−1)l0

) ,

where the concentration ranges from 0 to C, C represents the highest possible con-

centration, Ii is the concentration level at neighboring patch i, and li is the relative

location of patch i from the current patch, see Table 12.2. I0 is the concentration

of the current patch, I1, . . . , I8 the concentrations of its 8 neighbors.

l8 l1 l2

l7 x =
l0

l3

l6 l5 l4

Table 12.2. Relative position of neighbors to agent x.

Proof.

f(x) =

(
1−

8∏
i=0

(C − Ii)p−1

)(
8∑

i=1

(
(1− (C − Ii)p−1)li

i−1∏
j=0

(C − Ij)p−1

)
+
(
1− (C − I0)p−1

)
l0

)
+

C−1∑
m=1

((
1−

8∏
i=0

(m− Ii)p−1

)
C∏

k=m+1

8∏
i=0

(k − Ii)p−1 (12.6)

8∑
i=1

(1− (m− Ii)p−1)li

i−1∏
j=0

(m− Ij)p−1 + (1− (m− I0)p−1)l0

)
.
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It is straightforward to see, that (12.6) describes the movement to the neighboring patch

with the highest concentration level: 1 −
∏8

i=0(C − Ii)
p−1 is 0 unless at least one of the

Ii = C, i.e., one of the neighbors’ concentrations level is the highest possible. In this case,

f(l) = l + i. Indeed, the right hand of the first line evaluates to li for the i such that

Ii = C (1 − (C − Ii)p−1)li is li if and only if Ii = C). If there are several neighbors with

concentration level C, f(l) should evaluate to the neighbor with the smallest index. This

is assured by multiplying with
∏i−1

j=0(C − Ij)p−1, which evaluates to 0, if an neighbor with

a smaller index has concentration C. The second and third line in (12.6) are equivalent to

the first row, as they describe movement to patches with concentration levels lower than C.∏C
k=m+1

∏8
i=0(k − Ii)p−1 assures that the second summand evaluates to 0 if a patch has a

higher concentration than m. The proof for the down-hill movement (12.5) is similar and

left as an exercise. �

Exercise 12.29. Based on the uphill and downhill polynomial, construct a polynomial

f(l) that evaluates to the maximum concentration of its 8 neighbors and itself.

Exercise 12.30. Consider a 13 by 13 grid with torus topology. A rabbit moves two steps

up and two to the right at every iteration. Construct a polynomial that describes a rabbit’s

movement. Use the polynomial to simulate the movement of a rabbit starting in the center

of the grid.

Exercise 12.31. For the rabbit in Exercise 12.30, after how many iterations do you

expect it to reach its starting position again? Confirm your answer by evaluating the poly-

nomial.

Exercise 12.32. Construct the polynomial as in Exercise12.30 for a grid of arbitrary

size n by n.

Exercise 12.33. Consider a grid where each patch is covered with a low, medium, or

high amount of grass. At each iteration, the rabbit moves to the neighboring patch with
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the most grass, i.e., to one of the eight neighboring patches or it stays on the same patch.

Construct a polynomial describing the rabbit’s movement based on the amount of grass on

the neighboring patches.

Exercise 12.34. Consider the grid from Exercise 12.33. Rabbits eat grass, and the

amount of grass on a patch decreases by one level for every iteration that a rabbit occupies

it, i.e., a patch with high grass changes to medium grass, if occupied by a rabbit, medium to

low, and low remains low. Construct a polynomial that describes the amount of grass on a

patch.

We provide these general polynomials and simplification techniques to aid in the trans-

formation of an ABM into a PDS. Whereas large agent-based models may be too complex

for efficient analysis, we hope that the algebraic structure of a polynomial dynamical system

can be used to expedite computation of optimal control.

10. Summary

Agent-based models provide a very intuitive and convenient way to model a variety of

phenomena in biology. The price we pay for these features is that the models are not explicitly

mathematical, so that we lack mathematical tools for model analysis. For instance, many

of these phenomena are connected to optimization and optimal control problems, as pointed

out in this chapter, but no systematic methods are available for agent-based models to solve

these. We have attempted here to do two things. Firstly, we described so-called heuristic

local search methods, such as genetic algorithms, which can be applied directly to agent-

based models. And we described a way in which one can translate an agent-based model

into a mathematical object, in this case a polynomial dynamical system over a finite field.

Many computational and theoretical tools are available for such systems. For instance, to

compute the steady states of a polynomial system F = (f1, . . . , fn), one can solve the system
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of polynomial equations

f1(x1, . . . , xn) = x1, f2(x1, . . . , xn) = x2, . . . , fn(x1, . . . , xn) = xn.

There are several computer algebra systems available to solve such problems. To compute

the steady states of an agent-based model, on the other hand, one is limited to extensive

simulation, without guarantee of having found all possible steady states.

The chapter provides a snapshot of ongoing research in the field. The approach via

polynomial dynamical systems, for instance, is very promising, but still lacks appropriate

algorithms that scale to larger models. In addition to searching for such algorithms, further

research in model reduction is taking place, as outlined earlier in the chapter. At the same

time, other mathematical frameworks, such as ordinary or partial differential equations and

Markov models are being explored for this purpose. Much work remains to be done but,

in the end, a combination of better algorithms, improvements in hardware, and dimension

reduction methods is likely to provide for us a tool kit that will allow the solution of realistic

large scale optimization and optimal control problems in ecology, biomedicine, and other

fields related to the life sciences.
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12-original

Figure 12.1. Original 10× 10 grid representing topological landscape.

12-overlay

Figure 12.2. Original 10× 10 grid with 6× 6 overlaying points.

12-scaling
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Figure 12.3. Resulting 6× 6 reduced grid.

12-crossover

p1 = [0 1 0 1 0 1 0 1 0 1]

p2 = [1 1 1 0 1 1 0 0 1 0]

pnew = [0 1 1 1 1 1 0 1 1 1]

Figure 12.4. Uniform crossover to ’breed’ a new solution.

12-mutation

[0 1 1 1 1 1 0 1 1 1] → [0 0 1 1 1 1 0 1 1 0]

Figure 12.5. Values in red are subjected to mutation.


	286902.pdf
	1. Introduction
	2. A First Example
	3. Netlogo: an introduction
	4. An Introduction to Agent-Based Models
	5. Optimization and optimal control
	6. Scaling and aggregation
	7. A heuristic approach
	8. Mathematical Framework for Representing Agent-based Models
	9. Translating Agent-Based Models into Polynomial Dynamical Systems
	10. Summary
	Bibliography


