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a b s t r a c t

We consider a general solution of the electromagnetic wave scattering problem for

arbitrarily shaped homogeneous particles, whose surface can be expressed by a

function of angular coordinates, using a Laplace series expansion. This can include

regularly shaped particles (e.g., ellipsoids and cubes) as well as irregularly shaped

particles like Gaussian spheres. For calculations of scattering properties of the particles,

we use the approach based on the Sh-matrix. The Sh-matrix elements deduced from the

T-matrix technique allow one to separate the shape effects from size- and refractive-

index-dependent parameters. The separation also allows the corresponding surface

integrals to be solved analytically for different particle shapes. In this manuscript, we

give analytical expressions for the Sh-matrix elements for arbitrary shaped particles

that can be presented with Laplace series. We find good agreement between results

obtained comparing our and DDA calculations.

Published by Elsevier Ltd.
1. Introduction

One of the most fundamental characteristics that
determine the scattering of electromagnetic waves from
physical objects is the morphology of the objects. Within
the last few decades, there have been many tantalizing
studies of light scattering of electromagnetic waves as a
function of particle shape, and significant progress has
been achieved in the development of different algorithms
and techniques in electromagnetic wave scattering
[e.g., [1]]. These studies support applications in different
fields of science and engineering from radar identification
of satellites and airplanes to health assessment through
the analysis of erythrocyte changes, due to the presence of
diseases.

For scattering particles, the incident and scattered
electromagnetic fields can be expressed as a superposi-
tion of vector harmonics, and the boundary conditions at
Ltd.

etrov),

Videen).
interfaces can be satisfied exactly using analytical expres-
sions. The scattered and incident vector harmonics are
related through a T-matrix. For particles of complicated
shapes, e.g., spheroids and Chebyshev particles, the
T-matrix is typically found using a numerical technique.
The primary advantage of such techniques is that light-
scattering properties can be calculated relatively quickly.
The disadvantage is that a separate algorithm is required
for each particle shape. In numerical techniques, like the
Discrete Dipole Approximation (DDA) and the Finite-
Difference Time-Domain (FDTD) algorithms, the particle
is discretized, so the shape is completely arbitrary and
generally a single algorithm can handle all particle
morphologies, including heterogeneities; however, these
numerical methods can be cost prohibitive to run, espe-
cially when performing orientation averaging.

Recently, the shape matrix (or Sh-matrix) approach
was developed within the extended boundary condition
method (EBCM) of the T-matrix to facilitate the treatment
of different morphologies [2]. The Sh-matrix elements
depend only on particle shape and are found by perform-
ing corresponding surface integrals. Size and refractive
index dependences are incorporated through analytical
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operations on the Sh-matrix to produce the T-matrix. We
have found that the Sh-matrix elements can be deter-
mined analytically for many types of particles, e.g., Cheby-
shev particles [3], capsule and bi-sphere particles [4],
finite circular cylinders [5], corrugated finite cylinders
and capsules [6], two merging spheres [7], small lenses
[8], finite cylinders containing a spherical cavity [9],
cuboid-like particles [10,11], merging spheroids [12],
etc. All these particle shapes as well as many others
can be described in a unified general approach that we
present below.

Unfortunately, while algorithms exist to calculate the
light scattering from virtually any type of particle, there
has been a technology gap in characterizing the particles
themselves, as shapes of most particles in nature cannot
be described analytically by simple means. Our approach
presented in this paper allows a simplification and uni-
fication of their morphological description. We combine
this particle description with a T-matrix algorithm to
calculate the light-scattering from arbitrary particles,
using the Sh-matrix. We here offer: (1) a universal particle
generation technique based on Laplace series; (2) expres-
sions for Sh-matrix elements that are used to describe the
T-matrix; and (3) several examples of electromagnetic
wave scattering calculations using the Sh-matrix. It
should be emphasized that a significant simplification in
the computation of the electromagnetic wave scattering
by particles results when applying the Sh-matrix to obtain
analytical prescriptions.

2. Describing shape

Let us consider a particle whose shape is described by
a single-valued continuous function R(y,j), where y and
j are the polar and azimuth angles, respectively, in a
spherical coordinate system with the center located
within the particle. In our approach, we present R(y,j)
as an expansion into the Laplace series using trigono-
metric functions and associated Legendre’s polynomials

R y, j
� �

¼
X1
l ¼ 0

Xl

m ¼ 0

Pm
l ðcosyÞ almcosmjþblm sinmj

� �
ð1Þ

where Pm
l xð Þ are the associated Legendre polynomials. The

coefficients alm and blm determine the particle shape. The
series (1) is well known as the spherical functions expan-
sion. The functions Pm

l cosyð Þcosmj and Pm
l ðcosyÞsinmj

(spherical harmonics) are a complete set of orthogonal
functions and, thus, the set forms an orthonormal basis of
the Hilbert space of square-integrable functions. On the
unit sphere, any square-integrable function can thus be
expanded as a linear combination of the functions. This
expansion holds in the sense of the mean-square conver-
gence, which says that

lim
N-1

Z p

0
dysiny

Z 2p

0
dj
���Rðy, jÞ

�
XN

l ¼ 0

Xl

m ¼ 0

Pm
l ðcosyÞ alm cosmjþblm sinmj

� ����2 ¼ 0: ð2Þ

To apply the expansion in practice, the number N of
series terms is finite, i.e. we imply that there is a finite N
for which the following approximate expression can be
considered as strict

Rðy, jÞ ¼
XN

l ¼ 0

Xl

m ¼ 0

Pm
l ðcosyÞ almcosmjþblm sinmj

� �
: ð3Þ

The coefficients of expansion alm and blm can be found,
if the function R(yi,jj) is known

alm ¼
2lþ1

2pBl

ðl�mÞ!

ðlþmÞ!

Z p=2

�p=2
dysiny

Z 2p

0
dfRðy, jÞPm

l ðcosyÞcosmj,

ð4Þ

blm ¼
2lþ1

2p
ðl�mÞ!

ðlþmÞ!

Z p=2

�p=2
dysiny

Z 2p

0
djRðy, jÞPm

l ðcosyÞsinmj,

ð5Þ

where B0=2 and Bl=1, if la0.
There is another way (skeleton method) to find coeffi-

cients using discrete values of the function R(yi,jj). Let us
consider values at 2N2 points: Rij=R(yi,jj), i=1, y, N;
j=1, y, 2N. By substituting R(yi,jj) into Eq. (3), we obtain
a system of linear equations, where alm and blm are
unknown. The solution of the system of linear equations
gives us a representation of the particle shape as a simple
and easily calculated expansion into a series expansion
over trigonometric functions and associated Legendre’s
polynomials. Such an approach does not require an
explicit form of the function R(y,j); it is sufficient to
designate its values in 2N2 points. For example, one can
generate numerically a group of radial vectors radiating
more-or-less isotropically from the center of the spherical
coordinate system. These vectors can be considered as a
skeleton of a model particle. The length distribution of
these vectors and orientation of each are arbitrary,
depending on which particle one generates.

Thus, our approach can include regular particles
(e.g., spheroids, ellipsoids and cubes) as well as particles
with random shapes, like random Gaussian spheres [13,14].
Examples of model particles can be found in Figs. 1–6,
where we also give intensity and polarization degree
indicatrices. Unfortunately, this approach may not consider
functions R(y,j) that are not continuous and single-valued.
By this restriction our approach yields to numerical techni-
ques like the DDA or FDTD methods.

We compare below results obtained for particles
approximately generated by Eq. (3) and described with
exact equations. These include ellipsoids, parallelepiped,
erythrocyte-like particle, merged spheroids, and random
Gaussian particles. In the case of ellipsoids, the function
R(y,j) can be described using the approximation to
cuboids [11]. Such a cuboid-like particle can be described
using the function R(y,j) as follows:

Rðy, jÞ ¼ ðsinyÞ2n0
cosj

a

� �2n0

þ
sinj

b

	 
2n0
" #

þ
cosy

c

	 
2n0
" #�1= 2n0ð Þ

,

ð6Þ

where a, b, c are the cuboid hemi-axes, and n0 defines the
proximity of the cuboid-like particle to a pure parallele-
piped. Note that at n0=1, Eq. (6) describes the shape of an
ellipsoid.
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Fig. 1. Dependence of intensity (upper panel) and polarization degree

(lower panel) on scattering angle for an approximated ellipsoid having

the following hemi-axes a=1, b=0.75 and c=0.5, at m0=1.33.
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Fig. 2. Dependence of intensity (upper panel) and polarization degree

(lower panel) on scattering angle for a parallelepiped-like particle with

n0=5, m0=1.33, and a=1, b=0.75 and c=0.5.
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The shape of the same merged spheres is described by
the following equation:

RðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmcos2y

q
, ð7Þ

where m is the parameter of merging, 0rmo1. At m=0,
the particle is a sphere and at m-1 the particle is a
bi-sphere.

Gaussian random spheres are described through the
spherical harmonics and the associated Legendre poly-
nomials in the following manner [13,14]:

Rðy, jÞ ¼ CeSðy, jÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þs2
p , ð8Þ

where C is a normalized constant and

Sðy, jÞ ¼
X1
l ¼ 0

Xl

m ¼ 0

Pm
l ðcosyÞ ~alm cosmjþ ~blm sinmj

� �
, ð9Þ

where coefficients ~alm and ~blm are independent Gaussian
random variables with zero mean and variances that
depend on indices l and m as follows:

b2
lm ¼ ð2�dm0Þ

ð2lþ1Þðl�mÞ!

ðlþmÞ!
expð�kÞilðkÞlnð1þs2Þ, ð10Þ
k¼ 1

4
sin

G
2

	 
�2

, ð11Þ

where s2 is the radii variance, G is the correlation angle
and il(k) are the modified spherical Bessel functions. This
method allows generation of irregular particles with the
parameters s and G; usually G431.

3. Sh-matrices and their relation to the T-matrix

Within the T-matrix method, the incident and scat-
tered fields are expanded in a series of appropriate vector
spherical functions [1]

Einc
ðr, g, fÞ ¼

X1
n ¼ 1

Xn

m ¼ �n

pinc
mnRgMmnðr, g, fÞþqinc

mnRgNmnðr, g, fÞ
h i

,

ð12Þ

Esca
ðr, g, fÞ ¼

X1
n ¼ 1

Xn

m ¼ �n

psca
mnMmnðr, g, fÞþqsca

mnNmnðr, g, fÞ
� �

,

ð13Þ

where RgMmn(r,g,f), RgNmn(r,g,f), Mmn(r,g,f), Nmn(r,g,f)
and pinc

mn, qinc
mn, psca

mn and qsca
mn are the vector spherical

functions and corresponding expansion coefficients, r is
the distance from the coordinate center (the particle
center) and g and f are the polar and azimuth angles,
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respectively, that are used to characterize the scattering
geometry. The functions RgMmn(r,g,f) and RgNmn(r,g,f)
are finite in the coordinate center (Rg(y) means ‘‘Reg-
ular’’). The explicit expressions for the vector spherical
wave functions are given, e.g., in [1]. The coefficients
pmn,qmn relate to amn,bmn as follows [1]:

psca
mn ¼

X1
n0 ¼ 1

Xn0

m0 ¼ �n0
T11

mnm0n0p
inc
m0n0 þT12

mnm0n0q
inc
m0n0

h i
, ð14Þ

qsca
mn ¼

X1
n0 ¼ 1

Xn0

m0 ¼ �n0
T21

mnm0n0p
inc
m0n0 þT22

mnm0n0q
inc
m0n0

h i
: ð15Þ

The T-matrix

Tmnm0n0 ¼
T11

mnm0n0 T12
mnm0n0

T21
mnm0n0 T22

mnm0n0

 !
: ð16Þ

can be presented [1] as

Tmnm0n0 ¼ �ðRgQmnm0n0 ÞðQmnm0n0 Þ
�1, ð17Þ

The matrices RgQmnm0n0 and Qmnm0n0 are

Qmnm0n0 ¼ �i
m0J21

mnm0n0 þ J12
mnm0n0 m0J11

mnm0n0 þ J22
mnm0n0

m0J22
mnm0n0 þ J11

mnm0n0 m0J12
mnm0n0 þ J21

mnm0n0

 !
,

ð18Þ
RgQmnm0n0 ¼ �i
m0RgJ21

mnm0n0 þRgJ12
mnm’n0

m0RgJ11
mnm0n0 þRgJ22

mnm0n0

m0RgJ22
mnm0n0 þRgJ11

mnm0n0 m0RgJ12
mnm0n0 þRgJ21

mnm0n0

 !
,

ð19Þ

where the values J11
mnm0n0 , J12

mnm0n0 , J21
mnm0n0 , J22

mnm0n0 and
RgJ11

mnm0n0 , RgJ12
mnm0n0 , RgJ21

mnm0n0 , RgJ22
mnm0n0 can be expressed

through integrals over the particle surface [1]; corre-
sponding expressions are very cumbersome and we here
omit them. We modify the integrals, introducing the Sh-
matrices [2]. The central point of the Sh-matrix derivation
is the multiplication theorem for Bessel functions
jn(z) [15]

jnðczÞ ¼ cn
X1
k ¼ 0

ð�1Þkðc2�1Þk z
2

� �k

k!
jnþkðzÞ, ð20Þ

where c is here an arbitrary number. This allows one
to retrieve multipliers m0X and X from arguments m0Xr
and Xr, where r=R(y,j)/X is the normalized shape
function, m0 is the complex refractive index and
X=2pR0/l is the size parameter, R0 and l are the char-
acteristic particle size (e.g., the size of the major axis of a
particle or the size parameter of the sphere of the
equivalent volume) and the wavelength of the incident
light, respectively. Thus, we separate the influence of the
particle shape and parameters X and m0, introducing the
Sh-matrices [2]

RgJ11
mnm0n0 ðX, m0Þ ¼ Xnþn0 þ2ðm0Þ

n0
X1

k1 ¼ 0

C1

X1
k2 ¼ 0

C2RgSh11
mnm0n0 , k1þk2

,

ð21Þ

RgJ12
mnm0n0 ðX, m0Þ ¼ Xnþn0 þ1ðm0Þ

n0
X1

k1 ¼ 0

C1

X1
k2 ¼ 0

C2 RgSh121
mnm0n0 , k1þk2

þw2RgSh122
mnm0n0 , k1þk2

� �
, ð22Þ

RgJ21
mnm0n0 ðX, m0Þ ¼ Xnþn0 þ1ðm0Þ

n0�1
X1

k1 ¼ 0

C1

X1
k2 ¼ 0

C2 RgSh211
mnm0n0 , k1þk2

þw1RgSh212
mnm0n0 , k1þk2

� �
, ð23Þ

RgJ22
mnm0n0 ðX, m0Þ ¼ Xnþn0 ðm0Þ

n0�1
X1

k1 ¼ 0

C1

X1
k2 ¼ 0

C2 RgSh221
mnm0n0 , k1þk2

þw1RgSh222
mnm0n0 , k1þk2

�
þw2RgSh223

mnm0n0 , k1þk2
þw1w2RgSh224

mnm0n0 , k1þk2

�
, ð24Þ

J11
mnm0n0 ðX, m0Þ ¼ RgJ11

mnm0n0 ðX, m0Þ

þXn0�nþ1ðm0Þ
n0
X1

k1 ¼ 0

C1

X1
k2 ¼ 0

C3Sh11
mnm0n0 , k1þk2

, ð25Þ

J12
mnm0n0 ðX, m0Þ ¼ RgJ12

mnm0n0 ðX, m0ÞþXn0�nðm0Þ
n0
X1

k1 ¼ 0

C1

X1
k2 ¼ 0

C3 Sh121
mnm0n0 , k1þk2

þw3Sh122
mnm0n0 , k1þk2

� �
, ð26Þ



Table 2
Time of calculation and the minimal number of required terms in the Sh-

matrices for calculation of scattering (relative error is o0.5%) for a cube-

like particle (n0=10, X=10 and m0=1.5+0i) as a function of N in Eq. (3).

nmin 22 24 26 27 28 30 31

N 20 30 40 50 60 70 80

Time (s) 4 12 27 59 132 285 536
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J21
mnm0n0 ðX, m0Þ ¼ RgJ21

mnm0n0 ðX, m0ÞþXn0�nðm0Þ
n0�1

X1
k1 ¼ 0

C1

X1
k2 ¼ 0

C3 Sh211
mnm0n0 , k1þk2

þw1Sh212
mnm0n0 , k1þk2

� �
, ð27Þ

J22
mnm0n0 ðX, m0Þ ¼ RgJ22

mnm0n0 ðX, m0Þþ

þXn0�n�1ðm0Þ
n0�1

X1
k1 ¼ 0

C1

X1
k2 ¼ 0

C3 Sh221
mnm0n0 , k1þk2

�
þw1Sh222

mnm0n0 , k1þk2
þw3Sh223

mnm0n0 , k1þk2
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where w1 ¼ Xm0ð Þ
2= n0 þk1þ3=2
� �

, w2=X2/(n+k2+3/2),
w3=X2/(k2�n+1/2), C1 ¼ Xm0ð Þ

2k1= k1!G n0 þk1þ3=2
� �� �

,
C2=X2k2/(k2!G(n+k2+3/2)) and C3=X2k2/(k2!G(k2�n+1/
2)). The explicit expressions for the Sh-matrices account-
ing for the expansion (3) are presented in Appendix. It
should be emphasized that the Sh-matrices have no deep
physical sense, like the T-matrix; these are designations of
corresponding surface integrals that do not depend on the
parameters m0 and X.

We note that in practice the infinite limits in Eqs. (12)
and (13) should be finite nmin; this number depends on
the required accuracy, but it increases with X and is a
function of particle shape as we discuss below.

The matrix Tmnm0n0 depends only on the optical and
morphological characteristics of a scattering particle such
as the complex refractive index m0 and the size parameter
X. This matrix is independent of the particle illumination/
observation geometry and incident light polarization, i.e. the
matrix once computed may be exploited for any illumina-
tion geometry and polarization. Similarly the Sh-matrices
are independent of m0 and X and once computed, they can
be used to calculate the T-matrix for any m0 and X.

4. Calculations and discussion

We examine the light scattering for some particle
shapes generated by the skeleton method with Eq. (3) at
different m0 and X (the size parameter of a sphere of an
equivalent volume).

Table 1 shows values of the minimal number of terms
Nm in Eq. (3) needed to represent the particles within 0.5%
(X=10 and m0=1.5+0i); i.e. the maximal difference between
the real particle radial vector R and its expansion should be
not more than 0.5%. As can be anticipated, the description of
an ellipsoid requires the fewest terms, and the description
of a cuboid-like particle requires the most terms.

Table 2 shows the computation time as a function of
the number of expansion terms in Eqs. (3), (12) and (13)
for cube-like particles approximated by Eq. (3) at n0=10,
Table 1
Minimal number of expansion terms Nm needed for the representation of part

Type Ellipsoids Parallelepiped-li

a=b=2c a=b=c/2 a=2b=c/2 a=b=2c

Nm 12 16 18 26
with X=10, and m0=1.5+0i. With increasing N in Eq. (3),
calculation time quickly increases. The parameter nmin

means the minimal number of expansion terms in
Eqs. (12) and (13) needed to provide 0.5% accuracy of
calculation of T-matrix elements. The difference between
neighbor values of the elements was used for the accuracy
estimate. The parameter nmin depends on many different
factors; in particular, it is a function of N and X.

In Figs. 1–5, we show the dependence of intensity and
polarization degree on the scattering angle W. They were
calculated with the Sh-matrices (see Appendix) for parti-
cles of different shape; excepting shape, all particle
parameters are the same X=5 and m0=1.33+0i. As one
can see, shape plays a very important role in forming
scattering properties even for small X. It is interesting to
note that all oblong particles have a prominent negative
polarization branch at small phase angles (large scattering
angles). Almost all particles display negative polarization
at small W, which is observed for very large particles when
the geometrical optics approximation is valid (e.g., [16]).
Figs. 1 and 2 depict curves for an approximated ellipsoid
having hemi-axes a=1, b=0.75, c=0.5 (n0=1 in Eq. (6)) and
for an approximated parallelepiped-like particle having
the same parameters and n0=5. Curves corresponding to
n0=1 and 5 are rather similar, although the negative
polarization at large W has a deeper branch when n0=5.
Fig. 3 shows curves for a random Gaussian sphere having
s=0.3 and G=101 (a), 301 (b) and 501 (c). As can be antici-
pated, when the shape tends to a sphere, the particles
demonstrate more complicated I(W) and P(W), due to the
preservation of the morphology-dependent resonance
structure. Fig. 4 shows curves for merged spheres at
m=0.8; this particle shows the most complicated structure
of I(W) and P(W), which is related to the interference
between the two components making up the structure.
For Figs. 1–4, we made calculations using the shapes
generated with exact equations and approximations
found with Eq. (3). In all cases, we observed the coin-
cidence of approximate and exact I(W) and P(W) within the
thickness of curves on figures. Fig. 5 shows curves for an
arbitrary hexahedron generated with Eq. (3) also by the
skeleton method, as shown in the inset. In this case, the
functions I(W) and P(W) show relatively little structure.
icle shape with an accuracy of 0.5% (X=10 and m0=1.5+0i).

ke particles (n0=5) Gaussian particles, !

a=b=c/2 a=2b=c/2 201 401 601

32 38 20 28 32
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We compare Sh-matrix and DDA calculations for many
different shapes. Fig. 6 shows one example—results for an
oblate spheroid averaged over orientation. For DDA
calculations, the validated code of Zubko [17] was used.
As one can see the difference between curves calculated
by the different techniques are negligibly small. We have
made the same kind of comparison many times earlier
in [2–8], demonstrating excellent coincidence for a vari-
ety of shapes.
5. Conclusion

In this article, we have provided a new general algo-
rithm for calculating the light scattered by homogeneous
particles, whose shape can be described by a single-
valued continuous function R(y,j). Such an algorithm
provides an alternative to the DDA and FDTD algorithms
that are typically used to calculate the light scattered
from irregular particles. Within the algorithm, the particle
morphology is expressed in terms of a finite Laplace
series. We calculate the Sh-matrix directly from coeffi-
cients of expansion of Laplace series using the analytical
expressions provided in Appendix. The Sh-matrix contains
all the morphological information, but does not contain
information about the particle size or refractive index. The
T-matrix, and subsequent light-scattering properties, is
found directly from the Sh-matrix using analytical expres-
sions that include the refractive index and size depen-
dence; thus, the Sh-matrix only needs to be computed
once for a class of particles of similar shape, but having
different sizes or refractive indices.
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Appendix

The Sh-matrix elements are expressed as follows:
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ðn0 þ1Þ2�m02

q
Gmnm0n0 þ1ðk, l, mÞ�ðn0 þ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02�m02

p
Gmnm0n0�1ðk, l, mÞ

� 

, ðA25Þ

and

Fð0Þm ðk, l, k0, l0, mÞ ¼ 1þð�1Þmþkm

2

Xm
p ¼ 0

C0pmj jðalmÞ
p
ðblmÞ

m�p
ðal0m�ibl0mÞCmþk0 ðk, p, m�pÞþðal0mþ ibl0mÞCm�k0 ðk, p, m�pÞ
� �

,

ðA26Þ

Fð1Þm ðk, l, k0, l0, mÞ ¼
k 1þð�1Þmþkm
h i

2

Xm
p ¼ 0

C0pmj jðalmÞ
p
ðblmÞ

m�p bl0m�ial0mð ÞCmþk0 ðk, p, m�pÞþðbl0mþ ial0mÞCm�k0 k, p, m�p
� �� �

,

ðA27Þ

where al0m and bl0m are coefficients in Eq. (3) and

Ctðk, p, tÞ ¼
ipe

ip t
k
�p�1ð Þ
2

2pþ tkðtþ1ÞB
tþp� t

k
þ2

2 ,
t�pþ t

k
2 þ1

� � 2F1 �p,
t
k �t�p

2
;

t�pþ t
k

2
þ1; �1

	 

, ðA28Þ

The function 2F a, b; c; zð Þ and B(Z,n)=G(Z)G(n)/G(Z+n) are the Gaussian hypergeometric and beta function, respec-
tively, G(...) being the gamma function. Then

Gmnm0n0 ðw, l, mÞ ¼ ð�1Þnþn0XmXm0n!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� mj jð Þ! nþ mj jð Þ!

p
n0!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0� m0j jð Þ! n0 þ m0j jð Þ!

p
�
Xn� mj j

k ¼ 0

ð�1Þk

k! n�kð Þ! n� mj j�kð Þ! mj jþkð Þ!

Xn0� m0j j

k0 ¼ 0

ð�1Þk
0

k0! n0�k0ð Þ! n0� m0j j�k0ð Þ! m0j jþk0ð Þ!
Fð1Þmnm0n0 ðw, l, k, k0, mÞ, ðA29Þ

Fð1Þmnm0n0 ðw, l, k, k0, mÞ ¼ 1

2lm

Xm l
2½ �

p ¼ 1

xpðmÞ
X1
q ¼ 1

2q ðl�2p�wÞðl�2p�wþ1Þ. . .ðl�2p�wþq�1Þ

q!

�O 2n�2k� mj jþ2n0�2k0� m0
�� ���1þ2, 2kþ mj jþ2k0 þ m0

�� ���1þq
� �

, ðA30Þ
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Fð2Þmnm0n0 w, l, w0, l0, k, k0, m
� �

¼�
l0

2lmþ l0 þ2

Xl=2½ �m

p ¼ 1

xpðmÞ
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q ¼ 1
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, ðA31Þ

where [n] is the smallest integer greater than or equal to n. Coefficients xp can be found from the following recurrence
relation

xpðmÞ ¼ ð�1ÞpmCp
l Cl

2l�2p

G l�2pð Þ

G l�2p�kð Þ
þ

1

p

Xp�1

q ¼ 1

mðp�qÞ�q
� �

ð�1Þp�qCp�q
l Cl

2l�2p�q

G l�2p�2qð Þ

G l�2p�2q�kð Þ
xqðmÞ, ðA32Þ

where the initial value x0(m)=1. Moreover

Ymnm0n0 ðw, l, w0, l0, mÞ ¼ ð�1Þnþn0XmXm0n!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� mj jð Þ! nþ mj jð Þ!

p
n0!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0� m0j jð Þ! n0 þ m0j jð Þ!

p
Xn� mj j

k ¼ 0

ð�1Þk

k! n�kð Þ! n� mj j�kð Þ! mj jþkð Þ!

Xn0� m0j j

k0 ¼ 0

ð�1Þk
0

k0! n0�k0ð Þ! n0� m0j j�k0ð Þ! m0j jþk0ð Þ!
Fð2Þmnm0n0 w, l, w0, l0, k, k0, m

� �
, ðA33Þ

Xm ¼
1, mZ0

ð�1Þm, mo0
,

(
ðA34Þ

OðZ, nÞ ¼
G Zþ1

2

� �
G nþ1

2

� �
2G Zþn

2 þ1
� � , ðA35Þ

dn, m ¼
1, n¼m

0, nam

(
is Kronecker’s delta, and Cm

n ¼
n!

m! n�mð Þ! is the binomial coefficient.
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