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ABSTRACT 

This thesis addresses the problem of coordinated motion control and the stability loss of 

surface marine vehicles. The mathematical model is based on Nomoto’s second order 

model which captures the fundamental dynamics of turning on the horizontal plane with 

no side slip. A state feedback control law is coupled with a line of sight guidance law to 

provide path control. A string of three vehicles is considered where each vehicle is using 

the vehicle in the front as a reference point. The coupled motion stability of the formation 

is analyzed by linearization. It is shown that under the assumed dynamics, guidance, and 

control laws, the stability properties of the system decoupled into individual vehicles. 

This makes it possible to obtain exact analytical results that can be used in design. 

Parametric runs and sensitivity analysis studies show the effect of main vehicle geometric 

parameters on formation control and motion stability. 
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I. INTRODUCTION 

A. MOTIVATION 

Unmanned vehicles become more and more sophisticated every day. This 

increase in sophistication is accompanied by an increase in requirements and missions 

they are called upon to complete. As a result, it is often required that they operate in a 

formation with specific goals to accomplish. As the vehicles operate in formations, it is 

possible that motion stability may be an issue. In many areas, such as land vehicles, it has 

been found that a certain type of instability, most notably string instability, may develop 

when vehicles are travelling in a formation. Therefore, we need to investigate the stability 

of motion of unmanned surface vehicles as they maneuver in the horizontal plane. We 

need to establish if they lose their stability and under what conditions, so that we can 

design or operate vehicles in a more efficient and effective manner. 

B. BACKGROUND 

1. Background and Literature Review 

Mathematical models based on dynamic characteristics are both necessary and 

important in order to formulate response and stability analysis problems for marine 

surface vehicles. Different coordinates systems are adopted in order to investigate the 

maneuverability of a marine surface vehicle. Typically, two coordinates are employed for 

modeling the three degrees of freedom for vehicle motion control, as described in Figure 

1 [2, 7, 9]. One is the earth-fixed coordinate system 0 0 0x y z , and the other is the body-

fixed coordinate system xyz which moves together with the vessel.  

There are several mathematical models in use for control system design and 

analysis. They are generally linear models or simplified nonlinear models. Nomoto’s 

model is a relatively simple but effective model for course keeping control and autopilot 

design [2, 7, 9, 12]. Based on Nomoto’s model, a state feedback control law can be 

coupled with a line of sight guidance law to provide path control as explained in [1]. 
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In the work reported in [2], an instability phenomenon arising from mis-

coordination of guidance and control laws for marine surface vehicles moving in a 

platoon was studied. Moreover, the question of how it is possible for ships traveling in 

formation to exhibit the phenomenon of string instability was answered. 

One of the necessary tasks for all studies involving vehicle maneuvering is an 

estimate of the coefficients in the equations of motion. In this thesis we use an empirical 

Maneuvering Prediction Program which offers two main options. One is the Linear 

Evaluation which implements the methods proposed in [3] for the assessment of course 

stability and turning ability. The other is Turning Prediction which implements the 

multiple linear regression equations presented in [4] for the estimation of turning circle 

characteristics. In the Linear Evaluation option, water depth corrections were added by 

using regression analysis formulas based on the data presented in [5]. In addition, the trim 

corrections used in the above program were presented in [6]. These trim corrections are 

used primarily for velocity derivatives. 

2. Thesis Overview 

The objectives of this thesis are as follows: 

First, we want to formulate the guidance and control problem in the horizontal 

plane for a string of unmanned vehicles and establish the conditions for stability. In 

addition, we want to see how these conditions relate to the conditions for directional 

stability of a single vehicle. 

Second, we want to investigate the relationship between such stability conditions 

and fundamental geometric parameters of the vehicle. Such relationships, if they can be 

derived, will be very useful in preliminary design phases. 

This thesis is organized as follows: 

Chapter II contains the problem formulation. We present an overview of the 

equations of motion for marine vehicles in the horizontal plane with a set of assumptions 

as they pertain to this study. A reduction of the order of the equations of motion then 

follows. This reduction forms the basis for the development of control and guidance laws 
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for one and for a string of vehicles. The final set of equations that model the behavior of a 

string of vehicles in a string formation is developed and presented in this chapter.  

Chapter III presents the stability analysis of the final set of equations developed in 

Chapter 2. Stability is based on a linearized set of equations. We form the characteristic 

equation of the system, and we apply Routh’s criterion in order to derive the final set of 

stability conditions. These are presented in terms of operational and control design 

parameters. 

Chapter IV presents a set of parametric analysis results. We express the 

previously derived stability conditions in terms of a number of physical parameters of the 

vehicles. This way a designer can incorporate motion and formation control 

considerations into the early stages of design or operation and, therefore, better match 

vehicle capabilities to operational requirements. 

Chapter V summarizes the conclusions from this study and offers 

recommendations for further research. 
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II. PROBLEM FORMULATION 

A. INTRODUCTION 

A mathematical model for the problem of path keeping in the horizontal plane is 

derived in this chapter. The objective of path keeping in this context is to drive the 

surface marine vessel to follow a commanded path. Starting with the equations of motion 

for a marine surface vessel during maneuvering in a horizontal plane, we derive the basic 

turning dynamics of the vessel. By using these turning dynamics equations, we suggest a 

control law for the autopilot, which in coordination with an appropriate guidance scheme 

stabilizes the vessel to a commanded heading angle ψC capable of restoring the vessel to 

the commanded path. Finally, we arrive at the system of equations that describes the 

behavior of three vessels moving in a formation, and according to the combined guidance 

and control law. 

B. EQUATIONS OF MOTION 

The rapid advances in computer technology have resulted in successful 

applications in ship engineering. Hence, methods of computer simulation using the 

mathematical models become increasingly important. In the design process, computer 

simulation and analysis provide a convenient tool for predicting ship maneuverability. 

Development of the equations describing the maneuvering motion is one of the 

requirements for applying methods of computer simulation and analysis, and this 

development process is presented in the following sections. 

1. Coordinate Systems 

The vessel is considered to be a rigid body with only three degrees of freedom—

surge, sway and yaw—and which maneuvers in the horizontal plane. The other three 

degrees of freedom—roll, pitch and heave—are neglected and are not considered in this 

study [7], see Figure 1. Two coordinate systems are adopted in order to investigate the 

maneuverability of a marine surface vessel. One is the earth-fixed coordinate system 

0 0 0x y z , and the other is the body-fixed coordinate system xyz which moves together with 
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the vessel, see Figure 1. The 0 0x y plane and the xy plane lie on the free surface, with the 

0x axis pointing to the direction of the original course of the vessel, while the 0z axis and 

the z axis point upwards vertically. The angle between the 0x axis and x axis is defined as 

the yaw angle ψ. When the maneuvering motion starts, the two coordinate systems 

coincide with each other. After any amount of time, the position of the vessel is 

determined by the coordinates 0Gx and 0Gy of the vessel center of gravity in the earth-

fixed coordinate system, and the orientation of the vessel is determined by the yaw angle 

ψ. 

 

Figure 1.  The earth-fixed coordinate system and the body-fixed coordinate system. 
After [8]. 

The vessel maneuvering motion in the horizontal plane can be described by using 

Newton’s second law and the yaw rate about the z axis which is defined as r   . In the 

earth-fixed coordinate system, the equations of motion are as follows: 

 

0 0

0 0

Z

mx X

my Y

I N









 (1) 
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where 0X and 0Y  are the components of total force acting on the vessel in the directions 

of 0x axis and 0y axis, respectively; N is the external moment about the z axis; m is the 

vessel’s mass; ZI  is the moment of inertia of the ship about z axis; 0x and 0y are the 

accelerations in the directions of 0x axis and 0y axis, respectively. 

Equations of motion in the earth-fixed coordinate system can be expressed with 

respect to a body-fixed coordinate system. We fix the origin of the body-fixed coordinate 

system lying on the center of gravity, 

 
0 0

0 0

0

cos sin

sin cos
G

G

x x y x

y x y y

z z

 
 

  
  


 (2) 

Replacing the components of total force in the directions of x axis and y axis by X 

and Y, and the components of vessel speed in the directions of x axis and y axis by Gu  

and Gv in Equation (2), we obtain 

 
0 0

0 0

cos sin

sin cos

X Y X

X Y Y

 
 
 

  
 (3) 

 

 
0

0

cos sin

sin cos
G G G

G G G

u v x

u v y

 
 

 

 




 (4) 

By differentiation of Equation (4) with respect to time we get 

 

0

0

cos sin sin cos

sin cos cos sin
G G G G G

G G G G G

u u v v x

u u v v y

     
     

   

   

   
     (5) 

Substituting Equations (1) and (5) into Equation (3), we obtain the equations of 

motion in the body-fixed coordinate system, with the original of the system lying on the 

ship center of gravity, as 

  Z

G G

G G

mu mv r X

mv mu r Y

I r N

 

 





  (6) 
 

In practice, it is more convenient when the original of the body-fixed coordinate 

system lies at amidships instead of the center of gravity, since the latter depends on the 
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loading condition of the vehicle. Assuming that the ship is symmetrical about its 

longitudinal center plane, the center of gravity has the coordinates ( ,0, )G Gx z  in the 

body-fixed coordinate system with the original lying at amidships. With this information 

in mind, the components of vessel speed at the center of gravity, Gu  and Gv can be 

expressed as follows: 

 
2

Z

G

G G

zG G

u u

v v x

I I mx



 

 

  (7) 

Hence, we obtain the equations of motion in the body-fixed coordinate system 

with the original lying at amidships as [9] 

 

2( )

( )

( )

G

G

Z G

m u vr x r X

m v ur x r Y

I r mx v ur N

  

  
  


 

   (8) 

where u  and v  are the surge and sway velocity, respectively; and Gx  is the x-coordinate 

of the center of mass G. 

2. Hydrodynamic Forces 

In Equation (8), the components of total force and moment acting on the surface 

marine vessel are designated as X, Y and N. These force and moment components 

involve the hydrodynamic force and moment due to different environmental force and 

moment such as surrounding water forces, wind forces, wave forces, rudder and thruster 

forces, etc. We will assume no other environmental forces.  

There are two different approaches to presenting the hydrodynamic force and 

moment. One of them was proposed by Prof. Martin A. Abkowitz, who was the Director 

of the MIT Ship Model Towing Tank.  

Prof. Abkowitz used the Taylor expansion series to express the hydrodynamic 

force and moment. The hydrodynamic force and moment are expressed as the following 

form [7] 
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( , , , , , , )

( , , , , , , )

( , , , , , , )

X X u v r u v r

Y Y u v r u v r

N N u v r u v r









  
  
  

 (9) 

These equations were then expanded in Taylor series about the initial steady state of 

forward motion with constant speed, 0 0 0 0 0 0 0, 0, 0, 0, 0, 0, 0u U v r u v r          . This 

results in [7] 

 

0

2

0

( )

1
( )

2!

1
... ( ) ...

!

( )

n

X X X X X X X
X X u U v r u v r

u v r u v r

u U v r u v r X
u v r u v r

u U v r u v r X
n u v r u v r

Y Y Y
Y Y u U v

u v










      
        

      

                      

                        
  

    
  

  
  

  
  

  
  

2

0

1
( )

2!

1
... ( ) ...

!

( )

n

Y Y Y Y
r u v r

r u v r

u U v r u v r Y
u v r u v r

u U v r u v r Y
n u v r u v r

N N N N N N
N N u U v r u v

u v r u v r










   
   
   

                      

                        
     

       
     

  
  

  
  

  
  

 
  

2
1

( )
2!

1
... ( ) ...

!

n

N
r

u U v r u v r N
u v r u v r

u U v r u v r N
n u v r u v r














                      

                        



  
  

  
  

 (10) 

where 0 0 0 0 0 0 0, 0, 0, 0, 0, 0, 0u U v r u v r          . 

The equations of maneuvering motion are then derived by substituting Equation 

(10) into Equation (8). 

The other approach to define the hydrodynamic force and moment was derived by 

the Japanese research group named Maneuvering Mathematical Modeling Group 

(MMMG). This approach consists of the hydrodynamic force and moment acting on the 
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ship hull, propeller, and rudder, as well as the interaction between them. This expression 

can be described as in Equation (11). 

 
H P R

H P R

H P R

X X X X

Y Y Y Y

N N N N

  
  
  

 (11) 

where the subscripts H, P and R refer to the hull, the propeller and the rudder, 

respectively. 

By plugging Equation (11) into Equation (8), we obtain the equations of ship 

maneuvering motion. This kind of equation is called the MMMG model. If the 

components of the MMMG model are expressed in Taylor series expansions and 

truncated to first order, the two models are identical. 

C. LINEAR EQUATIONS OF MOTION 

As mentioned before, the mathematical models generated by using equations of a 

marine vessel during maneuvering can be used for simulation and analysis. This helps to 

predict ship maneuverability. In order to analyze ship maneuverability, we can use a 

simplified or linear set of equations. 

The force and moment include hydrodynamic derivatives as coefficients. 

Assuming that, during ordinary maneuvering motions, the changes in velocities and 

accelerations , , , , ,u u U v v r r u u v v r r                   and the rudder angle   are 

small, the higher order terms in the series in Equation (10) can be ignored. Hence, we can 

derive the linear equations of motion as  

 

2
0

0

0

( ) ( )

( ) ( )

( ) ( )

G u v r u v r

G u v r u v r

Z G u v r u v r

m u vr x r X X u U X v X r X u X v X r X

m v ur x r Y Y u U Y v Y r Y u Y v Y r Y

I r mx v ur N N u U N v N r N u N v N r N












          

          
          

  

  

  

   
    

    
 (12) 

Assuming ( ) ( )ur u U U r u U r Ur Ur       , 0 0 00, 0, 0X Y N    and 

neglecting the terms 2, Gvr x r  in Equation (12) results in 
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( )

( ) ( )

( ) ( )

u v r u v r

G u v r u v r

Z G u v r u v r

mu X u U X v X r X u X v X r X

m v Ur x r Y u U Y v Y r Y u Y v Y r Y

I r mx v Ur N u U N v N r N u N v N r N












       
         

         

  

  

  

   
    

    
 (13) 

For ease of understanding, we can take into account the port-starboard symmetry 

of the vessel. Under this assumption, many of the linear hydrodynamic derivatives, such 

as, , , , , , , ,v r v r u u uX X X X X Y Y N    and uN   vanish. Hence, the linear equations of motion 

can be simplified as  

 

( ) ( ) ( )

( ) ( ) ( )
v r G v r

Z r v G v r G

m Y v Y mx r Y v Y mu r Y

I N r N mx v N v N mx u r N







      

      
 

 

 
   (14) 

Non-dimensionalization of the equations of motion in terms of water density ρ, 

vessel length L, and nominal velocity U can be expressed in the form [9] 

 

( ) ( ) ( )

( ) ( ) ( )
v r G v r

Z r v G v r G

m Y v Y mx r Y v Y m r Y

I N r N mx v N v N mx r N







      

      
 

 

 
   (15) 

D. AUTOPILOT CONTROL LAW (NOMOTO MODEL) 

Nomoto’s first order model is mainly used to describe the fundamental turning 

dynamics of ship motions or to design automatic control devices such as autopilots. In 

this section, we will continue working on dimensionless linear equations of motion. 

Using these equations, we will finally obtain Nomoto’s first order model. 

1. Turning Dynamics 

Solving Equation (15) for v  and v , we get 

   

   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

v G r z r G v r G r

v G v v v

v G r z r v r G r

v G v v v

m Y v N mx U N r I N r mx N Y mU Y r mx Y r
v

Y mx N N m Y

Y N mx U N r I N r N Y mU Y r mx Y r
v

Y mx N N m Y

 

 

 

 

          


  

        


  

   

 

 

 

  

 


    (16) 

Differentiating the first equation of Equation (16) with respect to time and setting 

the result equal to the second equation, we obtain the basic turning dynamics of a marine 

surface vessel [9] 
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1 2 1 2 3

1 2 1 2 4

( )

( ) v v

T T r T T r r K KT

T T v T T v v K K T

 

 

    

    

 
   (17) 

where 

1 2

1 2

3

4

( )( ) ( )( )

( ) ( )

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

v r z r G v G

v r G v r

v r G v r z r G v r v G

v r G v r v r G v r

v G v

v v

Y m N I Y mx N mx
TT

Y N mx U N Y mU

Y m N mx U Y N I Y mx N Y mU N mx
T T

Y N mx U N Y mU Y N mx U N Y mU

Y N mx N Y m
T

Y N N Y

T

 

 

    


  

       
  

     

  






   

   

 

( ) ( )

( ) ( )
r z r G

r G r

Y N I N Y mx

Y N mx U N Y mU
 

 

  
  
 

  

( ) ( )

( ) ( )

( ) ( )

v v

v r G v r

r G r
v

v r G v r

Y N N Y
K

Y N mx U N Y mU

Y N mx U N Y mU
K

Y N mx U N Y mU

 

 




  
  

 
  

 

The first equation of Equation (17) expresses the relationship between the ship 

turning rate and the rudder angle.  

We can further assume that 0, 0, 0, 0, 0G r r v vx Y Y N N      . Strictly speaking, 

such equations would be true for a fore/aft symmetric vehicle. It has been shown, 

however, that a reasonable degree of accuracy is maintained even for vehicles that are not 

symmetric. By using these, we can obtain  

 
1 2

3

1 2 3

r

vz r

r v

v

v

z r

r

N
K

N

m YI N
T T

N Y

m Y
T

Y

I N
T T T

N

 


   


 


   







 (18) 

From the second equation of Equation (14) we get 

 z r

r r

NI N
r r

N N
 

      (19) 
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By using 1 2 3T T T T    and plugging Equation (18) into Equation (19), the first 

of Equation (17) can be further reduced to a first order model 

 Tr r K   (20) 

Equation (20) was firstly derived by Nomoto by using the method of Laplace 

Transformation. Therefore, this first order model is called the Nomoto model. In this 

model, K and T are called the maneuverability indexes, and they have explicit relations 

with maneuvering characteristics. 

Equation (18) can be expressed as in the form [1] 

 
1 K

r r
T T

   or r ar b   (21) 

where the two parameters are   

1
,

K
a b

T T
  

. 

2. Control Law 

A linear heading feedback control law based on Equation (21) has the form [1] 

 0 1 2( )ck k r      (22) 

where c  is the commanded heading angle.  

By using r  , the system characteristic equation is obtained from Equation (21) 

and Equation (22). The system characteristic equation is as follows 

 2
2 1( ) 0s a bk s bk     (23) 

The controller gains can be computed from the comparison of the second order 

system equation as follows: 

 2 22 0n ns s     (24) 

 
2

1 2

2
,n na

k k
b b

 
     (25) 

The commanded rudder angle is given by [1] 

 

0tanh( )sat
sat

 



 (26) 
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where sat  is the saturation limit and typically set at 0.4 radians, 0  is the slope of the 

function at zero, and it is given by Equation (22). 

E. EQUATIONS FOR GUIDANCE 

The guidance scheme is described in [1] and is basically illustrated in Figure 2. In 

Figure 2, the vessel located at (x,y) changes its direction toward a target point D which is 

located ahead of the vessel at a distance d on the vessel’s nominal path. According to [1], 

pure pursuit guidance is achieved by commanding a heading angle c  equal to the line of 

sight angle   

 1tanC

y

d
    (27) 

 

Figure 2.  The Line of Sight Guidance Scheme. After [8] 

The guidance law is based on the inertial deviation rate from the commanded  

path [1] 
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 siny   (28) 

It is worthwhile to note that guidance law would be globally asymptotically stable 

provided that the commanded heading angle c  is equal to the vessel’s heading angle . 

Moreover, the commanded heading angle c  is a function of the vessel’s position and the 

distance d. Therefore, the smaller the value of distance d, the faster the guidance law 

response is. The autopilot has a limited reaction time according to the specified natural 

frequency ωn and damping ratio ζ. Thus, this parameter d must be chosen properly for the 

desired response to be achieved [1]. 

F. COMBINED GUIDANCE AND CONTROL LAW 

In this section, the combined guidance and control law is derived. The combined 

guidance and control law describes the behavior of a vessel that has deviated from the 

commanded straight-line path and attempts to return by following a target point D (see 

Figure 2). Then, we expand this scenario for three vessels moving in a string or series 

formation. 

1. One Vessel 

Substituting the commanded heading angle c  defined in Equation (27) into the 

control law, Equation (22), we obtain 

 1
0 1 2( tan )

y
k k r

d
    

 (29) 

For very small commanded heading angle c , Equation (29) can be further 

reduced to 

 0 1 2( )
y

k k r
d

   
 (30) 

This is simply the linearized form of (29). Combining Equation (21) with 

Equations (26) and (30) yields 

 
1 2

1
tanh( ( ) )sat

sat

y
r ar b k k r

d
 


   

 (31) 

The complete system of equations is given by 
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 1 2

1
tanh( ( ) )

sin

sat
sat

r

y
r ar b k k r

d

y



 






   







  (32) 
In linearized form we have,

  1 2( ( ) )

r

y
r ar b k k r

d
y









   







  (33) 

Equations (33) can be expressed in matrix form as 

 x Ax  (34) 

where x = [ , r , y ]T and 1
1 2

0         1           0

     

1         0           0 

bk
A bk a bk

d

 
 
  
 
 
   

The controller gains in Equation (25) can be re-defined as 

 
2

1

2 2
n

n

bk

a bk




 
  

 (35) 

Consequently matrix A is written as 

 
2

2

0         1           0

-    -2   -

1         0           0 

n
n nA

d

 

 
 
 
 
 
 

 (36) 

2. Three Vessels 

Now we can expand the previous concept for the case of three vessels moving in a 

string or serial formation. In this case, the first vessel attempts to direct its longitudinal 

axis toward a target point D, whereas the second vessel points its longitudinal axis toward 

the first one and so on (see Figure 3). In this consideration, d1 is the distance between the 

target point D and the first vessel d2 is the distance between the first and the second 

vessel; and d3 is the distance between the last two vessels always measured on the 

commanded path. 
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The system of equations for the first vessel is 

 

1 1

1
1 1 1 1 11 1 21 1

1

1 1

( ( ) )

r

y
r a r b k k r

d

y









   







  (37) 

For the second vessel, they become 

 

2 2

2 1
2 2 2 2 12 2 22 2

2

2 2

( ( ) )

r

y y
r a r b k k r

d

y










   







  (38) 

 

 

Figure 3.  Three vessels in a formation, which have deviated from the commanded 
straight line path (x axis). After [8] 

Finally, the system of equations for the third vessel is 
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3 3

3 2
3 3 3 3 23 3 33 3

3

3 3

( ( ) )

r

y y
r a r b k k r

d

y










   









 (39) 

or  

 x Ax  (40) 

where 

 1 1 1 2 2 2 3 3 3, , , , , , , ,x r y r y r y    and the system matrix is given by 

1

1 1

2 2

2 2

3 3

3 3

2
2

1
1

2 2
2

2
2 2

2 2
2

3
3 3

0 1 0 0 0 0 0 0 0

-2 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 -2 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 -2

0 0 0 0 0 0 1 0 0

n
n n

n n
n n

n n
n n

d

A
d d

d d


  

 
  

 
  

 
 
 
  
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
   
 
 

 


 (41) 
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III. STABILITY ANALYSIS 

A. INTRODUCTION 

In this chapter, the problem of stability for one vessel is initially studied. Then, 

the problem of stability for three vessels moving in a formation with constant speed on a 

straight-line commanded path (trivial equilibrium solution characterized by ψ=r=y=0) is 

analyzed. The solution described here builds on and extends previous work in [2]. All 

vessels can deviate from the commanded path due to external disturbances such as a 

wave or another external disturbance or change in mission requirements. This is 

translated to some non-zero initial conditions. The system is prone to instability 

phenomena due to incorrect coordination of guidance and control laws. Specific criteria 

for stability and conclusions about the effect of damping ratio ζ and natural frequency ωn 

are drawn. 

B. STABILITY OF ONE VESSEL 

For the case of one vessel, we have already referred to the combined guidance and 

control law, Equation (34), and the matrix A is 

 

2
2

0         1           0

-    -2   -

1         0           0 

n
n nA

d

 

 
 
 
 
 
   (42) 

Local stability properties can then be established by the eigenvalues of matrix A. 

The characteristic equation of A is 

 

2
3 2 22 0n

n n d

       
 (43) 

 

We can observe that if we neglect the constant term 
2

n

d


 from Equation (42) (i.e., 

d   or the guidance law is eliminated), Equation (43) reduces to Equation (24) (i.e., 
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the characteristic equation when control law stabilizes the vessel to any commanded 

heading angle c  without the presence of the guidance law). 

Applying Routh’s criterion to Equation (43) we get 

 

2
3 1

2 0
2

n
n

n

d
d




   
        or         

1

2critical
n

d



  (44) 

For  
1

2 n

d


  all eigenvalues of A have negative real parts, and the combined 

guidance and control law provides stability (i.e., the vessel follows the commanded path). 

On the other hand, we already referred to the controller gains, as in Equation (25). 

Using Equation (25) we obtain 

 1n k b    (45) 

 2

2 n

k b a



  (46) 

Substituting Equation (45) and (46) into Equation (44), criticald  can be expressed in 

the form  

 
2

1
criticald

k b a



 (47) 

Equation (47) proves that criticald  depends only on 2k  and maneuverability 

indexes, and it does not depend on 1k . In other words, we see that the critical distance for 

stability of the combined law is a function of the derivative gain of the vehicle control 

law, an observation which had escaped previous studies. We conclude that the overall 

stability of the system depends then on the speed of response of the vehicle to the rate of 

change of its commanded heading angle. A vehicle that has a higher rate of change, in 

other words a higher bandwidth or more responsive vehicle, can tolerate smaller values of 

the distance d and still be stable. 

C. STABILITIY OF THREE VESSELS 

The controller gains for the first vessel are from Equation (25) 
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1

1

2

11
1

1 1
21

1

( 2 )

n

n

k
b

a
k

b



 




 


 (48) 

for the second vessel 

 

2

2

2

12
2

2 2
22

2

( 2 )

n

n

k
b

a
k

b



 




 


 (49) 

and for the third vessel 

 

3

3

2

23
3

3 3
33

3

( 2 )

n

n

k
b

a
k

b



 




 


 (50) 

This time the linearized system matrix A in Equation (36) turns out to be a 9 by 9 

matrix. 

 

1

1 1

2 2

2 2

3 3

3 3

2
2

1
1

2 2
2

2
2 2

2 2
2

3
3 3

0 1 0 0 0 0 0 0 0

-2 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 -2 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 -2

0 0 0 0 0 0 1 0 0

n
n n

n n
n n

n n
n n

d

A
d d

d d


  

 
  

 
  

 
 
 
  
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
   
 
 

 


 (51) 
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The study of the eigenvalues of matrix A can reveal the local stability properties 

of the string. First, we develop the characteristic equation of matrix A 

 

1 2 3 1 1 2 1 3 2

1

2 3 3 1 2 1 3 1 2 1 2 3

2

1 3 2 3

8 7
9 2 2

1 2 3 1 2 1 3
1 2 3 1 2 3

26
2 2 2 2

2 3 2 3 1 1 2 3
1 2 3 1

2
2 2

1 3 2
2

( (2 2 2 )) ( ( 4 4

4 )) ( (2 2 2 8

2 2 2

n n n n n n n n n

n
n n n n n n n n n n n n

n
n n n n n

d d d d d d

d d d d

d

                 

                   


       

       

      

   3

2 3 1 2 1 2 3
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Following some algebra, we can show that this is the product of the following 

three equations 
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Equation (53) is essentially the same form as Equation (43), which is the 

characteristic equation for the case of one vessel trying to move in the commanded path. 

The characteristic equation of matrix A then becomes 
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 (54) 

Therefore, the nine eigenvalues of matrix A are the roots of Equation (53). In 

other words, the eigenvalues for the case of three vessels independently try to follow the 

commanded path. This means that system stability is established if and only if all the 
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vessels have stability under the assumption that they move independently (not in a string, 

but separately), as in  
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IV. PARAMETRIC STUDIES 

A. INTRODUCTION 

In this chapter, parametric studies of marine surface vehicle stability conditions 

are introduced. A maneuvering prediction program was used to evaluate the 

hydrodynamic coefficients for a range of vehicle geometric parameters. Using this 

program, the coefficients in Nomoto’s model was evaluated. Then, we looked at the 

variation of the critical parameter for stability in terms of vehicle geometry. 

B. MANEUVERING PREDICTION PROGRAM 

The Maneuvering Prediction Program (MPP) we utilized here was first developed 

to support the teaching of conceptual ship design within the University of Michigan’s 

Department of Naval Architecture and Marine Engineering. This program applies 

methods to assess the course stability, turn ability, and controllability of a surface marine 

vehicle. While applying these methods, the MPP uses the following empirical equations 

in Equation (56) 
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where B, T, L are the maximum beam, the mean draft and the length on waterline, 

respectively. , , , , , , ,v r v r v r v rY Y N N Y Y N N     are the vessel hydrodynamic derivatives. These 

formulas form the basis of the predictions incorporated in the MPP, although additional, 

primarily empirical, adjustments based on [3] and [4], are made in the program. 

The vehicle characteristics input to the MPP are listed in Table 1. 

Vehicle Characteristics 

Length on Waterline (LWL) 100 Meters 

Maximum Beam (B) 10 Meters 

Draft Forward (TF) 7 Meters 

Draft Aft (TA) 7 Meters 

Block Coefficient on LWL (CB) 0.7 - 

Table 1.   Vessel characteristics used in MPP. 

Parametric studies were performed in three separate parts. Beam, block 

coefficient and mean draft effects on critical distances are analyzed. Typical outputs from 

the MPP for each effect are included in the appendix.  

C. BEAM EFFECTS 

In order to present the beam effects on the critical stability distance, we kept the 

beam of the model as a variable, and the remaining vehicle characteristics are set to be 

constant as shown in Table 1. Using the MPP and the previous parametric expressions, 

we calculated the T and K maneuverability indexes for each value of different beam 

values assuming that the surface vehicle was hydrodynamically course stable. Results for 

hydrodynamically course unstable vehicles were discarded as they were believed to be 

unreliable and could not be adequately modeled by the MPP’s parametric formulas. 

Typical results for different beam values are listed in Table 2.  
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Maximum Beam on 

Waterline (B) (meters) 
Time Constant (T) Rudder Gain Factor (K) 

7 0.8427 -0.5704 

8 1.0534 -0.6677 

9 1.3215 -0.7935 

10 1.6706 -0.96 

11 2.1398 -1.1875 

12 2.798 -1.5117 

13 3.7808 -2.0028 

14 5.3941 -2.8191 

15 8.5058 -4.4104 

16 16.9337 -8.7544 

Table 2.   Calculated values of T and K maneuverability ındexes for different beam 
values. 

We already referred to Nomoto’s first order model in Equation (20) and expressed 

it in the form in Equation (21). Now we can calculate the new maneuverability indexes, a 

and b, which have already been defined in Equation (21). These a and b values for 

different beam values are listed in Table 3. 
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Maximum Beam on 

Waterline (B) (meters) 
a (-1/T) b (K/T) 

7 -1.1867 -0.6769 

8 -0.9493 -0.6339 

9 -0.7567 -0.6004 

10 -0.5986 -0.5746 

11 -0.4673 -0.5549 

12 -0.3574 -0.5403 

13 -0.2645 -0.5297 

14 -0.1854 -0.5226 

15 -0.1176 -0.5185 

16 -0.0590 -0.5170 

Table 3.   Calculated values of new maneuverability indexes for different beam 
values. 

Knowing the a and b values allows us to calculate n  and   by using Equation 

(45) and Equation (46). The calculations were made by using the following values for the 

parameters: 

1.  Controller gain 1k : 1 2k    

2.  Controller gain 2k : 2 2.5k    

Calculated n  and   values for different beam values are listed in Table 4. 
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Maximum Beam on 

Waterline (B) (meters) 
n    

7 1.1635 0.2172 

8 1.1259 0.2821 

9 1.0958 0.3396 

10 1.0720 0.3908 

11 1.0535 0.4366 

12 1.0395 0.4778 

13 1.0293 0.5148 

14 1.0224 0.5483 

15 1.0183 0.5787 

16 1.0168 0.6065 

Table 4.   Calculated n  and   values for different beam values. 

Now either Equation (44) or Equation (47) can be used to determine the criticald  

values. The results of criticald  values for different beam values are listed in Table 5. 

 

Maximum Beam on 
Waterline (B) (meters) 

criticald  

7 1.9782 

8 1.5740 

9 1.3433 

10 1.1933 

11 1.0869 

12 1.0067 

13 0.9435 

14 0.8919 

15 0.8483 

16 0.8107 

Table 5.   Calculated criticald  values for different beam values. 
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The values in Table 5 were used to plot the beam effects on criticald  values. Figure 

4 presents criticald  values for different beam values. Analyzing Figure 4 brings us to our 

main conclusion about beam effects. We conclude that the critical distance is decreasing 

for the increasing beam; therefore, wider vehicles can maintain string formation stability 

more easily. 

 

Figure 4.  Beam effects on critical distance values. 

D. BLOCK COEFFICIENT EFFECTS 

Block coefficient is the ratio of the volume of displacement at any draft to the 
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Block Coefficient ( BC ) Time Constant (T) Rudder Gain Factor (K) 

0.52 0.9087 -0.6973 

0.56 1.0403 -0.7438 

0.6 1.1902 -0.7961 

0.64 1.3619 -0.8553 

0.68 1.56 -0.9226 

0.72 1.7902 -1.0001 

0.76 2.0605 -1.0902 

0.8 2.3814 -1.1962 

0.84 2.7675 -1.3227 

0.88 3.2397 -1.4764 

Table 6.   Calculated values of T and K maneuverability ındexes for different block 
coefficient values. 

As previously done in Beam Effects calculations, the new maneuverability 

indexes, a and b, can be calculated. Calculated a and b values for different block 

coefficient values are listed in Table 7. 

 

Block Coefficient ( BC ) a (-1/T) b (K/T) 

0.52 -1.1005 -0.7673 

0.56 -0.9613 -0.7150 

0.6 -0.8402 -0.6689 

0.64 -0.7343 -0.6280 

0.68 -0.6410 -0.5914 

0.72 -0.5586 -0.5586 

0.76 -0.4853 -0.5291 

0.8 -0.4199 -0.5023 

0.84 -0.3613 -0.4779 

0.88 -0.3087 -0.4557 

Table 7.   Calculated values of new maneuverability indexes for different block 
coefficient values. 
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Similarly, n  and   can be calculated by using Equation (45) and Equation (46). 

For consistency, the same controller gain values were used. Calculated n  and   values 

for different block coefficient values are listed in Table 8. 

 

Block Coefficient ( BC ) n    

0.52 1.2388 0.3301 

0.56 1.1958 0.3454 

0.6 1.1566 0.3597 

0.64 1.1207 0.3729 

0.68 1.0876 0.3850 

0.72 1.0570 0.3964 

0.76 1.0287 0.4070 

0.8 1.0023 0.4169 

0.84 0.9777 0.4263 

0.88 0.9547 0.4350 

Table 8.   Calculated n  and   values for different block coefficient values. 
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The results of criticald  values for different block coefficient values are listed in 

Table 9. 

 

Block Coefficient ( BC ) criticald  

0.52 1.2226 

0.56 1.2104 

0.6 1.2019 

0.64 1.1965 

0.68 1.1940 

0.72 1.1933 

0.76 1.1941 

0.8 1.1964 

0.84 1.1997 

0.88 1.2039 

Table 9.   Calculated criticald  values for different block coefficient values. 
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Figure 5 shows the block coefficient effect on critical distance. It can be seen 

from Figure 5 that there is an optimum block coefficient for formation stability 

properties. 

 

Figure 5.  Block coefficient effects on critical distance values. 
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E. MEAN DRAFT EFFECTS 

In this section, the same method is used to determine the maneuverability indexes 

(T, K, a and b), n ,   and criticald  values. The procedure to calculate these variables has 

already been explained in the previous sections.  

The results of maneuverability indexes T and K for different mean draft values 

are listed in Table 10. 

 

Mean Draft (meters) Time Constant (T) Rudder Gain Factor (K) 

1 3.1479 -1.7052 

2 4.4297 -2.3283 

3 4.1638 -2.2236 

4 3.3379 -1.8206 

5 2.6011 -1.4468 

6 2.0588 -1.1651 

7 1.6706 -0.96 

8 1.3885 -0.809 

9 1.178 -0.6952 

10 1.0166 -0.6073 

11 0.8896 -0.5379 

Table 10.   Calculated values of T and K maneuverability ındexes for different mean 
draft values. 
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Calculated a and b values for different mean draft values are listed in Table 11. 

Mean Draft (meters) a (-1/T) b (K/T) 

1 -0.3177 -0.5417 

2 -0.2257 -0.5256 

3 -0.2402 -0.5340 

4 -0.2996 -0.5454 

5 -0.3844 -0.5562 

6 -0.4857 -0.5659 

7 -0.5986 -0.5746 

8 -0.7202 -0.5826 

9 -0.8489 -0.5901 

10 -0.9837 -0.5974 

11 -1.1241 -0.6046 

Table 11.   Calculated values of new maneuverability indexes for different mean draft 
values. 

Calculated n  and   values for different mean draft values are listed in Table 12. 

Mean Draft (meters) n    

1 1.0408 0.4979 

2 1.0253 0.5307 

3 1.0335 0.5297 

4 1.0444 0.5093 

5 1.0547 0.4769 

6 1.0639 0.4366 

7 1.0720 0.3908 

8 1.0795 0.3411 

9 1.0864 0.2883 

10 1.0930 0.2332 

11 1.0997 0.1762 

Table 12.   Calculated n  and   values for different mean draft values. 
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The results of criticald  values for different mean draft values are listed in Table 13. 

Mean Draft (meters) criticald  

1 0.9647 

2 0.9189 

3 0.9133 

4 0.9398 

5 0.9939 

6 1.0763 

7 1.1933 

8 1.3579 

9 1.5962 

10 1.9616 

11 2.5804 

Table 13.   Calculated criticald  values for different mean draft values. 

Figure 6 represents the block coefficient effects on critical distance. Focusing on 

Figure 6, we can say that a shallow draft is preferable although an optimum may exist for 

formation stability properties. 
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Figure 6.  Mean draft effects on critical distance values. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis addressed the problem of coordinated motion control and the stability 

loss of surface marine vehicles. The problem was decoupled into the motion stability 

control task of making each marine surface vehicle follow a target along its path. 

The main work and results are summarized as follows: 

1. A mathematical model was derived which is based on Nomoto’s second 

order model and captures the fundamental dynamics of turning on the 

horizontal plane with no side slip.  

2. A state feedback control law was coupled with a line of sight guidance law 

to provide path control. A string of three vehicles was considered where 

each vehicle is using the vehicle in the front as a reference point.  

3. The coupled motion stability of the formation was analyzed by 

linearization. It was shown that under the assumed dynamics, guidance, 

and control laws, the stability properties of the system decouple into 

individual vehicles. This makes it possible to obtain exact analytical 

results that can be used in design.  

4. Parametric runs and sensitivity analysis studies revealed the effects of 

main vehicle geometric parameters on formation control and motion 

stability. 

5. It was established that the critical stability coefficient is a function of the 

derivative gain of the control law. 

6. The critical stability coefficient depends as follows on vehicle geometry: 

a. It is decreasing for increasing vehicle beam. 

b. It is in general increasing for increasing draft. 

c. It has an optimum in terms of the block coefficient. 
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B. RECOMMENDATIONS 

The study presented in this thesis can be extended in different areas, briefly 

explained below. 

The main recommendations for future research are summarized as follows: 

1. Analyze the nonlinear behavior of the system in order to see if there are 

higher order effects that could not be captured by linearization. 

2. Expand the range of parametric studies to additional variables such as 

forward speed and develop a set of design recommendations. 

3. Finally, incorporate the longitudinal equations of motion by allowing the 

distances d1, d2, and d3 to be functions of time. 
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Ship Time constant 
NU:erator Time constant 
b~rator '!me constant 

let oraer iqn. T1:oe constant 
Ru012er Gatn Factor 
RuQOer Gain Factor 

Steer-Ing Gear- Time constant 

X prime 
sUb zz 

O.Oll7GO 
0.000135 

Y sUb v - - 0.023G40 
Y SUb V dot - · 0.017219 

N SUb v - · 0.0098G3 
N SUb v dot - - 0.000950 

y sUb r 0.00,:&4 
y SUb r dot - - 0.001098 

N sUb r - - 0.004049 
ll sUb r dot - - 0.000991 

y sUb 12elta - 0.00285, 
ll sUb Qelta - - 0.001399 

Cor Nomot:o•s EqUation 

Tl prt:e 3.1:75 
T2 prlc:.e 0.38&9 
n pr1=e 0.70&4 
T4 price 0.3321 

T prime 2.79110 
K prime -1.5:11 
K s:Jb v pr-ime - 0.4797 

TE prlr::e 0.1929 

Bvaluatton or 1'1lrn1Dg AI:I111ty ano Stablllty 

Inverse Tioe constant 
Inver-se G3tn Factor 

Clar~e•s 7Urn1ng tnclex 

1/ T prime , 
1/ It prime 

Linear DynamJc Stablllty crtterion 

0.3574 
O.,HS 

p - 0.30'5 
c - 0.0000405 

vessel is nydroQynamJcally open loop course stable 

Closecl Loop Phase Margin w1tb Steering Bng!ne 28.5803 degrees 
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Figure 7.  One of the outputs of the MPP for beam effects. 
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Open LOop DynamJ.cs MatriX coerr. a2l - 5.38858 
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Run lllentlrtcatton. BloCk coer:tctent Brrects 

Input Verl!1cat1on: 

Length or Waterline LRL (m) 

Max.1:um Beam on LWL (m) 

K.ean orart <~l 

Drart Forwaro <ml 

Dratt Art (mJ 

BlOCk coer!'1c1ent on LWL C1! 

Center or Gravity LOG (\UNL; + FwQ) 
center or Gravity LOG (m :ro:a FPJ 

Ktaenipe to Rullller CE XR (\LWL; • Art) 
Rullller center or Btrort XR (D rrom FP) 

Inltlal Ship Speea (Xnots) 
Inttlal Ship speea [~s) 

Xater Type 
Water Densit y ( kg/m~l) 
Klne=atlc Vlscoelty (m.2/ s) 

Yaw Ralllus or Gyration IOl/LWL 

Water Depth to Sll1p Drart Ratlo U/T 

steering Gear TlQe constant Is ) 

TOtal Rullller Area - Fraction or LWL•'i' 

!lUmber or Propellers 

Type or stngle screw stern 

SUI:IInergell Bow Area - Fraction or LWL• T 

1 

100.00 

:o.oo 

7.00 

7.00 

7.00 

0.9000 

5GOO.OO 

0.0000 
50.00 
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99.00 

:5.00 
7. 7lGG 

- Saltt115C 
1025.87 
0 .ll88JU> 05 

0.2500 

1000.00 

2.50 
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: 

Closell 

0.0000 
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Linear Maneuvering Derivatives 

Nooat=ensional Mass 
r;oru11l:.enstonal Mass Mocneot 

sway Velocity Dertva:tve 
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Steering Gear Time constant 

X prime 
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T prime 2.38U 
K prime -1.1962 
K s:Jb v prime - 0.3575 
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Figure 8.  One of the outputs of the MPP for block coefficient effects. 
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Ru011er Gatn Factor 
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Steering Gear Time constant 
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tor Nomot:o•s EqUation 

Tl prt:e 2.9575 
T2 prlc:.e 0. 3945 
n pr1=e 0.1509 
T4 price 0.3:&8 
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Figure 9.  One of the outputs of MPP for mean draft effects. 
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