Two-dimensional arrays of neutral atom quantum gates

Under this project a two-qubit entangling gate was developed and demonstrated. Two neutral atom qubits held in optical traps 9 microns apart were entangled using a Rydberg blockade gate and the threshold for deterministic entanglement was passed. The previous report covered the period 1-Aug-2009 - 31-Jul-2010. Since 1-Aug-2010 this research has continued under the IARPA MQCO program.

Quantum computing, Rydberg atoms, entanglement

Mark Saffman

53715 -1218

47949-PH-QC.27

608-265-5601
Two-dimensional arrays of neutral atom quantum gates

ABSTRACT

Under this project a two-qubit entangling gate was developed and demonstrated. Two neutral atom qubits held in optical traps 9 microns apart were entangled using a Rydberg blockade gate and the threshold for deterministic entanglement was passed. The previous report covered the period 1-Aug-2009 - 31-Jul-2010. Since 1-Aug-2010 this research has continued under the IARPA MQCO program.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)
Received Paper

03/11/2010 1.00 M. Saffman. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade,
, (10 2005): . doi:

individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system,

10/19/2012 4.00 L. Isenhower, X. Zhang, A. Gill, T. Walker, M. Saffman. Deterministic entanglement of two neutral atoms
via Rydberg blockade,

10/19/2012 6.00 L. Isenhower, W. Williams, A. Dally, M. Saffman. Atom trapping in an interferometrically generated bottle
beam trap,
Optics Letters, (04 2009): 0. doi: 10.1364/OL.34.001159

10/19/2012 7.00 M. Saffman, D. Oblak, J. Appel, E. Polzik. Spin squeezing of atomic ensembles by multicolor quantum
nondemolition measurements,

of Rydberg blockade between two atoms,
Nature Physics, (01 2009): 0. doi: 10.1038/nphys1178

10/19/2012 9.00 K. Mølmer, M. Saffman. Scaling the neutral-atom Rydberg gate quantum computer by collective encoding
in holmium atoms,

10/19/2012 10.00 M Saffman, X L Zhang, A T Gill, L Isenhower, T G Walker. Rydberg state mediated quantum gates and
entanglement of pairs of neutral atoms,

10/19/2012 11.00 Anne Nielsen, Klaus Mølmer. Topological matter with collective encoding and Rydberg blockade,

10/19/2012 12.00 Klaus Mølmer, Anne E. B. Nielsen. Deterministic multimode photonic device for quantum-information
processing,

10/19/2012 13.00 Sangtaek Kim, Robert R. Mcleod, M. Saffman, Kelvin H. Wagner. Doppler-free, multiwavelength
acousto-optic deflector for two-photon addressing arrays of Rb atoms in a quantum information
processor,
Applied Optics, (04 2008): 0. doi: 10.1364/AO.47.001816

10/19/2012 14.00 Thad Walker, M. Saffman. Consequences of Zeeman degeneracy for the van der Waals blockade
between Rydberg atoms,

between Ground and Rydberg States with Dipole-Dipole Atomic Interactions,

10/19/2012 16.00 L. Pedersen, M. Saffman, E. Brion, K. Mølmer. Error Correction in Ensemble Registers for Quantum
Repeaters and Quantum Computers,

10/19/2012 17.00 E. Brion, K. Mølmer, M. Saffman. Quantum Computing with Collective Ensembles of Multilevel Systems,
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Publication Date</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/19/2012</td>
<td>21.00</td>
<td>L H Pedersen, K Mølmer, E Brion</td>
<td>Implementing a neutral atom Rydberg gate without populating the Rydberg state,</td>
<td>Journal of Physics B: Atomic, Molecular and Optical Physics, (05 2007): 0. doi: 10.1088/0953-4075/40/9/S09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/19/2012</td>
<td>23.00</td>
<td>Line Hjortshøj Pedersen, Niels Martin Møller, Klaus Mølmer</td>
<td>Fidelity of quantum operations,</td>
<td>Physics Letters A, (7 2007): 0. doi: 10.1016/j.physleta.2007.02.069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/19/2012</td>
<td>25.00</td>
<td>T. Walker, K. Mølmer, M. Saffman</td>
<td>Quantum information with Rydberg atoms,</td>
<td>Reviews of Modern Physics, (8 2010): 0. doi: 10.1103/RevModPhys.82.2313</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: 23

Number of Papers published in peer-reviewed journals:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Excitation and interaction of Rydberg atoms for quantum bits and quantum registers (PQE-2008, Physics of Quantum Electronics, Snowbird, January 8, 2008)

Experimental progress in coherent control of Rydberg atoms (workshop on Rydberg Excited Atoms, Sandbjerg, Denmark, May 14-16, 2008)

Controlling neutral atom quantum states by Rydberg interactions (Midwest cold atom workshop, Argonne National Laboratory, Chicago, November 15, 2008)

Observation of two-atom Rydberg blockade, (DAMOP, Williamsburg, May 23, 2009)

Demonstration of a neutral atom quantum gate and perspectives on scalability, (Aspen workshop on Quantum Simulation/Computation with Cold Atoms and Molecules June 10, 2009)

Quantum information processing with Rydberg atoms, 30th CNLS Annual Conference - Complexity and Disorder at Ultra-Low Temperatures (June 21-25, 2010)

EU Quantum Information Processing Open Day, (July 7, 2010 Oxford)

Rydberg quantum gate, International Conference on Atomic Physics, ICAP, Cairns, (July 2010)

Quantum information with Rydberg atoms
Rydberg Workshop, Dresden, (September 2010)

Rydberg enabled quantum information processing,
Optical Society of America annual meeting, Frontiers in Optics/Laser Science, Rochester, (October 2010).

Rydberg gates, Rydberg Workshop, Recife, (November 2010)

Number of Presentations: 12.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
</table>

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):
Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/11/2010</td>
<td>3.00 M. Saffman, T. Walker. Quantum information with Rydberg atoms, (09 2009)</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>2</td>
</tr>
</tbody>
</table>

Number of Manuscripts:

Books

Received	**Paper**

TOTAL:

Patents Submitted

TOTAL:

Patents Awarded

Awards

M. Saffman, 2008 Fellow American Physical Society
Graduate Students

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siyuang Zhang</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Alex Gill</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Larry Isenhower</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Kara Maller</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Erich Urban</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Todd Johnson</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Alex Gill</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent: 3.15
Total Number: 7

Names of Post Doctorates

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xianli Zhang</td>
<td>0.50</td>
</tr>
<tr>
<td>Larry Isenhower</td>
<td>0.10</td>
</tr>
<tr>
<td>Deniz Yavuz</td>
<td>0.40</td>
</tr>
</tbody>
</table>

FTE Equivalent: 1.00
Total Number: 3

Names of Faculty Supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>National Academy Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Saffman</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Thad Walker</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Klaus Moelmer</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent: 0.25
Total Number: 3

Names of Under Graduate students supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin Broerman</td>
<td>0.10</td>
<td>Physics</td>
</tr>
<tr>
<td>Jake Covey</td>
<td>0.10</td>
<td>Physics</td>
</tr>
<tr>
<td>Antoine Martin</td>
<td>0.10</td>
<td>Physics</td>
</tr>
<tr>
<td>Kevin Christie</td>
<td>0.10</td>
<td>Physics</td>
</tr>
</tbody>
</table>

FTE Equivalent: 0.40
Total Number: 4
The number of undergraduates funded by this agreement who graduated during this period: 3.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields:...... 3.00

The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:...... 3.00

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):...... 3.00

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering:...... 0.00

The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense 0.00

The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:...... 0.00

Names of Personnel receiving masters degrees

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Henage</td>
<td></td>
</tr>
</tbody>
</table>

Total Number: 1

Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larry Isenhower</td>
<td></td>
</tr>
<tr>
<td>Todd Johnson</td>
<td></td>
</tr>
<tr>
<td>Erich Urban</td>
<td></td>
</tr>
</tbody>
</table>

Total Number: 3

Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE Equivalent:</td>
<td></td>
</tr>
</tbody>
</table>

Total Number:

Sub Contractors (DD882)

Inventions (DD882)
Scientific Progress

See Attachment

Technology Transfer
QCCM - Two-dimensional arrays of neutral atom quantum gates

Principal Investigators: Mark Saffman, Thad G. Walker, University of Wisconsin Madison; Klaus Mølmer, University of Aarhus, Denmark

Final Report for 09/01/2005 to 12/31/2010

Project Description:

The major project goal was to demonstrate quantum logic gates with neutral atoms in a two dimensional array of optically defined trapping sites. A small 2D array of 6 trapped atom sites was demonstrated and a CNOT gate was demonstrated between a pair of trapped atoms in neighboring sites (Isenhower et al. PRL 2010). It was also shown that the CNOT gate could be used for deterministic entanglement of a pair of atoms (Zhang et al. PRA 2010). Detailed reports on the experimental methods used and technical approach can be found in the previous interim reports from this project.

A review of the use of Rydberg atoms for quantum information was also published by us in 2010 (Saffman, et al. Rev. Mod. Phys. 2010). The experimental and theoretical progress of the last five years by our group, and many others worldwide, is presented in the review.

The Madison CNOT experiment was the first demonstration of a two-qubit entangling gate with one pair of neutral atom qubits. The Rydberg blockade mechanism which was used for the gate is attractive for scaling to a larger array of neutral atom qubits since the long range nature of the interaction can be used for entanglement beyond nearest neighbor qubits. Starting in August 2010 work commenced on building a 2D neutral atom array for quantum computing experiments. The decision was also made to switch from Rb to Cs atoms. The reason being that Cs provides a better match to available medium power laser wavelengths for fast excitation of Rydberg states.