Award Number: W81XWH-11-1-0106

TITLE: Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

PRINCIPAL INVESTIGATOR: Dr. Andre Nussenzweig

CONTRACTING ORGANIZATION: The Geneva Foundation
Lakewood, WA 98499

REPORT DATE: March 2013

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

Dr. Andre Nussenzweig

E-Mail: lwagner@genevausa.org

Our proposal is to explore the novel notion that it may be possible to restore near normal HR activity in Brca1 cells and tissues. We believe that this phenomenon will lead to targeted therapies to reduce lifetime risk of tumor formation in BRCA1 and potentially BRCA2 carriers.

BRCA1, 53BP1, cancer biology, DNA repair, tumorigenesis

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2013</td>
<td>Annual</td>
<td>1 March 2012 - 28 February 2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>W81XWH-11-1-0106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>W81XWH-11-1-0106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Andre Nussenzweig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Geneva Foundation</td>
</tr>
<tr>
<td>Lakewood, WA 98499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Medical Research and Materiel Command</td>
</tr>
<tr>
<td>Fort Detrick, Maryland 21702-5012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION / AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for Public Release; Distribution Unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our proposal is to explore the novel notion that it may be possible to restore near normal HR activity in Brca1 cells and tissues. We believe that this phenomenon will lead to targeted therapies to reduce lifetime risk of tumor formation in BRCA1 and potentially BRCA2 carriers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1, 53BP1, cancer biology, DNA repair, tumorigenesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAMRMC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Body</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Appendices</td>
</tr>
</tbody>
</table>
Introduction

Genomic instability is a hallmark of cancer. Central to a cell's ability to maintain genomic stability are systems that monitor and repair DNA double strand breaks (DSBs). The objective of this study is to understand how the choice of pathways used to repair DNA damage determines whether the repair is error free or causes genomic instability. In mammalian cells, homologous recombination (HR) and nonhomologous end joining (NHEJ) are the two major pathways involved in the repair of DNA DSBs. The Brca1 gene is required for DNA repair by homologous recombination and normal embryonic development. Additionally, protein 53BP1 promotes ligation and facilitates end joining. In previous studies, we have demonstrated that Brca1 and 53BP1 can compete for the processing of DSBs and that 53BP1 can promote genomic instability in the absence of Brca1. Thus, the tumor suppressive function of Brca1 does not appear to be absolute and can be modulated by altering the ability of cells to carryout NHEJ. Our study focuses on shifting the balance between these two repair pathways (HR and NHEJ) to restore error free repair and genomic stability. We believe that a better understanding of mechanisms of DSB repair pathway choice may have important therapeutic implications for prevention or treatment of Brca1/2 germline mutation-associated cancers.

Body

Aim 1: Determine the capacity of NHEJ deficiency to rescue defects in homologous recombination (HR). Using various established mouse models where there is a clearly described defect in HR, we will test the role of the NHEJ proteins 53BP1 and Ku in subverting HR.

We have discovered a new NHEJ factor called RIF1 that acts downstream of 53BP1 in blocking resection. This work was recently published (M. Di Virgilio et al. Science 2013). The relevant data is shown in Figure 4 of this publication as follows, which demonstrates increase RPA association at the IgH locus:
We are currently crossing mice containing floxed alleles of Brca1 with RIF1^{−/−} mice to generate Brca1^{fl/fl}RIF1^{−/−} and Brca1^{fl/fl}RIF1^{−/+} mice. We propose to test these cells for HR reconstitution by assaying for the formation of chromosomal breaks and radial structures, Rad51 foci formation, RPA phosphorylation and PARPi sensitivity.

The proposed PALB2f/f x 53BP1 crosses have also been generated and characterized. This work was recently accepted for publication (C. Bowman-Colin et al. PNAS 2013). The relevant data is shown in Figure 4 of this publication as follows:

This demonstrates that unlike BRCA1, loss of 53BP1 (Trp53BP1) does not rescue the genome instability associated with deletion of PALB2.

Aim 2: Determine the domain of 53BP1 that inhibits HR in Brca1-deficient mice. We will use a combined in vitro and in vivo reconstitution approach to define the functional domains of 53BP1 that regulate the observed HR defects seen in Brca1-deficient cells.

We are using retroviral gene transfer to reconstitute 53BP1 mutants into Brca1^{Δ11/Δ11}53BP1^{−/+} B cells. Given that Brca1^{Δ11/Δ11}53BP1^{−/+} B cells are resistant to PARP inhibitors, we are using restoration of PARP sensitivity as an initial screen to determine the relevant domain of 53BP1 required for inhibiting HR activity. Simultaneously we are examining the domains required for class switching. Retroviral constructs include full-length 53BP1, 53BP1^{EV} (empty vector), 53BP1^{ΔB} and 53BP1^{ΔA}. We show that a 53BP1 phospho-mutant 53BP1^{ΔA}, comprising alanine substitutions of the 8 most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1 deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR): The relevant data is shown below, and we have recently submitted a paper based on these findings:
These results indicate 53BP1^{8A} behaves like a 53BP1 null with respect to rescuing BRCA1 deficiency, but is WT for class switching.

In the context of this proposal, we have been interested to know whether there are preferred “genomic sites” for genome instability during DNA replication. Recently we discovered a novel type of “fragile” site that contributes to genome instability. These sites (coined “ERFS”) are broken spontaneously during replication, and their fragility is increased by hydroxyurea, ATR inhibition, deregulated c-Myc expression and by PARPi treatment of BRCA1 deficient cells. This work was recently published (J. Barlow et al. Cell; 152:620-632, 2013). The relevant data is shown in figure 3 of this manuscript, which shows examples and quantitation of ERFS breakage in response to HU:
Aim 3: Develop small molecule inhibitors of 53BP1 as possible lead compounds to inhibit Brca-mediated tumor formation. This highly ambitious project is ongoing.

Task 1: Construct a GFP-53BP1 expression vector containing the minimal foci forming domain of 53BP1 and create stable cell line that has robust inducible foci formation following DNA damage (adriamycin treatment).

We have determined conditions for measuring 53BP1 foci using an alternative immunofluorescence approach that gives robust foci following treatment with the radiomimetic drug, neocarzinostatin (NCS). In collaboration with Dr. Ty Voss of the High-Throughput Microscopy Core at NIH, we have been able to visualize the foci using the automated Perkin-Elmer Opera platform that will enable screening of the NCI Diversity Set by measuring the suppression of the appearance of 53BP1 foci by any potential lead compound. Currently we are optimizing this system with appropriate positive and negative controls. This work will enable us to conduct a screen of the NIH Diversity Set of small molecules, thereby enabling us to carry out the more detailed screening approaches entailed in Specific Aim 3.

Key Research Accomplishments

- Deletion of the DNA damage response gene, RIF1, mimics 53BP1 deficiency with respect to increased resection and defective class switching.
- Genomic instability and hypersensitivity of BRCA1-deficient cells to inhibitors of polyADP-ribose polymerase (PARP inhibitors, PARPi) is not suppressed by deletion of PALB2.
- Phosphorylation of the N-terminus of 53BP1 is essential for the role of 53BP1 in promoting genomic instability in BRCA1-deficient cells but is dispensable for class switching.
PARPi treatment leads to genome instability at preferred genomic sites.

Reportable Outcomes

1. Three high-impact papers have been published or are in press based on this work with the awardee, Dr. Andre Nussenzweig (M. Di Virgilio et al. Science 2013. C. Bowman-Colin et al. PNAS 2013, J. Barlow et al. Cell; 152:620-632, 2013). One additional paper has been submitted for publication.

Conclusion

This work has revealed for the first time that deletion of 53BP1 prevents genomic instability in cells lacking the tumor suppressor, BRCA1. 53BP1 therefore plays a key role in cellular changes leading to cancer in individuals with BRCA1 mutations. This validates the targeting of 53BP1 as a chemopreventive measure to avert the appearance of cancer in women with mutations in BRCA1, which accounts for ~5% of all annual cases of breast cancer and a higher proportion of ovarian cancers. This work further suggests that 53BP1 inactivation or deregulation of downstream pathways (eg. RIF1) is a potential mechanism leading to resistance of BRCA1-deficient tumors to chemotherapeutic regimens involving PARP inhibitors.

References

Appendices

Rif1 Prevents Resection of DNA Breaks and Promotes Immunoglobulin Class Switching
Michela Di Virgilio et al.
Science 339, 711 (2013);
DOI: 10.1126/science.1230624
Rif1 Prevents Resection of DNA Breaks and Promotes Immunoglobulin Class Switching

Michela Di Virgilio,1 Elsa Callen,2* Arito Yamane,3* Wenzhu Zhang,4 Mila Jankovic,1 Alexander D. Gittin,1 Niklas Feldhahn,2 Wolfgang Resch,4 Thiago Y. Oliveira,1,4,7 Brian T. Chait,5 André Nussenzweig,2 Rafael Casellas,4 Davide F. Robbiano,2 Michel C. Nussenzweig1,5†

DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5′-3′ DNA-end resection in mice. Consistent with enhanced DNA repair, Rif1 deficiency impairs DNA repair in the G1 and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.

The DNA damage response factor p53 binding protein 1 (53BP1) is a multidomain protein containing a chromatin-binding Tudor domain, an oligomerization domain, tandem breast cancer 1 (BRCA1) C-terminal (BRCT) domains, and an N-terminal domain with 28 SQ/TQ potential phosphorylation sites for phosphatidylinositol 3-kinase–related kinases [PIKKs, ataxia-telangiectasia mutated (ATM)/ATM and Rad3-related/DNA-dependent protein kinase catalytic subunit (DNA-PKcs)] (1–3). 53BP1 contributes to DNA repair in several ways: This protein facilitates joining between intrachromosomal double-strand breaks (DSBs) at a distance (synapsis) (4–7), it enables heterochromatic DNA repair through relaxation of nucleosome compaction (2, 3), and it protects DNA ends from resection and thereby favors repair of DSBs that occur in G1 phase by nonhomologous end joining (NHEJ) (4, 5, 8). Consistent with its role in DNA-end protection, 53BP1 is essential for class switch recombination (CSR) in B lymphocytes (9, 10).

Structure-function studies indicate that, besides the recruitment of 53BP1 to DNA ends, protection requires 53BP1 phosphorylation (4), but how this protective effect is mediated is unknown. To identify phosphorylation-dependent interactors of 53BP1, we applied stable isotope labeling by amino acids in cell culture (SILAC), Ttp53bp1 (Ttp53bp1 encodes 53BP1) B cells were infected with retroviruses encoding a C-terminal deleted version of 53BP1 (53BP1ΔC) or a phosphomutant in which all 28 N-terminal potential PIKK phosphorylation sites were mutated to alanine (53BP1Δ28A), in media containing isotopically heavy (53BP1ΔC) or light (53BP1Δ28A) lysine and arginine (fig. S1, A to C) (11).

Most proteins coimmunoprecipitating with 53BP1DB and 53BP1Δ28A displayed a H/(H + L) ratio of ~0.5 (H, heavy; L, light), which is characteristic of phospho-independent association (average of 0.57 ± 0.09, peptide count: at least four) (Fig. 1 and table S1). Many of these proteins are nongenetic contaminants, but others such as KRAB-associated protein 1 (KAP-1), dynein light chain LC8-type 1 (Dyne1l), Nijmegen breakage syndrome 1 (Nbs1), and H2AX represent authentic phospho-independent 53BP1-interacting proteins (fig. S1D). Three proteins displayed an abundance ratio that was more than four standard deviations (SDs) above the mean, indicating that these proteins interact specifically.

1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. 2Laboratory of Genome Integrity and Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA. 3Laboratory of Mass Spectrometry and Genome Ion Chemistry, The Rockefeller University, New York, NY 10065, USA. 4Department of Genetics, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil. 5National Institute of Science and Technology for Stem Cells and Cell Therapy, Ribeirão Preto, Brazil.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail: nussen@rockefeller.edu
with phosphorylated 53BP1: Pax interaction with transcription-activation domain protein-1 (Paxip1, or PTIP; 0.95), PTIP-associated protein 1 (Pa1; 0.97), and Rap1-interacting factor 1 (Rif1) (0.96) (Fig. 1 and figs. S1D and S2). PTIP was known to interact with 53BP1 in a phosphorylation-dependent manner (12), whereas Pa1 and Rif1 were not.

Rif1 was originally identified in budding yeast as a protein with a key role in telomere length maintenance (13). However, in mammalian cells, Rif1 is not essential for telomere homeostasis, but has been assigned a number of different roles in maintaining genome stability, including participation in the DNA damage response (14–16), repair of S-phase DNA damage (17, 18), and regulation of origin firing during DNA replication (19, 20). However, the mechanism by which Rif1 might contribute to DNA repair and maintenance of genome stability is not known.

To confirm that Rif1 interaction with 53BP1 is dependent on phosphorylation, we performed Western blot analysis of Flag immunoprecipitates from lysates of irradiated Trp53bp1−/− B cells infected with retroviruses encoding 53BP1ΔDB28A or 53BP1ΔDB28AΔ. Whereas Dynll1, a phospho-independent 53BP1 interactor (SILAC ratio: 0.55) (fig. S1D), coimmunoprecipitated with 53BP1ΔDB28A and 53BP1ΔDB28AΔ to a similar extent (Fig. 2A), only 53BP1ΔDB28A coimmunoprecipitated with Rif1. We conclude that the interaction between 53BP1 and Rif1 is dependent on phosphorylation of 53BP1.

Ataxia-telangiectasia mutated phosphorylates 53BP1 in response to DSBs (1, 3). To determine whether ATM induces DNA damage-dependent association between Rif1 and 53BP1, we compared irradiated and nonirradiated B cells in coimmunoprecipitation experiments. Although we detected small amounts of Rif1 in 53BP1ΔDB28A immunoprecipitates from unirradiated cells, this was increased by a factor of ~3 after irradiation, and the increase was abrogated by treatment with the ATM inhibitor KU55933 (Fig. 2B). We conclude that Rif1 preferentially interacts with phosphorylated 53BP1 in a DNA damage- and ATM-dependent manner.

Rif1 is recruited to DNA damage foci by 53BP1 (15). To determine whether 53BP1 phosphorylation is required for Rif1 focus formation, we tested Rif1 foci in irradiated Trp53bp1−/− immortalized mouse embryonic fibroblasts (iMEFs), which were stably transduced with either 53BP1ΔDB28A or 53BP1ΔDB28AΔ. Rif1 foci were readily detected and colocalized with 53BP1ΔDB28A (Fig. 2C). In contrast, although 53BP1ΔDB28AΔ formed normal-appearing foci, Rif1 foci were rare and did not colocalize with 53BP1 (Fig. 2C). Furthermore, Rif1 recruitment to ionizing radiation-induced foci (IRIF) and colocalization with 53BP1 were abrogated in ATMed-deficient but not DNA-PKcs-deficient iMEFs (fig. S3) (15). We conclude that Rif1 recruitment to DNA damage response foci is dependent on ATM-mediated 53BP1 phosphorylation.

The phosphorylation of 53BP1 is essential for CSR (4). To examine the role of Rif1 in joining DSBs during CSR, we conditionally ablated Rif1 in B cells using CD19Cre, which is expressed specifically in B cells (Rif1fl/fl Cd19fl/fl mice) (fig. S4, A to C). To induce CSR, B cells were activated with lipopolysaccharide (LPS) and interleukin-4 (IL-4) in vitro, and switching to immunoglobulin G1 (IgG1) or IgG3 was measured by flow cytometry. CSR to IgG1 and IgG3 was markedly reduced in Rif1fl/fl Cd19fl/fl B cells, but less so than in Trp53bp1−/− cells (Fig. 3, A and B, and fig. S5). Switch junctions from Rif1fl/fl Cd19fl/fl B cells were comparable to those from Trp53bp1−/− and wild-type controls (fig. S6) (7), which indicates that, similar to 53BP1 deficiency, absence of Rif1 does not alter the nature of productive CSR joining events.

Fig. 1. Identification of phospho-dependent 53BP1 interactors. The graph shows the $H/(H+L)$ ratio distribution of proteins identified by SILAC. Error bars represent the SD of the $H/(H+L)$ mean value for all of the peptides identified for each individual protein (only proteins with at least four peptides were included). $H/(H+L)$ and σ are the mean (0.57) and SD (0.09) of the distribution, respectively.

Fig. 2. Rif1 interaction with 53BP1 is dependent on phosphorylation, DNA damage, and ATM. (A) Western blot analysis of anti-Flag immunoprecipitates (IP) from irradiated (IR) Trp53bp1−/− B lymphocytes infected with empty vector (vec), 53BP1ΔDB, or 53BP1ΔDB28A virus. Triangles indicate threefold dilution. Data are representative of two independent experiments. (B) Western blot analysis of anti-Flag immunoprecipitates from Trp53bp1−/− B cells infected with empty vector or 53BP1ΔDB28A. Cells were either left untreated or irradiated [50 gray (Gy), 45-min recovery] in the presence or absence of the ATM kinase inhibitor KU55933 (ATMi). Triangles indicate threefold dilution. Data are representative of two independent experiments. (C) Immunofluorescent staining for 53BP1 (Flag) and Rif1 in irradiated Trp53bp1−/− iMEFs reconstituted with 53BP1ΔDB or 53BP1ΔDB28A retroviruses (4). Magnification, 100×; scale bars, 5 μm. Data are representative of two independent experiments. DAPI, 4’,6-diamidino-2-phenylindole.
Fig. 3. Rif1 deficiency impairs CSR and causes IgH and genome instability in primary B cells. (A) (Left) CSR to IgG1 96 hours after stimulation of B lymphocytes with LPS and IL-4. (Right) Summary dot plot for three independent experiments (n = three mice per genotype). Mean values are: 23.6% for Rif1+/+, 23.4% for Rif1+/−, and 5.0% for Rif1−/− (P < 0.008 with the paired Student’s t test). (Bottom) B cell proliferation by carboxyfluorescein succinimidyl ester (CFSE) dilution. Data are representative of three independent experiments. (B) Same as in (A) but for CSR to IgG3 after stimulation with LPS alone. Mean values are: 3.2% for Rif1+/+, 3.4% for Rif1+/−, and 0.5% for Rif1−/− (P < 0.008). (C) (Left) Cell cycle analysis of primary B cells after stimulation with LPS and IL-4. BrdU, 5-bromo-2′-deoxyuridine; 7-AAD, 7-amino-actinomycin D. (Right) Summary histograms for S, G1/G0, and G2/M phase cells from two independent experiments (n = four mice per genotype). Error bars indicate SEM. * 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** P < 0.001. WT, wild type. (D) (Left) Cell cycle analysis of LPS- and IL-4-activated splenocytes at the indicated times after irradiation (6 Gy). (Right) Summary graphs for S, G1/G0, and G2/M phase cells from two independent experiments (n = three mice per genotype). Error bars indicate SD. (E) Analysis of genomic instability in metaphases from B cell cultures. Chth, chromatid; Chre, chromosome. Data are representative of two independent experiments (n = 50 metaphases analyzed per genotype per experiment). (F) Examples of IgH-associated aberrations in Rif1+/+Cd19Cre+− B cells. Chromosomes were hybridized with an IgH Cα probe (green), centromeric of Cγ1 (a telomere sequence-specific probe (red) and were counterstained with DAPI (dark blue/black). Arrows indicate IgH Cα/heterochromatic signal on chromosome 12. Magnification, 63×; scale bars, 1 μm. (G) Frequency of c-myb/IgH translocations in activated B cells. The graph shows combined results from three mice per genotype.
A similar CSR defect was also obtained by conditionally deleting Rif1 with 4-hydroxy-tamoxifen (4HT) in Rif1F/FROSA26Cre-ERT2/+ B cells (fig. S7). Finally, short hairpin RNA–mediated partial down-regulation of CtBP-interacting protein (CtIP), which interacts with Rif1 (fig. S8C) and has been implicated in processing of DNA ends (21, 22), resulted in a very small but reproducible increase in CSR (fig. S8, A and B). Thus, Rif1 is essential for normal CSR, and CtIP may not be the only factor that contributes to end processing in Rif1-deficient B cells.

Class switch recombination requires cell division, activation-induced cytidine deaminase (AID) expression, and Igh germline transcription (23). There are conflicting reports that Rif1 is required for proliferation in MEFs, but not in DT40 B cells (17, 18). We found that cell division profiles of Rif1F/FCd19Cre/+ and 4HT-treated Rif1F/FROSA26Cre-ERT2/+ B cells were indistinguishable from controls (Fig. 3, A and B; and fig. S7, A, C, E, and G), indicating that Rif1 is dispensable for B cell proliferation in vitro. Finally, AID mRNA and protein expression and Igh germline transcription were not affected by Rif1 deletion (fig. S4, B and D).

We next examined the role of Rif1 in cell cycle progression in primary B cells. We found no major differences in the percentage of cells in G0/G1 and S phases (Fig. 3C). However, the number of cells in G2/M phase was increased approximately twofold in the absence of Rif1 (2.64-, 2.56-, and 1.91-fold at 48, 72, and 96 hours, respectively) (Fig. 3C). We obtained similar results with the use of Rif1F/FROSA26Cre-ERT2/+ B cells treated with 4HT (fig. S7, H and I).

![Fig. 4. Rif1 prevents resection of DNA ends at sites of AID-induced DNA damage. (A to D) RPA and Rad51 occupancy at the Igh locus (A and C) and at non-Igh AID targets genes (B and D) in B cells activated to undergo class switching. ChIP-seq libraries were resolved into upper (+) and lower (−) DNA strands to show RPA and Rad51 association with sense and antisense strands. Within a specified genomic window, graphs have the same scale and show tag density. Deep-sequencing samples were normalized per library size, and tags per million values were calculated for each genic region, as indicated in the supplementary materials and methods and shown in parenthesis. Data are representative of two independent experiments for RPA ChIP-seq and one for Rad51. (E) Model of Rif1 recruitment and DNA-end protection at DSBs. DNA damage activates ATM, which phosphorylates many targets, including 53BP1. This event recruits Rif1 to 53BP1 at the DSB, where it inhibits DNA resection. The extensive resection in the absence of Rif1 impairs CSR at the Igh locus. P, phosphate.](http://www.sciencemag.org)
Furthermore, irradiation increases the accumulation of Rif1 binding to Igh loci in G2/M phase (Fig. 3D). In addition, Trp53bp1−/− IMEIs expressing 53BP1+/+Rif1−/−, which did not recruit Rif1 to IRIF (Fig. 2C), exhibited delayed progression through S phase following DNA damage with accumulation of cells in G2 phase after irradiation (Fig. S9).

Accumulation of cells in G2/M phase may reflect the persistence of unrepaired DNA damage in a fraction of Rif1-deficient cells. To investigate this possibility, we analyzed metaphase spreads from B cells dividing in response to LPS and IL-4 in vitro. These cells express AID, which produces DSBs in Igh and, less frequently at off-target sites throughout the genome, in the G1 phase of the cell cycle (24–26). Chromosomal aberrations were increased in Rif1−/− Cd19Cre/− B cells compared to controls (Fig. 3E), with many localized to the Igh locus (Fig. 3E). Consistent with the observation that Igh is targeted by AID in the G1 phase of the cell cycle, all of the Igh breaks were chromosome breaks (Fig. 3, E and F).

Interestingly, the frequency of c-myc/Igh translocations is moderately increased in Rif1−/− Cd19Cre/− B cells; however, the breakpoint distribution was similar to the Cd19Cre/+ control (1.5 × 10−6 versus 1.0 × 10−6 in the control; P = 0.039 (Fig. 3G and SI Fig. S10). We conclude that in the absence of Rif1, DSBs fail to be resolved efficiently in the G1, S, or G2 phases, which leads to increased levels of genomic instability, including chromosome breaks at Igh and translocations in dividing B cells.

In the absence of 53BP1, DSBs produced by AID at the Igh locus accumulate the single-stranded DNA-binding replication protein A complex (RPA) as a result of increased DNA-end resection (24). To determine if Rif1 is required for DNA-end protection by 53BP1, we performed RPA–chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) experiments on Rif1−/− Cd19Cre/+ and control B cells. Ablation of Rif1 was indistinguishable from the loss of 53BP1 (27), in that it led to asymmetric Rad51 accumulation at sites of AID-inflicted DNA damage (Fig. 4, C and D). We conclude that in the absence of Rif1, AID-induced DSBs incurred in G1 phase persist and undergo extensive 5′-3′ DNA-end resection in S/G2/M phase, as measured by RPA and Rad51 accumulation.

A role for Rif1 in maintenance of genome stability and protection of DNA ends against resection is consistent with its phosphorylation-dependent recruitment to the N-terminal domain of 53BP1 (4). 53BP1 facilitates DNA repair and prevents DNA-end resection during CSR. In the absence of 53BP1, AID-induced DSBs are resolved inefficiently in G1 phase, leading to chromosome breaks, Igh instability, and resolution by alternative NHEJ or homologous recombination instead of classical NHEJ (4, 8, 27). Our experiments show that in the absence of Rif1, 53BP1 is insufficient to promote genomic stability or mediate efficient Igh repair, DNA-end protection, or CSR. Thus, these 53BP1 activities require Rif1 recruitment to the phosphorylated N terminus of 53BP1. Rif1 is likely to have additional functions beyond 53BP1, CSR, and DNA-end protection because although Trp53bp1−/− mice are viable, Rif1 deletion is lethal (17). Indeed, Rif1 is believed to play a role in the repair of S-phase DNA damage (17, 18), as well as in the regulation of replication timing (19, 20, 28). Analogously, additional CSR factor(s) may exist downstream of 53BP1, as class switching in Rif1-deficient B cells is significantly higher than in Trp53bp1−/−.

In summary, our data are consistent with a model in which ATM-mediated phosphorylation of 53BP1 recruits Rif1 to sites of DNA damage, where it facilitates DNA repair in part by protecting DNA ends from resection (Fig. 4E). In the absence of Rif1, DNA breaks incurred in G1 phase fail to be repaired by NHEJ and undergo extensive 5′-3′ end resection, resulting in the accumulation of chromosome breaks and genome instability.

References and Notes
11. Materials and methods are available as supplementary materials on Science Online.

Acknowledgments: We thank all members of the Nussenzweig laboratory for discussion. D. Bosque and T. Eisenreich for help in managing mouse colonies, A. Gazumyan for assistance with Igh germine and AID transcript levels analysis, and K. Yao for help with genotyping. We thank T. de Lange (The Rockefeller University, New York) for Rif1 mice; S. Buonomo (European Molecular Biology Laboratory Mouse Biology Unit, Monterotondo, Italy) for the anti-mouse Rif1 serum #1240; G. Gutierrez (NIAMS, NIH, Bethesda, MD) for Illumina sequencing; N. Zampieri (Columbia University, New York) for assistance with immunofluorescence image processing, and M. P. Rout, J. LaCava, S. Obado, and L. Hough (The Rockefeller University) for invaluable help, discussions, and protocols for cryopreservation and magnetic bead-mediated immunosolulotion. The data presented in the manuscript are tabulated in the main text and in the supplementary materials. Sequence data shown in Fig. 4 have been deposited in the Gene Expression Omnibus database (accession number GSE42298) at www.ncbi.nlm.nih.gov/geo/. M.D.V. was a Fellow of the American Italian Cancer Foundation, and A.D.G. was supported by NIH Medical Scientist Training Program grant GM07739. This work was supported in part by NIH grants P01CA079856 (M.C.N.), RO1CA082200 (B.T.C.), RO1CA108622 (B.T.C.), and GM103314 (B.T.C.); and by the intramural research program of NCI at the NIH and Center for Cancer Research (A.N. and E.C.). M.C.N. is an HHMI Investigator.

Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1230624/DC1
Materials and Methods
Figs. S1 to S10
Table S1
References (29–49)
24 September 2012; accepted 16 November 2012
Published online 10 January 2013; 10.1126/science.1230624
Identification of Early Replicating Fragile Sites that Contribute to Genome Instability

Jacqueline H. Barlow, Robert B. Faryabi, Elsa Callén, Nancy Wong, Amy Malhowski, Hua Tang Chen, Gustavo Gutiérrez-Cruz, Hong-Wei Sun, Peter McKinnon, George Wright, Rafael Casellas, Davide F. Robbiani, Louis Staudt, Oscar Fernandez-Capetillo, and André Nussenzweig

SUMMARY

DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFSs), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.

INTRODUCTION

Double-strand breaks (DSBs) arise spontaneously during DNA replication, as a result of oncogenic stress, and as a part of the gene diversification programs in lymphocytes (Bartek et al., 2007; Callén et al., 2007; Gostissa et al., 2011; Halazonetis et al., 2008). When B lymphocytes are activated, they undergo rapid proliferation and simultaneously initiate two-genome remodeling reactions, termed somatic hypermutation (SHM) and class switch recombination (CSR). The coupling of rapid cycling and programmed DNA damage poses the B cell genome at high risk for destabilization.

SHM introduces point mutations in the variable region of immunoglobulin (Ig) genes, which can increase antibody affinity, whereas CSR is a DNA deletion event that replaces one Ig constant region gene for another. Both of these reactions are initiated by the enzyme activation-induced cytidine deaminase (AID), which deaminates cytosine residues in single-stranded DNA exposed during Ig gene transcription (Chaudhuri and Alt, 2004). In addition to Ig genes, AID causes a considerable amount of collateral genomic damage (Chiarle et al., 2011; Kato et al., 2012; Klein et al., 2011; Liu et al., 2008), including oncogenic targets such as c-Myc (Robbiani et al., 2008). Nevertheless, many recurrent mutations in B cell lymphoma are not associated with AID activity, and the mechanisms of rearrangements at these sites remain unclear.

The DNA damage response (DDR) is activated during programmed rearrangements in lymphocytes to ensure faithful DNA repair and prevent chromosomal translocation (Chen et al., 2000; Petersen et al., 2001). The DDR is also triggered by aberrant oncogene expression that induces precocious entry into S phase and perturbs replication fork progression (Bartek et al., 2007; Bester et al., 2011; Halazonetis et al., 2008). Replication fork instability can also be triggered by exogenous agents such as hydroxyurea (HU), which depletes deoxynucleotide pools, or by deficiencies in homologous recombination pathways that are needed to complete DNA replication after fork stalling or collapse (Schlacher et al., 2012).
Oncogenic stress has been shown to preferentially target genomic regions called common fragile sites (CFSs) (Bartek et al., 2007; Halazonetis et al., 2008). Historically, CFSs have been mapped in lymphocytes but are induced in all cell types under conditions that obstruct replication, such as treatment with low doses of the DNA polymerase inhibitor aphidicolin. DNA breakage within CFSs spans megabase regions. Nevertheless, CFSs share characteristic features including association with very large genes, enrichment of long stretches of AT dinucleotide-rich repeats, and incomplete DNA replication (Durkin and Glover, 2007).

Replication-stress-induced DNA damage is also observed in yeast. Similar to CFSs, sites located in “replication slow zones” (RSZs) are late replicating and breakage prone (Cha and Kleckner, 2002). In addition to late replicating areas, irreversible replication fork collapse in response to acute doses of hydroxyurea has been observed preferentially around a subset of early firing replication origins in yeast (Raveendranathan et al., 2006), which do not overlap with RSZs (Cha and Kleckner, 2002; Hashash et al., 2011). Although the molecular mechanisms governing replication initiation in yeast and mammalian cells are distinct, we wondered if fragility at early firing origins is also a feature of mammalian cells. Here, we identify highly unstable regions of the B cell genome designated as “early replicating fragile sites” (ERFSs). We propose that ERFSs are a new class of fragile sites in mammalian cells that contribute to recurrent rearrangements during lymphomagenesis.

RESULTS

Genome-wide Mapping of Replication-Induced DNA Damage

Single-strand DNA (ssDNA) mapping has been used to localize origins of replication in yeast (Feng et al., 2006). To identify potential sites of fork collapse, we first profiled the location and extent of ssDNA genome-wide using chromatin immunoprecipitation (ChIP) with an anti-replication protein A (RPA) antibody (Figure 1). RPA associates with ssDNA at stalled forks near early firing origins when fork movement is inhibited by HU (Tanaka and Nasmyth, 1998).

Freshly isolated mouse B cells are arrested in the G0 phase of the cell cycle (Figure 1A). Upon stimulation with LPS/IL4, cells synchronously enter into the cell cycle so that by 22 hr, approximately 8% of cells have entered S phase, whereas at 28 hr over 30% are in S/G2 phases (Figure 1A). To profile early replication origins, we treated cells at 22 hr with 10 mM HU for 6 hr to fully arrest cells at G0/S (Figures 1A and 1B). We then performed ChIP-seq of RPA in both untreated and HU-treated cells at 28 hr (Figures 1A and 1B). Two independent experiments showed reproducibility of genome-wide RPA association in HU-treated cells (Figure S1A available online). We generated profiles of RPA in untreated and treated samples, centered on individual RPA-bound sites (Figure S1B), and observed a marked increase in the intensity of RPA in HU-treated B cells relative to untreated cells where 5,939 out of 11,942 genomic regions (49.7%) displayed more than a 4-fold increase in RPA recruitment. In addition to the 53% overlap of RPA-associated regions between HU-untreated versus -treated cells, we also observed that 1,441 regions were present only in HU-treated samples (Figure S1B). These HU-dependent ssDNA regions may correspond to the firing of new replication origins to compensate for inefficient replication.

To confirm that RPA recruitment maps early replication zones, we used the Repli-Seq approach (Hansen et al., 2010) to identify replication origins in B cells during HU arrest. Approximately 12,000 early activating replication origins across the murine B cell genome were identified (Figure S1C). By comparing the distribution of BrdU incorporation relative to the individual RPA-occupied genomic regions, we observed association of BrdU incorporation with nearly 80% of RPA-bound regions (Figure S1C). Moreover, more than 86% of RPA/BrdU enriched genomic sites coincided with previously mapped early replicating regions in the mouse B cell line CH12 (Stamatoyannopoulos et al., 2012) (permutation) < 1 × 10⁻³⁵, Figure S1D). Thus, HU-arrested B cells exhibited an enrichment of RPA at early replicating zones, consistent with an early S phase cell-cycle arrest (Figure 1A).

Early replicating regions are associated with accessible chromatin configuration (MacAlpine et al., 2004). In agreement with this, we found that more than 67% of RPA-bound regions in HU-arrested cells reside within intragenic sequences (Figures S1E and S1I), a frequency significantly higher than expected (permutation) < 1 × 10⁻³. Moreover, RPA preferentially associated with DNase hypersensitive sites (DHS) and euchromatic promoters marked by H3K4me3 (Figure S1F). Finally, we measured transcriptional activity in HU-treated B cells directly by genome-wide RNA sequencing. We observed high transcription activity within the RPA-occupied genomic regions as shown by the aggregated pattern of RNA-Seq centered on those regions (Figure S1G). Moreover, 6,100 RPA-bound RefSeq genes exhibited significantly higher average mRNA abundance than those that did not show RPA binding (p < 1 × 10⁻¹⁶, Figure S1H). Thus, HU-induced RPA recruitment in early S phase maps to actively transcribed genes that show the hallmarks of euchromatin.

Replosome stalling in response to HU triggers the activation of the ATR kinase (Ward and Chen, 2001), which protects forks from collapse (Cimprich and Cortez, 2008), and leads to phosphorylation of H2AX (γ-H2AX) (Ward and Chen, 2001), which colocalizes with RPA (Petermann et al., 2010). To examine the relative distribution of γ-H2AX and RPA genome-wide, we carried out ChIP-seq with an antibody that recognizes γ-H2AX (Figure S1A) and examined their profiles with respect to the center of RPA-bound sites. γ-H2AX-associated genomic regions were much broader than RPA, but these regions overlapped with 93% of RPA-bound sites marking ssDNA in HU-treated cells (Figure 1C), consistent with the finding that γ-H2AX marks stalled forks even prior to DSB formation (Petermann et al., 2010). γ-H2AX/RPA enriched loci may therefore correspond to a combination of stalled and broken replisomes.

Cells deficient in homologous recombination (HR) pathway components, such as XRCC2, often accumulate spontaneous chromosome breaks and exhibit hypersensitivity to HU (Sonoda et al., 1998). Consistent with increased spontaneous DNA damage at replication forks, untreated XRCC2−/− cells exhibited accumulation of γ-H2AX at similar genomic regions and at almost similar levels observed in HU-treated wild-type (WT)
Figure 1. Mapping Replication-Induced DNA Damage in Murine B Lymphocytes

(A) FACS analysis showing DNA content of freshly isolated and ex vivo stimulated splenic murine B lymphocytes in the absence and presence of 10 mM HU. (B) Experimental plan describing cell synchronization and isolation for samples used in ChIP-seq and RNA-Seq experiments.
B cells (Figures S2A–S2C). 90% of γ-H2AX-associated genomic regions in untreated XRC2-/- cells correlate with the regions enriched for this protein in HU-treated WT B cells (Figure S2B), and nearly 80% of the regions with enriched γ-H2AX observed in HU-treated WT B cells overlapped with those seen in HU-treated XRC2-/- cells (Figure S2C). These data indicate that XRC2 deficiency leads to increased endogenous levels of replication stress mostly at the same loci where HU induces replication fork stalling and/or breakage in WT cells.

RPA, BRCA1, and SMC5 Colocalization Marks the Sites of Replication Stress in Early Replicating Zones

Like XRC2, BRCA1 and members of the structural maintenance of chromosome (SMC) family have been implicated in promoting replication fork restart (Schlacher et al., 2012; Stephan et al., 2011). To determine whether HR proteins bind to a subset of stalled forks marked by RPA and γ-H2AX, we also defined the genome-wide profile of BRCA1 and SMC5. We confirmed BRCA1 and SMC5 ChiP-Seq efficacy by observing their association at both Sµ and Sγ1 in 53BP1-/- cells, where the breaks in IgH persist unrepaird and undergo extensive resection (Figure S3A) (Bothmer et al., 2010; Bunting et al., 2010, 2012; Yamane et al., 2011, 2013).

We then determined the localization of BRCA1 and SMC5 in HU-arrested B cells. Two independent experiments showed reproducibility of genome-wide BRCA1 and SMC5 association (Figures S3B and S3C). To identify the RPA genomic sites co-occupied by the HR proteins BRCA1 and SMC5, we plotted the distribution of their binding with respect to the center of individual RPA-bound regions. Overall, 2,204 regions spanning 10 kbp on average showed RPA/BRCA1/SMC5 triple colocalization (Figures 1D and 1E). We found that RPA was recruited to more than 88% of genomic sites exhibiting BRCA1 and SMC5 association (Figure 1E). Furthermore, genome-wide analysis of RPA/BRCA1/SMC5 profiles in untreated cells revealed more association (Figure 1E). Furthermore, genome-wide analysis of more than 88% of genomic sites exhibiting BRCA1 and SMC5 association (Figures 1D and 1E). We found that RPA was recruited to 10 kbp on average showed RPA/BRCA1/SMC5 triple colocalization (Figures S4A). Nevertheless, 48% of RPA/BRCA1/SMC5 triple colocalizations were common between the unperturbed and HU-arrested B cells (Figure S4A). Therefore, we hypothesized that chromatin with concomitant RPA, BRCA1, and SMC5 binding might correspond to regions undergoing replication fork collapse both in response to replication stress and during normal DNA replication. Given that our analysis focused on early replicating sites, which contrasts with late replicating CFSs, we designated these regions as ERFSs.

We then characterized ERFSs to determine whether they share common underlying primary sequence characteristics. Indeed, these loci were enriched at known repetitive elements, including LINE L2, SINE, DNA transposons, and tRNA elements (p(permutation) < 1 × 10⁻³, Figure 1F), which are known replication fork barriers (Mirkin and Mirkin, 2007). Furthermore, ERFSs showed significantly higher G and C nucleotide content compared to the whole mouse genome, in contrast to CFSs that are enriched in A+T sequences (p(Wilcoxon) < 1 × 10⁻¹⁶, Figure S4B). Twenty-six percent of the ERFSs regions overlapped with CpG islands, which are highly enriched at translocation breakpoints in B cell lymphoma (Tsai et al., 2008). Conversely, CpG islands covered approximately 400,000 nucleotides within these regions (p(permutation) < 1 × 10⁻⁵, Figure 1G). As anticipated, ERFSs clustered at early replication origins (Figure S4C), and over 66% of the loci overlapped with intragenic or promoter sequences of RefSeq annotated protein coding genes (p(permutation) < 1 × 10⁻³, Figures S4D and S4E). Moreover, ERFSs are more transcriptionally active relative to flanking genomic regions shown by relative mRNA enrichment by RNA-Seq (Figure 1H). Indeed, more than 86% of RefSeq annotated genes with ERFSs are among the highest transcribed genes (p(binomial) < 1 × 10⁻¹⁶, Figure S4F). Finally, ERFSs were significantly enriched in gene pairs that are transcribed in converging or diverging directions (see Experimental Procedures), such as the convergent transcription pair of IKZF1 and FIGNL1 shown in Figure 2A. Compared to expected values, ERFSs were at least twice more likely to localize in regions containing gene pairs exhibiting convergent and/or divergent gene pairs (p(permutation) < 1 × 10⁻⁵, Figure 1I).
Replication is organized into discrete zones (30–450 kbp in size) containing multiple replication origins that exhibit similar replication timing (Costa and Blow, 2007). Similarly, approximately 80% of the ERFSs are within 300 kbp of one another (Figures 2A and S4G). We therefore integrated these neighboring clustered ERFSs and removed those with footprints less than 10 kbp to define 619 triple colociliated hot spot regions (Figure 2B; Table S1). Interestingly, whereas these hot spots were distributed throughout the genome, the density of hot spots on autosomes was higher than on the sex chromosomes, which have a lower gene density (Figure 2B). An examination of the top 15 hot spots based on a ranked statistics of RPA/BRCA1/SMC5-binging strength showed that 9 out of the 15 regions contained gene clusters with at least three genes, and 12 out of 15 exhibited divergent/convergent gene pairs (Figures 2A and 2C; Table S1). Of note, 8 out of 15 hot spots are also rearranged in B cell lymphomas (Figure 2C; Table S2), suggesting a possible link among ERFSs, genome rearrangements, and cancer (see below).

Early S Phase Arrest by HU Induces DNA Damage at ERFSs, but Not at CFSs

DNA damage at CFSs is visualized by conventional cytogenetic analysis of metaphase chromosomes (Durkin and Glover, 2007). To investigate whether the ERFSs defined by RPA/BRCA1/SMC5 binding are prone to actual breakage, we again treated cells with 10 mM HU, released them into fresh medium overnight, and examined metaphase spreads. Chromatid breaks, chromosome breaks, and rearrangements could be discerned in 20%–60% of WT cells after HU treatment (Figure S2D). To determine whether ERFSs are more sensitive to breakage under replication stress than regions lacking RPA/BRCA1/SMC5 binding (i.e., cold spots), we hybridized metaphases with bacterial artificial
chromosome (BAC) probes corresponding to six ERFS hot spots (MHCII, GIMAP, SWAP70, BACH2, IKZF1, and FOXP1) (Figures 3A and 3B), two cold spots (CNTNAP4 and SLITRK6) and two CFSs (FRA8E1 and FRA14A2). For each of the six ERFS hot spots, a total of at least 40 chromosome aberrations were counted (Table S3). Notably, all six ERFS hot spots displayed chromosome aberrations in metaphases from HU-treated samples (Figure 3B). In contrast, neither of the cold regions or CFSs was broken under the same conditions (Figure 3B), Overall, 8%–15% of the total damage localized to individual ERFS hot spots, representing a significant fraction of the total damage (Figure 3B). DNA lesions were observed on either the centromeric or telomeric sides of ERFS-specific hybridized BAC (Figure S2E), suggesting that an ERFS represents a large fragile genomic region.

Aberrations at ERFS hot spots were also detected in XRCC2−/− cells treated with HU (Figure 3C). XRCC2−/− cells are more sensitive to HU than WT cells are, as evidenced by the higher level of total damage in these cells (Figure S2D). Breaks at MHCII, GIMAP, SWAP70, BACH2, IKZF1, and FOXP1 were found in 5%–10% of HU-treated XRCC2−/− cells compared with 1%–6% of WT cells damaged in these regions (Table S3). Nevertheless, the frequency of ERFS-specific instability relative to the total damage was similar in XRCC2−/− and WT cells (Figures 3B and 3C). Interestingly, breaks in the vicinity of the GIMAP hot spot were detectable spontaneously in XRCC2−/− cells (Figures 3C and 3D; Table S3), which is consistent with increased γ-H2AX observed in unchallenged XRCC2 mutant cells (Figure S2A).

None of the eight CFSs defined in mouse (Helmrich et al., 2006) were among our 619 ERFS hot spots (Table S1). Consistent with this, DNA aberrations at two of the most expressed CFSs in mouse lymphocytes, FRA14A2 and FRA8E1 (Helmrich et al., 2006) were undetectable in HU-treated WT samples.
Absence of CFS expression could be explained by the fact that high concentrations of HU stall replication forks in early S phase (Figure 1A), whereas CFSs replicate late (Durkin and Glover, 2007). Conversely, we found that overnight treatment with low doses of aphidicolin (0.2 μM for 20 hr) induced damage at the CFSs FRA8E1 and FRA14A2, whereas the ERFSs GIMAP and SWAP70 loci in B and T cells and their relation to the ERFS fragility. GIMAP and SWAP70 hot spots are shown in separate facets. The x axis shows the cell lineage. The y axis upward depicts the log10(RPKM) in B and T cells by dark and light reds, respectively; the y axis downward depicts the quantitation of aberrations observed by FISH in response to overnight exposure to 1 μM ATRi in B and T cells in dark and light blue, respectively.

(A) Quantitation of aberrations observed by FISH in response to overnight exposure to 1 μM ATRi in WT (blue bars) and XRCC2−/− cells (red bars).
(B) Gene tracks represent, from the top, ERFS demarcation and transcription measured by RNA-Seq in T and B cells at the region flanking SWAP70 locus.
(C) Relative transcriptional activities of GIMAP and SWAP70 loci in B and T cells and their relation to the ERFS fragility. GIMAP and SWAP70 hot spots are shown in separate facets. The x axis shows the cell lineage. The y axis upward depicts the log10(RPKM) in B and T cells by dark and light reds, respectively; the y axis downward depicts the quantitation of aberrations observed by FISH in response to overnight exposure to 1 μM ATRi in B and T cells in dark and light blue, respectively.

(ATR Inhibition Promotes ERFS and CFS Expression)

The ATR kinase protects the genome from chromosomal aberrations at late replicating CFSs, (Durkin and Glover, 2007) and is essential for stabilizing stalled forks and facilitates fork restart in early S phase (Cimprich and Cortez, 2008). To confirm that ATR inactivation induces CFSs and determine whether it similarly leads to damage at ERFSs, we treated asynchronous B cells on day 2 with 1 μM of a recently described ATR inhibitor (ATRi) (Toledo et al., 2011). We found that approximately 2.5% and 7.0% of the total chromosomal aberrations localized to the two CFSs, FRA8E1 and FRA14A2, respectively (Figure 4A). ATR deficiency also led to chromosomal aberrations at ERFSs at a similar frequency (Figure 4A; Table S3). Moreover, ERFSs and CFSs were both damaged in XRCC2−/− cells treated with ATRi (Figure 4A). Thus, the rupture of unreplicated regions at CFSs and fork collapse at ERFSs are similarly sensitive to ATR inhibition.

ATR Inhibition Promotes ERFS Fragility

As described above, ERFSs are enriched in regions with high transcriptional activity (Figures 1H, 2C, and S4F; Table S1). To determine the contribution of transcriptional activity to individual ERFSs, we focused on loci with tissue-specific transcription patterns. SWAP70 is a B-cell-specific developmental regulator, whereas genes within the GIMAP cluster are expressed both in
B and in T cells (Figures 4B and S5A). Treatment with ATRi led to a similar frequency of damage at GIMAP in B and T cells, consistent with insignificant changes in gene expression between the two cell types (Figure 4C). In contrast, damage near SWAP70 was 3-fold lower in T than in B cells (Figure 4C; Table S3), which correlated with the decreased transcription of SWAP70 in T cells (Figure 4B). Nevertheless, the replication timing near SWAP70 was similar in both cell types (Figure S5B). To further delineate the role of transcription on ERFS breakage, we used SWAP70−/− mice in which 2.7 kbp, including the first exon and part of the S′ untranslated region, is removed (Borggrefe et al., 2001), allowing us to compare the fragility of ERFSs in the same genomic region in knockout B cells. We determined that SWAP70 mRNA in SWAP70−/− B cells was reduced by approximately 4-fold relative to levels in WT (Figure 4D). Moreover, DNA damage near SWAP70 was approximately 2.5-fold lower in SWAP70−/− relative to levels in WT B cells (Figure 4E). In contrast, DNA damage near GIMAP remained at a similar level both in WT and SWAP70−/− cells (Figure 4E). Although our data indicate that high level of transcription contributes to the breakage of some ERFSs, other molecular features, including repetitive elements (Figure 1F), covalently bound protein complexes, and RNA-DNA hybrids, might also be sources of ERFS fragility.

Oncogenic Stress Can Trigger ERFS and CFS Fragility

Oncogene deregulation is thought to compromise genome integrity preferentially at CFSs (Bartek et al., 2007; Halazonetis et al., 2008), and CFS deletion has been associated with various cancers (Bignell et al., 2010). To determine whether oncogenic stress similarly induces DNA damage at ERFSs, we overexpressed c-myc in B cells because it has been implicated in regulating replication initiation and origin firing (Domínguez-Sola et al., 2007). XRCC2−/− cells were utilized to increase the amount of replicative stress and DNA damage as a result of decreased HR (Figure S2D). c-myc overexpression led to induction of p53 (Figure 5A), which correlated with an approximately 1.6-fold increase in overall DNA damage in XRCC2−/− cells overexpressing c-myc compared to empty vector (EV)-infected cells (Table S3). Moreover, 7.3% of the total breaks generated in c-myc overexpressing cells were found near SWAP70, compared to 2.4% of total breaks at this ERFS in EV-infected B cells (Figure 5B). Similarly, out of 43 breaks observed in c-myc-infected cells, 3 (7%) were found at the GIMAP cluster, and 3 (6.7%) were found near BACH2. c-myc overexpression also induced breaks at FRA8E1, showing a 2-fold relative increase in breaks relative to EV-infected cells (Figure 5B). Thus, DNA damage induced by c-myc overexpression can occur at ERFSs and CFSs.

ERFS Fragility Is AID Independent

Mutations and DSBs at various oncogenes, including c-myc, are due to AID off-target activity (Robbiani et al., 2008). Recently, a number of genome-wide studies in primary B cells mapped AID-induced DNA translocation events, and identified several novel hot spots for AID-dependent translocations at non-Ig genes (Chiarle et al., 2011; Kato et al., 2012; Klein et al., 2011). Among these translocation hot spots, MHCII, GIMAP, IKZF1, PVT1, ETS1, IRF4, and NFKB1 were located within the top 15 ERFS hot spots in this study, whereas the IgH locus (the physiologic target of AID) was not ranked high on the list (Figure 2C; Table S1). To determine whether AID contributes to ERFS fragility, we simulated WT and AID knockout B cells with LPS/IL4 for 2 days, and then treated them with ATRi overnight. These conditions induce robust AID-dependent DNA damage simultaneously with replication stress. We probed metaphases with BACs spanning the IgH locus, the GIMAP cluster, and IKZF1—all AID translocation hot spots—as well as BACH2, SWAP70, FOXP1, and BCL2 (Figure S2E)—ERFSs that are frequently rearranged in B cell lymphoma (Figure 2C; Tables S1 and S2). In WT, the IgH locus was damaged in 3.8% of cells, but the frequency of IgH-specific instability did not increase with ATRi (Figure S2F), despite the fact that ATRi greatly increased overall damage (Table S3). Upon ATRi treatment, the frequency of breaks at the ERFSs GIMAP, IKZF1, BACH2, SWAP70, and FOXP1, and BCL2 were elevated to the levels similar to those observed at the IgH in activated B cells (Figure S2F). Breaks at some ERFSs were even spontaneously detected (FOXp1 and GIMAP, Figure S2F).

To determine whether AID expression contributes to aberrations observed at ERFSs, we next analyzed their breakage frequency in AID−/− cells. Unlike WT cells, IgH breaks were absent in AID−/− cells. In contrast, all ERFSs exhibited similar levels of breakage both in WT and AID−/− cells (Figure 5C; Table S3). Therefore, whereas IgH breaks in B cells are entirely AID dependent, the breakage of ERFSs is AID independent. Altogether, these data suggest that some recurrent rearrangements in B cell lymphoma are due to AID-independent replicative stress at ERFSs.

Genome Instability at ERFSs Is Observed in Mouse Models and Human Cancer

Among the top 15 ERFS hot spot that break in response to AID-independent replication stress, we have identified three partners that recurrently translocate to IgH in lymphomas: BACH2, FOXP1, and BCL2 (Table S2). We hypothesized that if AID-dependent DSBs in G1 persisted into early S phase, translocations between AID-dependent breaks and ERFS might be detectable. To test this, we examined cells transgenically overexpressing AID and simultaneously deficient for 53BP1 (IgxAID/53BP1−/−), thus allowing the persistence of G1 IgH breaks into S phase where they could be joined to ERFSs. Indeed, 26% and 7% of IgxAID/53BP1−/− B cells carried IgH locus and BACH2 breaks, respectively (Figure 5D). These breaks are fusogenic because IgH- and BACH2-associated translocations to unidentified partner chromosomes were found in 7.3% and 1.2% of the metaphases, respectively (Figure 5D). Importantly, we also detected one IgH/BACH2 translocation among 750 cells (Figure 5E), reminiscent of the IgH/BACH2 translocations observed in human B cell lymphoma (Kobayashi et al., 2001). Thus, AID-dependent breaks generated in G1 (Petersen et al., 2001) can join to ERFS breaks triggered in early S phase. A hallmark of cancer genomes is widespread copy-number changes, insertions, and deletions. To determine whether deletions and/or amplifications at ERFSs are a general feature of the B cell lymphoma genome, we compared our ERFSs with...
high resolution copy-number changes detected in biopsies of patients with diffuse large B cell lymphoma (DLBCL), the most common type of non-Hodgkins lymphoma (Lenz et al., 2008). A total of 190 “minimal common regions” (MCRs) were found among 203 biopsies, carrying a gain or a loss of a chromosomal region ranging in size from 5 kbp to 21Mbp (Lenz et al., 2008). Mouse ERFS coordinates were overlaid onto the human genome using two methods, yielding 2,205 syntenic regions (Figures S6B–S6D). Notably, 51.6% of the MCRs observed in primary DLBCL overlapped with syntenic ERFS regions (p(permutation) < 1 × 10^{-4}, Figure 5F). Moreover, 20.4% of ERFSs overlapped with MCRs, 32% higher than expectation (p(permutation) < 1 × 10^{-6}, Figure 5G). Surprisingly, ERFS were deleted or amplified in DLBCL at least 81% more frequently as compared to CFSs, despite their cancer-specific propensity for breakage (Figure 5G). Moreover, our analysis indicated that the DLBCL copy-number alterations exhibited 2-fold higher correlation with B cell ERFSs compared to deletions and/or amplifications in T lineage acute lymphoblastic leukemia (Figure S6A) (Zhang et al., 2012a). Finally, by examining homozygous deletions in cancer genomes (Bignell et al., 2010), we found that 25 out of 64 genes known to contribute to oncogenesis coincide with ERFSs (phypergeometric) < 6 × 10^{-20}, Figure 5H; Table S4). Based on these findings,
we conclude that ERFSs are a significant feature of the mutational landscape of diffuse large B cell lymphomas and potentially other cancers.

DISCUSSION

Replicative Stress at ERFSs Contributes to Genome Instability in B Cells

Although AID has been implicated in B cell translocations (Gostissa et al., 2011), very little is known about the mechanisms of chromosomal breakage at several IgH-partner loci, including BCL2, BACH2, and FOXP1. Besides programmed DNA damage, replication-based mechanisms are a major contributor to chromosomal instability in cancer (Liu et al., 2012). Activated B cells are among the most rapidly dividing mammalian cells (Zhang et al., 1988), which potentially exposes them to high endogenous levels of replicative stress. Here, we have used a genome-wide approach to identify a subset of early replicating regions in the B cell genome that are particularly vulnerable to fork collapse and contribute to rearrangements in B cell malignancies. In our model, ERFS breaks can occur after the generation of unrepaired AID-induced breaks in G1, and the two breaks could recombine during S or G2. Alternatively, ERFS damage might persist through mitosis resulting in DNA breaks in the subsequent G1 phase when AID is predominantly active. In either case, we suggest that AID-mediated DSBs in G1 (Petersen et al., 2001), together with replication-stress-induced damage at recurrent loci, can coordinate drive B cell lymphoma initiation and progression (Figure 6).

ERFS versus CFS

CFSs are considered to be the most replication-stress-sensitive sites in the genome (Durkin and Glover, 2007). Although no single mechanism accounts for CFS instability, it is hypothesized that a number of different characteristics may contribute to their fragility including co-occurrence with very large genes, late replication, low density of replication origins, high A-T content, and sequences prone to form secondary structures, histone hypoacetylation, and a condensed chromatin structure (Helmrich et al., 2011; Jiang et al., 2009; Letessier et al., 2011; Ozeri-Galai et al., 2011). In stark contrast to CFSs, our identified ERFSs replicate early; have an open chromatin configuration; and are origin-, gene-, and G-C-rich.

Despite these diametrically opposite properties, both CFS and ERFS fragility are increased by ATR inhibition (Figure 4A), oncogenic stress (Figure 5B), and deficiencies in HR (Figure 3C) (Bartek et al., 2007; Durkin and Glover, 2007; Halazonetis et al., 2008). These conditions decrease the rate of fork progression but concomitantly increase the density of replication initiating events (Bester et al., 2011; Daboussi et al., 2008; Dominguez-Sola et al., 2007; Shechter et al., 2004), which might contribute to the damage at both CFSs and ERFSs, respectively. The decrease in fork speed hinders the completion of replication at CFSs, either because of the scarcity of origins near CFSs upon replication stress (Letessier et al., 2011), the heterochromatic nature of the regions that would limit accessibility of DNA replication and/or DSB repair machineries (Jiang et al., 2009), or because of the interference between transcription and replication at very large genes (Helmrich et al., 2011). Although additional origins are not activated near CFSs upon replication stress (Letessier et al., 2011), an increase in origin activity at early replicons might paradoxically contribute to genome instability at ERFSs. For example, increasing the replication initiation events near highly transcribed gene clusters with divergent and/or convergent gene pairs could increase conflicts between DNA replication and transcription machineries. The higher density of activated origins at ERFSs would also be expected to prematurely deplete...
nucleotide pools (Bester et al., 2011), thereby increasing the probability of subsequent fork stalling and collapse. These two outcomes of replication stress are likely to be linked because increased replication initiation and depletion of nucleotide supplies slows replication (Bester et al., 2011; Jones et al., 2012), whereas slow fork progression causes activation of dormant origins (Ge et al., 2007), and both incomplete replication and increased origin firing are monitored by ATR activity (Shechter et al., 2004). In conclusion, increased initiating events and increased origin firing are monitored by ATR activity in activated B cells could generate DNA damage at ERFSs (Figure 6).

ERFSs and Cancer

Oncogenic stress is a major driving force in the early stages of cancer development (Halazonetis et al., 2008); nevertheless, the factors that trigger replicative stress in vivo remain unclear. In the case of B cell lymphomas, oncogenic stress can be initiated by the activity of AID, which by targeting non-Ig genes such as c-myc (Robbiani et al., 2008), leads to c-myc/IgH translocations and consequent aberrant c-myc expression. This form of AID-induced oncogenic stress or high levels of proliferative activity in activated B cells could generate DNA damage at ERFSs (Figure 6).

Altogether, 103 AID hot spots (Chiarle et al., 2011; Klein et al., 2011)—including the GIMAP cluster, MHCIId locus, and IKZF1—were also identified as ERFS hot spots in this study (Table S1). It is possible that the overlap observed between a subset of off-target AID sites and ERFSs is due to common underlying features of these loci. For example, AID is recruited to ssDNA regions (Chaudhuri and Alt, 2004), which are also generated during replicative stress; AID-dependent DSBs and ERFSs are also both enriched in repeat elements (Staszewski et al., 2011).

In addition, chromosomal regions with the highest transcriptional activity have the highest AID-dependent translocation density (Chiarle et al., 2011; Klein et al., 2011), and early origins and translocations frequently reside near transcription start sites and RNA polymerase-II-binding sites (Chiarle et al., 2011; Klein et al., 2011). Thus, these euchromatic regions could serve both as AID targets in G1 and also be susceptible to fork collapse during early S phase.

A number of different hypotheses have been put forward about the mechanisms that promote recurrent translocations in mature B cell lymphomas. These include recurrent genomic damage by AID, random DNA damage followed by selection, and a nonrandom 3D organization of the genome (Chiarle et al., 2011; Hakim et al., 2012; Klein et al., 2011; Zhang et al., 2012b). To date, replication-stress-induced DNA damage has been associated with late-replicating CFSs. By using an alternative experimental approach for the discovery of fragile site expression during early replication, we have identified a novel source of recurrent AID-independent DNA breaks that may play a mechanistic role in some of the most common genome rearrangements during B cell lymphomagenesis. Because transcriptional activity and replication timing of a genomic region vary among different cell lineages (Hansen et al., 2010), different sets of ERFSs might also account for recurrent chromosomal rearrangements in cancers of distinct cellular origins.

to chromosomal instability at fragile sites. Mol. Cell 102, 553–563.

Palb2 synergizes with Trp53 to suppress mammary tumor formation in a novel model of familial breast cancer

Christian Bowman-Colin¹, Bing Xia², Samuel Bunting⁴, Christiaan Klijn³⁶, Rinske Drost³, Peter Bouwman³, Laura Fineman¹, Xixi Chen¹, Hong Cai², Jos Jonkers³, Andre Nussenzweig⁵, Chryssa Kanellopoulou*¹⁷ and David M. Livingston*¹.

* corresponding authors

¹Department of Cancer Biology, The Dana-Farber Cancer Institute, 450 Brookline Ave – SM870, Boston, MA 02215, USA.
²The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA.
³Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
⁴Rutgers University, Department of Molecular Biology and Biochemistry, 679 Hoes Lane, Piscataway, NJ 08854, USA.
⁵Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA.
⁶Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
⁷Current address: Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

ABSTRACT

Germline mutations in PALB2 lead to a familial predisposition to breast and pancreatic cancer or to Fanconi Anemia subtype N. PALB2 performs its tumor
suppressor role, at least in part, by supporting homologous recombination through interactions with BRCA1, BRCA2 and RAD51. To further understand the biology of PALB2-mediated tumor suppression, we targeted *Palb2* in the mouse. *Palb2*-deficient murine cells recapitulated DNA damage and checkpoint defects caused by PALB2 depletion in human cells. Similar to what happens after *Brca1* and *Brca2* ablation, germline *Palb2* deficiency in mice led to embryonic lethality, which could be delayed by ablation of checkpoint regulator genes such as *Cdkn1a* (p21) and *Cdkn2a* (p16INK4A/p19ARF). In contrast, somatic deletion of *Palb2* driven by *K14-Cre* led to tumor formation in the mammary glands, skin, and oral cavity with long latency. Mutation or loss of heterozygosity (LOH) of *Trp53* was frequently observed in these tumors. *Palb2* loss synergized with somatic *Trp53* loss to markedly accelerate tumor formation.

Comparative genomic hybridization (CGH) analysis of *Palb2/Trp53* compound mutant breast tumors revealed distinct chromosomal aberrations that only partially overlapped with *Brca1/Trp53* and *Brca2/Trp53* compound mutant tumors, implying that the *Palb2* tumor suppression process is, in part, distinct from that executed by *Brca1* and *Brca2*. These observations underscore the usefulness of this new mouse model to investigate the molecular mechanisms underlying the breast tumor suppression functions of *Palb2*.

INTRODUCTION

PALB2 (Partner and Localizer of BRCA2) was recently identified as a major interacting protein of the breast cancer susceptibility gene product BRCA2\(^1\). This interaction is required for the repair of DNA double strand breaks by homologous recombination (HR), since PALB2 is necessary for the chromatin association of BRCA2 and its partner, RAD51\(^1\). RAD51 is the central recombinase in HR, involved in D-loop formation and strand displacement (PMID: 12778123). PALB2 also plays a BRCA2-independent role in the HR process by enhancing RAD51 function\(^2\) (PMID: 20871615).

PALB2 was also found to interact with BRCA1 and, as such, supports the long known interaction between BRCA1 and BRCA2\(^3,4\). Loss of PALB2 does not affect BRCA1 recruitment to irradiation-induced foci (IRIF), but abrogates localization of
BRCA2 and RAD51 at these structures. Genetic analyses have shown that, like BRCA2, a member of Fanconi anemia complementation group D1, PALB2 is also a Fanconi anemia protein (FANCN)\(^5\),\(^6\) and a breast tumor suppressor in its own right\(^7\)-\(^10\). Unlike the case of BRCA1 and BRCA2-mutant tumors, only some PALB2-associated breast cancers have undergone loss of PALB2 heterozygosity (LOH)\(^7\),\(^8\). This implies that a reduction of PALB2 gene copy number by half is sufficient to allow breast cancer development in some, but not all settings. Why this difference exists is an open question, and an experimental to address this question, among others, is in order.

Breast cancer in PALB2-mutated families appears to be of intermediate penetrance, unlike that in BRCA1/2 families\(^8\),\(^10\). Although PALB2 mutations are rarer than BRCA1/2 mutations, available clinical data indicate that heterozygous, germline PALB2 mutations do not phenocopy precisely either BRCA1 or BRCA2 cancer predisposition syndromes\(^7\),\(^8\), consistent with the notion that PALB2 biological functions extend beyond solely bridging BRCA1-BRCA2 complex formation. Moreover, PALB2 also interacts with MRG15 (also known as MORF4L1)\(^11\) a subunit of HAT/HDAC complexes and with KEAP1, a major regulator of the antioxidant transcription factor NRF2 (also known as NFE2L2)\(^12\). In addition, a highly conserved chromatin-associated domain (ChAM) has been described in a region of PALB2 for which there are no known binding partners\(^13\). The contribution of these PALB2 binding partners and of the ChAM domain to the BRCA1-PALB2-BRCA2 HR machinery and/or to hitherto unknown functions of PALB2, unrelated to homologous recombination is so far unclear.

In an effort to study how PALB2 contributes to breast cancer suppression, we generated the first model of high penetrance Palb2 breast cancer in the mouse and assessed a number of its most salient properties. These insights are reported below.

RESULTS AND DISCUSSION

Targeting the mouse Palb2 gene and the generation of Palb2-deficient ES cells
In order to generate a Palb2 allele that could be conditionally inactivated upon Cre recombinase expression, we inserted loxP sites flanking exons 2 and 3 of the Palb2 gene (Fig. S1B). These exons encode a putative nuclear localization signal (NLS) sequence and the PALB2 coiled-coil domain (Fig. 1A). The latter was previously shown to mediate the PALB2 interaction with BRCA1\(^3,4\). Deletion of these exons resulted in out-of-frame reading of exon 4, leading to premature termination of the protein and exclusion of the BRCA2-interacting seven-bladed WD\(^{40}\)-type β-propeller domain encoded by downstream exons. Due to the premature truncation of the Palb2 open reading frame (ORF), the resulting transcript is also a candidate target for degradation by the nonsense-mediated decay (NMD) pathway.

Targeting of the Palb2 locus and integration of both loxP sites was confirmed by Southern blot analysis (Fig. S1C). Heterozygous ES cells (Palb2\(^{neo/+}\)) were injected into blastocysts and the resulting chimeras from 2 individual clones were bred to either Flp-deleter mice (to eliminate the Frt-flanked Neo\(^\text{r}\) cassette) or Cre-deleter mice (to generate a conventional Palb2 knockout allele). Germline transmission occurred from nearly all chimeras, and mice were PCR-genotyped for the Flp- or Cre-recombined alleles (Palb2\(^{fl}\) or Palb2\(^{-}\), respectively; Fig S1B).

Palb2\(^{-/+}\) ES cells were derived from blastocysts of heterozygous Palb2\(^{0/-}\) crosses according to standard protocols. Three independent ES cell lines (1.1, 1.3 and 1.4) were generated from one such timed mating. Expression analysis of Palb2 mRNA by quantitative real-time RT-PCR (qRT-PCR) confirmed that one of them was Palb2\(^{0/-}\) and the other two were Palb2\(^{-/+}\) (Fig. S1D), demonstrating that Palb2 loss does not prevent ES cell derivation and subsequent survival. The three ES cell lines that were derived were morphologically comparable, proliferated at a similar rate to wild-type (WT) ES cells and could undergo differentiation into embryoid bodies (data not shown). The loss of full length Palb2 expression in these lines was confirmed by qRT-PCR for Palb2 mRNA (Fig. S1D) and by Western blotting, using an affinity-purified rabbit polyclonal anti-mouse PALB2 antibody (raised against the first 200 residues of the mouse PALB2 protein) (Fig. 1B).
ES cells that are deficient for Brca1 or Brca2 have been notoriously difficult to isolate and are severely compromised in their proliferation (PMID: 8698242, PMID: 9126738). Since PALB2 acts immediately upstream of BRCA2 and is required for BRCA2 localization at double strand breaks (DSBs), it is possible that the viability and robustness of the Palb2−/− cells was due to residual expression of a truncated Palb2 species resulting from a downstream translation initiation that we could not detect with our antibody. In keeping with this possibility, Palb2−/− ES cells could not be derived from embryos carrying a conventional PALB2 gene-trap allele14.

To test whether the conditional gene targeting approach that was employed had generated a functionally null allele, the response of Palb2fl/fl and Palb2−/− ES cells to DNA damaging agents that cause double strand breaks was analyzed. Normally, exposure of PALB2-proficient cells to ionizing radiation (IR) leads to the formation of γH2AX nuclear foci and subsequent recruitment to these structures of BRCA1, BRCA2 and RAD51 to these structures. As expected, γH2AX and BRCA1 foci formation was unaffected in Palb2−/− cells (Fig. 1C, Fig. S2A). However, the recruitment of RAD51 to IRIF was severely compromised, and no RAD51 colocalization with γH2AX foci could be detected after exposure of cells to IR (Fig. 1C). This defect was also evident at the biochemical level, since no increase in chromatin loading of RAD51 after IR was detected in Palb2−/− cells (Fig. 1D). Since biallelic PALB2 mutations in humans cause Fanconi anemia (FA), a hallmark of which is increased sensitivity to DNA cross-linking agents such as Mitomycin C (MMC), the sensitivity of Palb2−/− ES cells to MMC as well other DNA damaging agents was assayed. Both Palb2-deficient lines displayed increased sensitivity to MMC and IR (Fig. 1E, Fig. S2B-C). These findings reinforce the notion that these Palb2−/− cells are functional knock-outs for Palb2, as they appear compromised in all known Palb2-associated functions. Thus, upon Cre-mediated recombination in vivo, the aforementioned conditional Palb2 allele should be converted to a Palb2-null allele.

Loss of Palb2 in the germline results in early embryonic lethality

Germline deletion of Brca1 or Brca2 results in early embryonic lethality15-17. Although Palb2−/− ES cells displayed no significant growth defects in the absence of
exogenous DNA damage when compared with Palb2^{fl/fl} controls, Palb2 loss could be deleterious in differentiated progeny cells, and thereby negatively affect mouse development. Indeed, we were unable to obtain Palb2^{-/-} mice from heterozygous crosses either at the time of weaning or at birth, consistent to previous reports^{14, 18}. Dissection of embryos from timed pregnancies revealed that Palb2-null embryos could only be recovered up to E11.5, but only at sub-Mendelian ratios, and always presenting severe malformations. At earlier time points, morphological aberrations of Palb2^{-/-} embryos were less obvious, although these mutant embryos were evidently smaller than WT or heterozygous littermates (Fig. 2A), some displaying exencephaly as well as malformations of the labyrinth and yolk sac-associated hematopoietic blood islets (Fig. 2C-F). The finding that Palb2 deficiency results in embryonic lethality detectable at E8.5-E10.5 is largely consistent with earlier reports that homozygous Palb2-deficient mice, generated using a randomly-inserted gene-trap vector, also die during embryogenesis ~E8.5^{14, 18}.

Embryonic lethality due to loss of Brca1 or Brca2 can be delayed by concomitant loss of P53 and/or p21^{19, 20}. Likewise, p53 loss delayed the lethality of Palb2 KO embryos^{18}, which also display increased levels of p21^{18}. We therefore tested whether p21 deficiency would also have an effect on the embryonic lethality associated with Palb2 nullizygosity. As expected, p21 deficiency did delay embryonic lethality of Palb2 KO embryos by 2-3 days (Fig. 2B). A similar effect was observed when Palb2-deficient embryos were bred to a p16^{INK4A}-null allele (Fig. 2B); however, all Palb2/p21 or Palb2/p16^{INK4A} double knockout embryos still displayed multiple malformations and impaired growth as compared with Palb2 heterozygous or WT littermates (not shown), and were eventually resorbed.

Because the establishment of the placenta and onset of embryonic hematopoiesis are critical developmental steps that take place around the time of lethality of Palb2 embryos, we set out to verify whether the lethality of Palb2 KO embryos could be bypassed by a WT placenta. To this end, we used the Palb2^{fl/fl} and Palb2^{-/-} ES cells to perform tetraploid complementation assays. We found that embryos derived from the Palb2^{-/-} ES cells were underdeveloped and malformed already at E9.5 when compared to their Palb2^{fl/fl} counterparts (Fig. 2I-J). At E12.5, embryos derived from Palb2^{fl/fl} ES
looked normal, whereas embryos from *Palb2* ES cells were completely degenerated and resorbed (Fig. S3). Likewise, breeding of the *Palb2* conditional allele to *Meox2-Cre* KI mice (in which Cre is expressed from the endogenous *Meox2* locus only in the embryo proper\(^{21}\)) only yielded mice in which *Palb2* deletion was incomplete (data not shown). Collectively, these findings indicate that *Palb2* is a developmentally essential gene, and its deficiency leads to multiple defects. These findings are also in accord with previous studies in which the lethality of *Brca1*\(^{−/−}\) embryos was not rescued by tetraploid complementation assay\(^{15}\).

Palb2 is a breast tumor suppressor in mice

In order to assess the effect of *Palb2* loss-of-function in mammary tumorigenesis, we crossed *Palb2*\(^{fl/fl}\) mice with *K14-Cre* transgenic mice\(^{22}\). *K14-Cre* transgenic mice preferentially express Cre recombinase in the basal epithelium of the mammary ducts, as well as in other epithelial compartments such as skin and oral mucosa. *K14-Cre* has previously been used to model *Brca1* and *Brca2* loss-mediated mammary tumorigenesis in the mouse\(^{23, 25}\).

In humans and mice, mammary tumor formation initiated by BRCA1 or BRCA2 loss requires concomitant loss of functional P53 (encoded by *Trp53* in mice)\(^{23, 24}\). Therefore, we set out to generate cohorts of *Palb2/Trp53* double conditional mice by crossing *Palb2*\(^{fl/fl}\);*K14-Cre* transgenic mice with *Trp53*\(^{fl/fl}\) mice in order to assess the contribution of each gene alone and in combination to suppressing mammary tumor formation\(^{23}\). All mice that harbored the *K14-Cre* transgene or conditional alleles for *Palb2* and/or *Trp53* were phenotypically normal, fertile, and capable of nursing their litters.

During the period of tumor monitoring (up to 600 days after birth), *Trp53*\(^{fl/fl}\);*K14-Cre* female mice developed spontaneous tumors with a frequency of ~80\% and a mean tumor-free interval (T50) of 320 days. In contrast, *Palb2*\(^{fl/fl}\);*Trp53*\(^{fl/fl}\);*K14-Cre* double conditional mice displayed significantly decreased latency in tumor formation (T50 = 192 days, \(P = 2.4\times10^{-5}\)), indicating that *Palb2* loss significantly accelerates tumor formation.
on a Trp53 conditional null background (Fig. 3A). Most tumors in this double conditional KO group appeared between 130-200 days.

Somatic loss of one Trp53 allele displayed, as expected, a haploinsufficient tumor suppressor phenotype, given that Palb2^{fl/fl};Trp53^{fl/+};K14-Cre mice developed tumors significantly faster than Palb2^{fl/fl};Trp53^{+/+};K14-Cre mice (T50 = 225 and 420 days, respectively, P = 2.5×10^{-12}, Fig. S4C). Palb2 loss of function also accelerated tumor formation on a Trp53 heterozygous (fl/+) background, reiterating the synergistic interaction of these two genes (Fig 3B).

K14-Cre-mediated conditional loss of Palb2 and Trp53 predominantly led to tumor formation in breast, skin and oral mucosa (Fig. 3E), as previously reported for Brca1 and Brca2. While most of the tumors found in Palb2^{+/+};Trp53^{fl/fl};K14-Cre mice were breast carcinomas, Palb2/Trp53 compound conditional KO mice displayed an expanded spectrum of tissues affected by tumors (Fig. 3E), suggesting that PALB2 tumor suppressor activities are not restricted to the mammary gland. Mice harboring conditional alleles for Palb2 and Trp53, but no K14-Cre transgene, and Palb2^{fl/+};Trp53^{+/+};K14-Cre mice did not display increased tumor susceptibility during the observation period, despite the intrinsic mutagenic activity of Cre in mammalian cells. Taken together, our results imply that the short latency and high penetrance of tumor formation observed in Palb2^{fl/fl};Trp53^{fl/fl};K14-Cre mice is primarily a result of synergy of the combined loss of Palb2 and Trp53.

In order to assess the contribution of the loss of Palb2 and/or Trp53 alleles as driver mutations in the tumors that arose in K14-Cre mice, we determined the gene copy number for Palb2 and Trp53 by qPCR on tumor genomic DNA. All analyzed tumors from Palb2^{fl/fl};Trp53^{fl/fl};K14-Cre mice (12 out of 12) lost both floxed copies of Palb2 and Trp53 (Fig. 3D). Similarly, in all tumors from Palb2^{fl/fl};Trp53^{fl/+};K14-Cre mice (15 of 15) only residual signals could be detected for Palb2 and Trp53 allele copy number, suggesting that the conditional Palb2 and Trp53 alleles were fully recombined in most cells, whereas the WT copy of Trp53 was lost through LOH. On the other hand, tumors that arose in Palb2^{fl/+} mice displayed a heterogeneous pattern of loss of the conditional and WT Palb2 or Trp53 allele. Early reports describing lack of PALB2 LOH in clinical tumor samples from heterozygous patients suggested that PALB2 could be a
haploinsufficient tumor suppressor in humans. Other reports showed that multiple PALB2 tumors revealed PALB2 LOH, implying that the PALB2 tumor formation process is not rigidly uniform7,29,30. In our experimental setting, no haploinsufficiency was observed for Palb2, as indicated by the comparable latency in Palb2fl/+;Trp530/0;K14-Cre and Palb2+/+;Trp530/0;K14-Cre tumor development (P = 0.46, Fig. S4A). The same held true when similar cohorts of Palb2+/+ and Palb20/+ mice were compared on a Trp530/+;K14-Cre background (P = 0.96, Fig S4B). Likewise, Palb2 heterozygous mouse breast tumor lines displayed proper RAD51 localization at IRIF, consistent with preserved HR function. Tumor formation in this setting was not accelerated when compared with Trp53+/+ tumor formation (Fig. 4C). As expected, Palb2-deficient breast tumor cell lines displayed the same defect in RAD51 accumulation observed in Palb2-deficient primary cells (Fig. 4C). This again points to a role for HR deficiency in the genesis of these tumors. Finally, all analyzed breast tumors from K14-Cre mice were negative for estrogen receptor (ER), progesterone receptor (PR) and ErbB2 (HER2), irrespective of the germline genotype (Fig 3F-H). This is consistent with what has been previously described for mouse breast tumors arising from K14-Cre-mediated conditional deletion of tumor suppressor genes23,25,26.

Long latency tumors were also observed in Palb20/0;K14-Cre mice on a Trp53 WT background (T50 = 420 days), but the tumor formation is still highly significant when compared with Palb2+/+;Trp53+/+;K14-Cre control mice (P = 5.4×10-10) (Fig. 3C). The majority of these tumors were small lesions in the head/neck cavities, whereas a smaller subset of animals also developed mammary tumors. The finding that loss of Palb2 alone is sufficient to induce tumor formation contrasts with most Brca1 and Brca2 mouse models in which short-medium latency breast tumor formation due to somatic loss of Brca1/2 cannot be detected, unless Trp53 is also co-deleted23,25,31,32. One possible explanation for this finding is that somatic Palb2 loss might be better tolerated than somatic Brca1/2 loss on a Trp53 WT background, which would be in keeping with the observation that Palb2 deficiency leads to a less severe lethality phenotype in ES cells compared to Brca1/Brca2 deficiency in the same setting. These Palb2-null and HR-deficient cells would survive and accumulate additional mutations that would eventually lead to tumor formation. The majority of the macroscopically dissectible tumors that
arose in Palb2\(2^{+/+}\);Trp53\(3^{+/+}\);K14-Cre mice had recombined both copies of Palb2. Two out of 7 mammary tumors gave rise to tumor cell lines. These tumors harbored inactivating Trp53 mutations (not shown), again suggesting strongly that loss of p53 is ultimately required for Palb2 loss-mediated tumor formation.

Genomic features of Palb2/Trp53-deficient mammary tumors

Genomic instability is a hallmark of human cancer, and it is believed to promote tumor initiation and progression. Experimental mouse tumor models have recapitulated this aspect of human tumorigenesis. In addition, aberrant tumor genomic profiles in such models have been shown to correlate with clinico-pathological features of the relevant tumor as well as with the results of certain signal transduction events. In order to gain insight into the genomic nature of the tumors that arose due to the loss of Palb2, we performed high-resolution comparative genomic hybridization (CGH) analysis of Palb2/Trp53, Brca1/Trp53, Brca2/Trp53 and Trp53 only-deficient mammary tumors.

Segmentation analysis of the CGH data was performed for each tumor in order to assess the number of genomic segments with deviating copy number changes as a readout of genomic instability\(^3\). The mammary tumors arising in Palb2\(2^{+/+}\);Trp53\(3^{+/+}\);K14-Cre mice (n=8) displayed higher numbers of amplified segments of the genome (log\(_2\) dose \(\geq\) 0.5) than Brca2\(2^{+/+}\);Trp53\(3^{+/+}\);K14-Cre tumors (n=5; p = 0.046, Fig. S5). When compared to Brca1/Trp53 tumors (n=5), which are known to display high levels of genomic instability, the CGH profiles of Palb2/Trp53 tumors were equally fragmented (p = 0.94), indicating that Palb2 loss also leads to formation of tumors that display a high degree of genomic instability. On the other hand, the number of homozygous deletions (log\(_2\) dose \(\leq\) 0.5) detected in Palb2/Trp53 tumors was significantly lower than that observed in Brca1/Trp53 tumors (p = 0.035; Fig. S5), whereas Palb2/Trp53 tumors were indistinguishable from Brca2/Trp53 tumors in that regard (p = 0.45). Based on these analyses, Palb2/Trp53 tumors seem to be phenotypically closer to Brca1/Trp53 driven tumors in terms of genomic instability, but still distinct from tumors generated by either Brca1/Trp53 or Brca2/Trp53 loss. The implication for the trends observed is that PALB2 might possess biological roles that are, at least in part, not overlapping with its role in the
regulation of BRCA2 function. Notably, we were unable to identify chromosomal regions of imbalance that were unique to Palb2/Trp53 tumors, but it is possible that a more comprehensive analysis with a larger collection of tumor samples might allow the identification of such regions.

53BP1 loss fails to rescue the HR defect caused by PALB2 deficiency

Loss of 53BP1 can rescue an HR defect observed in BRCA1-null cells and the lethality of Brca1−/− mice34, 35 (REF 36, PMID: 22445484). Similarly, decreased expression of 53BP1 expression was linked to triple negative breast cancers as well as to human BRCA1 tumors36. We then asked whether Trp53bp1 is absent from Palb2/Trp53 KO tumors, and whether its absence would rescue the HR defect associated with Palb2 loss. Quantitative RT-PCR analysis of Trp53bp1 mRNA in freshly isolated Palb2 tumor samples showed that Trp53bp1 mRNA levels were not significantly downregulated in Palb2-deficient breast tumors in comparison with Palb2 WT tumor controls, although some tumors displayed reduced Trp53bp1 mRNA levels (Fig. 4A).

To determine whether HR deficiency due to Palb2 loss could be complemented by Trp53bp1 loss in primary cells, we generated Palb2fl/fl;CD19-Cre mice that were or were not deficient in Trp53bp1. Cultured primary splenocytes from these mice were then assayed for their HR competence upon treatment with PARP1 inhibitors (PARPi), which selectively induces DNA damage and chromosomal aberrations in HR-deficient cells37. Treatment with Olaparib (PARPi) induced accumulation of chromosomal and chromatid breaks, and radial structures in chromosomal spreads from cultured Palb2fl/fl; Trp53bp1+/−; CD19-Cre primary splenocytes. The number of chromosomal aberrations was comparable in Palb2fl/fl; Trp53bp1−/−; CD19-Cre splenocytes, implying that Trp53bp1 deletion did not complement the HR defect caused by Palb2 deficiency (Fig. S6). Trp53bp1 deletion also failed to rescue the chromosomal aberrations found in spreads from PARPi-treated Brca2fl/fl; Trp53bp1−/−; CD19-Cre splenocytes. In the same experiment, complete rescue of the DNA repair deficiency in Brca1fl/fl; Trp53bp1−/−; CD19-Cre splenocytes was observed as previously described35, 36. These observations suggest that the contributions of PALB2 and BRCA2 to HR-based DSB repair are
distinct from those of BRCA1, and cannot be complemented by 53BP1 loss. In keeping with existing evidence, PALB2 and BRCA2 may well be de facto downstream HR effectors, which cannot be replaced or bypassed, except by artificially forcing the loading of RAD51 onto chromatin at/near DSB (REF 36, 38-40). These observations, along with earlier results (PMID: 20871615), also suggest that PARP1 inhibition is a potential therapeutic target in PALB2-deficient tumors, to the same extent that it is in BRCA1- and BRCA2-associated tumors37.

CONCLUSIONS

In summary, we have shown that Palb2 is a breast tumor suppressor gene in mice as it is in humans, and synergizes with Trp53 to suppress tumor formation. However, tumorigenesis driven by Palb2 loss in the mouse is not entirely suppressed on a Trp53 WT germline background, unlike most Brca1 and Brca2 mouse models of breast tumorigenesis (PMID: 16998503). Despite some similarities to Brca2;Trp53;K14-Cre breast tumors, Palb2 tumors still display certain divergent features that, together, support the notion that PALB2 possesses additional biological functions that might not be related to HR and/or its interaction with BRCA2, as judged by the divergent chromosomal aberration pattern observed in between Palb2- and Brca2-derived tumors and for the fact that Palb2β/β;K14-Cre conditional mice which are Trp53 WT still develop tumors with long latency, unlike Brca2β/β;K14-Cre mice. Finally, haploinsufficiency for Palb2 tumor suppression was not detected in this model, although one cannot rule out that it would be manifest in a different model system and/or with enlarged cohorts of experimental mice. For example, the tumors in this mouse model driven by K14-Cre were uniformly of the triple negative phenotype. This difference might well contribute to the absence of haploinsufficiency in our system, in the same fashion that distinct cell populations in the human mammary gland display preferential patterns of consecutive LOH events along the tumorigenesis pathway associated with BRCA1 loss41. We believe that this mouse model will be useful in further studies aimed at unraveling the molecular pathways in which PALB2 plays a role.
Figure legends

Figure 1. Conditional gene targeting of mouse *Palb2*. A) Schematic representation of *Palb2* domains and the exons from which they are encoded. The shaded area corresponds to the truncated open reading frame encoded upon recombination of the inserted *loxP* recombination sites. B) Western blot analysis for PALB2 in chromatin fraction extracts (S420) of three independent ES cell lines. The full length mouse PALB2 protein is ~120 kDa. An unspecific background band is indicated by an asterisk, and can be used as an internal loading control. C) Recruitment of RAD51 to DSBs marked by γH2AX IRIF 2h after exposure to 5 Gy of ionizing radiation in *Palb2*+/− and *Palb2*−/− ES cells. D) Western blot analysis of chromatin-bound (S420) RAD51 in *Palb2*+/− and *Palb2*−/− ES cells that received 10 Gy of IR and their respective unirradiated control. Histone H3 was used as a loading control. E) Dose-response curves of *Palb2*+/− and *Palb2*−/− ES cells after exposure to increasing concentrations of the radiomimetic neocarzinostatin.

Figure 2. Early lethality of *Palb2*−/− embryos. A) Bright-field images of *Palb2*+/− and *Palb2*−/− embryos at E10.5. Arrow indicates brain exencephaly. B) Graph indicating the p-values of Hardy-Weinberg disequilibrium for *Palb2* KO embryos retrieved from *Palb2*+/− matings at various embryonic ages. Both *Cdkn1a* (p21)- or *Cdkn2a* (p16INK4A)-deficient backgrounds delay the lethality of *Palb2*-deficient embryos and the time point at which the counterselection of *Palb2* KO embryos become significant (p <0.05). C-H) Hematoxylin-eosin staining of placenta (C, F) and yolk sac blood islets of WT (C-E) or *Palb2*−/− embryos (F-H). Pictures E and H display higher magnification of the areas delimited on D and G. I-J) Hematoxylin-eosin staining of in utero embryo sections from tetraploid complementation assay at E9.5, utilizing *Palb2*+/− ES cells (I) or *Palb2*−/− ES cells (J).

Figure 3. Tumor formation in *Palb2*+/−;*Trp53*+/−;*K14-Cre* mice. A-C) Kaplan-Meier curves displaying that *Palb2* loss accelerates tumor formation both under a *Trp53* conditional null background (A) as well under a *Trp53* conditional heterozygous background (B) and finally on a *Trp53* WT background. D) *Palb2* (top panels) and *Trp53* (lower panels) gene dosages of mammary tumors derived from *Palb2*/Trp53 double
conditional mouse cohorts. The germline Palb2 and Trp53 genotypes of the mice are indicated in red below the graphs. E) Spectrum of tumors arising in mouse cohorts with different combinations of Palb2 and Trp53 alleles. The genotypes of the mice are shown below the graphs. F-H) Mammary tumors arising in Palb2/Trp53 double conditional mice are triple-negative. Representative IHC stainings for ER (F), PR (G) and HER2 (H). The arrows on the top left corner of F) and G) indicates an in situ ductal carcinoma structures that displays the typical nuclear positivity for ER and PR, respectively.

Figure 4. The HR defect in Palb2-deficient cells and tumors. A) RT-qPCR for Trp53bp1 mRNA in freshly isolated tumor samples that are either Palb2-proficient (+/+ and +/-) or Palb2-deficient (-/-). B) Distinct defects observed in chromosome spreads of acute chromosomonal damage and genome instability following PARPi treatment are not rescued by Trp53bp1 deletion in Palb2^{fl/fl};CD19-Cre B-lymphocytes. C) Established Palb2/Trp53-deficient breast tumor cell lines have not reversed the defect of recruitment of RAD51 to IRIF, whereas Palb2 heterozygosity does not impair the proper IRIF localization of RAD51 in breast tumor lines, compared with Palb2 WT control breast tumor lines.

Figure S1. A) Schematic representation of the targeting strategy. The wild-type allele (WT), targeting construct and targeted allele are depicted. Dashed lines indicate regions of homology. Black triangles represent loxP sites, and arrows represents the primers used for RT-PCR. B) Southern blot of genomic DNA from targeted ES cell clones digested with indicated restriction enzyme (BamHI or BsaBI), and hybridized with 5' and 3' probe. Note that only some of the targeted clones (3' probe) that show cointegration of the second loxP site with the 5' probe were used. C) Real-time RT-PCR analysis of Palb2 mRNA levels in three ES cell lines of the indicated genotypes derived from heterozygous Palb2^{fl/−} crosses.

Figure S2. Response of Palb2^{−/−} cells to DNA damage. A) Recruitment of BRCA1 to DSBs marked by γH2AX foci 2h after exposure to 5 Gy of ionizing radiation both in Palb2^{fl/fl} and Palb2^{−/−} cells. B-C) Survival curves of Palb2^{fl/fl} and Palb2^{−/−} ES cell lines to DNA damaging agents such as mitomycin C (B) and IR (C).
Figure S3. Palb2 WT placentas do not rescue the lethality of Palb2−/− embryos. Hematoxylin-eosin section staining of embryos from tetraploid complementation assay. E12.5 derived from WT tetraploid embryo aggregation with either Palb2fl/fl ES cells (left) or Palb2−/− ES cells (right). By this stage (E12.5), all Palb2−/− embryos have been reabsorbed (arrows).

Figure S4. Effects of Palb2 and Trp53 heterozygosity in K14-Cre mice. Kaplan-Meier curves of tumor-free survival indicating that Palb2 is not haploinsufficient for tumor formation either on a Trp53 conditional null (A) or conditional heterozygous background (B). On the other hand, Trp53 displays a strong haploinsufficient tumor phenotype on a Palb2fl/fl background (C).

Figure S5. CGH analysis of Palb2 tumors. A) Control (spleen) and tumor DNA was hybridized to whole genome arrays to determine regions of loss or gains in mouse breast tumor samples. Representative rainbow graphs for each tumor genotype showing log2 DNA copy number ratio (tumor/spleen) across the entire genome. (B-C) Dot plots of the number and dose ratio of high-level amplification (log2 > 0.5, B) or homozygous deletion events (log2 < -0.5, C). Each dot represents an amplification/deletion event, with its corresponding relative dose. Asterisks indicate differences that were statistically significant (p < 0.05).

Figure S6. Rescue of the PARPi-induced acute chromosomal damage in Brca1/2-deficient B-lymphocytes by Trp53bp1 deletion. Trp53bp1 deletion is able to rescue defects observed in chromosome spreads from PARPi-treated Brca1-deficient B-lymphocytes (Brca1fl/fl;CD19-Cre) (A), but cannot rescue the damage in Brca2-deficient B-lymphocytes (B).

REFERENCES

Figure 1

A. Schematic diagram of the PALB2 protein, showing Coiled-coil (NLS) and WD40 repeats.

B. Western blot analysis comparing PALB2+/+ and PALB2−/− mice.

C. Immunofluorescence images of γH2AX, Rad51, and merge for PALB2+/fl/fl and PALB2−/−.

D. Western blot experiment showing PALB2, Rad51, and H3 expression levels under -IR and +IR (10G) conditions.

E. Graphical representation showing the survival rates of PALB2+/fl/fl and PALB2−/− mice treated with neocarzinostatin.
Figure 3

A. PALB2^{fl/fl}:p53^{fl/fl};K14-cre (N=12) vs PALB2^{fl/+}:p53^{fl/+};K14-cre (N=16)

B. PALB2^{fl/fl}:p53^{fl/fl};K14-cre (N=17) vs PALB2^{fl/+}:p53^{fl/+};K14-cre (N=35)

C. PALB2^{fl/fl}:p53^{fl/fl};K14-cre (N=62) vs PALB2^{fl/+}:p53^{fl/+};K14-cre (N=34)

D. Distributions of PALB2^{fl/fl} and p53^{fl/fl}

E. Distribution of tumor types in different genotypes:

- PALB2^{fl/fl}:p53^{fl/fl}
- PALB2^{fl/fl}:p53^{fl/+}
- PALB2^{fl/+}:p53^{fl/fl}
- PALB2^{fl/+}:p53^{fl/+}

F. Histological section showing skin tissue

G. Histological section showing breast tissue

H. Histological section showing epithelial tissue

I. Histological section showing lymphoma

J. Histological section showing sarcoma
Figure S1

A.

Coiled-coil (NLS) | WD40 repeats

| 1 | 3 | Exon 4 | | Exon 5 | 7 | 9 | 11 | 13 |

B.

BsaB1 BamHI

11 kb 14 kb

Exon 4

BsaB1 BamHI

3' probe

BsaB1

5' probe

Targeting construct

WT allele

targeted allele

C.

WT targeted clones

BamHI digest-3' probe

BsaB1 digest-5' probe

WT (11 kb) flox (7 kb)

WT (14 kb) flox (3 kb)

D.

Relative PALB2 mRNA levels

PALB2^{+/+} PALB2^{−/−} PALB2^{−/−}
Figure S2

A

BRCA1

γH2AX

merge

PALB2^+/+

PALB2^−/−

B

C

% survival

log10 MMC (pM)

% survival

Gy

PALB2^+/+

PALB2^−/−
Figure S3

PALB2^fl/fl dpc 12.5

PALB2^-/- dpc 12.5
Figure S4

A

- PALB2+/++; p53 fl/fl; K14-cre (N=16)
- PALB2 fl/fl; p53 fl/fl; K14-cre (N=20)

\[p = 0.46 \]

B

- PALB2+/++; p53 fl/fl; K14-cre (N=17)
- PALB2 fl/fl; p53 fl/fl; K14-cre (N=30)

\[p = 0.93 \]

C

- PALB2+/++; p53+; K14-cre (N=62)
- PALB2 fl/fl; p53+; K14-cre (N=35)

\[p = 2.5 \times 10^{-12} \]
Figure S5

A

![Genomic imbalance analysis](image)

B

<table>
<thead>
<tr>
<th>Amplified segments</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Homozygous deletions</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical significance indicated by asterisk.
Figure S6

- PARPi

- Chromatid breaks
- Chromosomal breaks
- Radials

+ PARPi

WT
Brca1
Trp53bp1

Brca2
Brca2
Trp53bp1

Trp53bp1

Trp53bp1

WT
Brca1
Brca1
Trp53bp1

Brca2
Brca2
Trp53bp1

0
100
200
300
400
500

events