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Abstract 
A general methodology and associated computational algorithm for predicting realistic 
postures of digital humans (mannequins) is presented.  The basic plot for this effort is a 
task-based approach, where we believe that humans assume different postures for 
different tasks.  The underlying problem is characterized by the calculation (or 
prediction) of the joint displacements of the human body in such a way to accomplish a 
specified task. In this work, we have not limited the number of degrees of freedom 
associated with the model.  Each task has been defined by a number of human 
performance measures that are mathematically represented by cost functions that evaluate 
to a real number.  Cost functions are then optimized, i.e., minimized or maximized 
subject to a number of constraints.  The problem is formulated as a multi-objective 
optimization algorithm where one or more cost functions are considered as objective 
functions that drive the model to a solution.  The formulation is then validated against 
existing posture prediction algorithms and confirmed with human experimental data. 
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Introduction 

Posture prediction from a human modeling and simulation point of view is a very 
important research area because of its eminent use in the ergonomic design process, to 
reduce occupational injuries, and to introduce rigor into the ergonomic design process.  
Over the past several years digital human modeling, simulation, and analysis has received 
increased attention from senior leadership within both the automotive and defense 
industry.  This is primarily due to the fact that the traditional methods of human factor 
analysis in the evaluation of proposed system concepts and block design changes through 
the use of full-scale mock-ups, is being reduced, if not entirely eliminated.  Full-scale 
mock-ups by themselves are extremely expensive, and require a considerable amount of 
time to build, thus limiting the number of design iterations that can be performed during 
development and modernization.  It is then paramount to have digital solutions available 
that generate realistic and accurate digital human postures, providing the ability to 
address human interface issues in the virtual environment, early enough in the 
development cycle to have an impact on both cost and schedule.   Furthermore, posture 
prediction is also of vital interest to biomechanics engineers with the aim to better 
understand the functionality of the upper and lower extremities and tasks associated with 
the muskoskeletal system. 
 
There has been two schools of thought regarding posture prediction.  The first, perhaps 
the more traditional, uses anthropometrical data, collected from performing thousands of 
experiments by human subjects, or simulation using three-dimensional computer-aided 
human-modeling software [see for instance; Porter et al. (1990) and Das and Singupta 
(1995)], which were statistically analyzed to form a predictive model of posture; e.g. 
regression models. This school of thought is referred to as empirical-statistical modeling.  
These models have been implemented in various simulation software systems with some 
variations as to the method for selecting the most probable posture.  Among the 
empirical-statistical modelers were Beck and Chaffin (1992), Zhang and Chaffin (1996, 
1997), Das and Behara (1998), and Faraway, et al. (1999). 
 
The second school of thought often used biomechanics and kinematics as a predictive 
tool (often referred to as the inverse kinematics solutions), on a posture that has not been 
observed but has been estimated as a likely posture for a task  (Tracy, 1990).  This 
approach mathematically models the motion of a limb with the goal of formulating a set 
of equations that can be solved for the joint variables.  Among the researchers who 
belong to this school of modeling are Kee et al. (1994), Jung et al. (1995), Jung and Kee 
(1996), Jung and Choe (1996), Kee and Kim (1997), and Wang (1999). 
 
Researchers that belong to one school of modeling (in particular Beck and Chaffin 1992) 
cautioned that the inverse kinematics algorithm is not necessarily correct for prediction of 
posture because of its theoretical foundation, because of the difficulty with evaluating the 
Jacobian, determining a closed form equation for the posture, and in modeling large 
numbers of Degrees of Freedom (DOF).  On the other hand, others (Faraway, et al. 1999; 
Abdel-Malek, et al. 2001) have stated that the use of only statistical models do not 
provide avenues for design.  Furthermore, those that belong to the inverse kinematics 
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school of modeling, state that most existing human models have not fully utilized 
anthropometric data due to the generalized formalism of data manipulation, which may 
result in serious problems when a system is upgraded or when a specific population of 
operators is considered (e.g., see the object-oriented anthropometric work by Jung and 
Kang 1995). 
 
We believe that our approach using a task-based optimization formulation addresses most 
of these problems, does not attempt to determine a closed-form expression, predicts a 
realistic posture, and can handle a relatively large number of DOFs. 
 
An approximate analytical reach prediction algorithm, was developed (Jung, et al. 1995), 
where the Denavait and Hartenberg (D-H) notation was used to represent human motion.  
They reportedly demonstrated that humans adopt postures of minimum discomfort among 
all feasible body configurations.  Similar results were reported by Dysart and Woldstad 
(1996) who used three separate models and objective functions to predict the postures of 
humans performing static sagittal lifting tasks.  The models used a common inverse 
kinematics characterization to represent mathematically feasible postures, but explore 
different criteria functions for selecting a final posture.  Dysart and Woldstad (1996) 
results showed that the first objective function (minimum total torque) was more 
accurate. 
 
Also using the concept of inverse kinematics, Kee and Kim (1997) proposed an 
approximate algorithm to generate the workspace including foot and trunk motion. More 
recent results have focused on a combination of methods such as both rule-based 
empirical and optimization to address the posture prediction problem (Wang 1999). The 
emergence of Artificial Neural Networks models to provide more accurate predictions 
over the standard statistical models (Eksioglu, et al. 1996; Jung and Park 1994; Hestenes 
1994). 
 
We will first present the background human modeling method necessary for the analysis. 
Our task-based approach will then be presented in view of a rigorous mathematicallly-
based optimization formulation where cost functions characterizing human performance 
measures are used and evaluated to a real number.  These cost functions are then 
implemented in the optimization formulation to predict postures. 
 
Before proceeding, it is important to note that although our exposition has focused on the 
torso, shoulder and arm, it is applicable to any serial chain representing the human body.  
 

Kinematic Modeling 
In this section, we describe the general modeling method used in our development and 
adapted from the field of kinematics.  The method is used to characterize joints of a 
mechanism in the study of motion, such that a position vector describing the location of a 
given point in terms of all joint displacements is determined.  Indeed, the Denavit-
Hartenberg (1955) representation method (also known as the DH method) has been 
demonstrated to yield an effective method for modeling humans (Jung, et al. 1995; 
Abdel-Malek, et al. 2001). 
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Fig. 1 Modeling of the torso-shoulder-arm movement 

 
The position vector of a point of interest on the end-effector of a human articulated model 
(e.g., a point on the thumb with respect to the shoulder) can be written in terms of joint 
coordinates as 
 ( )x x q=  (1) 
where n∈q R  is the vector of n-generalized coordinates, and x q( )  can be obtained from 
the multiplication of the homogeneous transformation matrices defined by the D-H 
representation method (16, 17) as 
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where i  is the rotation matrix relating coordinates frames i and j. The vector function 
 characterizes the set of all points touched by the fingertip. 

jR
( )x q

 
 

Cost Functions 
In 1989, the Air Force Research Lab, formerly Armstrong Labs, Wright Patterson Air 
Force Base, conducted the first research and development of a task based behavioral 
solution for digital environments using digital avatars. Under the Design, Evaluation, for 
Personnel Training and Human Factors (D.E.P.T.H.) program, the Pennsylvania-Jack 
ergonomic simulation and analysis software, as it would come to be called, developed by 
Dr. Norman Badler, University of Pennsylvania, took advantage of the capability of the 
Penn-Jack software to capture, store, and reuse actual human motion capture data.  This 
motion data was used to establish acceptable motion path parameters which were then 
used by software algorithms to control the digital avatar as the system modified the 
relative position of segments or limbs to reach manually positioned target points for the 
human interface of Computer Aided Design (CAD) models of components and systems 
in the digital world.  The success of this program demonstrated both the need and 
feasibility for tasked based posture prediction algorithms, requiring that the solutions 
developed are fast, realistic, and robust, i.e. applicable to the whole digital human, not 
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just the upper torso or limb, and scalable to different human populations and percentiles.  
The interest generated in the automotive industry by the success of developmental 
research and the trend to reduce if not completely eliminate the need to build full scale 
mock-ups is the reason why researchers have become increasingly interested in posture 
prediction algorithms.  With the recent appearance of commercially available digital 
human code, for example, Jack, SafeWorks, and Robcad, enabling a user to model a 
human mannequin, to place the mannequin in a digital representation of a conceptual 
system, to provide the ability to interact with the proposed systems human interface, and 
to evaluate specific criteria like reach and occlusion.  

Fig. 3 Digital Process Evaluation 
Fig. 4 As seen by the mannequin 

 

Saving time, reducing cost, increasing the number 
of evaluations for proposed prototypes, and 
reducing the number of engineering change 

requests resulting from oversights and deficiencies for the systems human interface.  
Providing the system developer with the ability to optimize the analysis of processes, 
products, and vehicle systems, in a more efficient manner, prior to the first vehicle rolling 
off the assembly line.  
 
In this section, we address the development of simple human performance measures that 
enable the mathematical evaluation of a cost function.  The basic plot is based upon 
obtaining a real number that evaluates the task, where each task comprises several cost 
functions. Each cost function must evaluate to a number and must be mathematically 
defined.  Once this is achieved, it is then possible to formulate an optimization algorithm 
that iteratively evaluates the task. 
 
Discomfort 
Consider a cost function that measures the level of discomfort from the most neutral 
position of a given joint.  Let qi  be the neutral position of a joint measured from the 
starting home configuration (i.e., from the position and orientation specified in the DH 
Table).  Then the displacement from the neutral position is given by 

N

q qi i
N .  Because 

the discomfort is usually felt higher in some joints, we also introduce a weight function 
 to stress the importance of one joint versus another.  The total discomfort of all joints 

is then characterized by the function 
wi
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where wi  is a weight function assigned to each joint for the purpose of giving importance 
to joints that are typically more affected than others. 
 
Effort 
Effort is measured as the displacement of a joint from its original position.  Effort will 
greatly depend on the initial configuration of the limb prior to moving to another 
location.  For an initial set of joint variables qi  and for a final set of joint variables q , 
a simple measure of the effort is expressed by 

initial
i

 
1

( )
n

initial
effort i i i

i
f w q

=

= −∑q q  (2) 

Note that feffort  depends on the initial configuration of each joint. 
 
Potential Energy 
For a second cost function, consider the potential energy exerted by a limb.  Each link 
(e.g., the forearm) has a specified center of mass.  The vector from the origin of the link’s 
coordinate system to the center of mass is given by i

i , where similar superscript and 
subscript indicate that the vector is resolved in the link’s coordinate system as illustrated 
in Fig. 4. 

r

i
ir

0A ri
i

i

 
Fig. 6  Illustrating the potential energy of the forearm 

 
The total potential energy f potential  is the sum of all individual potential energies P .  In 
order to determine the position and orientation of any one part of the arm, we shall use 
the transformation matrices 

i

( 1)i
iA−  that relates one part to another using the ( )4 4  

transformation matrix.  Let the vector i
ir  denote the position of the center of mass of a 

body part from the origin of its own coordinate system and let g be the gravity vector 
(Fig. 4).  Then for the first body part in the chain, the potential energy is 0 1

1 1 1P m= g A r1 .  
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However, for the second body part in the chain, we must compute the previous result in 
addition to the energy contribution by the second body part in the chain.  We use a 
second transformation matrix in order to keep track of the second joint variable as 

0 1 2
2 2 1 2 2P m P= g A A r 1+

)

.  For a complete chain (e.g., a 9 degree of freedom arm), the total 
potential energy is given by  
 
For a the total potential energy of the arm is given by 

 ( 0

1 1

( ) ( )
n n

i
potential i i i i

i i

f P m
= =

= = −∑ ∑q g A r  (3) 

where [0 0 T]g= −g  is the gravity vector. 
 
Dexterity 
It is believed that humans also configure their extremities around an object in such a way 
to have the maximum accessibility to that object.  We define a cost function that is based 
on maximizing the dexterity at specified target points. Indeed, to mathematically 
formulate this problem, it is necessary to use a dexterity measure at specific target points.  
Such a measure must account for the ranges of motion for each joint.  Because of the 
need for an analytical expression that can be used in the proposed optimization method, 
we define a new dexterity measure. 
 
Since the extended Jacobian  inherently combines information about the position, 
orientation, and ranges of motion of the hand, it is a viable measure of dexterity.  
Furthermore, because of the simplicity in determining an analytical expression of H , it 
is well suited as a cost function for an optimization problem.  We define the dexterity 
measure as  

Hq

q

 ( ) ( ) ( )dexterity
Tf = q qq H q H q  (4) 

Note that the measure characterized by Eq. (22) takes into consideration all ranges of 
motion and singular orientations for a given kinematic chain. The proposed dexterity 
measure is more accurate in describing the manipulability of robot manipulators than that 
proposed by Yoshikawa (1995), because it considers all singularities (Jacobian and 
others) as well as joint limits. 
 
Torque 
Stress induced at a joint is a function of torque imposed at that joint due to the 
biomechanical interaction.  A person will generate the torque at a given joint to overcome 
a load by exerting muscle forces but is also a function of the position and orientation of 
the joint during loading.  In order to account for all of the elements that enter into 
calculating the torque at a given joint, we must employ a systematic formulation.  To 
develop a mathematical expression for the torque, we first introduce a few preliminary 
concepts.  The velocity of a point on the hand is obtained by differentiating the position 
vector as 
 = xx J q&&   (5) 
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where the position Jacobian [ ]( ) = ∂ ∂xJ q x q  is a (3 )n×  matrix and  is the vector of 
joint velocities.  Note that the reach envelope can be determined from analytically 
stratifying the Jacoboian (Abdel-Malek, et al. 2001).  Similarly, the angular velocity can 
be obtained as 

&q

 = J qww &  (6) 
where the orientation Jacobian ωJ  is a (3 )n×  matrix. Combining equations (5 and 6) 
into one vector yields 

  (7) ( )⎡ ⎤
= =⎢ ⎥
⎣ ⎦

x
v J

ω
&

&q q

where  is the Jacobian of the limb or kinematic structure defined by  J q( )

 ( ) x

ω

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J
J q

J
 (8) 

There are many methods for determining the Jacobian of a kinematic structure, we 
present a direct method in Appendix A. 
 
The goal in this section is to determine the relationship between the generalized forces 
applied to the hand (e.g., carrying a load) and generalized forces applied to the joints.  Let 

 denote the  vector of joint torques and F the τ ( 1n× ) )( 1×m  vector of hand forces 
applied at p, where is the dimension of the operational space of interest (typically six). m
 
Using the principle of virtual work, we can determine a relationship of joint torques and 
forces at the hand.  Since the upper extremity is a kinematic system with time-invariant, 
holonomic constraints, its configuration only depends on the joint variables q (not 
explicitly on time). Consider the virtual work performed by the two force systems. As for 
the joint torques, its associated virtual work is  
   (9) TdW d=τ τ q

For the hand forces , comprised of a force vector f  and moment vector 

, the virtual work performed is 

TTT⎡= ⎣F f m ⎤
⎦

m
  (10) T TdW d dt= +F f x m ω
where  is the linear displacement and  is the angular displacement.  Substituting 
Eqs. (7 and 8) into Eq. (10) yields 

dx dtω

  T TdW d dω= +F xf J q m J q
 TdW d=F F J q   (11) 
Since virtual and elementary displacements coincide, virtual works associated with the 
two systems are 
 TWδ δ=τ τ q  (12a) 
 TWδ δ=F F J q  (12b) 
where δ  denotes a virtual quantity.  The system is under static equilibrium if and only if 
 dW dW=F τ        δ∀ q  (13) 
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which means that the difference between the virtual work of the joint torques and the 
virtual work of the hand forces shall be null for all joint displacements. Substituting Eqs. 
(9 and 11) into (13) yields 
 ( )T Tδ δ= ∀τ q F J q q q  (14) 
Therefore, the relationship between the joint torques and forces on the hand is given by 
  (15) T=τ J F
where the torque vector is [ ]1 2, ,..., T

nτ τ τ=t . 
 
We now develop the cost function that is fundamental to our formulation.  The objective 
function (the Torque Cost Function–TCF) is to be minimized and is comprised of the 
weighted summation of all joint torques 

 
1

n

i i
i

TCF w τ
=

= ∑  (16) 

where  is a weight function used to distribute the importance of the cost function 
among all joints. 

wi

 
Constraints 
For the point on the end-effector characterized by x as a function of all joint variables 
x(q) to reach a target point p, it is necessary that x(q) – p = 0.  While many have 
attempted to implement this simple equation in an optimization formulation as a cost 
function, it is quickly realized that it is a difficult implementation.  It is evident that 
criteria is indeed a constraint that must be driven by one or more cost functions addressed 
above.  Therefore, we implement this equation as a constraint to be imposed within a 
specified tolerance ε , such that 
 ( ) ε− ≤x q p  (17) 
Furthermore, each degree of freedom has unilateral constraints imposed in the form of 

 
1,...,

L U
i i iqq q

i n
≤ ≤

=
L U
i iq q qi≤ ≤ ;  (18) 1,...,i = n

where n is the number of DOF used in the model.  Note that for a 15DOF model as 
implemented in our code, a total of 31 constraints must be imposed (two for each 
unilateral constraint and Eq. 17). 
 
 
 

Real-Time Algorithm 
 
Previously, GA-DOT method was used to calculate the posture for a given target point by 
using some task-driven cost functions.  Genetics Algorithm (GA) is a global optimization 
method, but it takes a lot of computation time. Design Optimization Tools (DOT) is very 
fast but it only searches optimization point in a local area. GA-DOT combines them 
together; it uses GA with some cost function to search for a point in global area and gives 
its result during each searching step to DOT as initial point. Then DOT will refine the 
search locally to find the best point with minimized distance to target point. Through the 
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combination, pretty good results can be obtained. Besides, the computation time is much 
improved and reduced to 15 minutes from several hours by using GA itself, however it is 
still too much for real time prediction. A much faster and still accurate method is needed. 
In order to utilize the fast property of DOT method, a workspace of our 15-DOF human 
model is pre-calculated and divided into 16 sections. A middle point is chosen within 
each section and is given to GA-DOT as target point for preprocessing. Results from GA-
DOT are going to be used as starting points respectively for each section which the target 
points drop inside. On the basis of the above information, four faster methods were 
developed and tested. Each of the four methods makes justifications at the beginning of 
the algorithm; it will terminate right away if the target point is outside the workspace. 
The main difference of the four methods lies in that they use different optimization 
strategies. The flowcharts for the four methods are shown in figure 1, 2, 3 and 4 
respectively. 
 
DOT-DOT method uses two layers of optimization. Inner DOT works as distance 
constraint, it is used to find the optimal point with minimal distance to target point and 
sends the result to outer DOT, which is to minimize some cost function, like discomfort 
here. The real discomfort is calculated and regarded as the value of cost function only if 
the distance satisfies some tolerance, otherwise, a big penalty is given as the cost function 
value. This way, the search is driven to the point which has low cost and guarantees the 
end-effector reaches the given target point. DIS-CONS method uses traditional 
constrained optimization method which minimizes discomfort with the distance to the 
target point as constraint. MOO method is a non-constrained optimization method which 
actually is doing multi-objective optimization. The cost function for MOO combines 
discomfort and distance together with some weights so as to realize finding the point with 
minimal discomfort and satisfying distance. The motivation for proposing CONS-DOT 
method comes from the limitation of normal gradient-based optimization method used in 
DOT with our special problem here. Normally, for each target point, the starting point 
hardly satisfies the distance constraint, i.e., the end-effector will not be on the target point 
at the beginning of the optimization process. So there will always be violated constraint 
at the first iteration inside the optimization procedure. Since the problem here is highly 
nonlinear with 15 variables, the search of feasible design becomes extremely difficult. 
DOT will terminate its optimization process if 20 iterations pass without overcoming the 
constraint violations. Thus providing a starting point with no violated constraint will have 
a strong influence on the efficiency and reliability of the result. CONS-DOT method calls 
DOT first to look for a new starting point with any given target and starting point, by 
only minimizing distance so that the new starting point satisfies the distance constraint 
when second DOT is called. Then DOT optimizes the cost with distance constraint but 
with new starting point. 
 

 
The best combination of the parameters inside DOT was obtained by trying lots of 
different combinations and methods in DOT. Results got by using the best combination 
and the four methods are listed in table 2. CPU times needed by the four methods are 
listed in table 3. Results from the previous global optimization method GA-DOT are 
listed in table 1 for comparison. From table 2 and table 3 we can see DOT-DOT gives us 
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the most accurate results, but is the slowest just as what was expected. It uses inner DOT 
guaranteeing the end-effector is right on the target point so that outer DOT is able to 
search for the result well within all the points with end-effector on the target. However, 
the two-layer search brings too much cost on the computation time. DIS-CONS gives us 
the worst results. This is mainly due to the fact that it always fails to overcome the 
constraint violations during 20 iterations and terminates the optimization process. CONS-
DOT much improves the reliability of the algorithm and verifies the importance of 
providing an initial feasible design to the optimization process. It found good results 
except for point 8. Moreover, it is fast. Although it takes more average time than DIS-
CONS, we can see that generally it takes much less time. The reason for this is that since 
a new starting point satisfying the constraint is provided to the DOT, it will save much 
time used for searching direction back toward a feasible region in the optimization 
process. However as we can see, this method is not robust enough and will give bad 
result for certain target point. MOO gives us results with acceptable accuracy at every 
point and it is the fastest due to that it only searches for the minimum cost function 
without any constraint, and avoids the cost of the iterations related to the constraint. In 
practice, since MOO runs very fast and gives accurate enough results, it was selected and 
implemented into a plug in of posture prediction to 3D Studio MAX. 

 
 GA-DOT 

Point Distance Discomfort 

1 0.0000 2.2022 
2 0.0002 7.3800 
3 0.0003 12.8254 
4 0.0002 2.0873 
5 0.0005 1.5824 
6 0.0001 1.0783 
7 0.0003 0.7253 
8 0.0007 3.8352 
9 0.0005 0.4966 
10 0.0008 3.3709 

Table 1. Distance and Discomfort obtained from GA-DOT 
 

 
 Method 1(DOT-DOT) Method 2(DIS-CONS) Method 3(MOO) Method 4(CONS-

DOT) 
Point Distance Discomfort Distance Discomfort Distance Discomfort Distance Discomfort 

1 0.0000 3.2911 146.2477 1.1662 0.0001 3.6126 0.0001 3.6507 
2 0.0003 8.2012 0.0096 4.6063 0.0026 8.6291 0.0002 8.5723 
3 0.0010 15.1879 54.8682 7.9918 0.3558 15.3929 0.0026 8.0009 
4 0.0014 3.2147 0.0234 1.8227 0.0001 4.2680 0.0009 4.3472 
5 0.0006 1.6103 0.0041 1.5178 0.0008 1.6217 0.0004 1.6103 
6 0.0005 3.2093 54.0299 0.7429 0.0009 2.9490 0.0001 3.2093 
7 0.0000 0.6639 0.0117 0.6097 0.0030 0.6954 0.0031 0.7002 
8 0.0000 4.9564 176.6827 2.2751 0.0000 4.5921 27.9220 2.6904 
9 0.0002 0.5771 7.3989 0.3014 0.0000 0.9554 0.0000 0.9576 
10 0.0006 8.3686 221.7487 0.8704 0.0003 7.0304 0.0290 8.4179 

Table 2. Distance and Discomfort obtained from the four faster methods 
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 CPU Time(Seconds) 
Point Method 1(DOT-DOT) Method 2(DIS-CONS) Method 3(MOO) Method 4(CONS-DOT)

1 0.74 3.05E-07 2.21E-11 2.21E-11 
2 0.74 4.03E-05 2.05E-13 1.24E-12 
3 0.82 2.08E-05 3.05E-07 2.73E-03 
4 102.4 6.71E-06 3.52E-14 3.52E-14 
5 8.96E-07 1.75E-06 3.57E-12 3.57E-12 
6 8.96E-07 2.21E-06 2.05E-13 2.05E-13 
7 3.38E-02 3.43E-06 3.52E-14 2.05E-13 
8 3.62E-02 5.24E-11 3.57E-12 3.22E-08 
9 0.21 1.75E-06 3.52E-14 2.05E-13 
10 2.10E-04 1.96E-07 2.05E-13 3.57E-12 

Mean 10.49802118 7.75E-06 3.05E-08 2.73E-04 
Table 3. CPU time of computations on a HP-UX workstation 
 
 
Input File to the System (initial configuration) 
a. The DH Table (shown in Fig. 1):  The DH Table provides all necessary information 

to model the human body including joints and dimensions. 
  
b. Neutral Positions:  These are set constants (constant joint angle) that characterize the 

most comfortable position for each joint.  The variable is measured from home 
configuration (i.e., wherefrom the posture has started).  For this human model, the 
neutral positions are as follows: 

0;  1,...,9,11,12,14,15N
iq i= = ,  10 2Nq π= ,  and 13 2Nq π= - . 

 
c. Joint Weights:  It is natural that some human joints tend to be activated more than 

others (passive versus active).  To reflect that in the model, we have assigned a scalar 
number to each joint therefore setting more importance on certain joints. 

 
 
Joint variable Joint Weight  Comments 

1 2,q q  10 A weight multiplying the Cost Function (f), for both 
negative and positive values of  N

i iq q-

3 6...q q  10 
100 

When   0N
i iq q- >

When  0N
i iq q- <

7q  50 For both negative and positive values of  N
i iq q-

9q  50 When  0N
i iq q- >
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Simulation and Validation 
To demonstrate our formulation and computer implementation, the 15DOF model and 
associated DH Table shown in Fig. 6 has been used.  Note that the model shown is in 
home configuration.  

 
 

Fig. 8 Modeling of the torso, shoulder, and arm as a 15 DOF system 
 
In order to obtain a better understanding of our results, we have compared the calculated 
postures with those produced by 3D Studio Max’s inverse kinematics module. For a 
given target position defined below, we have optimized a posture for a maximum 
Discomfort function and have asked a person to reach (with thumb touching the target 
point).  We have also verified that the calculated postures are close (but not identical) to 
those assumed by a human subject.  Note that the calculation of the cost function for each 
posture is an important element of the prediction. For the first posture in Fig. 1, the 
calculated cost function is 2.2022, a relatively low discomfort.  This is due to the fact that 
the calculated posture has only a very small deviation from the neutral position (recall 
that the neutral position is perceived to give the most comfortable posture).  Therefore, 
the arm fully extended provides for most of the angles being close to zero. Indeed, a 
similar situation occurs for postures assumed in Figs. 7 and 9, where the calculated 
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discomfort values are also relatively small, 0.72 and 0.496, respectively.  Difficult 
postures (most uncomfortable) are observed in Fig. 3 (discomfort = 12.825), and Fig. 2 
(Discomfort 7.38). Note that these postures contain several joint angles that are far from 
neutral, therefore adding to the cost function. 
 
Because we have opted to use genetics algorithms for optimization, the stopping criteria 
is not well defined (an inherent characteristic of genetic algorithms).  The selection, 
mutation, and crossover processes continue to run indefinitely over the population.  
Therefore, time (in terms of computational complexity) must be defined as a criterion for 
stopping the calculations coupled with an error estimate of the distance of the tip of the 
finger from the target point.  Of course, any posture that has zero distance error and that 
satisfies the constraints is indeed a solution, but is not the optimum solution.  Therefore, 
although the distance is zero between the tip of finger and target point, the program must 
continue to minimize the Discomfort cost function until an acceptable low value is 
achieved. 
 

   
Fig. 1: T , Discomarget Point 1 (41.2, -57, 31.5) fort 2.2022=  

[ ].0847, -.0007,.0407,.0091,.0567,.0820, -.0019,.0075,.0110,.3465,.5328, -.4244, -1.4772, -.1081,.1557 T=q

    
Fig. 2: , Target Point 2 (40, 0, 36) Discomfort 7.38=  

[ ].1022,-.1310,-.0235,.0198,.0014,.0072,-.0112,.0444,-.7829,-.1346,1.3475,-1.2451,-1.4099,-.1625,-.3101=q

   
Fig. 3: , Target Point 3 (20, 35, 50) Discomfort 12.8254=  

 14



[ ].3087,-.2618,.0510,.0843,.0416,.0020,.0022,.2022,-.2543,-1.4352,.3640,-1.1986,-1.2240,-.3469,.3487=q

   
Fig. 4: T , Darget Point 4 (-30, 10, 20) iscomfort 2.0873=  

[ ]-.0713,.0075,.1673,.0884,.1153,.0497,.0097,.0760, -.6950,1.9193, -.2518,.0000, -2.3357,.4159, -.2897=q

   
Fig. 5: T , Darget Point 5 (-40, 0, 36) iscomfort 1.5824=  

[ ].0135,.0206,.1265,.0720,.1204,.0805,.0021, -.0005, -.8226,1.9184, -.5517, -.0003, -1.7336,.1164, -.1126=q

   
Fig. 6: , Target Point 6 (-50, -20, 20) Discomfort 1.0783=  

[ ]-.0871,-.0053,.0546,.0661,.0340,.0676,.0074,.0200, -.7906,1.5271,-.4086, -.1063, -1.5175,.0095,.2451=q

   
Fig. 7: T , Discomarget Point 7 (0, -60, 5) fort 0.7253=  
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[ ]-.0120, -.0348,.0052,.0096,.0344,.0022,.0016,.0265,-.0643,.9742,-.1020,-.5219,-1.7381,-.0602,.1526=q

   
Fig. 8: T , arget Point 8 (30, -40, 60) Discomfort 3.8352=  

[ ].1634, -.2485,.0292,.0468,.0703,.0418, -.0048,.0400, -.1602,.3555,.1484, -1.0230, -1.0510,.0806, -.0517=q

   
Fig. 9: T , Discoarget Point 9 (30, -40, 0) mfort 0.4966=  

[ ].0568, -.0618,.0135,.0030, -.0030, -.0056, -.0103,.0795, -.0314,1.2111,.3822, -.3199, -1.7188, -.0346, -.0813=q

   
Fig. 10: T , arget Point 10 (60, 0, 0) Discomfort 3.3709=  

[ ].2311,.0104,.2571,.0849,.1081,-.0150,.0203,-.3032,-.0402,1.9117,1.2721,-.0113,-1.6577,.0791,.3176=q
 
 

Conclusions 
A general task-based real-time formulation for predicting posture has been proposed and 
demonstrated.  Each task is proposed to comprise of one or more human performance 
measures and will be used within an optimization algorithm to iteratively calculate the 
joint variables that would be assumed in forming a posture. It was also proposed that each 
human performance measure be mathematically characterized as a function that evaluates 
to a real number and that can be used in a rigorous computational optimization algorithm.  
It was shown that the cost functions are minimized or maximized while converging on a 
set of joint variables that identify a posture.  It was also shown that genetics algorithms 
are used to calculate a global solution.  The modeling method was not restricted to any 
number of degrees of freedom. 
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Validation of the method against a well-known commercial inverse kinematics algorithm 
and confirmation with human subjects was presented.  It is evident that the proposed 
method yields postures that minimize the specified cost function.  However, it is also 
evident that many more cost functions are needed and more elaborate mathematical 
descriptions of human performance measures are required for various tasks.  On the other 
hand, it is evident that this method provides a robust approach to realistic posture 
prediction that can handle a biomechanically accurate model. 
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