Genomic Characterization of Adenovirus 21 Strains Associated With Outbreaks of Febrile Respiratory Illness in United States Military Recruit Training Centers Between 1996 & 2005

Adriana E. Kajon
Jennifer M. Moseley
Kevin L. Russell
David Metzger

Naval Health Research Center

140 Sylvester Rd.
San Diego, California 92106-3521

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. Approved for public release; distribution is unlimited.

This research was conducted in compliance with all applicable federal regulations governing the protection of human subjects in research.

Naval Health Research Center

140 Sylvester Rd.
San Diego, California 92106-3521
Genomic Characterization of Adenovirus 21 Strains Associated With Outbreaks of Febrile Respiratory Illness in United States Military Recruit Training Centers Between 1996 and 2005

Running title: Ad21 infections among US military recruits

Adriana E. Kajon,1* Jennifer M. Moseley,1 Kevin L. Russell,2 and David Metzgar2

Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA1; DoD Center for Deployment Health Research, Naval Health Research Center, San Diego, California, USA2

*Corresponding author mailing address: Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108. Phone:(505) 348-9487. Fax: (505) 348-8567. E-mail: akajon@lrri.org.
Adenovirus type 21 (Ad21) is a well-known causative agent of acute respiratory disease among both military recruits and children. In an effort to characterize the molecular epidemiology of Ad21 infections in the military environment, genome-typing work was carried out on a collection of 75 Ad21 strains isolated from the pharyngeal swabs of military recruits presenting with symptoms of febrile respiratory illness between 1996 and 2005 at eight US training centers. One further strain from an ill serviceperson deployed at sea was also characterized. Restriction enzyme analysis with BamHI discriminated two distinct DNA variants, Ad21a and Ad21b. Further analysis with BglI, BglII, BstEII, HindIII, KpnI, and SmaI discriminated two new subtypes, Ad21a1 and Ad21b1. Ad21a was the most prevalent genome type, accounting for 69 of the 76 strains examined. Genome type Ad21a1 was identified only among the strains isolated at the Marine Corps Recruit Depot, San Diego, CA. Genome types Ad21b and Ad21b1 were identified among strains isolated in 2005 and seem to have emerged after a 4-year (1999–2002) disappearance of all Ad21 genome types. After the reintroduction of the Ad4/Ad7 vaccine in 2008, Ad21 is expected to become a predominant adenovirus serotype in US recruit training centers once again. Knowledge of circulating genome types and their epidemic behavior will be of significant value to ongoing surveillance efforts in these highly susceptible and impacted populations.
INTRODUCTION

Adenoviruses (Ads) of species B, C, and E are major causative agents of respiratory disease in infants, young adults, and immunocompromised patients (12, 21). Ads were first isolated in 1954 in the United States from military recruits with febrile respiratory illness (FRI) (11), and since then have been recognized as a unique threat to military training centers around the world. In the military setting, Ad serotypes 4 (species E), 3, 7 and 21 (species B) can cause essentially continuous outbreaks of FRI that can affect the majority of the recruit population and result in hospitalization of large numbers of individuals. Aside from the unacceptable impact on recruit health and welfare, these outbreaks disrupt training, challenge medical readiness, and saddle training commands with significant financial burdens (8, 14, 30). Outbreaks of Ad-associated FRI were well documented among American military trainees and deployed troops (23) before the implementation of live Ad4/Ad7 vaccination starting in 1971 (8, 27, 28). The vaccine was highly effective, limiting the impact of Ads infection to sporadic and relatively minor outbreaks associated with infection by the otherwise less prevalent Ad21 and, occasionally, other serotypes not directly targeted by the vaccine. The vaccination protocol was abandoned in 1996 when the sole manufacturer of the licensed vaccine permanently discontinued production. Vaccine availability was thereafter rationed with a focus on outbreak events and peak Ad seasons until the last stocks were exhausted in 1999. Unchallenged by vaccines, Ads (especially Ad4) once again became the primary cause of FRI among military recruits in US training centers. For perspective, it should be noted that FRI is the primary cause of hospitalization and incapacitation of recruits (3, 9, 20).
Ad21, a species B serotype, was first isolated in association with trachoma and conjunctivitis from a 1-year-old child in Saudi Arabia in 1956 (5) and was first identified in association with FRI among US military recruits, during the testing of the recruit-targeted Ad4 vaccine (30). Ad21 was a dominant source of adenoviral illness at training centers during the years when Ad4 and Ad7 were being effectively controlled by vaccination, although it never caused a return to epidemic levels of FRI (6, 9). Ad21 vaccines were designed and tested, but concerns of possible interference between the Ad21 vaccine and the Ad4/Ad7 vaccine were raised, and the effort to apply the Ad21 vaccine was abandoned (9, 26).

Outside the United States, the association of Ad21 with acute respiratory disease among both military recruits and children is well documented (15, 29-31). However, detailed molecular characterization of Ad21 isolates and genome typing by restriction enzyme analysis of the viral genome is limited to a few published studies (2, 19, 29). An epidemic outbreak of Ad21 infection causing severe respiratory disease in children was documented in Auckland, New Zealand, in 1965 (4, 15). In The Netherlands and Great Britain in the early 1960s a high prevalence of Ad21 was observed in both pediatric and military populations (29, 31). This serotype was detected only sporadically in Europe during the following 20 years, but an increase in incidence of Ad21 infections was again observed in 1985. While the early outbreaks of the 1960s were associated with an extremely high rate of pneumonia (40%) among sampled Ad-positive patients, the reemergence of Ad21 in 1985 in Europe was associated with milder clinical manifestations of respiratory disease and the appearance of a new genomic variant. This suggests that both the virulence and the rate of transmission may be highly variable among Ad21 genome types, and that
appropriate evaluation and response to Ad21-associated outbreaks of FRI may require genome type characterization for this particular viral agent.

In preparation for the restoration of Ad4/Ad7 vaccine, estimated for 2008 (22), we have initiated studies aimed at characterizing the molecular epidemiology of Ad infections in the military environment. In this paper we report the genomic characterization of 75 Ad21 strains isolated from military recruits with FRI during the 10-year period (1996–2005) spanning the initial curtailment and eventual discontinuation of the Ad4/Ad7 vaccination protocol. We also report the characterization of a single strain isolated from an ill serviceperson deployed at sea.

MATERIALS AND METHODS

Surveillance and sample collection. Since 1996, the Naval Health Research Center (NHRC) has conducted population-based surveillance of FRI-associated Ad infections as the Navy node for the Department of Defense Global Emerging Infections Surveillance and Response System. Surveillance currently includes eight military training camps throughout the United States (Fig. 1). Dedicated NHRC staff at seven sites and collaborators at the eighth site (Cape May) monitor their trainee populations for symptoms of FRI (fever [oral temperature \(\geq 38^\circ C/100.5^\circ F \)] plus a respiratory symptom, such as cough or sore throat). Clinical specimens are routinely obtained from a subset of qualifying recruits who seek medical care, frozen at -80°C, then sent on dry ice to NHRC to be tested for Ad, influenza A and B, parainfluenza 1, 2, and 3 and respiratory syncytial virus. Surveillance is also conducted onboard deployed ships with ultra-low temperature storage capability.
Origin of Ad21 virus strains. Genome-typing work was carried out on one Ad21 strain isolated from a nontrainee military person aboard the USS Peleliu (LHA-5) while deployed at sea and 75 Ad21 strains isolated from the pharyngeal swabs of military trainees assigned to the eight US training centers (Fig. 1): Fort Jackson, SC (FJ); Fort Benning, GA (FB); Fort Leonard Wood, MO (FLW); Naval Recruit Training Center, Great Lakes, IL (NRTC); Lackland Air Force Base, San Antonio, TX (LAFB); Coast Guard Training Center, Cape May, NJ (CGTC); Marine Corps Recruit Depot, Parris Island, SC (PI); and Marine Corps Recruit Depot, San Diego, CA (SD). All samples were collected between 1996 and 2005 from individuals reporting ill with symptoms of FRI. All viral isolations were initially carried out in A549 cell monolayers and confirmed to be Ads by immunofluorescence in the College of American Pathologists-certified NHRC diagnostic microbiology laboratory. The Ad isolates analyzed in this study were identified as serotype 21 by either a microneutralization assay (17) or PCR (18), or both. Serotyped isolates were then stored at -80°C for further analysis.

Viral DNA purification and restriction enzyme analysis. Ad isolates were shipped frozen on dry ice to the Lovelace Institute for further characterization. All isolates were passed once onto monolayers of A549 cells in 25 cm² flasks and subsequently amplified in monolayers of A549 cells in 75 cm² flasks for viral DNA extraction. When extensive cytopathic effect was evident, intracellular viral DNA was isolated from infected cells by the method developed by Shinagawa and colleagues (24), with modifications as previously described (13). For genome-type identification, 1 μg of viral DNA was initially digested with
10 U of restriction endonuclease *Bam*HI following manufacturer’s recommendations (Promega, Madison, WI). Viral DNA was further characterized by digestion with *Bgl*II, *Bgl*II, *Bst*Ell, *Hind*III, *Kpn*I, and *Sma*I. DNA fragments were separated by horizontal gel electrophoresis on 1% agarose gels run in 1X TBE buffer (0.09 M Tris-borate; 0.002 M EDTA pH 8). Restriction profiles were visualized by UV transillumination at 303 nm after staining with ethidium bromide, and photographed in a Gel Doc imager (Bio-Rad, Hercules, CA).

Genome type denomination. Genome types were denominated following the system developed by Li and Wadell (16) through comparison of the generated restriction patterns with published profiles. Genome types or DNA variants were discriminated based on their distinct profile of *Bam*HI restriction fragments and designated p for the prototype strain, and a, b, c, etc., for subsequently identified variants. Additional restriction enzymes discriminated subtypes a1, a2, etc. Restriction profiles were also denominated using the system developed by Adrian (1) to facilitate comparisons with the limited available literature.

PCR amplification and sequence analysis of the hypervariable region of the hexon gene and the fiber gene knob. Fragments of 1524 bp spanning the seven hypervariable regions of the hexon gene of Ad21 were generated by PCR using a high-fidelity Taq Polymerase (iProof, Bio-Rad, Temecula) and the following primer pairs: forward Hex 1: 5’-GGCTGAGTTGCTTTC-3’ and reverse Hex 8: 5’-CCATTCCATGTAGTCATAAGAG-3’, or forward Hex 3: 5’-CCCAATACATCTCAGTG-3’ and reverse Hex 6: 5’-
CACATCAGGATCATAGC-3'. The amplification mix contained 1.5 mM MgCl2, 1 U of iProof Taq polymerase, 200 μM dNTP, 1X iProof HF buffer provided by the manufacturer, and 1 μM of each primer in a total volume of 50 μl. The cycling conditions consisted of an initial step of denaturation for 30 s at 94 °C followed by 50 cycles of 30 sec at 94°C, 45 sec at 49°C and 45 sec at 72°C. A final step of extension for 5 min at 72°C was added. PCR fragments were purified with Montage PCR columns and Micropure-EZ columns (Millipore, Billerica, MA). Sequencing from both stands was achieved with the primer sets listed in Table 1 (Hex 1–8).

The fiber gene was sequenced using a similar approach with the following primer pairs: forward, Ad21 fiber up: 5’-CTACCCCTATGAAGATGAAAGCAC-3’ and reverse, Ad21 fiber knob down 1: 5’-AAGGGATAAGCTGTAGTACTTGGC-3’, or forward, Ad21 fiber up and reverse, Ad21 fiber knob down 2: 5’-AAATGGGAAGGGGGAGG-3’. Cycling conditions for amplification of the fiber gene were: 5 min at 94°C followed by 49 cycles of denaturing at 94°C for 30 s, annealing at 60.5°C for 30 s and extension at 72°C for 30 s. A final step of extension for 5 min at 72°C was added. PCR fragments were purified with Montage PCR columns and Micropure-EZ columns (Millipore). Sequencing services were contracted from the DNA Research Services of the University of New Mexico Health Sciences Center. All primers used for the amplification of hexon and fiber-coding regions, and the sizes of the corresponding amplification products, are listed in Table 1. Sequence data were deposited in GenBank under accession numbers DQ349207-DQ349216 for hexon gene sequences, and DQ349217, DQ349218, DQ369951–DQ369958 for fiber gene sequences.
Sequence data analysis was carried out using Seqman software for contig assembly and Megalign software for sequence alignments (both programs are components of the Lasergene suite, DNASTAR, Inc., Madison, WI).

RESULTS

Adenovirus type 21-associated FRI

According to data from continuous surveillance of Ad-associated FRI by the NHRC laboratory, Ad21 was identified to be present in 58% of all serotyped Ad-positive clinical samples in 1996 (n=24), 5% in 1997 (n=1618), 14% in 1998 (n=260), 3.6% in 1999 (n=248), 0% in 2000 (n=261), 0.4% in 2001 (n=271), 0% in 2002 (n=220), 0% in 2003 (n=212), 1% in 2004 (n=475), and 2.6% for January through September 2005 (n=307). The circulation of Ad21 strains was documented in six of the eight sites under surveillance during the 10-year period: NRTC, FLW, FJ, FB, SD, and PI. One strain was recovered from the pharyngeal swab of an active-duty, nontrainee military person aboard the USS Peleliu (LHA-5) while deployed at sea.

The following Ad21 strains were characterized by restriction enzyme analysis: Five random representatives of the 14 strains isolated in 1996 from GL; 22 random representatives of the 82 strains isolated in 1997 from GL, FLW, and FJ; 29 random representatives of the 36 strains isolated in 1998 from SD, FLW, FB, and FJ; all 9 strains
isolated in 1999 from SD; the only strain isolated in 2001 in FJ; all 4 strains isolated in 2004 from PI; and all 5 strains isolated in 2005 from FLW, PI, FJ, and the USS Peleliu.

Genome type analysis of Ad21 strains circulating between 1996 and 2005

Two major genome types and a total of four different DNA variants were identified among the 76 isolates subject to whole-genome restriction enzyme analysis with seven endonucleases. The genomes of all 75 isolates were initially characterized by digestion with *Bam*HI, *Bgl*II, *Hind*III, and *Sma*I. Restriction profiles are shown in Figure 2 in comparison to those of the prototype strain AV-1645 [Saudi Arabia, 1956; (5)]. Following the denomination system proposed by Li and Wadell (16), analysis with *Bam*HI discriminated two distinct DNA variants, 21a and 21b. Further analysis with *Bgl*II discriminated two new subtypes, 21a1 and 21b1. All genome types exhibited prototype-like *Hind*III restriction profiles (profile “p” according to the denomination system proposed by Li and Wadell (16), and profile “1” according to the system developed by Adrian et al. (1) and identical *Sma*I restriction profiles that were found to correspond to the *Sma*I pattern 2 described by van der Avoort et al. following the system of Adrian and colleagues (1)(29)). In order to conduct a more thorough comparison of the NHRC strains with Ad21 strains from other studies, further analyses with the endonucleases *Bgl*II, *Bst*EII and *Kpn*I were carried out. Restriction profiles obtained with these enzymes are shown in Fig. 3. All isolates
exhibited identical BglI and BstEII profiles matching pattern 2 described for these endonucleases by van der Avoort et al. (29). Two KpnI patterns deviating from the prototype were identified and denominated “a” and “b”. Pattern “a” appeared identical to the KpnI pattern 4 described by van der Avoort et al. (29)

The results of genome typing by restriction enzyme analysis with the complete set of 7 enzymes are shown in Table 2. The temporal and geographic distribution of the 75 genome-typed isolates associated with outbreaks of FRI in recruit training camps is shown in Fig. 4. The genome type and month of detection for the strain recovered aboard the USS Peleliu is also shown in this figure, but it should be noted that shipboard surveillance was only recently initiated and is temporally irregular.

Sequence analysis of hexon and fiber genes

The sequence of the 5’ end of the hexon gene, spanning the first 1450 nucleotides and comprising the start codon and the seven hypervariable regions (HVR1–HVR7), was determined for 10 Ad21 strains representing the 4 genomic variants and different sites and years of isolation. The complete sequence of the fiber gene was determined for the same 10 strains. Accession numbers are shown in Table 2.

All strains examined showed identical hexon and fiber gene sequences. The consensus sequence for the hexon and fiber of NHRC Ad21 strains were compared with
those of the prototype strain of Ad21 [AV-1645, Saudi Arabia, 1956, (5)] and the closely
related prototype strain of Ad50 [Wan (7), GenBank accession number AY737798]. The
corresponding sequences of Ad34p (Compton, GenBank accession number AY737797)
and Ad35p (Holden, GenBank accession number AY128640) were also included in the
analysis because of the previous record of circulation in the United States of intermediate
strains (identified as Ad21/H2 1+35) representing apparent recombinants of Ad21 and
Ad35, a closely related serotype of subspecies B2 (10). Additional GenBank sequences
corresponding to field strains of Ad21 were included when available.

Sequence alignments of the amino-terminal 460 amino acids of the hexon
polypeptide clearly identified the seven HVRs of the NHRC strains as 21-like (Figs. 5 and
6). Differences in the amino acid sequences of the hexon gene between the NHRC Ad21
strains and the prototype strain AV-1645 were detected in HVR-1, HVR-3, HVR-4, and
HVR-5. No major differences were detected between the hydrophobicity plots of the
corresponding polypeptides (data not shown).

Differences in the sequences of the fiber genes of the NHRC Ad21 strains and the
prototype strain AV-1645 were detected in the antigenic shaft and knob domains as shown
in Fig. 7. The fiber protein of the NHRC strains is closely related to that of the prototype AV-
1645 (97.2% amino acid sequence identity) and also to the fiber polypeptide of Ad50 strain
Wan (98.8% amino acid sequence identity). A six-amino acid motif AATSSK present in
positions 226-231 in the sequence of the NHRC Ad21 fiber, but not in the fiber of the prototype strain AV-1645, was identical to that present in the same position in the fiber of Ad50p and also in the fibers of the recently described Malaysian strains of Ad21 SIBU97, MY7/1, and MY8/1 (19). A similar motif TVASSK is also present in the fibers of Ad34p and Ad35p.

DISCUSSION

The relative contribution of Ad21 to the etiology of Ad-associated FRI among military recruits appears to be determined by the levels of circulation of Ad4 and Ad7. During the years when infection by Ad4 and Ad7 was being effectively controlled by vaccination, Ad21 acquired (or possibly retained) a niche in military recruit camps as revealed by the fact that this serotype was present in 58% of all serotyped Ad-positive clinical samples in 1996 (the last full year of vaccination), and was also the serotype that appeared to take over after introduction of the vaccine (26). Surveillance data in succeeding years showed 5% Ad21 in 1997, 14% in 1998, 3.6% in 1999, 0% in 2000, 0.4% in 2001, 0% for 2002-2003, 1% in 2004, and 2.6% in 2005. It is interesting to note that, as the percentage of Ad21 detection dropped off between 1996 and 1999, it was being progressively replaced by the serotypes previously controlled by the use of the vaccine; surveillance showed a mix of primarily Ad7
and Ad4 in 1997, then almost entirely Ad4 in later years (6). The gradual nature of this transition may reflect the gradual loss of the vaccine, which continued to be used sporadically during outbreaks and peak seasons between 1997 and 1999. Ad4 continues to dominate through the current year (NHRC, unpublished data) in the absence of the vaccine.

In contrast to their moderate level of recognized impact among US recruits, Ad21 genome types have caused massive documented outbreaks of respiratory disease in other countries, including New Zealand, The Netherlands, and Germany (4, 15, 29), and essentially replaced Ad4 and Ad7 as the dominant serotype in European recruit camps for periods of several years (29, 30).

Although the effects of genetic variability on Ad virulence and fitness have not been thoroughly examined, several studies have suggested that newly emerging genome types of species B1 serotypes cause outbreaks of disease characterized by more severe clinical presentations (25, 32).

Four different genome types were identified among the 765 Ad21 strains characterized in this study. Using a panel of seven endonucleases, the four DNA variants were defined and named Ad21a, Ad21a1, Ad21b, and Ad21b1 following the denomination system proposed by Li and Wadell (14). Ad21a was the most prevalent genome type, accounting for 69 of the 76 strains examined. Ad21a was the only Ad21 genome type
detected at FLW, NRTC, FB, FJ, and PI during outbreaks of FRI between 1996 and 1999. A unique BglII variant of genome type Ad21a — Ad21a1 — was identified only at SD in 1998, and was the only Ad21 genomic variant seen at SD during the study. Ad21a reappeared in 2004 and 2005 at PI after a 4-year (2000–2003) apparent absence of Ad21 from all the surveyed recruit training facilities. Two genome types not previously detected among US recruits, Ad21b and Ad21b1, were identified by restriction enzyme analysis with BamHI and BglII. Ad21b was found in 2005 at PI and aboard the USS Peleliu. Ad21b1 was found in 2005 at FLW. These variants appear to have emerged after the aforementioned 4-year disappearance of Ad21.

The comparison of the four newly identified NHRC Ad21 genome types with those of strains circulating in the United States, Europe, and Asia in previous years is limited by the very few published studies examining the molecular epidemiology of Ad21 infections. The only previous records of genomic characterization of Ad21 strains isolated in the United States (2, 29) describe four isolates corresponding to DNA variants D2 and D5 (as denoted by Adrian) circulating between 1976 and 1981. Genomic analysis data were also available for Dutch and German Ad21 strains (2, 29) and also for Malaysian strains isolated during an outbreak of enterovirus 71-associated hand, foot, and mouth disease (19). Based on their BamHI restriction profiles and following the denomination system of Li and Wadell (14), the D2 strains prevalent in Europe before 1980 (29) and the Malaysian Ad21 DNA
variants could be described as Ad21a-like genome types. The NHRC strains of genome type 21a show an intriguing resemblance to the Malaysian Ad21 strains, but correspond to different genome types from those identified among strains isolated the United States between 1976 and 1981 (10). Some of these strains, genome typed as variant D2 (29), were shown to be intermediate variants Ad21/H21+35 by cross-neutralization assays with reference antisera by Hierholzer and colleagues (10). Although no comprehensive serological analysis of antigenic reactivity was conducted in our study, the sequence analysis of the hexon and fiber genes of the NHRC Ad21 strains clearly identified both regions encoding major neutralizing epitopes as Ad21-like.

Ad21 grows much more slowly than Ad4 and Ad7 in tissue culture (30), and has been shown to have low rates of transmission under certain circumstances (14). This may explain why it does not cause as widespread or continuous outbreaks as Ad7 and Ad4 do in the absence of a specific vaccine. In US recruit training centers, the contribution of Ad21 to the etiology of FRI was not historically affected by application of the Ad4/Ad7 vaccine. However, in the presence of the vaccine, the proportion of Ad21-associated FRI increases dramatically due to the control of Ad4- and Ad7-associated FRI (9), suggesting that the vaccine has no effect on Ad21 and also that Ad21 is not directly competing with Ad4 and Ad7. In any case, in the presence of the Ad4/Ad7 vaccine, Ad21 does not appear to greatly
increase in impact, but rather becomes the dominant Ad by default. The impact of Ad21 in this context is still significant, however, accounting for 3–4% of FRI (9).

After the reintroduction of the Ad4/Ad7 vaccine anticipated to occur in 2008 (22), Ad21 is expected to become a predominant Ad serotype in US recruit training centers once again. Knowledge of circulating genome types and their epidemic behavior will be of significant value to ongoing surveillance efforts in these highly susceptible and impacted populations.
ACKNOWLEDGMENTS

The authors would like to acknowledge the leadership and foresight of our previous laboratory directors, Capt. Gregory C. Gray and CDR Margaret A. K. Ryan, both of whom played key roles in recognizing the need for, and value of, Ad surveillance and permanent archiving of isolates during the time when the Ad vaccination protocol was initially curtailed and later completely discontinued. The hard work of Marina Irvine conducting all viral isolations and strain amplification for these studies is also sincerely appreciated.

This work represents NHRC report number 06-15, supported by the Department of Defense (DoD) Global Emerging Infections Surveillance and Response System (GEIS) under research work unit 60501 and by grant W81XWH-04-1-0303 from the DoD Congressionally Directed Medical Research Program to AEK.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, DoD, or the US government. This research has been conducted in compliance with all applicable federal and international regulations governing the protection of human subjects in research (DoD protocols NHRC.1999.0002 and NHRC.2003.0002). The authors declare that no financial conflict of interest exists.
REFERENCES

including two strains that represent new candidate serotypes Ad50 and Ad51 of

vaccines precipitates military respiratory disease epidemics. For the Adenovirus

141:281-288.

Howley, R. M. Chanock, T. P. Monath, J. L. Melnick, B. Roizman, and S. E. Straus

isolated from hospitalized children with severe lower acute respiratory infection in

14. Kolavic, S., L. N. Binn, J. L. Sanchez, S. B. Cersovsky, C. S. Polyak, F. Mitchell-

FIGURE LEGENDS

FIG. 1. Sites participating in the nationwide surveillance of FRI.

FIG. 2. Restriction enzyme analysis of NHRC Ad21 strains with *Bam*H1, *Bgl*II, *Hind*III and *Sma*I. Lane P: prototype strain of Ad21, AV-1645; lane M: molecular weight markers (1kb + 100 bp ladders, Bio-Rad, Hercules, CA). Letter p denotes a prototype-like restriction profile; letters a, b, etc. denominate distinct restriction profiles; numbers 1 and 2 refer to the corresponding pattern identified by van der Avoort et al. (29).

FIG. 3. Restriction enzyme analysis of NHRC Ad21 strains with *Bgl*II, *Bst*EI and *Kpn*I. Lane P: prototype strain of Ad21, AV-1645; lane M: molecular weight markers (1 kb + 100 bp ladders, Bio-Rad, Hercules, CA). Letters a, b, etc. denominate distinct restriction profiles; numbers 1 and 2 refer to the corresponding pattern identified by van der Avoort et al. (29).

FIG. 4. Geographic and temporal distribution of Ad21-associated cases of FRI in military training camps and corresponding genome types.

FIG. 5. Alignment of the deduced amino acid sequence of the seven hypervariable regions (HVRs) of the hexon gene of NHRC Ad21 strains with those of the prototype strains of Ad21 (AV-1645, AY008279), Ad50 (Wan, AY737798), Ad34 (Compton, AY737797), and Ad35 (Holden, AY128640). Sequences alignments were carried out with Clustal W and Megalign (Lasergene suite, DNASTAR, Inc., Madison, WI).
FIG. 6. Analysis of the relative sequence identity between the predicted NHRC Ad21 hexon polypeptide and the hexon polypeptides of Ad21p, Ad50p, Ad34p, and Ad35p. Sequences alignments were carried out with Clustal W and Megalign (Lasergene suite, DNASTAR, Inc., Madison, WI).

FIG. 7. Alignment of the deduced amino acid sequence of the fiber protein of NHRC Ad21 strains with those of the prototype strains of Ad21 (AV-1645, U06107), Ad50 (Wan, AY737798), Ad34 (Compton, AY737797), and Ad35 (Holden, AY128640). Sequences alignments were carried out with Clustal W and Megalign (Lasergene suite, DNASTAR, Inc., Madison, WI). fiber tail domain; fiber shaft domain; fiber knob domain.
TABLE 1: Primer sets used in the amplification and sequencing of the hexon and fiber genes of NHRC Ad21 strains.

<table>
<thead>
<tr>
<th>REGION</th>
<th>PCR and sequencing primers</th>
<th>Amplicon<sup>a</sup></th>
</tr>
</thead>
</table>
| Hexon gene partial cds^b | Forward Hex1: 5’-GGCTGAGTTGCTTTC-3’
Reverse Hex8: 5’-CCATTCATGTAGTCATAAGAG-3’
Forward Hex3: 5’-CCCAATACATCTCAGTG-3’
Reverse Hex6: 5’-CACATCAGGATCATAGC-3’
Reverse Hex2: 5’-GCAATCCACTCTCAGTG-3’
Reverse Hex4: 5’-GCAAAAGACCCATAGC-3’
Forward Hex5: 5’-GCTATGGGTCTTTTG-3’
Forward Hex7: 5’-GTGACAGAACCAGATCTTTC-3’ | 1524 bp
702 bp
Seq^d|
Seq |
Seq |
| Fiber gene partial cds. | Forward Fiber tail: 5’-CTACCCCTATGAAGATGAAAGCAC-3’
Reverse Fiber knob 1: 5’-AAGGGATAAGCTGTAGTACTTGGC-3’
Reverse Fiber knob 2: 5’-AAATGGGAAGGGGAGG-3’ | 684 bp
1004 bp |

^a Length of obtained PCR product.
^b cds – coding sequence.
^c HVR – Hypervariable Region.
^d Seq - primer used for sequencing only.
<table>
<thead>
<tr>
<th>Genome type</th>
<th>Digestion profile (from Figs. 2A and 2B)</th>
<th>Location (number of isolates)</th>
<th>Hexon HVR1–7 sequence accession number *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad21p AV-1645</td>
<td>BamHI: p/1, BglII: p/1, BgII: p/1, BstEII: p/1, HindIII: p/1, KpnI: p/1, Smal: p/1</td>
<td>Saudi Arabia, 1956</td>
<td>AY008279</td>
</tr>
<tr>
<td>Ad21a</td>
<td>BamHI: a/2, BglII: a/2, BgII: a, BstEII: a, HindIII: p/1, KpnI: a/4, Smal: a/2</td>
<td>PI, (n=16)</td>
<td>DQ349209</td>
</tr>
<tr>
<td>Ad21a1</td>
<td>BamHI: a/2, BglII: a/2, BgII: b, BstEII: a/2, HindIII: p/1, KpnI: a/4, Smal: a/2</td>
<td>SD, (n=5)</td>
<td>DQ349214</td>
</tr>
<tr>
<td>Ad21b</td>
<td>BamHI: b, BglII: a/2, BgII: a, BstEII: a/2, HindIII: p/1, KpnI: b, Smal: a/2</td>
<td>PI, (n=1)</td>
<td>DQ349208</td>
</tr>
<tr>
<td>Ad21b1</td>
<td>BamHI: b, BglII: a/2, BgII: c, BstEII: a/2, HindIII: p/1, KpnI: b, Smal: a/2</td>
<td>USS Peleliu (LHA-5), (n=1)</td>
<td>DQ349210</td>
</tr>
</tbody>
</table>

* Accession numbers provided for representative isolates.
Figure 2

<table>
<thead>
<tr>
<th></th>
<th>BamH I</th>
<th></th>
<th>Bgl II</th>
<th></th>
<th>Hind III</th>
<th>Sma I</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td>P</td>
<td>a/2</td>
<td>b</td>
<td>P</td>
<td>a</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>P</td>
<td>p/1</td>
</tr>
<tr>
<td>a/2</td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td>a/2</td>
<td>M</td>
</tr>
</tbody>
</table>

- 5000 bp
- 2000 bp
- 1000 bp
- 600 bp
Figure 3

- **Bgl I**
 - M
 - P
 - a

- **BstE II**
 - M
 - P
 - a

- **Kpn I**
 - M
 - P
 - a
 - b
Figure 5
Figure 6

<table>
<thead>
<tr>
<th>Hexon polypeptide</th>
<th>Percent identity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ad21p-AV1645</td>
<td>1</td>
</tr>
<tr>
<td>Ad21 NHRC</td>
<td>2</td>
</tr>
<tr>
<td>Ad50p Wan</td>
<td>3</td>
</tr>
<tr>
<td>Ad34p Compton</td>
<td>4</td>
</tr>
<tr>
<td>Ad35p Holden</td>
<td>5</td>
</tr>
</tbody>
</table>
Figure 7

```
Tail .................................................. Shaft .................................................. Knob

MT KRVRLSDSFNPVYPEDESTSQHPFINPQNGFTQSPDGVLTLNCLTPLTTTGGPLOLKVGGLI 70
.......................................................... K .......................................................... T 70
.......................................................... K .......................................................... S 70
.......................................................... T 70

VDDTDGTLOENITKNNHSVELISNGLETQNNKLCAKLGNLKFNNGDICTKDSINTLWTGIKP 140
.......................................................... V .......................................................... 140
.......................................................... V .......................................................... N 140
.......................................................... N 140

PPNCQIVENTDTNDGKTLTVLKNGGLVNQNGVSLVGVSTVNMFTQKSATIQLRYFDSSGNLTLDES 210
.......................................................... N .......................................................... T.N .......................................................... D 210
.......................................................... T.N .......................................................... E.D 210

LKIPLKNKSSTATSEVLQPAEFMPSSTAYFNTTTRDSENYIHGICYMTSYPDRLVPLNI SIMLNSRT 280
.......................................................... AATSSK .......................................................... H. 280
.......................................................... AATSSK .......................................................... 280
.......................................................... TVASSK .......................................................... 280
.......................................................... TVASSK .......................................................... 280

ISSNVAYAQFENLNAKESPESNIATLTTSPFFFSYIREDDN .......................................................... 323
.......................................................... S .......................................................... T .......................................................... 323
.......................................................... S .......................................................... 323
```
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB Control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

<table>
<thead>
<tr>
<th>1. Report Date (DD MM YY)</th>
<th>2. Report Type</th>
<th>3. DATES COVERED (from - to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 05 06</td>
<td>Technical Report</td>
<td>October 1998-present</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE

Genomic Characterization of Adenovirus 21 Strains Associated With Outbreaks of Febrile Respiratory Illness in United States Military Recruit Training Centers Between 1996 and 2005

6. AUTHORS

Adriana E. Kajon, Jennifer M. Moseley, Kevin L. Russell, and David Metzgar

8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Commanding Officer

Naval Medical Research Center

P.O. Box 140

Jacksonville, FL 32212 0140

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

14. ABSTRACT (maximum 200 words)

Adenovirus type 21 (Ad21) is a well-known causative agent of acute respiratory disease among both military recruits and children. In an effort to characterize the molecular epidemiology of Ad21 infections in the military environment, genetyping work was carried out on a collection of 75 Ad21 strains isolated from the pharyngeal swabs of military recruits presenting with symptoms of febrile respiratory illness between 1996 and 2005 at eight US training centers. One further strain from an ill serviceperson deployed at sea was also characterized. Restriction enzyme analysis with BamHI discriminated two distinct DNA variants, Ad21a and Ad21b. Further analysis with BglI, BglII, BstEII, HindIII, KpnI, and SmaI discriminated two new subtypes, Ad21a1 and Ad21b1. Ad21a was the most prevalent genome type, accounting for 69 of the 76 strains examined. Genome type Ad21a1 was identified only among the strains isolated at the Marine Corps Recruit Depot, San Diego, CA. Genome types Ad21b and Ad21b1 were identified among strains isolated in 2005 and seem to have emerged after a 4-year (1999–2002) disappearance of all Ad21 genome types. After the reintroduction of the Ad4/Ad7 vaccine in 2008, Ad21 is expected to become a predominant adenovirus serotype in US recruit training centers once again. Knowledge of circulating genome types and their epidemic behavior will be of significant value to ongoing surveillance efforts in these highly susceptible and impacted populations.

15. SUBJECT TERMS

adenovirus, strain typing, surveillance

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239-18