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AFIT–ENG–DS–13–J–02
Abstract

Location-Based Services (LBS), also called geolocation, have become increasingly

popular in the past decades. They have several uses ranging from assisting emergency

personnel, military reconnaissance and applications in social media. In geolocation a

group of sensors estimate the location of transmitters using position and Radio Frequency

(RF) information. A review of the literature revealed that a majority of the Received

Signal Strength (RSS) techniques used made erroneous assumptions about the distribution

or ignored effects of multiple transmitters, noise and multiple antennas. Further,

the corresponding algorithms are often mathematically complex and computationally

expensive. To address the issues this dissertation focused on RSS models which account

for external factors effects and algorithms that are more efficient and accurate.

The models of RSS that were developed in this research include a multiple transmitter

model, a multiple antenna model and several models using Differential Received Signal

Strength (DRSS). A DRSS model produced results that were 80% more accurate when

compared with a traditional path-loss RSS model for localization of multiple transmitters.

The principal contributions of this research to the community include new models for

RSS and two novel algorithms used to localize RSS measurements. These contributions

also included development of DRSS models and algorithms that have not previously been

seen in the literature.
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DEVELOPMENT OF A MODEL AND LOCALIZATION ALGORITHM FOR

RECEIVED SIGNAL STRENGTH-BASED GEOLOCATION

I. Introduction

Location-Based Services (LBS) have become increasingly more important over the

past few decades. According to Pyramid Research, revenue from LBS is expected to

increase from two billion USD in 2010 to an expected 10.3 billion USD by 2015 [1]. With

such an expected increase in the revenue from these services, there is a significant need to

expand and examine current methods that are used in source localization.

1.1 What is geolocation and who uses it?

Applications of LBS include locating a transmitter to assist in billing services,

providing assistance to emergency personnel, or performing military reconnaissance. A

new and emerging area of geolocation is social media. For example, in applications such

as Facebook, Four Square and Instagram, users may choose to tag their locations in status

updates or photos. These applications collectively use what is referred to as geolocation,

or more commonly “source localization” to execute these tasks.

Geolocation is the process of estimating the location of an unknown source or

“transmitter” using a collection of measurements obtained from sensors or “receivers”. In

geolocation a group of sensors or “receivers” estimate the location of an unknown source

or “transmitter” using position and Radio Frequency (RF) information. In order to use

geolocation, sensors must be able to locate the origin of the signal. When the position of

the source is unknown, localization techniques must be employed. A variety of different

techniques can be used in geolocation.

1



1.2 How is geolocation performed?

Several different techniques are commonly used for RF geolocation including, Time

Difference of Arrival (TDOA), Time of Arrival (TOA), Angle of Arrival (AOA) and

Received Signal Strength (RSS). The TDOA, AOA and TOA estimation procedures

generally require a larger number of operations due to their mathematical complexity and

may be more hardware intensive than RSS measurements. For this reason, this research

focuses on RSS as the measurement to locate transmitters. The RSS may be obtained from

a variety of different sources and is defined as the amount of power present in a radio

signal, or the power level being received by the antenna. Once RSS measurements are

obtained from a receiver, a localization algorithm must be employed in order to utilize

these estimates for source localization.

One new and emerging field of source localization uses Differential Received

Signal Strength (Differential Received Signal Strength (DRSS)) measurements which

are essentially the difference in RSS measurements at receivers. This is a convenient

method for localization, since it alleviates the assumption of transmit power. Since DRSS

measurements use in localization is a relatively new topic, Chapter 5 of this dissertation is

dedicated to the development and analysis of DRSS models and algorithms.

There are several varying localization algorithms in the literature each associated with

different RSS models. Sometimes closed-form approximation solutions are available for

the estimation of the location. However, these are generally very mathematically complex,

and involve approximations that can lead to error. Often, iterative algorithms must be

performed in order to localize the transmitter and several of these algorithms are explored

in this research.

1.3 Why is this research important?

The current literature on RSS-based geolocation is extensive and encompasses a

variety of models, algorithms and experiments. However, since most current literature

2



relies on statistical models, questions arise as to the validity of the models and assumptions

made.

Figure 1.1: Potential sources of error in RSS localization process.

This research focused on investigating and alleviating errors associated with the

localization process and each chapter relates to these errors. Figure 1.1 identifies three

main areas in which error can be introduced into the localization process and this provides

motivation for the bulk of this dissertation. These three main areas include raw RSS

measurements, range estimation error, and positioning error. Range estimation errors

are introduced into RSS measurements by way of multi-path, Non-Line-of-Sight (NLOS)

obstructions and shadowing. All of these introduce error into the RSS measurements.

Different models have been proposed to mitigate these errors. Known models as well as

this author’s original models are discussed in Chapter 2.

Raw RSS errors are caused by deficiencies in the hardware. These deficiencies are

either due to human, hardware or software issues. These deficiencies can result in RSS

measurements which are dropped (not reported), or reported incorrectly. Chapter 3 presents
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a novel approach to analyzing two hardware devices for their consistency in reporting RSS

measurements.

Positioning errors can result if restraints are put on the number of iterations that need

to be run for a localization algorithm to converge. Several localization algorithms have been

purposed in an attempt to minimize positioning error while maximizing the efficiency of

the algorithm. These new algorithms along with simulations and validations can be found

in Chapters 4 and 5.

1.4 What are the main contributions of this work and where are they located?

Below is a list of the major contributions of this dissertation.

1. Hardware was analyzed for performance in reporting consistent RSS measurements.

These raw measurements were then used to validate the performance of the proposed

algorithms. A novel way to compare raw RSS measurements from hardware was

also presented. This can be found in Chapter 3.

2. This research proposes several new RSS models: (1) correlated RSS, (2) correlated

DRSS, (3) multiple transmitter DRSS, (4) cooperative RSS, (5) non-cooperative

RSS and (6) multiple antenna RSS. The author’s original models were, Gaussian

Mixture Model (GMM), RSS and multiple transmitter DRSS. The other models were

variations on models that were already available in the literature. These models can

be found in Chapter 2.

3. This research analyzes existing algorithms using the new proposed models and

proposed some novel algorithms for localization: (1) GMM Maximum Likelihood

Estimation (MLE), (2) non-cooperative and (3) cooperative MLE and (4) multiple

transmitter MLE. It also compared existing algorithms with regard to accuracy. In

this chapter the transmit power is assumed to be known. All of these algorithms can

be found in Chapter 4.
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4. This research proposes a new measurement (DRSS) of RSS with which to localize

one or more transmitters, including the multiple transmitter DRSS and the correlated

DRSS models. Localization algorithms were developed using these models:

(1)DRSS gradient descent, (2) DRSS grid-search and (3) multiple transmitter DRSS.

This can be found in Chapter 5. In this chapter the transmit power is assumed to be

unknown.

This dissertation is organized as follows. Chapter 2 is a review of current RSS models

that were compared in this research and new RSS models that were developed. Chapter 3

provides an analysis of RSS measurements obtained from a variety of hardware and then

compares current and proposed models using this raw data. Chapter 4 gives a background

on some currently used localization algorithms for which transmit power is assumed known

and provides new algorithms that were developed in the course of this research. Chapter 5

gives the development of a new DRSS model which does not assume that transmit power is

known as well as new localization algorithms that were developed or used with this model.

Finally, Chapter 6 summarizes this research, gives ideas for future work and lists current

and pending publications.
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II. RSS Model Development

2.1 Parameters and chapter organization

This chapter will briefly discusses common RSS models and then discusses new

models that were developed in the course of this research. It begins with common

variations on the path-loss model and provides references for these models. A model

which considers multiple receiving antennas is developed, followed by a model which uses

non-cooperative measurements. Non-cooperative measurements are those where the signal

cannot be demodulated from the noise. Finally, a model which has multiple transmitters is

shown. This chapter provides the background for the algorithm development found in later

chapters.

Unknown parameters and assumptions are shown in Table 2.1 on page 7 and known

parameters are found in Table 2.2 on page 8. When using RSS for geolocation, the unknown

parameter is the location of the transmitter(s), (xm, ym) ∈ R2 related to a fixed coordinate

system (which is sometimes expressed as a complex value, zm = xm + i · ym).

2.2 Noise free path-loss RSS model

This section begins with a discussion of path-loss RSS models and variations of these

models. Many authors state that a simple propagation model may be used to model RSS

[2], [3], [4]. The simple radio propagation model assumes the signal strength is inversely

proportional to the distance between the transmitter and the receiver. RSS is commonly

given in dB, which suggests that distance measurements should be expressed in dB. The

noise-free RSS model [5], is given by

rs = P0 − 10ηlog10

(
ds

d0

)
, (2.1)
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Table 2.1: Unknown parameters and assumptions

Symbol Description Standard Definition

r RSS measurement w/o noise (log) r = P0 − η log10(d)

r̃ Differential RSS w/o noise r̃ = Ar

p RSS measurements (log) p = P0 − ηd̄s + w

(xm, ym) = zm True location of the mth Tx Varies

q DRSS w/ noise q = Ap

ws Noise Fading for RSS at sensor s ws ∼ N(0,Σ)

A Matrix to constrain RSS measurements [1(S−1)×1,−I(S−1)×(S−1)]

vs Correlated noise in DRSS vs ∼ N(0,AΣAT )

pcoop Cooperative RSS measurements


ps, ps ≥ τcoop

Not a Number, ps < τcoop

Rsm Multiple Tx RSS w/o noise (linear) Rsm = P0

(
d0

ds(zm)

)η
Ps Multiple Tx RSS w/ noise (linear) Ps =

M∑
m=1

Rsm10wsm/10

where rs is the RSS of receiver s, in dB, P0 is the dimensionless constant transmit power

of the single transmitter, η is the path-loss exponent for all sensors, ds is the distance from

the transmitter to receiver s in meters, and d0 is the close-in reference distance generally

taken to be one meter. Equation (2.1) forms the basis for investigation of RSS models in

this research and all future models are fundamentally variations on (2.1). Expressed in a

linear scale, the noise-free RSS or received power at the transmitter is,

Rs = P̄0

(
d0

ds

)η
, (2.2)

where P̄0 is P0 expressed in linear terms as the transmitted power, ds is the distance between

the transmitter and receiver s and η is the path-loss exponent (the rate at which the signal

decays) across all receivers. Most measurements of RSS are obtained in dB. However,
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Table 2.2: Known parameters and assumptions

Symbol Description Standard Definition

M Known number of transmitters 1 to 3

N Known number of antennas 1 to 2

S Known # of receivers 4 to 400

s Index to indicate receiver s ∈ {1, 2, · · · , S }

m Index to indicate transmitter m ∈ {1, 2, · · · ,M}

n Index to indicate antenna n ∈ {1, 2, · · · ,N}

P0 Constant transmit power 20 dB

g0 Antenna 1 gain 0 dB

g1 Antenna 2 gain -10 dB

η Path-loss exponent 1 ≤ η ≤ 4

σ RSS standard deviation 4dB ≤ σ ≤ 12dB

(xs, ys) = zs Known location of receivers zs = xs + iys

d0 Close-in reference distance 1 meter

ds Distance from Tx to Rx, s position. |zs − zm|

d̄s Distance in log terms. 10 log10(ds)

$n Gaussian mixture weight $n ∈ [0, 1]∀ n ∈ {1, · · · ,N}

ρ Correlation coefficient 0.2 ≤ ρ ≤ 0.8

τcoop Lowest signal RSS detected in noise −40 dB

(2.2) forms the basis for other models in this research so it is important to understand the

relationship shown in (2.2).

Equation (2.1) can be thought of as an ideal situation. There is no noise or fading

assumed in the channel and generally, P0 and d0 are assumed to be known or easily
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obtained. Even in an open field, RSS signals may still suffer from fluctuations and can

induce errors in the form of shadowing and multi-path to the measurements. Therefore, it

is important to introduce a variable to account for noise fading into the model.

2.3 Noise-added path-loss RSS model

Noise is defined as the variation in the amount of fading that occurs in RSS

measurements due to obstacles in the path of the signal and it is not RF noise [6], [7],

[8], [9]. It is common to include a term in (2.1) to account for noise in this model ws,

ps = P0 − 10ηlog10
ds

d0
+ ws (2.3)

where P0 is the constant transmit power in dB, ds is the distance from receiver s to the

transmitter, d0 is the close-in reference distance and ws is the noise, which is Gaussian in

the log domain with zero mean and variance σ2 > 0. Typically σ2 is defined as the variance

of noise introduced to the channel by multi-path, fading, shadowing, and Non-Line of Sight

(NLOS), all previously discussed sources of error. Equation (2.3) does not specifically

account for any external factors that may affect the quality of the signal but rather uses ws

to account for all noise in the model and assumes that noise measurements are independent

from one another and, thus, uncorrelated. The next section explores correlation among

noise terms.

2.4 Spatially-correlated noise fading RSS model

Making assumptions that are incorrect with regards to noise in the channel will add

error to the model for received signal strength. It is less common in the literature to assume

that RSS measurements are correlated, but this does not mean it is not important. Not

accounting for dependence of noise fading terms misrepresents the accuracy of the location

estimate.

This research introduces using correlated noise fading measurements to derive a RSS

model. Here, the assumption is made that the correlation occurs in the noise not in the
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path-loss terms. Path-loss is assumed to be constant across all receivers. When considering

(2.1) with respect to correlated noise fading, a model can be provided which accounts for

correlated noise fading measurements.

Figure 2.1 is a pictorial representation of how correlation can occur in the noise

fading. It shows that when paths A and B must pass through similar obstacles to reach

the transmitter, there will likely be a large correlation between the measurements at A and

B. Conversely, there would likely be a low correlation between A or B and C.

Figure 2.1: Example of spatial correlated shadowing. The signal transmitted by the star

shaped node will experience different shadowing effects. It is expected that the shadowing

at A and B to be highly correlated since the signals travel through the same environment

and C to have a low correlation with either A or B.
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2.4.1 Literature review of current correlated noise fading RSS models.

Gudmundson [10] presents one of the earliest correlated shadowing models, a simple

decreasing correlation function, given by

Σ = σ2ρ|s| (2.4)

ρ = εvT/ds , (2.5)

where ε is the correlation between two points separated by distance ds, v is mobile velocity,

T is the integer number of seconds of a sample. Since the transmitters are stationary, this

research uses constant velocity.

Flam et al. [11] use correlated RSS measurements to localize a source. They differ in

their definition of correlation.

ps = P0 − 10η log(||zs − z0||/d0) + ws (2.6)

where (2.6) follows the form of (2.3), ws ∼ N(0,Σ), ||zs − z0|| is the norm and

Σms = σ2e−dms/Xc , (2.7)

where Xc is the correlation distance (the authors do not explicitly state where the

computation of Xc comes from), 0 is the zero matrix and Σ is the covariance matrix.

Al-Dhalaan and Lambadaris [12] estimate transmitter location using the popular

Network Shadowing (NeSh) model to account for correlation in the measurements.

Consider links between transmitter receiver pairs, as in Figure 2.1, where each point (A, B

or C) has two coordinates. In order to determine the correlation between A and B, define

endpoints of A to be zA1 and zA2 and endpoints of B to be zB1 and zB2,

Cov(A, B) =
σ2/δ
√

dA
√

dB

∫ zA2

zA1

∫ zB2

zB1

e−
||r−p||
δ dp dr , (2.8)

where δ > 0 is a space constant, dA = |zA1 − zA2|, dB = |zB1 − zB2| are the distances

from points in A and B, respectively, and zA1, zA2, zB1, zB2 are the endpoints of A and
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B, respectively. Patwari and Agrawal [13] also use a NeSh model to model the effects

of correlated shadowing. This is a mathematically complicated covariance model which

requires multiple integrations to compute and for this reason was not considered in this

research.

Assad et al. [14] utilize Radio Frequency Identification (RFID) technology for their

real time experiment. Even though this is not directly applicable to this author’s research,

they do incorporate a correlated log normal shadowing term and then use positioning

software to solve the model. They define a break point, dBP at which the values of η and σ2

change.

rs =


10η1 log10(ds), ds ≤ dBP

10η1 log10(dBP) + 10η2 log10

(
ds

dBP

)
, ds > dBP

(2.9)

where η1 is the power-distance gradient before the breakpoint and η2 after the breakpoint,

and η1, η2 and dBP are defined using the standard IEEE 802.11 channel model. Their

definition of the fading correlation was

ps = P0 − rs + ws, (2.10)

where ws = ρws−1 +
√

1 − ρ2 · N(0, σ) and ρ = 0.96 which is close to perfect correlation

and may not accurately portray correlation effects.

2.4.2 Proposed correlated noise fading RSS model.

The amount of correlation in the noise fading can be accounted for by defining a

correlation coefficient ρ [10, 15, 16]. Research in the field of correlation noise fading of

RSS measurements is supported by previous endeavors from the authors mentioned above.

The goal of this dissertation is to find a model which takes less operations to compute

and is not mathematically complicated. Therefore, this author’s model considers a simple

correlated shadowing model as opposed to some of the other models that are described
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above, since it is desirable to use a model that will minimize additional error that might be

introduced with a more complicated model.

This author defines correlated fading noise, ws to be a random vector, from a Gaussian

distribution with mean zero and covariance matrix, Σ, defined as σ2 along the diagonal

and ρσ2 on the off-diagonal matrix. A particular correlation fading model is assumed for

analytical purposes only. Theoretically, any other correlation model could be used. For

simplicity all ρ values are the same, but could be varied to fit other models.

If noise fading is spatially correlated, a matrix is defined to account for the amount of

correlation in the noise fading terms,

Σ = σ2
(
ρ1S 1S

T + (1 − ρ)IS

)
, (2.11)

where, ρ is the correlation coefficient for the noise measurements, σ2 is the amount of

variance in the noise, 1S is an S × 1 matrix of ones, IS is an S × S identity matrix, and S

is the number of receivers. Transpose of a matrix A is denoted as AT . This is the standard

notation that will be used in the rest of this dissertation. Using (2.11), a spatially correlated

noise fading model for RSS is,

p = r + w

= P0 − 10η log10(ds) + ws,
(2.12)

where r is the noise free path-loss model from (2.1), d is a vector of distances from the

transmitter to each receiver, P0 is the constant transmit power and w ∼ N(0,Σ) is the

correlated noise fading. In the remainder of the paper, the simple correlated fading model

for RSS is defined by (2.11) and (2.12).

2.5 Single transmitter with multiple antenna RSS model (RSS-GMM)

Several factors may affect the distribution of RSS measurements. As mentioned

previously, measurements may be affected by terrain, software, environment and hardware
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configurations. These are all important factors to consider when trying to find an

appropriate model for a distribution of RSS values.

2.5.1 A review of the literature of current non-Gaussian RSS models.

As mentioned previously, the localization of a transmitter with multiple antennas is

generally modeled as a single received signal coming from a Gaussian distribution [9].

While the standard log-distance path-loss model is often used to model RSS, it is not

always the optimal choice. Much current research considers transmitters to have a single

omni-directional antenna, although this is not always the case. Often transmitters may have

two or more antennas. Most models assume a Gaussian distribution and do not consider the

number of antennas. Error that is introduced into the model by these incorrect assumptions

is investigated in this research. Kaemarungsi et al. [17] suggest that the distribution of RSS

may not be normally distributed and may be affected by the presence of a user’s body. Most

of the experiments they performed showed that RSS did not fit the Normal distribution and

tended to be left skewed.

Patwari et al. [18] ran a Kolmogorov-Smirnov (KS) test to confirm that at a rejection

level of α = 0.10, the distribution of RSS measurements they observed when using multiple

transmitter antennas were more closely modeled by using a Gaussian Mixture Model

(GMM) and the null hypothesis test for a GMM distribution was not rejected. There was

insufficient evidence to conclude that the shape of their data did not come from a GMM

distribution.

Sheng et al. [19] propose that when multiple transmitters antennas are used to achieve

antenna diversity, the received signal strength (RSS) may be modeled as a GMM in the dB

domain.

Antenna diversity may also be used in the localization of a transmitter when receiver

locations are known. Figure 2.2 shows an example of antenna diversity. Two antennas

spaced a few wavelengths apart transmit signals at different strengths due to interferences
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from reflections, fading or line-of-sight. Thus, for any set of RSS measurements, a

distribution which contains several different Gaussian distributions, each with unique mean

and known standard deviation, may be seen.

Figure 2.2: Example of antenna diversity, utilized by a transmitter, with M = 2 antennas.

2.5.2 Proposed single transmitter multiple antenna RSS model.

This research developed a GMM to model RSS coming from multiple receivers to a

transmitter with multiple antennas. A GMM model is attractive in this research, because it

can account for Gaussian signals from multiple antennas and has been shown to accurately

model signals using antenna diversity [18], [19].

The variable ws, accounts for the shadow fading between the transmitter and receiver

and is known to be modeled as a Gaussian random variable with zero mean and known

standard deviation σ2.

The model makes the following assumptions:

1. A log-distance path-loss model is used.

2. There are two omni-directional antennas located at a single transmitter, however,

only one is used at a time and they have different antenna gains (g1, g2).

3. Noise for each antenna is modeled as coming from an Additive White Gaussian

Noise (AWGN) channel.

4. Receiver locations are known.
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Equation (2.1) is the generally accepted form for the path-loss model without fading,

but may not accurately model signals from a transmitter with multiple antennas utilizing

antenna diversity. When two antennas are present at the transmitter, each is contributing an

unknown amount of power, which can represented by two Gaussian distributions.

r̄ =


r + g1, with probability p1

r + g2, with probability p2

(2.13)

where r is RSS measurements without noise at antenna n = 1 or 2 and g1 and g2 are the

gains of the two transmitter antennas. There is an equal chance of the signal coming from

either antenna. Note, for this research only two antennas were considered, but theoretically

any number of antennas could be considered. Using a predetermined weight a Probability

Density Function (PDF) may be found which specifies the GMM. For a single Gaussian

variable the PDF is

f (p; r̄) =

∫ ∞

−∞

1
√

2πσ2
exp

[
−
||r̄ − p||2

2σ2

]
dr , (2.14)

where variance σ2 is known, p, r̄ are mean RSS as defined in (2.13) and (2.1), respectively.

When utilizing antenna diversity, the transmitter chooses the signal from the strongest

antenna reading. Assume that approximately 100/N% of the time the signals come from

antenna n, then (2.14) may be combined with the weights $n, to form a sum of n weighted

Gaussians, each with its own unique mean.

f (p; r̄) =

N∑
n=1

$n f (pn; r̄) (2.15)

where N is the number of antennas, $n is the weight associated with the nth antenna and

pn is the mean associated with the nth mixture. Using (2.15), a MLE was found which

maximizes the log-likelihood function and is discussed in Section 4.6.

2.6 Cooperative and non-cooperative RSS models

Most current models assume measurements are obtained cooperatively. This means

that the signal is known and can be demodulated from the noise. RSS measurements also
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suffer from range limits. Both of these ideas formed the basis for a research paper. This

author’s research has involved another type of model, non-cooperative. A non-cooperative

model is defined as one for which the signal is not demodulated. Since integrating the

Power Spectral Density (PSD) is mathematically complex, an approximation may be used

as defined in [6].

“In a non-cooperative system, such as locating emitters in a hostile environment, the

RSS may be determined by integrating the observed Power Spectral Density (PSD).”

It is shown that the standard model becomes invalid for this case at large distances.

This is the basis for trying to derive a model for RSS which accounts for a non-cooperative

system. Traditional models which fail to account for a noise floor in their measurements

are over confident in their use. In reality, the actual power measurements will exhibit a

leveling off at the noise floor. This is another important aspect of modeling RSS which will

be considered in this author’s research.

2.6.1 Development of a cooperative model RSS model (RSS-NC).

In a cooperative system, range limits may be approximated via a truncation function.

Using a simple path-loss propagation model and considering the power of the noise, the

RSS in dBm may be modeled as,

pcoop =


ps, ps ≥ τcoop

NaN, ps < τcoop

, (2.16)

where NaN means “not a number” and indicates that no RSS was reported, ps is the

received power after fading as modeled by (2.3) and τcoop is the lowest signal RSS that

can be detected in the presence of noise.

2.6.2 Literature review of non-cooperative RSS model.

Chang-Young et al. [20] propose a measurement of RSS without prior knowledge of

the locations of the sensors or transmitters. Additionally, they hypothesize that path-loss
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and constant transmit power both vary. The resulting model is shown below,

ps = rs + ws (2.17)

rs = Ps − 10ηlog10(ds) (2.18)

rcoop =


rs, i f rs > τnc

τ, O.W.
, (2.19)

where w ∼ N(0, σ2I), Ps is the source power level and is unknown and rs is the sensed RSS

measurement. If the sensed RSS measurements are above a threshold (τ), then the RSS is

as modeled in (2.18) with the addition of noise. However, if it is below the threshold,

it is modeled as the threshold plus noise. Thus, if all of the RSS sensed are above a

certain threshold, then the simulated RSS will be modeled using a standard log normal

fading model. It appears to be similar to the cooperative model of (2.16), except instead of

reporting NaN, the receiver reports the threshold for values below that threshold.

2.6.3 Development of non-cooperative RSS model (RSS-NC).

The non-cooperative model imposes a noise floor to the measurements as only

measurements below the τcoop are capable of being reported. Since the noise power is

additive in the linear domain, it will be modeled as shown in (2.20). For a non-cooperative

system there is a noise floor which must be incorporated into the RSS measurements.

pnc ∼ N(rnc, σ
2I) (2.20)

rnc,s = 10 log10

(
10rs/10 + 10τnc/10

)
(2.21)

where rnc is the non-cooperative power of the signal with addition of the power of the

background noise, rs is the power of the signal as found in (2.1) and τnc is the power of the

background noise.

2.7 Multiple transmitter RSS model (RSS-M)

Simulations as reported by Nelson et al. [21] were recreated to test the accuracy of the

author’s proposed algorithm for estimating multiple transmitters’ locations using multiple
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receiver power measurements. Unknown transmitter locations are randomly drawn from a

uniform distribution. The number of transmitters is known and they are assumed to have the

same constant transmit power. The number of receivers is also known and their locations

are again drawn randomly from a uniform distribution. Also, the number of receivers is

at least twice the number of transmitters. The locations are estimated under a log-normal

shadowing model, which has been validated to represent the variations in received power

due to obstacles in the signal path [21]. The final location estimation is chosen as the

estimate which maximizes the probability that the transmitters are correctly located given

the observed power measurements at the receivers. Most research currently focuses on RSS

measurements coming from a single transmitter. There may be opportunities to use multiple

transmitter readings and the more data that is available the more accurate the estimates.

2.7.1 Development of multiple transmitter RSS model (RSS-M).

Throughout this section, a lower case letter denotes a term in dB and a capital letter

represents a linear term. The power measurements are obtained by simulating the power at

each transmitter using the following equation,

Rsm = P0

(
d0

ds(zm)

)η
, (2.22)

where Rsm denotes the power received from a single transmitter to a single receiver: ds(zm)

is the distance from transmitter m to receiver s, P0 is the constant transmit power, d0 is the

close-in reference distance generally taken to be one meter and η is the path-loss exponent.

The power at receiver s, when ws is a sample from a Normal distribution with variance

equal to σ2

Ps =

M∑
m=1

Rsm10wsm/10, (2.23)

where wsm ∼ N(0, σ2) is the noise in the signal, Rsm is the noise free power from receiver

s to transmitter m, and Ps is the normalized sum of the power from receiver s to the
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transmitter m. Note that (2.23) is expressed in linear terms

ps = 10 log10(Ps) , (2.24)

where ps is the model for power expressed in decibels. This chapter discusses the majority

of the models used in this literature review with the exception of DRSS modeling. Chapter 5

discusses the extensive research for DRSS modeling. New models for RSS were explored.

These models were (1) cooperative RSS, (2) non-cooperative RSS, (3) multiple antenna

RSS and (4) correlated RSS and they were compared with the existing standard path-loss

model.

Table 2.3 gives a summary of models used in this dissertation and the associated

equation numbers of the model. The models shown in this table form the basis for

algorithms that were derived in Chapters 4 and 5.

Table 2.3: Description of models used in the dissertation including their locations in this

dissertation.

# of Tx Type Fading Model Equation

1 RSS-STD (Standard) No Noise (2.1)

1 RSS-COOP (Cooperative) Gaussian (2.16)

1 RSS-NC (Non-Cooperative) Gaussian (2.20)

1 RSS-GMM (Gaussian Mixture Model) Gaussian (2.13)

1 RSS-CORR (Correlated) Corr. Gaussian (2.12)

1 DRSS-CORR (Correlated) Diff. of Corr. Gaussians (5.2)

M RSS-M (Multiple Transmitters) Gaussian (2.23)

M DRSS-M (Multiple Transmitters) Diff. of Corr. Gaussians (5.31)
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III. Raw RSS Measurement Analysis

When the research for this dissertation first began the only equipment available

for experiments were the SunSPOT sensor motes by Oracle. Research showed these

motes to be ineffective and inaccurate. Therefore, additional hardware was purchased

for use in experiments. This part of the dissertation compares the three sensor hardware

platforms that were available for obtaining RSS measurements including Wi-Pry/WARP

board combo, SunSPOT and Telos-B motes.

Most texts focus not on the raw RSS measurements but on a mean estimate of this

data. Raw measurements coming to the receiver are not always constant and suffer from

outages. In order to accurately model RSS measurements and have an understanding of

where the signals originate from, an experimental campaign involving different hardware

was first explored.

3.1 Motivation for investigation of external effects of error on RSS measurements

RSS measurements are obtained from a variety of different sources. Typically radio

propagation is affected by multi-path which can be broken down into three components:

reflection, diffraction and scattering. Reflection is generally caused by the surface of the

earth, buildings or walls [7], [9]. Diffraction occurs when the waves must bend around an

obstacle (caused by obstructions). Scattering of waves occur when objects that are smaller

than the wavelength of the propagating wave are encountered, such as street signs and

foliage. Figure 3.1 shows a pictorial representation of diffraction, scattering and reflection.

All the properties shown in Figure 3.1 induce error into RSS measurements. Additionally,

error may also be induced from users or equipment.
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Figure 3.1: Example of reflection, diffraction and scattering that radio frequency waves

experience when traveling through the air from a transmitter to a receiver.

3.2 RSS measurements obtained from SunSPOT motes

The measurements used to generate the results found in this section were performed at

the Air Force Institute of Technology (AFIT), in an area that is relatively free of obstacles.

Most current research focuses not on the raw RSS measurements but on a mean estimate

of this data. Raw measurements coming to the receiver are not always constant and suffer

from outages. Any calculations that involve these measurements are further affected by a

wrong assumption about the raw data. In order to accurately model RSS measurements,

it is important to first understand where raw data originates. An experimental campaign

involving several different environments with RSS values will first be explored.

A transmitter was placed at the origin and sixteen receivers were placed around it at a

radius of 14.5 feet, about every 22.5◦, all in the same plane. Receivers were placed on poles

which are three feet from the ground. Figure 3.2 shows the placement of the receivers and

the transmitters.
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Figure 3.2: Receiver and transmitter placement for experiment which used the SunSPOT

motes.

3.2.1 Initial data analysis of SunSPOT experiments.

Two sets of measurements were performed for this configuration, one right after

another with the same exact setup and experimental conditions. Therefore, since the motes

have omni-directional antennas, it is reasonable to assume that these measurements should

come from similar distributions. Further, since the receivers are placed equidistant from the

transmitter in a circular shape, it is reasonable to assume that they will all give similar RSS

readings. The first step in any data analysis is to look at a graphical representation of the

data. Figure 3.3 shows the distribution of all RSS measurements. Upon first inspection,

the data does not appear to have the same shape. Table 3.1 gives the sample size, mean,

median, standard deviation and number of NaNs reported for each experimental setup.

During the experiment it was noted that some receivers reported outages, where no RSS
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Table 3.1: Descriptive statistics for each experimental setup involving SunSPOT motes.

Experiment Sample Size µ Median σ NaNs

A 10,832 -21 -20 5.6 5,221

B 10,816 -22 -21 7.1 5,330

measurement was reported. This is of particular interest and will be discussed later in this

section. In this experiment, the number of NaN readings, which corresponds to an outage,

are reported so that the reader may get a sense of the actual number of measurements that

are used to calculate the mean, median and standard deviation.

−50 −40 −30 −20 −10 0
0

200

400

600

800

1000

1200

1400

1600
A

−40 −30 −20 −10 0
0

200

400

600

800

1000

1200
B

Figure 3.3: Distribution of RSS measurements obtained for circle geometry. Plot A is due

to experiment one. Plot B is due to experiment two.

While the means appear to be similar, a statistical test is still warranted. Additionally,

it will be beneficial to look at a time series plot for each receiver. This will help to identify

outages in the data as well as to get a visual representation of the data. Due to the large

number of graphs that were produced, only those with interesting patterns are shown in the

text.
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Figure 3.4: Raw RSS measurements coming from SunSPOTs for receiver in position five.
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Figure 3.5: Raw RSS measurements coming from SunSPOTs for receiver in position six.

Figures 3.4 - 3.6 are found in a similar region on the circle of receivers, yet each

produces markedly different time series plots. Since this was a controlled experiment, it is

not expected to see such extreme drops as in Experiment A in Figures 3.4-3.6. Each of these

receiver positions also reported generally uniform RSS values for Experiment B. It is hard
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Figure 3.6: Raw RSS measurements coming from SunSPOTs for receiver in position seven.

to say for certain if there is a difference in this data. Further analysis will be needed and is

discussed in the next section. Table 3.2 gives summary statistics for each receiver for both

Experiment A and Experiment B. Receiver position, median, mean, standard deviation,

and percentage of NaNs are shown and measurements were taken over a 676 second time

interval. A measurement was reported once per second unless an outage occurred, in which

case NaN was reported.

Interestingly, the receivers with the smallest amounts of outages, five, six and seven,

show the most extreme differences between the two experiments, as shown in Figures 3.4-

3.6. Further analysis will help show if significant differences exist between the two data

sets.

3.2.2 T-test for consistency of SunSPOT data.

A T-test is used to look for differences in the mean RSS values for the two experiments

performed on the SunSPOTs. Refer to [22] for a general description of T-tests. An

important step prior to performing the T-test is to establish the significance level (α) and
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Table 3.2: Descriptive statistics for all raw RSS measurements for two experiments

involving SunSPOT motes.

Rx Median1 µ1 σ1 NaNs1 Median2 µ2 σ2 NaNs2

1 -21 -21 0.36 47 % -21 -21 0.18 46 %

2 -33 -33 1.4 78 % -33 -33 1.3 84 %

3 -29 -29 4.9 59 % -31 -32 2.0 32 %

4 -23 -24 1.9 45 % -31 -31 0.91 38 %

5 -17 -20 3.9 8 % -25 -25 0.73 0 %

6 -16 -18 5.4 0 % -14 -14 1.4 30 %

7 -15 -20 7.4 5 % -14 -14 0.69 10 %

8 -16 -16 0.61 50 % -15 -15 0.57 46 %

9 -34 -34 0.85 87 % -33 -33 0.81 57 %

10 -19 -19 0.61 69 % -19 -19 0.60 66 %

11 -19 -19 0.55 50 % -19 -19 0.43 46 %

12 -19 -19 0.72 50 % -19 -19 0.66 74 %

13 -17 -17 0.52 81 % -16 -16 0.58 64 %

14 -23 -23 0.40 49 % -23 -23 0.70 80 %

15 -18 -18 0.46 49 % -17 -17 0.16 76 %

16 -28 -28 0.89 45 % -29 -29 0.70 40 %

calculate the degrees of freedom. The criterion used for rejecting the null hypothesis, α, is

defined as the probability of a Type I error or “false positive”. A Type I error would occur

if it is concluded that the mean scores differ when they actually do not.

α = P(Type I error) = P(Re ject H0|H0 is true) (3.1)
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Here, P denotes the probability of a Type I error and d. f . = n1 + n2 − 2 is the degrees of

freedom. The choice of a level of significance is not based on any mathematical, statistical

or substantive theory. It is a choice which is purely arbitrary for our research since a cost

cannot be attached to either a Type I or Type II error [23]. Thus, the significance level is

set to α = 0.05. The probability of a Type II error, β, is not generally used in analysis.

However, the reader may refer to [24] for further explanation. A Type II error occurs if it

is concluded that the mean scores do not differ when they actually do differ. The actual

amount of variability in the sampling distribution of T depends on the sample size. This

dependence is expressed by degrees of freedom (d. f ). For each parameter being estimated

a d. f . is lost. Thus, when estimating two means, two degrees of freedom are lost.

Having established the initial parameters, the next step is to calculate the test statistic,

T , and p-value. Decisions based on T-test results may be made by using either the test

statistic (T) or the p-value. The T-statistic is the ratio of how much the data mean scores

differ from each other by their total standard error. This is compared to a critical value, T0,

and a decision on whether to reject the null hypothesis is made if the T-statistic falls outside

of the rejection region. T0 may be found by looking at a standard T-table available in many

statistics texts. The p-value or observed significance level is the probability of observing a

value of the test statistic that is at least as extreme as the test statistic that was calculated

from this data, assuming the null hypothesis is true [24]. When the null hypothesis is

rejected, the result is said to be statistically significant. The T-test statistic and p-value are

calculated using Equations (3.2) and (3.3) respectively.

T =
x̄1 − x̄2√

s2
1

n1
+

s2
2

n2

(3.2)

p − value = P(|T | > T0), (3.3)

where x̄i is the mean score of group i, (i ε {1, 2}), s2
i is the variance of data from group i,

and ni is the sample size of group i, with n1 = n2 = 676. With 674 degrees of freedom,
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α = 0.05 and T0 = 1.96. The rejection region is, T < −1.96 or T > 1.96. For any value that

falls outside of this region, reject the null hypothesis and conclude that there is a difference

in the mean scores for the two groups.

Table 3.3 gives the corresponding receiver, T-statistics and p-values for the RSS values

from the two experiments, respectively. The alternative hypotheses for all receivers would

be µ1 , µ2. Here a two-sided hypothesis is used because the author is interested in any

difference in the two groups.

As shown from the p-values, all null hypotheses except for receiver two may be

rejected at an α = 0.05 level. It can be concluded that there is a signficiant difference

in the distributions of the RSS measurements taken from receivers 1 and 3-16. For receiver

two, there is insufficient evidence to conclude that the two RSS measurements are from

different distributions. This is surprising since it is expected that RSS measurements would

be relatively similar for each set of measurements. This may be due to the large number

of NaNs that were reported by the receivers. Focusing on the receivers at positions 5, 6

and 7, their T-statistic values can be interpreted. For receivers at position five, the positive

nature of the T-statistic means that the mean RSS value for experiment A is larger than

that of experiment B. At receiver positions six and seven, the negative nature of the T-

statistic shows that the mean RSS measurements for experiment A are larger than that of

experiment B. These results are puzzling and future analysis could involve looking into

the nature and effects of missing measurements in these types of experiments. Numerous

subsequent experiments produced similar results as seen here even when performed by a

variety of different people, at a variety of different lengths and in a variety of environments

in an attempt to produce usable data. Therefore, new motes (Telos-B) were obtained for

use in order to continue conducting experiments.

This section showed the importance of testing equipment ahead of time when possible.

If complete trust is put into the hardware without questioning consistency, then experiments
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may produce erroneous results or lead to additional unnecessary testing. Experiments

should be taken more than once if possible without varying conditions. Then those

experiments should be compared to look for consistency in the measurements.

Table 3.3: T-test results for H0 : µA = µB versus H1 : µA , µB, i.e. that the two experiments

using SunSPOT motes have the same means or different means.

Receiver positions T-stat p-value

1 -8.44 < 0.0001

2 0.21 0.83

3 12.77 < 0.0001

4 62.65 < 0.0001

5 33.40 < 0.0001

6 -17.59 < 0.0001

7 -21.65 < 0.0001

8 -15.70 < 0.0001

9 -13.88 < 0.0001

10 5.31 < 0.0001

11 -4.97 < 0.0001

12 -7.04 < 0.0001

13 -17.72 < 0.0001

14 -8.09 < 0.0001

15 -27.18 < 0.0001

16 21.89 < 0.0001
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Figure 3.7: Telos-B mote similar to the one used in the experiments.

3.3 RSS measurements obtained from Telos-B motes

Telos-B motes are low power, open source, low cost motes developed by MEMSIC,

Figure 3.7. They were developed to be a quick alternative for academic research and due to

their relatively light weight, they are also used for inventory monitoring. A large (at least

thirty-two by thirty-two feet) obstacle-free environment was needed in order to perform

measurements, Kenney Hall was chosen as it provided the best environment. Telos-B

mote experiments were performed in Kenney Hall, in building 642 at Wright-Patterson

Air Force Base (WPAFB). Figure 3.8 shows the space where the Telos-B measurements

were performed. The motes were placed on a stand approximately one meter above the

floor to minimize ground interference and cardboard and plastic were used to construct the

stands to minimize multi-path interference. Additionally, all motes were placed facing in

approximately the same direction in order to minimize the effects of antenna orientation.
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Figure 3.8: Location setup for motes used in experiments involving Telos-B and

WARP/Wi-Pry hardware that were performed to obtain RSS measurements in Kenney Hall

Auditorium at AFIT.

Twenty-five receivers in a 5×5 grid were placed on the stands throughout Kenney with

eight feet between each mote. This left one mote to serve as a base station connected to

the laptop, and six motes that could be moved to obtain the most measurements in the least

amount of time. The experiment was started with number two, since the first experiment

performed was used as a calibration and to verify motes were reporting properly.

Figure 3.9 shows the method used for obtaining measurements. The solid black boxes

represent the twenty-five positions of the stationary receivers. The outlined boxes represent

the position of six additional transmitter motes (labeled 26 − 31). These motes serve as

transmitters for analysis purposes. All six transmitters were moved six times for 36 total
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possible transmitter locations1. The data from the Telos-B is output as a 31 × 31 matrix

which gives link RSS values from all motes to all other motes.

There is an eight foot spacing between motes except where mote placement falls in

the center of a quadrant of motes, in which case there will be a four foot spacing. This

happens between receiver motes 1 − 25 and transmitter motes 26 − 31. The outlined black

box represents the initial starting position of the six receivers labeled 25 − 31 and the gray

outlined box represents the other five positions of receiver motes 25 − 31 in experiment

3 − 7. The first number in the box represent the experiment number (2-7) and the second

number represents the receiver number. The red box around receiver thirteen indicates that

this is the transmitter and the results from the T-test are based on this assumption. For

example, 4 − 30 is the location of mote thirty for experiment four.

3.3.1 T-Test for consistency of receiver RSS measurements across all experiments.

A data analysis similar to that performed on the SunSPOT data was performed for the

Telos-B motes. Before the Telos-B measurements can be used to evaluate the proposed

model and geolocation algorithms found in Chapters 4 and 5, some justification should

be done as to the legitimacy of the measurements that were obtained. Past research with

SunSPOT motes proved to be only 10% consistent, Figure 3.10, and most measurements

obtained with these devices were unusable for geolocation purposes. It should be noted

that since these measurements were performed in a metal rich environment, some error

will exist in our results, but it is believed that the analysis in this section is justified. The

error introduced into the RSS measurements is found in the range estimation part of Figure

1.1, specifically the effects from multi-path and shadowing will introduce some of the error

seen in these RSS measurements.

1Note that even though motes 26 − 31 are serving as transmitter locations, all motes can transmit and
receive.
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Figure 3.9: Graph showing locations of receivers for the measurements performed using

Telos-B. Solid black boxes represent the location of the 25 stationary receivers, the outline

black box represents the first six positions for receivers 26 − 31 and the grey dashed boxes

are the other locations to where the six receivers were moved.

Table 3.4 on page 38 is a summary of the results of several T-tests that were run

to compare the measurements obtained by the Telos-B in the six different measurement

campaigns. The T-tests were used to check for consistency among the different

experimental campaigns. Mote thirteen, which is located in the center of the 5 × 5

Telos-B grid, acts as the transmitter. Multiple T-tests were performed on the same data,

therefore a Bonferroni correction to α is needed. Set α = 0.01. In order to account for

multiple tests, divide α by the number of T-tests being performed, fifteen, which gives an

α = 0.01/15 = 0.00067.

Our null and alternative hypothesis are, H0 : RSS measurements are consistent across

any two experiments vs. HA : Not So. Reject the null hypothesis when p < 0.00067.
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That would lead to a conclusion to reject the null hypothesis and conclude that there is a

difference in the RSS measurements obtained from different experiments. A failure to reject

the null hypothesis results in the conclusion that there is insufficient evidence to conclude

that there is a difference in the mean measurements between experiments. Essentially a

failure to reject the null (p ≥ 0.00067) is desired, since it is desirable to have measurements

that are consistent between experiments. All results should be interpreted in a similar

fashion, column two in Table 3.4 is the percentage of consistent measurements across all

experiments. For example, for mote 19, Telos-B measurements were consistent across all

experiments 80% of the time.

Three motes had RSS measurements that were 100% consistent: nine, fourteen and

twelve. This means that for mote nine, fourteen and twelve all of the p-values were

above 0.00067 and there was a failure to reject of the hypotheses for these tests. It is

encouraging that motes (12 and 14) on either side of the transmitter provide consistent

RSS measurements 100%. Similar experiments performed using SunSPOT motes (in a

less noisy environment than Kenney Hall) gave results that were inconsistent for similar

receiver to transmitter distances. Figure 3.10 shows a pie chart comparing the percentage

of consistent and inconsistent measurements for experiments performed using Telos-B

motes (A) and SunSPOT (B) motes. With the SunSPOT motes there are less than 10%

of consistent measurements, while over 50% of experiments performed with the Telos-B

motes gave consistent measurements2.

3.4 RSS measurements obtained from WARP board and Wi-Pry

This section focuses on measurements that were obtained from multiple transmitters.

In order to easily obtain measurements from multiple transmitters, two WARP boards were

used as transmitters and a Wi-Pry connected to an iPod was used as the receiver. Over

2Another benefit to the Telos-B is their ability to reset. If a bad packet is sent the Telos-B is able to resend
the packet where as the SunSPOTs had to be manually restarted or simply reported NaN.
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Figure 3.10: Percentage of consistent (blue solid) and inconsistent (yellow dash)

measurements for Telos-B (A) and SUNSPOT (B) experiments.

a period of about two minutes, measurements were taken at each of the first twenty-five

receivers shown in Figure 3.9. All testing conditions were the same as described in Section

3.4. Figure 3.12 shows one of the WARP boards that was used in the experiment.

Figure 3.11: Screen shot of the Wi-Pry device used to measure RSS.
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A Wi-Pry, Figure 3.11, is a low-cost power spectrum analyzer that operates in the

2.4 GHz band. While not specifically designed to demodulate the signal, it is possible to

record the RSS coming from a transmitted signal. Since there are no other measurements

to compare these measurements to, no analysis was done on the experiments, but the data

was used in the validation process for multiple transmitters found in Chapters 4 and 5.

Figure 3.12: WARP board used for multiple transmitter experiments.

3.5 Conclusions about RSS experiments

This chapter examined performance of equipment that was used for validation

purposes. It has been shown through statistical tests that the Telos-B motes perform

more consistently even in an environment rich with multi-path. Due to this fact, their

lower cost, ease of implementability and quickness in obtaining measurements, Telos-B

measurements were chosen for validation of the algorithms proposed in Chapters 4 and 5.

SunSPOTs were not used for validation of the algorithms as it was difficult to evaluate the

RSS measurements for the experiments.
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Table 3.4: Summary of T-tests comparing different experiments using Telos-B motes.

Receiver % of consistent measurements

1 33%

2 47%

3 60%

4 53%

5 47%

6 87%

7 47%

8 27%

9 100%

10 40%

11 27%

12 100%

14 100%

15 60%

16 33%

17 27%

18 67%

19 80%

20 40%

21 53%

22 53%

23 53%

24 73%

25 73%
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IV. Development of RSS Localization Methods

Several RSS models do not yield closed-form solutions for their estimated location,

thus resulting in techniques that rely on approximations and iterations. Some authors

assume that an RSS model fits a certain distribution. Along those lines many authors

assume that since the sample sizes are generally so large, the distribution of RSS

measurements is approximately Gaussian, which is a very liberal use of the Central Limit

Theorem (CLT). The very popular Maximum Likelihood Equation (MLE) geolocation

algorithm often produces multiple maximum values which results in multiple estimates of

the transmitter position.

Based on (2.3), there are several algorithms available for location estimation [25].

Several of these procedures are derived in this chapter in addition to new algorithms derived

during the course of this dissertation.

4.1 Derivation of a Maximum Likelihood Estimate

This algorithm, which is based on statistical theory, is straight forward to describe, but

is not always easy to implement. It may be applied to any parametric family of distributions

whose PDF is known. The MLE maximizes the probability of the transmitter location by

minimizing the variance of estimated error. It performs well when the number of receivers

is large, but may have more than one local maximum and often requires several iterations to

converge. It also is strongly dependent on data coming from the chosen parametric family

and when an incorrect family is chosen, it may not perform well. 3

The MLE algorithm estimates the location of the transmitter using a log likelihood of

the PDF, which describes the relationship between unknown variables and known variables.

Let x denote a sample scalar value, with the Gaussian PDF, f then f (p) is parameterized

by its mean and variance.

3Maximizing the log-likelihood function is equivalent to minimizing the negative log-likelihood function.
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f (p, r;σ2) =
1

√
2πσ2

exp
(
−||p − r||2

2σ2

)
(4.1)

where p is the observed RSS values, r is the mean RSS value for sensor s and σ2 is the

amount of variance in the noise. Several different methods exist for solving (4.1). Taking

the likelihood of (4.1) gives,

L =

S∏
s=1

1
√

2πσ2
exp

(
−||ps − r||2

2σ2

)
. (4.2)

Since log is an increasing function it is much simpler to minimize the log of (4.2) to get

L = log
(∏S

s=1
1

√
2πσ2

exp
(
−||ps−r||2

2σ2

))
= 1

(
√

2πσ2)S
exp

(∑S
s=1 −||ps−r||2

2σ2

)
= ln(1) − S ln

√
2πσ2 −

(∑S
s=1 −||ps−r||2

2σ2

)
,

(4.3)

where ps is the received signal strength, r is RSS data and σ2 is the noise in the signal.

Ignoring constants that do not affect the minimization gives,

ẑ = arg min
z0

(
S∑

s=1

||ps − r||2) (4.4)

where ps is the observed power, ẑ is related to ps through (2.3) since there is an inversely

proportional relationship between distance and RSS and z0 is a component in the distance

calculation for ds and r is the noise free RSS data. Equation (4.4) is the argument that

minimizes the sum of squared error.

When the estimates of the MLE are extremely complicated nonlinear functions or

involve a large number of parameters, a closed-form solution may not be readily available.

Thus, iterative procedures must be employed, some of which are described in the next

section.

4.1.1 Transmitter localization using MLE-GRID.

Since all receiver locations are known, a search space which contains a set of the

known locations may be formed for the algorithm to search along. This is a fairly simple
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process but may be computationally intensive to use for large, dense grid spaces. The

algorithm computes the log likelihood for each search point, then chooses the search

point that yields the maximum value. A grid-based MLE algorithm finds the minimum

or maximum value of the likelihood function by searching a grid containing all possible

locations for the sensor. For large search areas this algorithm takes an exorbitant amount

of time and must search in both the x and y directions.

4.1.2 Transmitter localization using MLE-EM.

The Expectation Maximization (EM) algorithm alternates between performing an

expectation step (E), which computes the expectation of the log-likelihood evaluated using

the current estimate of the parameters and the maximization (M) step which computes

parameters maximizing the expected log-likelihood found in the E step. The procedure

repeats this process until the difference between estimates is sufficiently small or a set

number of iterations have been performed. The solution generally depends on good

initialization values which must be obtained a priori and may take several iterations before

convergence to a single local maxima occurs.

4.1.3 Transmitter Localization using MLE-GD.

The gradient descent algorithm is based on the observation that the likelihood function

decreases fastest when it goes from its initial estimate in the direction of the negative

gradient. A gradient descent method is a first order optimization algorithm in which to find

the argument that maximizes the log-likelihood of a function. Define a step size, γ > 0, an

initial starting position [x0, y0], then the new positions x̂0 and ŷ0 in the descent are given by:

x̂0 = x0 − γ
∂L
∂x x0

ŷ0 = y0 − γ
∂L
∂y y0

(4.5)

where ∂L
∂x ,∂L

∂y are the partial derivatives of the likelihood function with respect to x and y.
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Algorithm 1 :MLE-EM
1: procedure Q-EM(a, b) . a is lower bound b is upper bound

2: Initial random value z(0)
m ∼ UNIF(a, b)

3: Find the Expected value of the Log-likelihood using z(0)
m

4: p(t) = E(p|z(0)
m )

5: Maximize Log-likelihood to find new estimate

6: z(t)
m = arg max

(x0,y0)
(log( f (p(t)|z(0)

m )))

7: while z(t)
m − z(t−1)

m ≥ τ do . τ is the tolerance level for stopping the algorithm

8: Step 2

9: Step 3

10: Step 4

11: end while

12: return ẑm . The final location estimate is ẑ

13: end procedure

Algorithm 2 :MLE-GD
1: procedure GD(a, b) . a is lower bound b is upper bound

2: xold = 0

3: Initial random value xnew ∼ UNIF(a, b)

4: Define γ . Step size value.

5: Define τ . Tolerance level.

6: while |xnew − xold| > τ: do

7: xold = xnew

8: xnew = xold − γ ∗ fprime(xold)

9: end while

10: return ẑm . The final location estimate is ẑm

11: end procedure
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4.2 Transmitter localization using MLE for a correlated noise fading RSS

The development of an MLE which considers correlated noise fading differs slightly

than that for independent fading by using a covariance matrix to account for the correlation

between the noise terms.

4.2.1 Literature review of algorithms using correlated fading RSS.

Flam et al. [11] perform a geometrically complex algorithm which requires 100

different initial positions, and thus would be much more time consuming than the algorithm

that this research proposes. They showed that better accuracy is achieved with a Weighted

Least Squares (WLS) estimation method than with Weighted Average (WA) estimation.

Their explanation of MLE does not use a log-likelihood but rather they find the argument

that maximizes the PDF. In order to locate the source, they use an approach which relies

on the assumption of a posterior distribution. As a result, they rely on a localization

algorithm that floods the search space with possible transmitter locations. They showed

that they could achieve better accuracy with a WLS estimation method than with Weighted

Average (WA) estimation.

Al-Dhalaan and Lambadaris [12] relax the PDF of the mean RSS in order to directly

find the estimated location. A special software solver is used to find the location, due to the

mathematical complexity of the problem.

4.2.2 Development of MLE for correlated noise fading RSS.

This research introduces the use of correlated noise fading measurements, w ∼

N(0,Σ), in the derivation of the RSS model. If the covariance matrix, Σ is defined as

σ2 > 0 along the diagonal and ρσ2 on the off-diagonal matrix, then Σ is expressed as a

measure of the amount of correlation in the noise term,

Σ = σ2
(
ρ1S 1S

T + (1 − ρ)IS

)
. (4.6)
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Note that all ρ are the same for simplicity, but could be varied to fit other models. Consider

the normal PDF.

f (p; r,Σ) =
1

√
2π|Σ|1/2

exp
[
−(p − r)TΣ−1(p − r)

]
(4.7)

where p is the observed RSS values, r is the mean RSS value defined in (2.1) and Σ is the

covariance matrix of the noise. Expressed in matrix terms as,

L =

S∏
s=1

1
√

2π|Σ|1/2
exp

[
−(p − r)TΣ−1(p − r)

]
. (4.8)

The next step involves taking the likelihood of the (4.7). It is much simpler to maximize

the log of (4.8):

L = ln
(

1
(
√

2π(|Σ|1/2))S exp
[
−(p − r)TΣ−1(p − r)

])
= −S ln

(√
2π|Σ|−1/2

)
−

(
(p − r)TΣ−1(p − r)

)
.

(4.9)

Ignoring constants that do not affect the minimization gives

ẑ = arg min
z0

(
(p − r)TΣ−1(p − r)

)
, (4.10)

where Σ−1 is the inverse of the correlated noise fading. The equation in (4.10) is true for

any model of Σ. For Σ = σ2I which implies that Σ−1 = 1
σ2I it can be simplified as,

ẑ = arg min
z0

1
σ2

[
pT p − pT r − rT p + rT r

]
= arg min

z0

(pT p−2pr+rT r)
σ2

= arg min
z0

(p−r)2

σ2

= arg min
z0

||p − r||2

(4.11)

where || · ||2 is the two norm. This algorithm was validated using measurements obtained

from the Telos-B measurement campaign.
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Figure 4.1: RMSE versus correlation for the estimated transmitter location assuming a

correlated fading model and using measurements obtained from experiment six in Chapter

3. The squares correspond to σ2 = 16, the stars correspond to σ2 = 64 and the triangles

correspond to σ2 = 100.

4.2.3 Experimental validation of correlated fading model and algorithm.

The six experimental RSS measurements were plotted against the distances in dB and

a line was fit in order to find estimates for P0 and η. Therefore, P0 = 43 dBm and η = 1

were chosen for the validation purposes.

Figure 4.1 shows the RMSE for the estimated transmitter location assuming a

correlated fading model and using data obtained from the Telos-Bs. There are three

different variances shown and it would appear that a variance of σ2 = 16 gives the most

accurate estimate of the transmitter location. For a ρ = 0.8 the experimental error of

the transmitter location is 4.669 feet, when ρ = 0.5 the experimental error is 12.01 feet.

Conclude that when measurements are highly correlated, (ρ = 0.8) the location of the

transmitter which is actually located at (16, 16) can be estimated to within 5 feet.
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4.3 Development of MLE for multiple antenna RSS

In this section all RSS measurements are assumed to be from a Gaussian Mixture

Model (GMM) distribution. Three different MLE algorithms were explored: (1) the MLE

derived for the widely accepted standard path-loss log-distance model (herein known as

MLE-STND) (2.3), (2) the MLE derived for a GMM (MLE-GMM), and (3) the standard

MLE derived using the gain between the antennas averaged out (MLE-STND-A). STND-A

explores whether a standard MLE algorithm could be used if the average gain from the two

antennas was subtracted out in the algorithm. The MLE of the location is the argument

that minimizes the log-likelihood of (4.7). The likelihood and log-likelihood functions are

found below. Since the transmitter has multiple antennas, the signal may come from either

antenna with equal probability. Thus, RSS measurements may be modeled by a GMM of

the measurements coming from all N antennas. The probability of RSS, r, in the mixture

of N Gaussian components is given by,

f (p; r) =

N∑
n=1

$n f (p; rn) (4.12)

=

N∑
n=1

$n
√

2πσn

exp
(
−||p − rn||

2

2σ2
sn

)
(4.13)

where $n is the weight associated with the nth antenna. Given a RSS measurement, the

probability of the signal coming from the mixture of S Gaussian sensors is modeled as

(2.13). The first step in the algorithm is to find the likelihood of (4.12)

L =

S∏
s=1

N∑
n=1

$n
√

2πσsn

exp
(
−||ps − rsn||

2

2σ2
sn

)
, (4.14)

Again, it is more convenient to maximize the log likelihood than the likelihood. Therefore,

taking the natural log of (4.14) gives,

L = ln

 S∏
s=1

N∑
n=1

$n
√

2πσsn

exp
(
−||ps − rsn||

2

2σ2
sn

) (4.15)

=

S∑
s=1

ln

 N∑
n=1

$n
√

2πσsn

exp
(
−||ps − rsn||

2

2σ2
sn

) . (4.16)
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This equation cannot be simplified any further by hand, since no closed-form solution

exists. The maximum likelihood function (MLE-GMM) is the function that maximizes

the log likelihood (4.14), given by

ẑ = arg max
(x0,y0)

S∑
s=1

ln

 N∑
n=1

$n
√

2πσsn

exp
[
−

(ps − rsn)2

2σ2
sn

] (4.17)

where $n is the weight of the nth antenna.

4.3.1 Simulations for multiple antenna RSS model and algorithm.

MATLAB was used to simulate an environment with sixty-four receivers in a uniform

square pattern. The first scenario investigated used concentric boxes spaced around a

transmitter located at the origin. All receivers and boxes are assumed to be spaced equally.

Figure 4.2: Receiver placement geometry used to perform simulations, asterisks represent

the true transmitter location and squares represent the receiver positions. Positions A, B, C,

D will be used in the remainder of this section to denote the different transmitter positions

for the corresponding experiments. Figure (a) shows random receiver placement and (b) is

square receiver placement.
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Figure 4.2 shows the placement of the sixty-four receivers that were used in the

simulations in this section, with the transmitter located in the center at (0, 0). To minimize

results biased from small sample size, one thousand trials were run for each set of boxes.

Two different realistic scenarios were examined, (i) square placement of the receivers and

(ii) random placement of receivers. Both cases were simulated using 64 receivers.
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Figure 4.3: RMSE versus σ for estimated transmitter location when true receiver is

located as in Figure 4.2 for random receiver placement after 5000 trials. Figure (A) is

the transmitter located at (0, 0), (B) is transmitter at (10, 10), (C) is transmitter at (20, 20)

and (D) is the transmitter located at (30, 30).

Figure 4.3 shows the RMSE values for our three scenarios described above for a

random placement of sensors. For the case where the transmitter is located at (B), the

two standard algorithms perform similarly. This may be due to the fact that the transmitter

located in (B) is actually placed on top of three receivers. For the other three graphs (A, C,

D), as the amount of fading increases, RMSE of MLE-STND remains relatively constant

with a few peaks. This is not altogether unexpected since MLE-STND and MLE-STND-A

are not appropriate estimation techniques for RSS-GMM data. It is not appropriate to use a
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MLE-STND or MLE-STND-A algorithm for estimating location when RSS measurements

are from a GMM distribution. This would result in a much larger error in the location

accuracy than if the MLE-GMM algorithm was used.
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Figure 4.4: RMSE vs. σ for estimated transmitter location when true receiver is located as

in Figure 4.2 for square receiver placement after 5000 trials. Figure (A) is the transmitter

located at (0, 0), (B) is transmitter at (10, 10), (C) is transmitter at (20, 20) and (D) is the

transmitter located at (30, 30).

Figure 4.4 shows RMSE values for a square placement of sensors. If the RSS coming

from the antennas is actually from a GMM distribution but is located using a MLE-STD or

STD-A, the location error would be greater than if the data had been modeled using a MLE-

GMM. The MLE-GMM algorithm performs better than either of the standard algorithms.

That is to be expected since technically both standard algorithms are a “wrong” fit for the

RSS-GMM data. To reiterate, when the MLE-STND or MLE-STND-A algorithms are used

and the data is RSS-GMM, even when fading is small (σ = 1), the RMSE is still very large

(as much as eight meters).
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4.3.2 Performance analysis of proposed GMM model and algorithm.

It is important to examine the performance of the MLE under different conditions.

This is done by looking at the RMSE versus the numbers of receivers for varying path-loss

values. It is expected that as the number of receivers increases the RMSE should decrease.

Figure 4.5: RMSE versus number of receivers for varying values of η.

As shown in Figure 4.5, when the GMM is considered over the single Gaussian as a

way to model the RSS and locate the transmitter, it always performs better for the square

receiver placement. It appears that as the environment becomes more cluttered, which

increases path-loss, the location error actually drops. As is expected for both of these

scenarios, at all path-loss values, RMSE decreases as the number of receivers increases.

This is not the case for the random placement scheme, as mentioned before.

When antenna diversity is taken into account, it is generally a good idea to use a RSS-

GMM model and a MLE-GMM algorithm. Additional research could involve investigating

why the random placement scheme does not perform as well as the other scheme. Also, a
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cost function may need to be developed to increases the accuracy of the transmitter location

estimate. This might suggest that it is more appropriate to use the RSS-GMM in situations

when large path-loss values are expected. Experimental validation of the RSS-GMM model

for dual antennas could also be investigated.

4.4 MLE derivation for RSS-COOP and RSS-NC models and simulations

This author derived the MLE for the non-cooperative and cooperative RSS models

discussed in Chapter 2. This section derives a novel Maximum Likelihood Estimate

Cooperative (MLE-COOP) and Maximum Likelihood Estimation Non-Cooperative (MLE-

NC) algorithm for use with these models and provides simulations for locating transmitters

using these algorithms. Knowing that pcoop follows a Normal distribution allows expression

of the PDF as,

f (pcoop; r) =
1

√
2πσ2

exp
[
−
||pcoop − r)||2

2σ2

]
. (4.18)

Following the steps described in this chapter a MLE was derived from (4.18),

L = arg min
z0

(
(pcoop − r)T (pcoop − r)

)
. (4.19)

Similarly the log-likelihood of the non-cooperative model may be found via,

L = arg min
z0

(
(pnc − r)T (pnc − r)

)
. (4.20)

Expressions in (4.19) and (4.20) could be solved using a grid search, EM or gradient

descent. Here a grid search method was used and r depends on z0 via (2.12) and (2.3).

4.4.1 Simulations for cooperative and non-cooperative RSS models.

Simulations, Figures 4.6 and 4.7 on page 52 and page 53 respectively, showed that

Root Mean Squared Error (RMSE) was lower for non-cooperative. By assuming that

sensors are cooperative when they are actually non-cooperative, a conclusion is made that

the transmitters are closer than they actually are. This provides a false sense of accuracy

of the transmitter locations and therefore it is important to consider whether transmitters
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Figure 4.6: RMSE versus number of boxes for non-cooperative, cooperative, standard

log-normal models (correct fits) and the non-cooperative with a MLE-STD, standard with

MLE-NC (wrong fits).

are cooperative or non-cooperative when deciding which algorithm to use to locate them.

When signals are cooperative it is important to consider the noise floor that is present in

the estimates and truncate the signals accordingly. Doing this for cooperative signals will

lead to more accurate estimates of the transmitter location (MLE-COOP) than by including

noise floor measurements in the calculation of the transmitter location (MLE-STD).

4.5 MLE derivation of multiple transmitter RSS model

The field of multiple transmitter localization is largely dominated by Nelson et al.

[26], [21], [27], [28]. Much of their research involves a quasi-EM algorithm and forms the

basis for this author’s results found in Chapters 4-5. To perform quasi-EM localization the

following steps should be performed:

Step 1 Generate random initial starting positions for each of the M transmitters from a

uniform distribution, ẑm ∼ UNIF(−100, 100).
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Figure 4.7: RMSE versus number of circles for non-cooperative, cooperative, standard

log-normal models (correct fits) and the non-cooperative with a MLE-STD, standard with

MLE-NC (wrong fits).

Step 2 Compute the expected RSS power at the sth receiver from the mth transmitter.

Ems =

(
P0dη0

ds(ẑm)η

)
(4.21)

where P0 is the transmit power, d0 is the close-in reference distance generally taken

to be one, ds(ẑm) is the distance from the estimated location of the mth transmitter to

the sth receiver.

Step 3 Normalize the values found in step two so that they give a total power at each

receiver that is equal to the observed power at that receiver, converted to dB,

Ẽms =
PsEms∑M
K=1 EKs

(4.22)

ẽms = 10 log10(Ẽms). (4.23)

Step 4 For each transmitter M, solve:

ẑm = arg min
z̃m

S∑
s=1

(
ẽsm − 10 log10

(
P0dη0

ds(z̃m)η

))2

(4.24)
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where ẽsm is the normalized power at each receiver, ds(z̃m) is the distance from each

receiver to the estimate of transmitter location, P0 is the constant transmit power,

d0 is the close in reference distance and η is the path-loss exponent. The algorithm

repeats steps two through four using ẑm for a set number of iterations that is sufficient

for convergence. The number of initializations corresponds to the number of times

step one is run and a cost function is necessary to find the sum-squared difference

in received and estimated log power. A cost function is necessary because the MLE

may not always have one global minimum value.

Step 5 Looking at the final estimates obtained at each initialization, a cost function was

developed to decide on the best estimate. The cost function is defined to be

C =

S∑
s=1

log10(Rs) − log10

M∑
m=1

(
P0dη0

ds(ẑm)η

)2

(4.25)

where Rs is the power in linear terms, ds(ẑm) is the distance from the final estimate of

transmitter location for each random initialization and η is the path-loss exponent.

Equations (4.24)-(4.25) are repeated until the value of C is acceptable. This repetition

implements a quasi-EM algorithm.

4.5.1 Simulations for MLE and model of multiple transmitters.

The following parameters were assumed for this simulation: P0 = 20 dB, η = 2, d0 =

1 meter and σ2 = 16. Also assume that the location of receivers is known. Only the case

of 100 receivers with noise variance of sixteen is shown here, since, this is not a novel

algorithm and these results were mainly used for comparison with DRSS-M results.

Figure 4.8 shows the actual (xm, ym) and path that is taken by each initialization to

get to the estimated (x̂m, ŷm) using the MLE function for the case of 100 receivers and

two transmitters with a noise variance of sixteen for four random initializations. True

transmitter location is indicated by a x and final estimated transmitter position is contained

in the circle. The first initialization is represented by a dot, the second initialization
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Figure 4.8: Actual (xm, ym) and path that is taken by each initialization to get to the

estimated (x̂m, ŷm) using the MLE function. True transmitter location is indicated by a x

and final estimated transmitter position is contained in the circle. The first initialization is

represented by a dot, the second initialization is represented by a star, initialization three is

represented by a triangle and the fourth initialization is represented by a square.

is represented by a star, initialization three is represented by a triangle and the fourth

initialization is represented by a square. Each axis is in meters. Figure 4.8 shows that

all initializations appear to be converging to a reasonable estimate which suggests that the

algorithm is performing well.
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V. Development of DRSS Model and Algorithms

Geolocation using RSS is a popular technique because no additional hardware is

required and measurements are computationally inexpensive. However, this type of

localization is not without its drawbacks. One major drawback is the assumption of

constant transmit power. This assumption may be alleviated by using DRSS measurements.

While literature exists on DRSS measurements, most assume uncorrelated RSS (and DRSS

measurements) and suffer from computationally complex algorithms or oversimplification

of the system by linearizing measurements.

This chapter addresses these shortcomings by exploring the use of DRSS measure-

ments for geolocation under a spatially correlated shadowing model. To the author’s knowl-

edge, a correlated noise model for RSS measurements that results in correlated noise in the

DRSS measurements has been investigated before but not with the associated MLE. This

dissertation also proposes a novel gradient descent approach to compute the MLE, leading

to accurate geolocation under reduced computational complexity. This section discusses

previous models but does not provide the differences in our model and the established

models.

5.1 Literature review of current DRSS localization methods

This chapter begins with a review of existing literature on independent and correlated

DRSS measurements and their corresponding localization algorithms.

Assad et al. [14] utilize RFID technology for their real time experiment. Even though

this is not directly applicable to our research, they do incorporate a correlated log normal

shadowing term and then use positioning software to solve the model. Some of their

assumptions differ from the assumptions in this dissertation. They do not assume a constant
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variance, thus increasing the complexity of the problem. They assume an exceptionally

high correlation coefficient (ρ = 0.96).

Stationary Signal Strength Difference (SSSD) is explored extensively by Liu et al.

[29–31], its application is in cellular networks but due to the limited literature on DRSS it

is considered here. They use a SSS-D model which includes an auto-correlation function

to account for correlated fading and considers the antenna height. Intersection equations

are found and then a least squares procedure is used to locate the transmitter. Liu et al.

[29–31] linearize the power measurements, include an extra variable in antenna height, do

not assume a constant transmit power and express η as a function of antenna height. Their

localization technique is considerable more complex and they use a least squares procedure.

Wang et al. [32–35] use a noise model which does not account for correlation. They

generally use a least squares procedure to locate the transmitter.

Jackson et al. [32–35] investigate DRSS in depth. Much of their research assumes

RSS and DRSS measurements are independent and uncorrelated. A recent paper by

Jackson et al. proposes a correlated DRSS matrix where the correlated fading term is

the sum of two correlated noise terms but does not consider a correlation coefficient. A

least squares solution is found.

Lee and Buehrer [15] provide similar research into correlated RSS and DRSS

measurements and then use a least squares approach which utilizes redundant differences.

They do not make direct use of the MLE and therefore all of their proposed methods are

more computationally complex and require a greater number of operations. Lee et al. [15]

use a geometric interpretation to localize the sensor and consider redundant measurements

while this research considers only unique measurements. Their use of Least Squares

estimations also means that all of their equations must be linearized before estimation can

begin. Also the use of redundant measurements to improve RMSE may be time consuming.
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Mailaender et al. [36] use correlated RSS and DRSS measurements, however they

compute the theoretical Cramer Rao Lower Bound (CRLB) and do not specifically locate

the transmitter.

5.2 Derivation of a DRSS model

The model used in this chapter assumes that RSS measurements are correlated and

may be described by a correlated fading model. All vectors are column vectors unless

noted otherwise, and (·)T denotes transpose. In its simplest form (assuming independent

measurements), DRSS involves subtracting the S − 1 pairs of RSS measurements. For

simplicity, define a reference receiver s = 1 and subtract all s > 1 terms from that. Define

a matrix A to constrain the measurements so that there are S − 1 unique measurements. Let

p = [p, ..., pS ]T . Define matrix A and vector p such that Ap is the matrix that contains all

S − 1 combinations,

A = [1(S−1)×1,−I(S−1)×(S−1)] . (5.1)

Form S − 1 DRSS combinations, q, by multiplying (5.1) by (2.3)

q = Ap = 10η log10

(
d
d1

)
+ v = [q1, . . . , qS−1]T . (5.2)

Following the logic in (5.2) matrix A is used to construct the mean of the DRSS model, r̃,

r̃ = Ar = 10η log10

(
d
d1

)
= [r̃1, . . . , r̃S−1]T . (5.3)

Using (5.1) and (4.6), the covariance of r̃ is

AΣAT = (1 − ρ)σ2(IS−1 + 11T ) . (5.4)

By the property of linear combinations, since non-correlated RSS is p ∼ N(r, σ2I) then

q ∼ N(r̃,AΣAT ). Thus, the PDF of q may be shown as [37, 38]

f (q) =
exp

{
−1

2 (q − r̃)T (AΣAT )−1(q − r̃)
}

(2π)
S−1

2 |AΣAT |
1
2

· (5.5)

This is the PDF function used in the remainder of this chapter for all future calculations.
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5.3 MLE algorithm for DRSS measurements

The MLE for DRSS involves taking the Log-Likelihood of (5.5) to get,

L = −
(S − 1) ln(2π)

2
+

ln |AΣAT |

2
−

(q − r̃)T (AΣAT )−1(q − r̃)
2

. (5.6)

All constants may be ignored because they do not affect the final estimate as maximum

value is not dependent on the constants, thus (5.6) simplifies to,

L = −
1
2

(q − r̃)T (AΣAT )−1(q − r̃). (5.7)

When Σ has the structure in (4.6), using the Woodbury Matrix Identity [39] to find

(AΣAT )−1 that is,

(G + UHV)−1 = G−1 −G−1U(H−1 + VG−1U)−1VG−1. (5.8)

Rewriting (5.4) to fit the form of (5.8) gives,

(AΣAT )−1 = (1 − ρ)σ2(IS−1) − (1 − ρ)σ2(11T ) (5.9)

For brevity, define ζ = (1−ρ)σ2, where G = ζIS−1, H = ζ, U = 1, and V = 1T . Therefore,

(AΣAT )−1 = 1
ζ
IS−1 −

1
ζ
IS−11(1

ζ
+ 1T 1

ζ
IS−11)−11T 1

ζ
IS−1

= S
S ζ I − 11T

S ζ

= 1
Sσ2(1−ρ) (S I − 11T ) ,

(5.10)

where (AΣA)−1 is a symmetric matrix with S−1
S (σ2−σ2ρ) along the diagonal, and 1

S (σ2−σ2ρ) on

the off-diagonal.

arg min
z0

(q − r̃)T (AΣAT )−1(q − r̃) (5.11)

where q is the differential observed data, r̃ is the mean differential observed power and

AΣAT is the covariance of the differential noise. Since no closed-form solution is readily

available a grid search method and gradient descent method were used to determine the

minimization of (5.11). In order to validate this model data was used from experiment six

discussed in Chapter 3.
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5.3.1 Proposed MLE-GD algorithm using correlated DRSS.

To find the argument that minimizes (4.5), a first order optimization algorithm, known

as a gradient descent method, was used. Define a step size, γ and an initial starting position

[x0, y0], then the new positions x̂0 and ŷ0 in the descent are given in (4.5).

To speed up the implementation of the algorithm, (5.11) is expanded and like terms are

combined. This closed-form model allows us to numerically evaluate the gradient descent

for any q, r̃ to approximate the argument minimizing (x0, y0) for the MLE. As mentioned

before, coefficients are absorbed by the step size coefficient, giving,

L = (qT (AΣAT )−1 − r̃T (AΣAT )−1)(q − r̃)

= qT (AΣAT )−1q − 2qT (AΣAT )−1r̃ + r̃T (AΣAT )−1r̃.
(5.12)

In order to use the gradient descent method to find the location, the partial derivatives

with respect to x0 and y0 are needed. Begin by expanding (5.12) around (AΣAT )−1. Next,

lumping the coefficient (Sσ2(1− ρ))−1 with the step size coefficient and beginning with the

first term gives,

qT (AΣAT )−1q = qT (S I − 11T )q. (5.13)

When taking the derivative with respect to z0 only terms containing r̃s will not cancel out in

the equation, thus (5.13) will drop out of our final equation. Expansion and simplification

of coefficients for the second term in (5.12) yields,

−2qT (AΣAT )−1r̃ = −2qT (S I − 11T )r̃ (5.14)

= −2qT (S Ir̃ − 11T r̃) (5.15)

= 1 − 2S (qT r̃) + 2(qT q)(qT r̃) (5.16)

= −2S
S−1∑
s=1

qsr̃s + 2
S−1∑
s=1

qs

S−1∑
s=1

r̃s. (5.17)
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Equation (5.14) is saved for use in the final MLE. The third term is expanded and simplified

to yield

r̃T (AΣAT )−1r̃ = r̃T (S I − 11T )r̃ (5.18)

= S (r̃T r̃) − (r̃T I)(1T r̃) (5.19)

= S
S−1∑
s=1

r̃2
s −

S−1∑
s=1

r̃s

S−1∑
s=1

r̃s. (5.20)

Combining (5.14)-(5.18) and canceling like terms gives (5.21), which can be broken into

four terms:

L = −2S
S−1∑
s=1

qsr̃s︸        ︷︷        ︸
A

+ 2
S−1∑
s=1

r̃s

S−1∑
s=1

qs︸        ︷︷        ︸
B

+S
S−1∑
s=1

r̃2
s︸︷︷︸

C

−

S−1∑
s=1

r̃s

S−1∑
s=1

r̃s︸      ︷︷      ︸
D

. (5.21)

The next step in gradient descent involves finding the partial derivative of (5.21). Compute

the partial derivative of r̃s with respect to x0 for each s ∈ {1, · · · , S − 1}

∂r̃s

∂x0
= η expdB

(
x1 − x0

d2
1

−
xs − x0

d2
s

)
. (5.22)

Similarly, the partial derivative of r̃s with respect to y0 is

∂r̃s

∂y0
= η expdB

(
y1 − y0

d2
1

−
ys − y0

d2
s

)
. (5.23)

The coefficient part of (5.21) can be lumped in with the step size. The partial derivative ∂L
∂x0

can be broken up as,

∂A
∂x0

=
∂

∂x0

−2S
S−1∑
s=1

qsr̃s

 = −2S
S−1∑
s=1

qs
∂r̃s

∂x0
(5.24)

∂B
∂x0

=
∂

∂x0

2S−1∑
s=1

r̃s

S−1∑
t=1

qt

 = 2
S−1∑
t=1

qt

S−1∑
s=1

∂r̃s

∂x0
(5.25)

∂C
∂x0

=
∂

∂x0

S S−1∑
s=1

r̃2
s

 = 2S
S−1∑
s=1

r̃s
∂r̃s

∂x0
(5.26)

∂D
∂x0

=
∂

∂x0

−S−1∑
s=1

r̃s

S−1∑
t=1

r̃t

 = −2
S−1∑
s=1

∂r̃s

∂x0

S−1∑
t=1

r̃t . (5.27)
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Combining (5.24)-(5.27) gives,

1
2
∂L

∂x0
= S

S−1∑
s=1

(r̃s − qs)
∂r̃s

∂x0
+

S−1∑
t=1

(qt − r̃t)
S−1∑
s=1

∂r̃s

∂x0
. (5.28)

The gradient with respect to y is, similarly, determined to be

1
2
∂L

∂y0
= S

S−1∑
s=1

(r̃s − qs)
∂r̃s

∂y0
+

S−1∑
t=1

(qt − r̃t)
S−1∑
s=1

∂r̃s

∂y0
, (5.29)

where r̃s is the differential power from the transmitter to receiver s, qs is the observed

differential data and S is the number of receivers. Using Telos-B data, (5.28) and (5.29)

validations were performed.

5.4 Experimental validation of this author’s DRSS MLE-GD algorithm

Experimental data from Chapter 3 was used to validate the DRSS model using a MLE-

GD algorithm. As mentioned in the correlated fading model, (4.10), assume η = 1 for this

model. Since the P0 values cancel out in the DRSS power measurements, its values are

trivial.

Figure 5.1 shows the RMSE for the estimated transmitter location assuming a DRSS

model and using data obtained with the Telos-Bs, for noise variance values of σ2 = 16, 64,

and 100. For a A straight line was fit to the RSS measurements found in experiment

six in Chapter 2 in order to estimate P0 and η. The estimated variables of this equation

gave P0 = 43 dBm and η = 1. Thus, these were the parameters used in the algorithm

estimation. It is shown in Figure 5.1 that for a noise variance of sixteen the algorithm

generally performs better than with a higher variance. As the correlation values increase

the RMSE initially drops and then evens out for σ2 = 16. When noise fading variance is

increased (σ2 = 64, 100) the RMSE becomes less stable and may require a greater number

of iterations to converge. The DRSS model is able to achieve a RMSE value of as low

as 2.5 feet when lower noise fading variance values are used. This might suggest that the

DRSS model is best suited for low noise measurements that are highly correlated.
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Figure 5.1: Experimental error versus correlation for the estimated transmitter location

assuming a DRSS model, using measurements obtained from experiment six in Chapter 3

and localized using a gradient descent algorithm. The squares correspond to σ2 = 16, the

stars correspond to σ2 = 64 and the triangles correspond to σ2 = 100.

Figure 5.2 on page 64, compares experimental error using Telos-B measurements

for the correlated DRSS MLE-GD, correlated MLE-GRID and correlated DRSS MLE-

grid, assuming an η = 1, and P0 = 43 as found in Chapter 4. This graph was used to

validate these algorithms, as ρ increases from 0.2 to 0.5 the MLE-GRID algorithm has the

best performance. These values correspond to lower correlation assumptions. Given the

environment in which these measurements were taken (Kenney Hall), it is reasonable to

assume that measurements would have a medium to high correlation coefficient. If this

is true, it would mean that a low correlation coefficient is an inaccurate assumption. At

medium to high correlation values (0.5 ≥ ρ ≤ 0.8), both of the DRSS algorithms locate

the transmitter with more accuracy than the RSS model. The MLE-GD algorithm performs

slightly better than the MLE-GRID algorithm. With ρ = 0.6 an experimental error of 2.49

feet is achieved with the MLE-GD algorithm. An error of 2.57 feet was achieved with the

MLE-GRID algorithm, while the correlated MLE has an experimental error of 6.9 feet.
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Figure 5.2: Experimental error versus correlation for the estimated transmitter location

(16, 16) assuming a DRSS model with a gradient descent algorithm (red dash square),

correlated RSS MLE-grid (green x) and correlated DRSS MLE-grid using measurements

obtained from experiment six in Chapter 3

.
Using the data from experiment six in Chapter 3, it was shown that the DRSS

algorithm performs better than the correlated RSS algorithm. This is likely due to the

fact that transmit power is trivial for DRSS measurements and therefore has no bearing on

the algorithms for DRSS, while the algorithms used with correlated RSS are dependent on

the assumption of P0. Thus, whenever possible, DRSS algorithms should be considered to

localize a Telos-B mote as in a situation similar to this author’s experimental set-up. This

can produce estimates which are within two feet of the actual location of the transmitter.

5.5 Complexity Analysis for MLE algorithms using DRSS measurements

When analyzing the performance of an algorithm it is not only important to consider

the RMSE, but also the computational complexity of each algorithm. For instance, an

algorithm that performs only slightly better, but takes twice as long computationally would

not be desired.

When considering Table 5.1, it is important to remember that each operation must be

performed for each grid point that the algorithm must search across and for each iteration

of the gradient descent algorithm. For a search space of −20 : 10 : 20 (i.e. the algorithm
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Table 5.1: Complexity table to compare the number of operations it takes for each algorithm

to run. Note this is per grid point or per iteration for rows one and two, respectively.

Algorithm × ± ÷ Log

MLE GRID 13S 9S 0 S

MLE GD 13S 8S S S

will look at only five points between (−20,−20) and (20, 20)) and with five iterations of the

MLE-GD, it would take the algorithms about the same amount of time to run. However,

the search space that the MLE-GRID algorithm has to use is much coarser and results in

higher estimation errors.

5.6 Simulations for MLE algorithms using DRSS measurements

This author was interested in investigating the performance of three different models

of signal strength: (1) correlated RSS using a MLE-GRID algorithm, (2) correlated DRSS

using a MLE-GRID based algorithm and (3) correlated DRSS using a MLE-GD algorithm.

Unless stated otherwise in the caption, the following parameters are assumed to be known

for each case: S = 36, 16 ≤ σ2 ≤ 122 which encompasses most generally used values of

the noise term, search space = [−20 : 2 : 20] × [−20 : 2 : 20], P0 = 20 dB, 0.2 ≤ ρ ≤ 0.8

and (x0, y0) = (−5.5, 7.5). The algorithms are all initiated at (x, y) = (1, 1) and 1000 trials

were run for each choice of ρ. Starting with a step size of γ = 0.001 then (4.5) becomes

x̂0 = x − γ

S S−1∑
s=1

(r̃s − qs)
∂r̃s

∂x0
+

S−1∑
t=1

(qt − r̃t)
S−1∑
s=1

∂r̃s

∂x0

 . (5.30)

The equation for ŷ0 is similar. Figure 5.3 shows that as correlation increases the MLE-

GD performs better than any of the other algorithms in terms of RMSE. Results for

three different variances are shown and σ2 = 16 gives the most accurate estimate of the

transmitter location. For ρ = 0.8 the experimental error of the transmitter location is
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2.05 feet. When ρ = 0.5 the RMSE is 1.9 feet. This leads to the conclusion that when

measurements are highly correlated, ρ = 0.8, the estimated location of the transmitter

(which is actually located at (16, 16) feet) is accurate to within two feet. Both of these

values of experimental error are lower than the same model that was run using the well-

known correlated fading model.

Figure 5.3: RMSE error versus ρ value for σ2 = 16, 64, 122. When the parameters are

adjusted for optimal performance, (dense grid, large number of iterations).

In almost all cases shown in Figure 5.4 the RMSE for the MLE which uses gradient

descent is lower than that for other methods. As the correlation coefficient increases, the

overall RMSE decreases. This may be due to the fact that as the correlation coefficient

increases the measurements come closer to being perfectly correlated ρ = 1, so there is

less and less of a difference in degrees of freedom in the correlated noise. As expected,

as the noise term σ2 increases, the RMSE increases. The optimal conditions for MLE-GD

to perform well are high correlation with low noise, although its performance is superior

to the other algorithms regardless of the level of noise or correlation value. For any given

simulation, the MLE-GRID algorithm and CORR RSS MLE algorithm perform similarly.
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Figure 5.4: RMSE versus ρ value for σ2 = 16, 64, 122. Results when algorithms take

approximately the same number of operations.

If the algorithms are forced to compute in the same amount of time, the gradient descent

algorithm is more accurate than either of the other algorithms, even in high noise cases.

This is likely due to the fact that there is such a coarse search space for both of the other

models because they both use a MLE-GRID as opposed to the MLE-GD.

5.6.1 Conclusions on the proposed single transmitter DRSS model and algorithm.

A novel MLE-GD algorithm to estimate the location of a transmitter by using

correlated DRSS measurements was proposed and it was shown that the MLE-GD

algorithm for the correlated shadowing DRSS model is more accurate than that of the grid

search algorithm. For fine levels of resolution the MLE-GD algorithm also requires less

time computationally than the grid search algorithm. There is not a significant difference in

the performance of the correlated RSS and correlated DRSS MLE-GRID algorithms. When

the MLE-GD and MLE-GRID algorithms perform the same number of operations, the

MLE-GRID produces RMSE errors that are sometimes three times higher than that of the

MLE-GD algorithm. Due the MLE-GD being the more accurate and less time consuming

option, it is the preferred method for localization of a transmitter. Further research into

this topic would involve comparing results to real world RSS data and extending the model
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to account for multiple transmitters. To this author’s knowledge no current literature uses

correlated DRSS measurements with a gradient descent algorithm to locate a transmitter,

but it has been validated, through experimental data and simulations, that it is a better

alternative to the standard MLE-GRID algorithm.

5.7 Development of a DRSS model for multiple transmitters (DRSS-M)

To the author’s knowledge, no literature currently exists which uses correlated DRSS

measurements to localize multiple transmitters. This section combines Nelson’s quasi-

EM [26] algorithm with our simple DRSS model. The adjusted DRSS model, denoted as

DRSS-M would be:

Rsm =
P0

ds(zm)η
, (5.31)

Ps =

M∑
m=1

Rsm + ws, (5.32)

where ws ∼ N(0,Σ), ds(zm) denotes the distance from receiver s to transmitter m, Rsm is the

noise free RSS measurements from receiver s to transmitter m and r̃(sm are the RSS noise

free measurements from the difference of receiver one minus all other receivers and thus

is a (S − 1) × M matrix. From (5.31) define a PDF of the correlated DRSS measurements

received from multiple transmitters as,

f (q) =
1

(2π|Σ|)S/2 exp
[
−(q − r̃)T (AΣAT )−1(q − r̃)

]
, (5.33)

where S is the number of new receivers s = 1, · · · , S − 1. In order to perform a MLE, first

find the log-likelihood function of (5.33) and then maximize it. Ignoring all constants that

will drop out during the derivation,

L = −

q − S∑
s=2

r̃s

 q − S∑
s=2

r̃s

T

. (5.34)
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The EM technique described in Chapter 4 cannot be used with (5.34) and therefore an

adaptation of the quasi-EM was used to localize the transmitters.

To this author’s knowledge, multiple DRSS localization has not been researched in

the literature and therefore no standard of model exists. Thus, it is necessary to derive a

quasi-EM algorithm based on some of the research performed by Nelson et al. Referring

back to (2.23) define the RSS as,

Ps =

M∑
m=1

Rsm10wms/10, (5.35)

where Rsm is the linear RSS value for the multiple transmitters and w ∼ N(0,Σ). The

following five steps can be followed to implement the quasi-EM algorithm.

Step 1 Generate M initial position estimates for the transmitters, ẑm from a uniform

distribution within a specified search space.

Step 2 Given the current estimate derived in Step 1 determine the expected RSS power at

the sth receiver from the mth transmitter

Ems =

(
P0dη0

ds(ẑm)η

)
, (5.36)

where P0 is the transmit power, d0 is the close-in reference distance, generally taken

to be one meter and ds(ẑm) is the distance from the estimated location of the mth

transmitter to the sth receiver. Even though P0 is used, it drops out in the next step,

so for DRSS any dummy variable can be used.

Step 3 Normalize powers obtained in step two so that they give a total power at each

receiver that is equal to the observed power at that receiver,

Ẽms =
PsEms∑M
m=1 Ems

(5.37)

ẽms = 10 log10(Ẽms) , (5.38)
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where Ps is the total power from receiver s and Ems is the normalized power.

Step 4A In order to compute the DRSS, take the difference of the RSS measurements and

a reference receiver (defined as receiver 1),

∆ms = ẽm1 − ẽms (5.39)

= 10 log10

(
ds(ẑm)η

d1(ẑm)η

)
+ (wm1 − wms). (5.40)

Step 4B Using ∆ms from Step 3, re-estimate transmitter locations by minimizing sum of

squared error, given by

ẑm = arg min
z0

S∑
s=1

(
∆ms −

ds(z̃m)η

d1(z̃m)η

) (
AΣAT

)−1
(
∆ms −

ds(z̃m)η

d1(z̃m)η

)T

, (5.41)

where ∆ms is the normalized total power, ds(z̃m) is the distance from the estimated

transmitter locations to receiver s and d1(z̃m) is the distance from the reference

receiver one to transmitter m.

Step 5 Repeat Steps 2-4 for a set number of iterations. Due to the quasi-EM algorithm’s

failure to converge to a local minimum after only a single iteration, it was run multiple

times with different random initial conditions. A cost function is used to find the

initialization that yields the lowest sum of squared log-power error.

C(ẑ) =

S∑
s=1

(
∆ms − log10

(
ds(ẑm)η

d1(ẑm)η

))2

, (5.42)

where Ps is the observed power at the sth receiver, ds(ẑm) is the distance from the final

estimate of transmitter m to receiver s, d1(ẑm) is the distance from the reference receiver

one to estimated transmitter location s and η is the path loss exponent.

5.7.1 Simulations for multiple transmitter DRSS (DRSS-M).

Simulations were performed to investigate the actual (xm, ym) and path that is taken by

each of the four initialization to get to the estimated (x̂m, ŷm) using the MLE-EM function

70



for DRSS-M for S = 144 receivers, with σ2 = 16, Figure 5.5. For all simulations η = 2,

σ2 = 4 or σ2 = 16, d0 = 1 meter, 0.2 < ρ < 0.8, reference receiver s = 1 and receiver

spacing of 10 meters is used. The simulation assumes correlated noise.

Figure 5.5: Actual (xm, ym) and path that is taken by each of the four initialization to get

to the estimated (x̂m, ŷm) using the MLE-EM function for DRSS-M for S = 144 receivers,

with σ2 = 16. The algorithm also uses a cost function to find the best initialization which is

indicated by a black circle. True transmitter location is indicated by a x and final estimated

transmitter position is contained in the circle. The first initialization is represented by a

dot, the second initialization is represented by a star, initialization three is represented by a

triangle and the fourth initialization is represented by a square.

The proposed multiple transmitter DRSS model with σ2 = 16 estimates transmitter

one to be at (1, 6.5) and transmitter two to be at (−6.5,−4.5). All initializations appear

to be converging to a local minimum. However, more iterations or initializations may be

necessary as the algorithm has a tendency to get stuck at a local minimum. Simulations

were also run for S = 4, 16, 36, 64 and 100 with σ2 = 4, 16 and are included in the
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Appendix, Chapter 7. The cost function finds the most accurate initialization. Additionally,

all initializations appear to be converging to the same local minimum. Since multiple

transmitter DRSS is an unexplored topic in the literature, there is not another algorithm

to use for comparison. Future research endeavors could include developing a MLE-GD

algorithm for multiple transmitter DRSS.

5.7.2 Experimental validation of DRSS multiple transmitter localization.

As mentioned before, WARP boards acted as transmitters and a Wi-Pry was the

receiver. A η = 1.3 was used because measured path-loss generally varied between one

and two.

Figure 5.6: Experimental error versusσ2 = 4, 16, 36, 64, 100 for multiple transmitter DRSS

and RSS algorithms assuming ρ = 0. This is just one experimental data set that was used

in order to validate the DRSS multiple transmitter algorithm.

Figure 5.6 shows the RMSE measurements versus σ2 = 4, 16, 36, 64, 100 assuming

ρ = 0 when using the DRSS multiple transmitter algorithm. RMSE is lowest for DRSS-M

estimates when noise fading variance is σ2 = 36. At this variance an RMSE of around 7

feet was obtained for both transmitters using a DRSS-M model, while the RSS-M model
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produced an error of 13 feet. For all of the noise fading variance values the RMSE for the

DRSS-M model was lower than that of the RSS-M model.

5.7.3 Conclusions on proposed DRSS-M model and algorithm.

The DRSS-M model is more accurate model when considered over the RSS-M model

for localization of multiple transmitters. A quasi-expectation maximization (MLE-QEM)

algorithm was used for simulations and it was shown that the DRSS-M was sometimes 80%

more accurate than its RSS-M counterpart for locating multiple transmitters. Again, this

likely due to the absence of a transmit power value for the DRSS-M model and equation.

Using DRSS-M measurements for multiple transmitters is a new field of research so this

area is wide open to continue performing research. There are a number of topics for

future research including, but not limited to, different algorithms, testing environments,

experimental equipment and varying the correlation coefficient.
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VI. Conclusions, Future Work, and Publications

6.1 Conclusions and Future Work

The research in this dissertation was focused on investigating existing RSS models

and algorithms. The purpose was to identify sources of error in current models and develop

models and algorithms that are cost efficient and computationally simple. A review of the

literature showed the importance of considering an appropriate model for RSS data. To

address issues with factors such as number of antennas, transmitters and noise, this author

proposed a RSS-GMM, DRSS-M, DRSS-CORR and RSS-CORR model.

This author conducted an experimental campaign described in Chapter 3 to provide

real world experiments using a variety of receivers and transmitters. The research

provided data regarding the importance of parameter characterization before localization

implementation. A novel way to compare experiments is presented to assess the ability

of the hardware to report consistent and reliable measurements. The author developed

the following algorithms: MLE-NC, MLE-COOP, MLE-GD, MLE-QEM and MLE-

GMM. It was shown that when a MLE-STD is used to estimate the location of non-

cooperative data there is overconfidence in accuracy of estimates. It was shown that an

MLE-GD is a superior algorithm compared to the MLE-GRID. A new model (DRSS-

M) and algorithm (MLE-QEM) were developed. Findings provide evidence that DRSS

measurements perform approximately 84% better than traditional RSS measurements for

estimating multiple transmitter locations.

Overall, this dissertation showed the importance of properly modeling data. Several

new models, RSS-GMM, DRSS-CORR and DRSS-M were developed. In addition to

developing algorithms for the new models (MLE-GMM, MLE-GD and MLE-QEM), novel

algorithms for previously established models MLE-NC and MLE-COOP were developed.
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The models and algorithms described in this dissertation could be used in signal

processing localization when it is desirable to use RSS measurements. Future work that

could extend this dissertation could include further investigation into DRSS measurements,

specifically, trying other algorithms, looking at correlation in the path-loss and localization

when the location of the receivers is not known. Additional data could also be collected

from different environments using different equipment. Combining models may also be

of interest, for instance, looking at a non-cooperative multiple transmitter model and

corresponding algorithms.

6.2 Contributions

• Statistical analysis of various hardware.

• Models and associated MLE’s :

– Cooperative RSS using a grid search MLE algorithm [6],[40].

– Non-cooperative RSS with a grid search MLE algorithm [6],[40].

– Multi-antenna RSS or (GMM) with a grid search algorithm.

– Correlated RSS, with a grid search algorithm.

– DRSS with correlation in the RSS values using a gradient descent.

– Multiple transmitter DRSS using a quasi-EM algorithm.

• Recommendations on model use:

– It was shown that using the wrong model leads to false performance prediction

[6], [40], [41].

– It was shown that assuming a standard model when the model is actually non-

cooperative leads to overconfidence in low RMSE values.

– Assuming a standard model when the model is actually a GMM leads to large

errors.
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VII. Appendix

This Appendix provides the additional graphs that were discussed in Chapter 5 for

multiple transmitters. The graphs show the path that each initialization of the algorithm

took in order to get to its final estimate. The best estimate as determined by the cost

function is indicated by the circle.
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Figure 7.1: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 4 receivers, with σ2 = 4. The algorithm also

uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.2: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 16 receivers, with σ2 = 4. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.3: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 36 receivers, with σ2 = 4. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.4: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 64 receivers, with σ2 = 4. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.5: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 100 receivers, with σ2 = 4. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.6: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 4 receivers, with σ2 = 16. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.7: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 16 receivers, with σ2 = 16. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.

Figure 7.8: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 36 receivers, with σ2 = 16. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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Figure 7.9: Iterations taken for four initializations of a MLE algorithm which used multiple

transmitter DRSS from measurements at S = 100 receivers, with σ2 = 16. The algorithm

also uses a cost function to find the best initialization which is indicated by a black circle.
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