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ABSTRACT

Improving the performance of ensemble filters applied to models with many state variables requires reg-
ularization of the covariance estimates by localizing the impact of observations on state variables. A co-
variance localization technique based on modeling of the sample covariance with polynomial functions of the
diffusion operator (DL method) is presented. Performance of the technique is compared with the non-
adaptive (NAL) and adaptive (AL) ensemble localization schemes in the framework of numerical experi-
ments with synthetic covariance matrices in a realistically inhomogeneous setting. It is shown that the DL
approach is comparable in accuracy with the AL method when the ensemble size is less than 100. With larger
ensembles, the accuracy of the DL approach is limited by the local homogeneity assumption underlying the
technique. Computationally, the DL method is comparable with the NAL technique if the ratio of the local
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decorrelation scale to the grid step is not too large.

1. Introduction

The problem of estimating the background error sta-
tistics is an important issue in the ensemble filtering and
hybrid data assimilation algorithms that employ en-
sembles for error analysis and propagation. Increasing
the accuracy in estimating the background error statis-
tics remains a scientific and technical challenge, because
the (co)variance estimates have to be drawn from a rel-
atively small number of samples contaminated by the
noise of diverse origin.

A particular type of background error covariance (BEC)
estimation technique employs an ensemble of assimila-
tions (e.g., Fisher 2003; Berre et al. 2006) to assess the
covariance structure from the ensemble average. Because
of computational limitations, ensemble size rarely ex-
ceeds 100 members in practice, thus limiting the accuracy
of the straightforward averaging approach because of
the significant level of sampling noise. The impact of
sampling noise on the accuracy of the BEC estimates has
been addressed by Houtekamer and Mitchell (1998) and
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Hamill et al. (2001) and led to the development of the
filtering techniques based on the Schur product of the
sample correlations with the heuristic filters (localization
operators). This approach tends to localize covariances in
physical space and suppresses long-range correlations,
whose accuracy is most affected by the sampling noise
(e.g., Houtekamer and Mitchell 2001; Buehner 2005).

In the last decade, the localization techniques have
been under rapid development in several directions with
the major objective to relax the spatial homogeneity
assumption underlying the original scheme. In particu-
lar, Fisher (2003), Deckmyn and Berre (2005), and
Pannekoucke et al. (2007) utilized a wavelet approach to
account for inhomogeneities in the covariance structure;
Wau et al. (2002) and Purser et al. (2003) employed re-
cursive filters to localize the covariances; Weaver and
Courtier (2001), Pannekoucke and Massart (2008), and
Weaver and Mirouze (2012) used a closely related dif-
fusion operator approach; and Pannekoucke (2009) ex-
plored a hybrid scheme, featuring wavelet technique in
combination with the diffusion method, while Anderson
(2007) employed a sampling error approach to derive
localization from multiple ensembles in the framework
of the hierarchical ensemble filter technique. In the oil
and gas exploration industry, anisotropic localization
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functions were derived by combining the regions of sen-
sitivity of the well data with prior geological models (e.g.,
Emerick and Reynolds 2011; Chen and Oliver 2010).

Another direction in the localization techniques was
pioneered by Bishop and Hodyss (2007) who proposed
to augment the original ensemble by including Schur
cross products of the spatially smoothed ensemble mem-
bers. Further development of this approach (Bishop and
Hodyss 2009a,b; Bishop et al. 2011; Bishop and Hodyss
2011) demonstrated its flexibility in adapting the co-
variances to the 4D background flow structures, especially
in the case of strongly inhomogeneous statistics. A certain
disadvantage of the adaptive localization (AL) technique
is a relatively high computational cost, associated with the
necessity to operate with the expanded ensemble. A good
review of the filtering/localization techniques was recently
given by Berre and Desroziers (2010).

In this study we employ the numerical experimenta-
tion approach of Wcaver and Mirouze (2012) who tested
various approximations of the ensemble-generated co-
variance matrix by the exponent of the diffusion oper-
ator in an idealized configuration. The presented work
considers four localization techniques applied to three
different covariance models in a realistically inhomoge-
neous 2D setting. Our major focus is on comparing non-
adaptive and adaptivc localization mcthods with the
techniques based on modeling sample covariance by
polynomial functions of the diffusion operator. To make
the comparison, we construct inhomogeneous covariance
matrices B, generate the respective ensembles, and re-
trieve B from a limited number of ensemble members
by the means of considered localization techniques. In
the next section the four localization methods used are
briefly overviewed. Methodology of the numerical ex-
periments is described in section 3. In section 4, the lo-
calization methods are compared in terms of accuracy
in approximating B for various ensemble sizes and their
computational efficiency. The results are summarized
and discussed in section 5.

2. Methods of covariance localization
a. Traditional scheme

Given an ensemble {x;}/vK —1 € R" of K normal-
ized error perturbations about the ensemble mean listed
as columns of the K X N matrix X, their sample co-
variancc B is estimated by

B =cov{x,} =XXT. (1)

In practice, the dimension of the model state N is much
larger than K, and the sample estimate (1) always
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contains spurious correlations at large distances. To
increase the accuracy in approximation of the BEC ma-
trix B, Houtekamer and Mitchell (1998) proposed to as-
sign zero correlations to the components of x separated
by distances larger than a certain prescribed value d (lo-
calization scale). Technically, such a “localized” co-
variance matrix B, is obtained as the elementwise (Schur)
product ¢ of the raw sample covariance B and the locali-
zation matrix W, whose off-diagonal elements are set to
zero if the distance between correlated points exceeds d:

B,=BoW,. @)

This method simultaneously suppresses spurious ensem-
ble correlations located far from the diagonal and shrinks
the null space of B, whose “raw” dimension N — K + 1is
very large, and thus likely inconsistent with the rank of the
true BEC matrix. A disadvantage of the technique is that
it relies on a heuristic matrix W, which does not explicitly
take into account inhomogeneity and anisotropy of the
background flow which affects the BEC evolution.

b. Adaptive methods

Recently, Bishop and Hodyss (2007, 2009a,b, 2011)
developed a family of AL schemes. The idea is to compute
W as the sample correlation matrix generated by Schur
cross products Xz of the spatially smoothed (modulated)
members of the original ensemble (e.g., Bishop and Hodyss
2009a, 2011):

iii=(Sxi)°(SxI.); i=1,...,K; j=i...,K, (3)
where S is a suitably chosen smoothing operator while
J = K(K + 1)/2 is the size of the modulated ensemble.
Assuming that the columns of the J X N matrix X list
perturbations {x;} of the modulated ensemble about
their mean that are normalized to have unit variance
and divided by vJ — 1, the adaptively localized BEC
matrix is

B =BoW* = Bo(XX"). 0

To further increase stability and computational effi-
ciency of the AL technique, Bishop and Hodyss (2011)
supplemented the method with additional multiplica-
tion by W

Bf = BoW*oW,. ®)

Recent experiments with this improved AL scheme
have shown its good localization properties and rea-
sonable numerical performance (Bishop and Hodyss 2011).
A certain disadvantage of the method is the numerical cost:
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apart from the necessity to smooth ensemble members,
multiplication by B} requires computing a convolution
with a KJN X N matrix, whose columns are X ©X;; ° Wy,
where w,, are the columns of the square root of W,.

¢. Modeling sample covariance

Another way of estimating the true covariance is to
create its full-rank covariance model using the low-rank
ensemble approximation (1). In recent years this ap-
proach, fueled by the developments in covariance model-
ing with the diffusion operator (e.g., Weaver and Courtier
2001; Xu 2005; Yaremchuk and Smith 2011; Yaremchuk
and Sentchev 2012), has been studied by many authors
(e.g., Belo Pereira and Berre 2006; Pannekoucke and
Massart 2008; Pannekoucke 2009; Sato et al. 2009;
Weaver and Mirouze 2012).

The idea of the approach is to parameterize the
structure of the true BEC matrix by the diffusion tensor
field D*?(x), which defines the positive-definite diffu-
sion operator D = —V,D#Vj.

To avoid confusion with notations, vectors and ma-
trices in state space RY are denoted by the boldface
roman and boldface san serif fonts, respectively. In the
2D physical space R? we adopt tensor notation, where
vectors and matrices are boldface and italicized, Greek
indices enumerate coordinates, take the values 1 and 2,
and summation is assumed over repeating indices.

The operator D is used to construct the B-approximating
covariance model that is specified by a positive func-
tion F of D in order to meet the positive-definiteness
property of B. Furthermore, for computational reasons
it is desirable that F could be computed recursively and
at the same time it should invert the spectrum of D (i.e.,
the largest eigenvalues of F{D} should correspond to the
smallest eigenvalues of D). The latter requirement en-
sures the smoothing property of the BEC model, which
is important in applications.

Among the functions satisfying these requirements
are the exponent and its nth-order binomial (spline)
approximations:

F {D}=exp (—-g) : (6)

F {D}= (I +£§> o 0)

The functional forms in (6)—(7) are used to define the
correlation matrix C, which can be easily transformed
into B by the renormalization formula B = VCV, where
V = diag(v), and v € R" is the vector of rms error var-
iances (square roots of the diagonal of B). The elements
v(x) of v are relatively well known from the ensemble
statistics as they suffer less from sampling errors than
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ensemble estimates of the correlations. In its turn, the
correlation matrix C can be obtained from F{D} by
setting its diagonal elements to unity:

C = diag(f)" "> F{D}diag(f)"'?, 8)

if a good approximation to the diagonal elements f of
F{D} is available (Purser et al. 2003; Yaremchuk and
Carrier 2012).

This study employs functions F, and F, for approxi-
mating the BEC matrix by selecting D*?(x) in a way that
the matrix B = VCV given by (6)—(8) fits the structure of
the sample covariance (1) for small distances and pro-
duces negligible correlations at large distances. The
latter property is satisfied by the functions (6)—~(7).

A standard method of finding D for the functional
forms (6)—(7) is to use analytic relationships between the
derivatives of F{D} in the vicinity of the diagonal (i.c., at
small separations between correlated points) and the
diffusion tensor (e.g., Belo Pereira and Berre 2006; Sato
et al. 2009; Weaver and Mirouze 2012). These relation-
ships are derived under the assumption that local de-
correlation scales are much smaller than the typical scale
of spatial variability of D. In that case, the correlation
matrix elements C(x, y) are locally homogeneous (LH);
that is, they depend only on the relative positionr=x — y
of the correlated points x, y, and can be written down
explicitly (e.g., Yaremchuk and Smith 2011):

c.0=exp(-5). ©
2nn)" 'K, _ (V2n
Y. Sal WY
where
P =r"Dgr* (11)

is the squared distance measured in terms of the local
decorrelation scales defined by the eigenvalues of D and
K is the Bessel function of the second kind. Dependence
of the correlation matrix elements on the distance r from
the diagonal is shown in Fig. 1.

Direct differentiation of (9)-(10) at zero distance
(r = 0), yields the following relationships, useful for
estimation of the diffusion tensor for the models (9)—(10),
respectively:

D}(x) = -IV,V,C., (12)
n—2
n

D)=~ [V,V5C,]- (13)
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FI1G. 1. Correlation functions of the Gaussian and second-order
spline models described by (9)-(10).

Here square brackets denote extracting the diagonal
values from a matrix. This approach requires C to be
twice differentiable at the diagonal, which is not the case
for spline models with n < 3. Expressions (12)—(13) were
obtained in the 2D Cartesian coordinates by Weaver
and Mirouze (2012). Similar relationships hold for an
arbitrary correlation model satisfying the conditions of
local homogeneity and appropriate differentiability of
the correlation function at r = 0 (appendix A).

Taking into account the commutativity of the ensem-
ble averaging and ( } differentiation operators renders
the rhs of (12)—(13) in the form involving correlations
of the first derivatives of the enscmble members (see
Belo Pereira and Berre 2006; Weaver and Mirouze 2012;
appendix B):

((Vx)°(Vgx)) — (V,¥)°(VpV)
vov '

(14)

[V,V,C] =

This expression together with relationships (12)—(13) is
more convenient for numerical estimation of D via
sample correlations because it is formulated in terms of
the ensemble perturbations and does not involve second
derivatives. Weaver and Mirouze (2012) have shown re-
cently that the method is capable of delivering rms ac-
curacies of 20%-80% in reconstructing D! in idealized
2D setting. The approach has a few drawbacks. First, the
gradient computation tends to amplify sampling noise
in the estimate of D~!. The inversion of D" is also prone
to error amplification. For these reasons, the technique is
often supplemented by additional smoothing (Raynaud
et al. 2009; Berre and Desroziers 2010; Weaver and
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Mirouze 2012). Second, the relationship (14) cannot be
applied to the BEC models that are not differentiable
at the diagonal, such as the second-order (n = 2) spline
model (7) in 3D, which is characterized by the expo-
nential correlation function.

An alternative approach is to estimate the diffusion
tensor directly by minimizing the difference between
the ensemble estimate of the correlations in the vicinity
of the diagonal and its local analytic approximations
(9)-(10). This approach is likely to be more robust, as it
does not involve differentiation and matrix inversion
and can be formulated as a least squares problem in the
space of the unknown elements of D.

In the following sections we compare efficiency of the
four localization methods: nonadaptive (section 2a),
adaptive (section 2b), and the two described above
methods of retrieving the diffusion tensor from the en-
semble covariances. For brevity, we will refer to the
latter two methods as ‘‘differential” and ‘‘integral”
diffusion localization (DL) schemes.

To explore the efficiency, we adopt the following ex-
perimentation strategy: after specifying the “true” co-
variance matrices B, the respective ensemblcs are
generated and then the obtained enscmble members are
used to retrieve the approximate structure of B by a
given localization method.

3. Methodology
a. Experimental setting

Numerical experiments with simulated ensembles were
performed as follows. First, the true BEC matrix was
specified together with the ensemble by selecting a vari-
ance distribution v(x) and a correlation model (6)~7) in
a real oceanic domain shown in Fig. 2. The variance dis-
tribution was chosen to simulate surface temperature
variations in the northern Gulf of Mexico near the mouth
of Mississippi. The true distribution of D (Fig. 2) was
specified to mimic the background error dynamics driven
by near-coastal topographically controlled circulation.
We assumed that the corresponding background currents
followed the depth contours and the larger eigenvector
of D was oriented in that direction and was proportional
to the magnitude of the local bathymetry gradient. In the
regions where bottom slope was less than 20% of its rms
value over the domain, the diffusion was set to be iso-
tropic with the decorrelation scale of 15 km (see appen-
dix C for more details).

Two BEC models used in the experiments were the
Gaussian (6) and the second-order spline model (7). The
corresponding true correlation matrices C, and C, were
computed explicitly: first, all the columns of F(D) were




852

MONTHLY WEATHER REVIEW

VOLUME 141

89 8 87 86
FIG. 2. True distribution of the longer principal axis of the diffusion
tensor (km). Labeled contours show depth in meters.

computed as convolutions of the operators (9)—(10) with
the & functions located in every grid point of the domain.
The resulting matrices were then renormalized by their
diagonal elements using (8), and the true BEC matrices
were then obtained by
B,=VC,V; B,=VC,V. (15)
Sums of eight columns of C, and C, are shown in Fig. 3.
The maximum anisotropy is observed in the southeast
corner of the domain characterized by the steepest to-
pography. The total number of matrix elements was
4603% ~ 2 x 10'.
The simulated ensembles X, and X,, were generated
by
X, =VC!”R; X,=VC}’R, (16)
where R is the K X N matrix, whose columns are the
random vectors with N = 4603 §-correlated components
evenly distributed with unit variance and the square root
is defined by C = C2(C"?)T. The valuc of K was 20 000.
The ensembles X, and X,,, were then used to estimate
the true covariances B, and B, with the four localization
techniques described in the previous section. The only
exception is the differential method, which was not used
with the spline model (7) because the corresponding cor-
relation function (10) is not differentiable at the origin.
In all the experiments the localization matrix W, was
Gaussian (9) with the isotropic diffusion tensor D = d?I,
where I is the 2 X 2 identity matrix and d is a tuning
parameter defined in the next section.
Numerically, the action of F.{D} on a state vector x
was approximated by the recursive scheme:

89 88 87 86

FIG. 3. True correlations for the (a) C, and (b) C; models plotied
for eight different points. Locations of the points are shown by

white circles.
ex B x>~ [1- 8 nx
P\2)*=\'"24) ®

which can be interpreted as ““time integration” of the
diffusion equation with the integration period defined
by the maximum eigenvalue A of D/2 over the domain
and the “‘time step” of A/n. Similarly, F,{D}x was com-
puted by iteratively solving the system of equations,

D 2
(I+Z> y=x,

with the minimum residual algorithm (Paige et al. 1995).

Computing the action of the operators C:’z and C;’z,
which appear in the relationships in (16) requires an
algorithm for F{D}"?, which was obtained by halving
the number of time steps n in (17) and removing the
square in the lhs of (18).

(17)

(18)
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With the simulated ensembles in (16) at hand, the
sample covariance matrices B; were computed via (1)
by varying the number of samples x; randomly picked
from these ensembles. Using the same samples, rms
error variance fields ¥(x) and the correlation matrices C
were also computed.

Given these ensemble statistics, the localized esti-
matcs of the true covariance matrix were computed with
four localization techniques described in the previous
section [(2), (5), and (9)-(14) for the DL estimates].

Technically, the DL estimates were obtained by fitting
the diffusion tensor field to the structure of C with two
techniques: the first one utilizes the approach based on
differentiating the ensemble members [(12)(14)], whereas
the second one extracts D(x) from sample correlations c
by minimization of the cost functions:

16)= | (€ =) - Ceyfdy— min,  (19)

where C is given by (9)}10) and w is a small vicinity of x.
Similar approach was tested in a less general formulation
by Pannekoucke and Massart (2008) for the 2D Gaussian
correlations. To minimize (19) we used the M1QN3 al-
gorithm of Gilbert and Lemarechal (1989) that reduced
the L, norm of the cost function gradient by three orders of
magnitude in 3-6 iterations.

To distinguish between the two DL schemes, the
corresponding estimates will be labeled by the super-
scripts ' and ° for the differential [(12)-(14)] and integral
[(9)-(11), (19)] approaches, respectively.

After the diffusion tensor estimatcs wcre obtained using
either the first or the second method, the localized estimates
C' and C° of C were computed using (6)~8). Equation (8)
contains the diagonal elements of F{D}, whose direct
computation is numerically prohibitive in practice. For that
reason, approximate formulas wcre used:

f=(2m) 'F{yD}d, (20)
where d = (detD) ™2 and vy, = 0.33; y, = 0.28 for the F,
and F, models, respcctively (Yaremchuk and Carrier
2012).

Performance of the four localization techniques was
measured in terms of the distance between the ensemble-
estimated localized covarianccs B, Bf,B),B; and the
true covariance B:

|B¢_ BI
Bl -

p(B,,B)= 21

where | | denotes the Frobenius norm. Relative dis-
tances between the respective correlation matrices
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were measured by the following relationship (Herdin

et al. 2005):
’ Tr(C,C)
pl(cb C) =4/1- Icl“lcl .

b. Numerical implementation

(22)

In addition to comparing the skills of the localization
methods, their computational efficiencies are also com-
pared. In practical applications, B, and B} are never
computed directly, but represented in the “square root”
form B, = B}(B}?)" to speed up computations. By vir-
tue of the “square root theorem’ (Bishop et al. 2011),
B! and B}'? are the KN X N and KJN X N matrices,
whose columns are xx ° w, and xi °X;° w,, respectively
(section 2b). The elements of localization matrix W, were
computed explicitly with the analytic equation (9). At
distances exceeding several localization scales the ele-
ments were set to zcro to avoid senseless multiplications
by the tails of the Gaussian exponcnt. In the numerical
experiments this “cutoff”’ distance was set to 3d. The
nonzero elements of the columns w,, of W},’z were com-
puted by reducing v/2 times the localization scalc in (11).

To explore the impact of the ensemble size on accu-
racy of the localization schemes, experiments were
performed with five ensemble sizes: k = 4, 10, 50, 200,
and 1000. The respective modulated ensembles (section
2b) were computed in a different manner for various k.
For k = 4 and 10 both double and triple Schur products
of the raw ensemble members were used, thus creating
Js= (@4 X5)2+ (4% 4x%5)2=50and o= (10 X 11)/
2 + (10 X 10 X 11)/2 = 605 members. For k = 50 and 200
only the doublc products were used. The respective
ensemble sizes were 1275 and 20 100. With £ = 1000
only 20 000 randomly selected pairs were used to create
{x;}. The smoothing operator S [(3)] was also isotropic
Gaussian, but its scale d, was diffcrent from d. Both
d and d, were optimized in every experiment to mini-
mize the distance (21) from the true covariance.

The DL algorithms had additional specific features.
Estimates of D' obtained from (12)-(14) were first
smoothed with the scale of / = 30 km, then symmetrized
and checked for the positive definiteness. In the case of
a negative eigenvalue (a common situation for k = 4,
10), the tensor was discarded. The resulting gaps were
filled with horizontal interpolation and smoothed again
with the same scale.

When computing D°, the lengths of principal axes and
orientation of the larger axis were chosen as control
parameters. This approach eliminated violation of posi-
tive definiteness and improved stability of the algorithm.
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10" h o . .
10' 10° 10’
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FIG. 4. Relative errors between the true covariance matrix
(Gaussian model) and its ensemble estimates for various localiza-
tion techniques as a function of the ensemble size k. Thick dashed
line shows the error of the nonlocalized estimate B [(1)]. Thin
dashed line is the error of the variance estimate. Errors of the NAL
B, (thin line) and AL B} (thick line) methods are shown in gray.
Solid black lines correspond to the differential B, (thin line) and
integral B (thick line) DL methods.

The fitting domain w was a square four grid steps in size.
Tensor parameters were smoothed with the same scale as
has been used in the computations of D'.

4, Results
a. Skill comparison

Figure 4 compares skills [(21)] of the four localization
techniques for the Gaussian covariance model as a func-
tion of the number of ensemble members k. The straight
dashed lines provide errors for the raw variance and co-
variance estimates without localization. As expected,
both p(B) and p([B]) closely follow the law 1/v/k with the
variance estimate p([B]) being approximately 20 times
more accurate than the estimate of the covariance.

For k = 4, the difference between p(B,) and p(B})
appears negligible because of the extremely large sam-
pling errors, which cannot be reduced by updating the
ensemble with modulated members. In the “‘practical”
range of 10 < k < 500, the adaptive scheme delivers a 2—
3 times better estimate than the nonadaptive localiza-
tion (NAL) technique, but this advantage disappears at
k > 500 because of the increase of raw ensemble skill.
This type of behavior has been also observed in the
experiments wherc we kept both localization scale d and
the smoothing scale d, constant and equal to 100 km
(i.e., did not optimize their values for a given k). In that

MONTHLY WEATHER REVIEW

VOLUME 141

case the error curves converged at slightly larger k ~
1200-1500.

The DL schemes demonstrate a significantly better
performance at k < 20, although p(B}) is 20%-30%
larger than p(Bj) starting from n = 10. Flattening of the
curves for Bj,Bj at large k can be explained by two
factors. The first one is a certain inconsistency of the true
covariance structure with the LH assumption used in the
derivation of (9)—(14): Fig. 2 shows that the typical scale
of variability of the diffusion tensor’s axes is compatible
with their magnitude throughout the domain, and in some
places (e.g., steep bottom regions in the southwest) it
is even smaller than the local decorrelation scales. The
second factor is associated with the violation of the LH
assumption in computing the normalization factors with
(20). Although (20) is capable of approximating the di-
agonal elements at the error level of 5%-10%, its con-
tribution to the asymptotic error of 0.4 (Fig. 4) is not
negligible. Similar observations are reported in the ide-
alized experiments of Weaver and Mirouze (2012).

Figure 5 shows the absolute difference between the
eight columns of C}, C7 and the respective columns of
the true correlation matrix for the Gaussian model
shown in Fig. 2a. It is seen that the difference is not zero
even in the diagonal points (shown by black circles)
where both correlation estimates are supposed to be
equal to one by definition. This difference can be vir-
tually embedded as an additional error in the variance
estimate V, which is primarily defined by the size of the
ensemble. In the reported experiments this diagonal
approximation error ranged within 5%-8%, and started
to contribute significantly at k > 30 (i.e., when the var-
iance estimation error falls below 10%; lower dashed
line in Fig. 4). The impact of the diagonal approximation
error is less visible when comparing covariance matrices
in terms of (22), which is more sensitive to the errors in
the off-diagonal elements (Fig. 6).

The degree of inhomogeneity of the true covariance
can, in principle, be assessed from asymmetry of the
local correlations derived from the ensemble when k is
large enough to suppress sampling noise. When the LH
assumption is satisfied with high accuracy, the correla-
tion matrix elements satisfy (9)—(10), and therefore
should be nearly invariant under the mirror transfor-
mations r — —r in the vicinity of the diagonal. We
checked this property for the true correlation matrices
and found relatively high degrees of asymmetry (0.24 and
0.28 for C, and C,, respectively). In combination with
5%-8% diagonal errors, these figures may explain the
asymptotic error level in approximating the true co-
variances by the DL schemes (Fig. 4).

Another feature observed in the experiments, is a
persistently better performance of the DL methods at
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F1G. 5. Absolute difference between eight columns of the
true correlation matrix for the Gaussian model (Fig. 3a) and its
DL approximations (a) C, and (b) C; obtained with 50 en-
semble members. Filled circles show locations of the diagonal
elements.

small ensemble sizes k (Figs. 4 and 6). One may assume
that this property could be attributed to the fact that
the DL schemes have an a priori advantage because the
structure of the true covariances is already embedded
into the underlying diffusion models used for approxi-
mation. To check this, we generated an alternative true
covariance matrix B,,, which was far enough from both
B. and B; to eliminate this advantage (Fig. 7).

To do this, we randomly picked 1000 members from
each of the ensembles X, and X,, and then generated
additional 20 000 members using the adaptive technique
described in section 2b. Pairs for Schur cross products
were composed by randomly picking members from the
two ensembles and never from one. The resulting
22 000-member ensemble was used to compute B, with
(1). After that the columns of B,