Technical Report ARDSM-TR-12001

SMALL STRAIN COMPATIBILITY CONDITIONS OF AN ELASTIC SOLID IN CYLINDRICAL COORDINATES

D. Carlucci
N. Payne
I. Mehmedagic

April 2013

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Munitions Engineering Technology Center
Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.
SMALL STRAIN COMPATIBILITY CONDITIONS OF AN ELASTIC SOLID IN CYLINDRICAL COORDINATES

Authors:

D. Carlucci, N. Payne and I. Mehmedagic

Performing Organization:

U.S. Army ARDEC, DSM/METC
Computational Structural Modeling and Fuze & Precision Armaments Technology Directorate (RDAR-DSM/MEF-E)
Picatinny Arsenal, NJ 07806-5000

Abstract:

The design and analysis of projectiles and gun tubes is often most conveniently accomplished using a cylindrical coordinate system where the coordinates of \(r \), \(\theta \), and \(z \) represent the radial, circumferential, and longitudinal coordinates, respectively. The compatibility conditions under small strains are not conveniently found in the literature, although it is certain that they have been developed. In this technical report, the six equations of compatibility are documented for convenient use and reference.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Strain-Displacement Relations</td>
<td>1</td>
</tr>
<tr>
<td>Compatibility Conditions</td>
<td>2</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>Appendix</td>
<td>7</td>
</tr>
<tr>
<td>Distribution List</td>
<td>13</td>
</tr>
</tbody>
</table>
INTRODUCTION

The design and analysis of projectiles and gun tubes is often most conveniently accomplished using a cylindrical coordinate system where the coordinates of r, θ, and z represent the radial, circumferential, and longitudinal coordinates, respectively. This geometry is depicted in figure 1, which shows the coordinate system superimposed on a cylinder of length, L, spinning with angular velocity, ω. This is typical of a projectile problem.

![Cylindrical coordinate geometry](image)

Figure 1
Cylindrical coordinate geometry

The compatibility conditions under small strains are not conveniently found in the literature, although it is certain that they have been developed. References 1 through 8 all contain developments of the compatibility conditions in rectangular Cartesian coordinates and also develop a large number of solutions that require cylindrical coordinates, but only reference 8 explicitly states one of the compatibility conditions (for a planar, two-dimensional geometry). References 9 and 10 develop the equations in both rectangular Cartesian and cylindrical coordinate, but do not have them expressed in a long form likely due to space limitations.

The purpose of this document is simply to list the equations in one place as a reference for future work.

STRAIN-DISPLACEMENT RELATIONS

In considering a solid subjected to small strains, reference 1 develops the strain-displacement relations in cylindrical coordinates as

$$\varepsilon_{rr} = \frac{\partial u}{\partial r}$$

$$\varepsilon_{\theta\theta} = \frac{u}{r} + \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$\varepsilon_{zz} = \frac{\partial w}{\partial z}$$
\[\gamma_{r\theta} = 2\varepsilon_{r\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} \]
(4)

\[\gamma_{rz} = 2\varepsilon_{rz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \]
(5)

\[\gamma_{\theta r} = 2\varepsilon_{\theta r} = \frac{\partial v}{\partial z} + \frac{1}{r} \frac{\partial w}{\partial \theta} \]
(6)

In these equations, \(u, v, \) and \(w \) represent the displacements in the \(r, \theta, \) and \(z \) directions, respectively; while \(\varepsilon_{rr}, \varepsilon_{\theta \theta}, \) and \(\varepsilon_{zz} \) represent the normal strains in the \(r, \theta, \) and \(z \) directions, respectively, and \(\varepsilon_{r\theta}, \varepsilon_{\theta z}, \) and \(\varepsilon_{rz} \) represent the shearing strains in each direction with associated engineering shear strains \(\gamma_{r\theta}, \gamma_{\theta z}, \) and \(\gamma_{rz} \). Only six independent equations exist because it will assumed the material behaves in an isotropic manner such that

\[\gamma_{r\theta} = \gamma_{\theta r} \]
(7)

\[\gamma_{rz} = \gamma_{rz} \]
(8)

\[\gamma_{\theta r} = \gamma_{\theta r} \]
(9)

The appendix contains a listing of the first and second partial derivatives and mixed partial derivatives of the strains in terms of the displacements.

COMPATIBILITY CONDITIONS

Using the appropriate combinations of partial and mixed-partial derivatives found in the appendix, the compatibility conditions in cylindrical coordinates can be expressed as

\[\frac{1}{r^2} \frac{\partial^2 \varepsilon_{rr}}{\partial \theta^2} + \frac{\partial}{\partial r} \left\{ r \frac{\partial \varepsilon_{r\theta}}{\partial r} - \left(\varepsilon_{rr} - \varepsilon_{\theta \theta} \right) \right\} = \frac{\partial}{\partial \theta} \left\{ \frac{\partial \gamma_{r\theta}}{\partial r} + \frac{\gamma_{r\theta}}{r} \right\} \]
(10)

\[\frac{1}{r^2} \frac{\partial^2 \varepsilon_{\theta r}}{\partial \theta^2} + \frac{\partial^3 \varepsilon_{\theta \theta}}{\partial \theta^3} + \frac{1}{r} \frac{\partial \varepsilon_{rr}}{\partial r} = \frac{1}{r} \frac{\partial}{\partial z} \left\{ \frac{\partial \gamma_{\theta r}}{\partial \theta} + \gamma_{rr} \right\} \]
(11)

\[\frac{\partial^2 \varepsilon_{0z}}{\partial r^2} + \frac{\partial^2 \varepsilon_{zz}}{\partial r \partial z} = \frac{\partial^2 \gamma_{0z}}{\partial r \partial z} \]
(12)

\[\frac{2}{r} \frac{\partial^2 \varepsilon_{er}}{\partial \theta \partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left\{ r \frac{\partial \gamma_{er}}{\partial z} - \gamma_{\theta r} \right\} + \frac{\partial}{\partial r} \left\{ \frac{1}{r} \frac{\partial \gamma_{\theta r}}{\partial r} - \frac{\partial \gamma_{rz}}{\partial \theta} \right\} + \frac{1}{r} \frac{\partial \gamma_{r\theta}}{\partial r} + \gamma_{\theta r} \]
(13)

\[2 \frac{\partial}{\partial z} \left\{ \frac{\partial \varepsilon_{0z}}{\partial r} - \left(\varepsilon_{rr} - \varepsilon_{\theta \theta} \right) \right\} = \frac{1}{r} \frac{\partial}{\partial \theta} \left\{ \frac{\partial \gamma_{0z}}{\partial r} - \frac{1}{r} \frac{\partial \gamma_{rr}}{\partial \theta} + \frac{\partial \gamma_{r\theta}}{\partial z} \right\} + \frac{1}{r^2} \frac{\partial \gamma_{\theta r}}{\partial \theta} \]
(14)
With the conditions of equations 10 through 15 it is possible to formulate the general differential equations for stress and strain in a cylindrical geometry.

\[
\frac{2}{r} \frac{\partial}{\partial \theta} \left\{ \frac{\partial \varepsilon_{rr}}{\partial r} \right\} = \frac{\partial}{\partial z} \left\{ \frac{\partial \gamma_{r\theta}}{\partial r} \right\} + \frac{1}{r} \frac{\partial}{\partial \theta} \left\{ \frac{\partial \gamma_{rr}}{\partial r} - \frac{\partial \gamma_{r\theta}}{\partial z} - \gamma_{r\theta} \right\}
\] (15)
REFERENCES

APPENDIX
LISTING OF FIRST, SECOND, AND MIXED PARTIAL DERIVATIVES
This appendix is simply a listing of the first and second partial derivatives and mixed partial derivatives of the strains in terms of the displacements utilizing a cylindrical coordinate system. These equations are developed directly from equation (1) through (6). The equation numbering sequence is continued from the main text.

First Partial Derivatives

\[
\frac{\partial \varepsilon_{rr}}{\partial r} = \frac{\partial^2 u}{\partial r^2} \quad (1)
\]

\[
\frac{\partial \varepsilon_{rr}}{\partial \theta} = \frac{\partial^2 u}{\partial r \partial \theta} \quad (2)
\]

\[
\frac{\partial \varepsilon_{rr}}{\partial z} = \frac{\partial^2 u}{\partial r \partial z} \quad (3)
\]

\[
\frac{\partial \varepsilon_{\theta\theta}}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{1}{r} \frac{\partial^2 v}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial v}{\partial \theta} \quad (4)
\]

\[
\frac{\partial \varepsilon_{\theta\theta}}{\partial \theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{1}{r} \frac{\partial^2 v}{\partial \theta^2} \quad (5)
\]

\[
\frac{\partial \varepsilon_{\theta\theta}}{\partial z} = \frac{1}{r} \frac{\partial u}{\partial z} + \frac{1}{r} \frac{\partial^2 v}{\partial \theta \partial z} \quad (6)
\]

\[
\frac{\partial \varepsilon_{zz}}{\partial r} = \frac{\partial^2 w}{\partial r \partial z} \quad (7)
\]

\[
\frac{\partial \varepsilon_{zz}}{\partial \theta} = \frac{\partial^2 w}{\partial \theta \partial z} \quad (8)
\]

\[
\frac{\partial \varepsilon_{zz}}{\partial z} = \frac{\partial^2 w}{\partial z^2} \quad (9)
\]

\[
\frac{\partial \gamma_{r\theta}}{\partial r} = \frac{1}{r} \frac{\partial^2 u}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial u}{\partial \theta} + \frac{\partial^2 v}{\partial r^2} - \frac{1}{r} \frac{\partial v}{\partial r} + \frac{v}{r^2} \quad (10)
\]

\[
\frac{\partial \gamma_{r\theta}}{\partial \theta} = \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 v}{\partial r \partial \theta} - \frac{1}{r} \frac{\partial v}{\partial \theta} \quad (11)
\]

\[
\frac{\partial \gamma_{r\theta}}{\partial z} = \frac{1}{r} \frac{\partial^2 u}{\partial \theta \partial z} + \frac{\partial^2 v}{\partial r \partial z} - \frac{1}{r} \frac{\partial v}{\partial z} \quad (12)
\]
\begin{align}
\frac{\partial \gamma_{rr}}{\partial r} &= \frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 w}{\partial r^2} \\
\frac{\partial \gamma_{r\theta}}{\partial \theta} &= \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 w}{\partial r \partial \theta} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 w}{\partial r \partial \phi} \\
\frac{\partial \gamma_{rr}}{\partial z} &= \frac{\partial^2 v}{\partial z^2} + \frac{\partial^2 w}{\partial r \partial z} \\
\frac{\partial \gamma_{r\theta}}{\partial \gamma_{r\phi}} &= \frac{\partial^2 v}{\partial \phi^2} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} - \frac{1}{r} \frac{\partial w}{\partial \theta} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^2 v}{\partial \phi^2} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^2 v}{\partial \phi^2} + \frac{1}{r} \frac{\partial^2 w}{\partial \phi^2} \\
\frac{\partial \gamma_{rr}}{\partial r} &= \frac{\partial^3 u}{\partial r^3} \\
\frac{\partial \gamma_{r\theta}}{\partial \theta} &= \frac{\partial^3 u}{\partial r^3 \partial \theta} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^3 u}{\partial r^3 \partial \phi} \\
\frac{\partial \gamma_{rr}}{\partial z} &= \frac{\partial^3 u}{\partial z^3} \\
\frac{\partial \gamma_{r\theta}}{\partial \gamma_{r\phi}} &= \frac{\partial^3 u}{\partial r^3 \partial \phi} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^3 u}{\partial r^3 \partial \phi} \\
\frac{\partial \gamma_{rr}}{\partial r} &= \frac{\partial^3 u}{\partial r^3} \\
\frac{\partial \gamma_{r\theta}}{\partial \theta} &= \frac{\partial^3 u}{\partial r^3 \partial \theta} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^3 u}{\partial r^3 \partial \phi} \\
\frac{\partial \gamma_{r\theta}}{\partial \gamma_{r\phi}} &= \frac{\partial^3 u}{\partial r^3 \partial \phi} \\
\frac{\partial \gamma_{r\phi}}{\partial \phi} &= \frac{\partial^3 u}{\partial r^3 \partial \phi} \\
\frac{\partial^2 \gamma_{r\theta}}{\partial \gamma_{r\phi}} &= \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2 \partial \theta} + \frac{2}{r} \frac{\partial u}{\partial r^2 \partial \phi} + \frac{1}{r^3} \frac{\partial^2 u}{\partial r^2 \partial \phi^2} - \frac{2}{r} \frac{\partial^2 v}{\partial r^2 \partial \phi} + \frac{2}{r} \frac{\partial v}{\partial r^2 \partial \phi^2} \\
\frac{\partial^2 \gamma_{r\theta}}{\partial r \partial \theta} &= \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2 \partial \theta} - \frac{1}{r^3} \frac{\partial^2 u}{\partial r^2 \partial \phi} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \phi^2} - \frac{1}{r^3} \frac{\partial^2 v}{\partial \phi^2} \\
\frac{\partial^2 \gamma_{r\phi}}{\partial r \partial \phi} &= \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2 \partial \phi} - \frac{1}{r^3} \frac{\partial^2 u}{\partial r^2 \partial \phi} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \phi^2} - \frac{1}{r^3} \frac{\partial^2 v}{\partial \phi^2}
\end{align}
\[
\frac{\partial^2 H_0}{\partial r \partial z} = \frac{1}{r} \frac{\partial^2 u}{\partial r \partial z} - \frac{1}{r^2} \frac{\partial u}{\partial z} + \frac{1}{r} \frac{\partial^3 v}{\partial r \partial \theta \partial z} - \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta \partial z} \tag{27}
\]

\[
\frac{\partial^2 H_0}{\partial \theta \partial z} = \frac{1}{r} \frac{\partial^2 u}{\partial \theta \partial z} + \frac{1}{r} \frac{\partial^3 v}{\partial \theta^2 \partial z} \tag{28}
\]

\[
\frac{\partial^2 H_0}{\partial \theta^2} = \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial^3 v}{\partial \theta^3} \tag{29}
\]

\[
\frac{\partial^2 H_0}{\partial z^2} = \frac{1}{r} \frac{\partial^2 u}{\partial z^2} + \frac{1}{r} \frac{\partial^3 v}{\partial \theta \partial z} \tag{30}
\]

\[
\frac{\partial^2 H_{zz}}{\partial r^2} = \frac{\partial^3 w}{\partial r^2 \partial z} \tag{31}
\]

\[
\frac{\partial^2 H_{zz}}{\partial r \partial \theta} = \frac{\partial^3 w}{\partial r \partial \theta \partial z} \tag{32}
\]

\[
\frac{\partial^2 H_{zz}}{\partial r \partial \theta} = \frac{\partial^3 w}{\partial r \partial \theta \partial z} \tag{33}
\]

\[
\frac{\partial^2 H_{zz}}{\partial \theta^2} = \frac{\partial^3 w}{\partial \theta^2 \partial z} \tag{34}
\]

\[
\frac{\partial^2 H_{zz}}{\partial \theta^2} = \frac{\partial^3 w}{\partial \theta^2 \partial z} \tag{35}
\]

\[
\frac{\partial^2 H_{zz}}{\partial \theta^2} = \frac{\partial^3 w}{\partial \theta^2 \partial z} \tag{36}
\]

\[
\frac{\partial^2 \gamma_{r0}}{\partial r^2} = \frac{1}{r} \frac{\partial^3 u}{\partial r^2 \partial \theta} - \frac{2}{r^2} \frac{\partial^2 u}{\partial r \partial \theta} - \frac{2}{r^2} \frac{\partial u}{\partial \theta} + \frac{\partial^3 v}{\partial r^2 \partial \theta} - \frac{1}{r^3} \frac{\partial^2 v}{\partial \theta^2} + \frac{2}{r^3} \frac{\partial v}{\partial \theta} - \frac{2}{r^3} \tag{37}
\]

\[
\frac{\partial^2 \gamma_{r0}}{\partial r \partial \theta} = \frac{1}{r} \frac{\partial^3 u}{\partial r \partial \theta^2} - \frac{1}{r^2} \frac{\partial^2 u}{\partial r \partial \theta^2} + \frac{\partial^3 v}{\partial r \partial \theta^2} - \frac{1}{r \partial \theta} + \frac{1}{r^2} \frac{\partial v}{\partial \theta} \tag{38}
\]

\[
\frac{\partial^2 \gamma_{r0}}{\partial \theta^2} = \frac{1}{r} \frac{\partial^3 u}{\partial \theta^2 \partial \theta} - \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2 \partial \theta} + \frac{\partial^3 v}{\partial \theta^2 \partial \theta} - \frac{1}{r \partial \theta^2} + \frac{1}{r^2} \frac{\partial v}{\partial \theta} \tag{39}
\]

\[
\frac{\partial^2 \gamma_{r0}}{\partial \theta \partial \theta} = \frac{1}{r} \frac{\partial^3 u}{\partial \theta \partial \theta \partial \theta} - \frac{1}{r \partial \theta \partial \theta} + \frac{1}{r^2} \frac{\partial^3 v}{\partial \theta \partial \theta \partial \theta} - \frac{1}{r \partial \theta \partial \theta} \tag{40}
\]
\[
\frac{\partial^2 \gamma_{r\theta}}{\partial \theta^2} = \frac{1}{r^2} \frac{\partial^3 u}{\partial \theta^3} + \frac{\partial^3 v}{\partial r^2 \partial \theta} - \frac{1}{r} \frac{\partial^2 v}{\partial \theta^2}
\]
(41)

\[
\frac{\partial^2 \gamma_{r\phi}}{\partial \phi^2} = \frac{1}{r^2} \frac{\partial^3 u}{\partial \phi^3} + \frac{\partial^3 v}{\partial r^2 \partial \phi} - \frac{1}{r} \frac{\partial^2 v}{\partial \phi^2}
\]
(42)

\[
\frac{\partial^2 \gamma_{r\sigma}}{\partial \sigma^2} = \frac{\partial^3 u}{\partial r^2 \partial \sigma} + \frac{\partial^3 w}{\partial r^3}
\]
(43)

\[
\frac{\partial^2 \gamma_{r\theta \phi}}{\partial \theta \partial \phi} = \frac{\partial^3 u}{\partial r \partial \theta \partial \phi} + \frac{\partial^3 w}{\partial r^2 \partial \phi}
\]
(44)

\[
\frac{\partial^2 \gamma_{r\theta \sigma}}{\partial \theta \partial \sigma} = \frac{\partial^3 u}{\partial r \partial \theta \partial \sigma} + \frac{\partial^3 w}{\partial r^2 \partial \sigma}
\]
(45)

\[
\frac{\partial^2 \gamma_{r\phi \sigma}}{\partial \phi \partial \sigma} = \frac{\partial^3 u}{\partial r \partial \phi \partial \sigma} + \frac{\partial^3 w}{\partial r^2 \partial \sigma}
\]
(46)

\[
\frac{\partial^2 \gamma_{\theta \phi \sigma}}{\partial \theta \partial \phi \partial \sigma} = \frac{\partial^3 u}{\partial \theta^2 \partial \phi \partial \sigma} + \frac{\partial^3 w}{\partial \theta \partial \phi \partial \sigma}
\]
(47)

\[
\frac{\partial^2 \gamma_{\theta \phi}}{\partial \phi^2} = \frac{\partial^3 v}{\partial r^2 \partial \phi} + \frac{1}{r} \frac{\partial^3 w}{\partial r \partial \phi} - \frac{2}{r^2} \frac{\partial^2 w}{\partial \phi^2} + \frac{2}{r^3} \frac{\partial w}{\partial \phi}
\]
(49)

\[
\frac{\partial^2 \gamma_{\theta \theta}}{\partial \theta^2} = \frac{\partial^3 v}{\partial \theta^3} + \frac{1}{r} \frac{\partial^3 w}{\partial \theta \partial \phi} - \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2}
\]
(50)

\[
\frac{\partial^2 \gamma_{\theta \sigma}}{\partial \sigma^2} = \frac{\partial^3 v}{\partial \sigma^3} + \frac{1}{r} \frac{\partial^3 w}{\partial \sigma \partial \phi} - \frac{1}{r^2} \frac{\partial^2 w}{\partial \sigma^2}
\]
(51)

\[
\frac{\partial^2 \gamma_{\phi \sigma}}{\partial \phi \partial \sigma} = \frac{\partial^3 v}{\partial \phi \partial \sigma^2} + \frac{1}{r} \frac{\partial^3 w}{\partial \phi \partial \sigma}
\]
(52)

\[
\frac{\partial^2 \gamma_{\theta \phi}}{\partial \phi \partial \sigma} = \frac{\partial^3 v}{\partial \theta \partial \phi \partial \sigma} + \frac{1}{r} \frac{\partial^3 w}{\partial \theta \partial \phi^2}
\]
(53)

\[
\frac{\partial^2 \gamma_{\theta \sigma}}{\partial \theta \partial \sigma} = \frac{\partial^3 v}{\partial \theta^2 \partial \sigma} + \frac{1}{r} \frac{\partial^3 w}{\partial \theta^2 \partial \sigma}
\]
(54)
DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
 RDAR-GC
 RDAR-MEF-I (4)
 RDAR-MEF-G (4)
 RDAR-MEF-E (20)
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

Commander
Soldier and Biological/Chemical Command
ATTN: AMSSB-CII, Library
Aberdeen Proving Ground, MD 21010-5423

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSX-EI
392 Hopkins Road
Aberdeen Proving Ground, MD 21005-5071

Director
U.S. Army Research Laboratory
ATTN: AMSRL-CI-LP, Technical Library
Bldg. 4600
Aberdeen Proving Ground, MD 21005-5066

Chief
Benet Weapons Laboratory, WSEC
U.S. Army Research, Development and Engineering Command
Armament Research, Development and Engineering Center
ATTN: RDAR-WSB
Watervliet, NY 12189-5000

Director
U.S. Army TRADOC Analysis Center-WSMR
ATTN: ATRC-WSS-R
White Sands Missile Range, NM 88002

Chemical Propulsion Information Agency
ATTN: Accessions
10630 Little Patuxent Parkway, Suite 202
Columbia, MD 21044-3204

GIDEP Operations Center
P.O. Box 8000
Corona, CA 91718-8000
REVIEW AND APPROVAL OF ARDEC TECHNICAL REPORTS

Small strain compatibility conditions of an elastic solid in cylindrical coodinates

Title
D. Carlucci, et al.

Date received by LCSD

Author/Project Engineer
Report number (to be assigned by LCSD)

973.724.2486 Bid 94 RDAR-DSM

Extension Building Author's/Project Engineers Office (Division, Laboratory, Symbol)

PART 1. Must be signed before the report can be edited.

a. The draft copy of this report has been reviewed for technical accuracy and is approved for editing.

b. Use Distribution Statement A, X, B, C, D, E, F or X for the reason checked on the continuation of this form.

1. If Statement A is selected, the report will be released to the National Technical Information Service (NTIS) for sale to the general public. Only unclassified reports whose distribution is not limited or controlled in any way are released to NTIS.

2. If Statement B, C, D, E, F, or X is selected, the report will be released to the Defense Technical Information Center (OTIC) which will limit distribution according to the conditions indicated in the statement.

c. The distribution list for this report has been reviewed for accuracy and completeness.

Douglas Troast

[Date]

Division Chief

PART 2. To be signed either when draft report is submitted or after review of reproduction copy.

This report is approved for publication.

Douglas Troast

[Date]

Division Chief

SMCAR Form 49, 20 Dec 06 supersedes SMCAR Form 49, 1 Nov 94.

Andrew Pskowski 11/27/12