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Summary

Current challenges and problems pertaining to the development and application of the
DSMC method for high-altitude aerodynamics are discussed. Attention is paid to issues
related to the efficiency and accuracy of the method in the near-continuum regime, as
well as its use for modeling of rarefied flows with real gas effects. Accurate prediction
of force and heat aerodynamic characteristics of reentry vehicles and spacecraft requires
comprehensive investigation of hypersonic flows in the near-continuum regime. A pow-
erful software system SMILE, which uses the direct simulation Monte Carlo method as
a numerical approach and is built basing on the contemporary knowledge in this field,
is developed to solve advanced problems of high-altitude aerothermodynamics. Effective
numerical algorithms and physically grounded models of real gas effects are implemented
in SMILE. Aerodynamics of promising reentry capsule in the near-continuum regime is
considered as an example.
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1 INTRODUCTION

1 Introduction

The study of physical phenomena in rarefied nonequilibrium flows is a challenging
problem directly related to the development of new aerospace technologies. Rarefied gas
dynamics, that deals with these phenomena, is the synthesis of a great number of funda-
mental problems such as molecular collision dynamics and energy transfer phenomena in
collisions, gas-surface interactions, condensation and evaporation, plume and expansion
flows, and many others. All these problems are in close connection with applied, prac-
tical issues that can be conventionally divided into two groups. The first group covers
the questions related to aerodynamic calculations of hypersonic flight of vehicles at high
altitudes, the second group being mainly represented by the problems that involve the
calculation of nozzle flows in thrusters and jets exhausting into vacuum and interacting
with the surface of space objects.

Substantial difficulties arising in the study of such flows are caused by both the prob-
lems related to rarefaction and physico-chemical effects. It is commonly known that
experimental simulation of nonequilibrium low-density flows is rather problematic and
expensive. The difficulties of experimental modeling have stimulated an intense develop-
ment of various approaches for numerical simulation of these flows. Presently there are
numerous numerical approaches for solving the problems of rarefied gas dynamics, and
the choice of this or that approach depends usually on the flow rarefaction, the problem
dimension and the presence of real gas effects.

The choice of the numerical approach to be used to model rarefied nonequilibrium
flows greatly depends on the extent of flow rarefaction. For near-continuum flows, it is
usually sufficient to take into account the initial effects of rarefaction through the bound-
ary conditions of slip velocity and temperature jump on the surface. The Navier-Stokes
or viscous shock layer equations are commonly used with these boundary conditions. The
Navier-Stokes equations can be derived from the Boltzmann equation under the assump-
tion of small deviation of the distribution function from equilibrium. Therefore, they
become unsuitable for studying rarefied flows where the distribution function becomes
considerably nonequilibrium.

To study rarefied flows with a significant degree of nonequilibrium, the Direct Simu-
lation Monte Carlo (DSMC) method is usually employed. This method has become the
main technique for studying complex multidimensional rarefied flows. It has been success-
fully applied over the last four decades to model various flow phenomena and gas dynamic
problems. The method has gradually evolved to the stage where its application to cal-
culate complex three- dimensional flows is almost straightforward. The extended area of
applicability of the DSMC method is from the near-continuum regime where it overlaps
with that of the continuum approaches, to the free-molecular regime. In practice, the
DSMC method is computationally intensive compared with its continuum counterparts.
However, with increasing capabilities of modern parallel computers this method acquires
new areas of application, such as modeling of internal and external near-continuum flows,
detailed study of different three-dimensional problems with real gas effects, and others.

The Laboratory of Computational Aerodynamics from the Khristianovich Institute of
Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of
Sciences has more than decade-long experience in the development of the DSMC method.
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2 CONCEPTUAL ISSUES OF THE DSMC METHOD

The result of these efforts is a computational system called SMILE (Statistical Modeling
In Low-Density Environment) capable of solving a very wide range of basic and applied
problems. The SMILE system provides a complete lifecycle of computations starting from
a geometry model, pre-processing, going through the computation proper, and finishing
with post-processing and presentation of results. All SMILE subsystems have a Graphic
User Interface (GUI), which makes them user-friendly and easy to use. The SMILE
core code is written in FORTRAN90 and has no memory limitations specific to static
FORTRAN programs. The user interface of the system is written in C++ and uses a
free cross-platform wxWidgets GUI library. The same theoretical basis (majorant colli-
sion frequency schemes) is used to develop more advanced software systems RGDAS and
SMILE++.

The principal objectives of the paper are to analyze the modern status of the DSMC
method, outline promising directions of method development, discuss problems that may
be encountered, and give possible ways to overcome these problems. The paper discusses
modeling of real gas effects, the numerical accuracy issues for the DSMC method, and
application of the SMILE software system for studying promising capsule aerodynamics.

2 Conceptual issues of the DSMC method

The DSMC method is traditionally considered as a method of statistical simulation
of the behavior of a great number of simulated gas molecules. Usually the number of
simulated particles is large enough (∼ 105 − 108), but this is extremely small in com-
parison with the number of real molecules. Each simulated particle is then regarded as
representing an appropriate number of actual molecules, Fnum.

The main principle of DSMC is the splitting of continuous process of molecular motion
and collisions into two successive stages at the time step ∆t. The computational domain
is divided into cells of size ∆x such that the variation of the flow parameters in every cell
is small. The time step ∆t should be small as compared with the mean collision time τλ.
Free motion of molecules and their collisions are considered successively at this time step
∆t:

1. Collisions of particles belonging to the given cell in each cell of are carried out inde-
pendently in each cell of physical space, i.e. the collisions of particles in the neighboring
cells are not considered. Since the distribution function variation is supposed small in the
cell, when a pair of particles for collision is chosen the relative distance between them is
not taken into account. The post-collision velocities are calculated in accordance with the
conservation laws of linear momentum and energy.

2. All molecules located in the computational domain are displaced by the distance
determined by their velocities at the moment and by the time step ∆t. If a molecule leaves
the computational domain, then its velocity is recomputed according to the boundary
conditions. At the same step ∆t new particles entering the computational domain are
generated in accordance with the distribution function specified at the domain boundaries.

Thus, the following principals steps are specified in the DSMC procedure:

• entering new molecules
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2 CONCEPTUAL ISSUES OF THE DSMC METHOD

• molecular motion

• gas/surface collisions

• indexing of molecules over collision cells

• collisions

• sampling of macroparameters

After finishing computation, the results of computations are processed to obtain the
flowfields of gas dynamics parameters, total and distributed surface quantities. The main
steps of the DSMC technique are discussed below.

The state of each simulated particle is characterized by its coordinate r̄ and velocity
v̄. The state of the whole system of N particles is described by a 6N -dimensional vector
{R̄, V̄ } = {r̄1, v̄1, ..., r̄N , v̄N}. The evolution of such a system can be represented as a
jump-like motion of a point in the 6N -dimensional phase space. The DSMC method can
be then treated as statistical simulation of the 6N -dimensional random jump-like process.

In the traditional approach Bird [1] of constructing numerical schemes of the DSMC
method, the description of procedures for trajectory simulation of the random process is
based on physical concepts of rarefied gas and on physical assumptions that create the
basis for the phenomenological derivation of the Boltzmann equation.

A different approach was proposed by Ivanov and Rogasinsky [2] who constructed
numerical schemes for simulating a 6N -dimensional, continuous in time, random process
of spatially nonuniform evolution of a system of N particles. Majorant collision frequency
(MCF) schemes of the DSMC method were derived from the Kac [3] and Leontovich
[4] master kinetic equations (MKE). This is a linear integro-differential equation that
describes the time behavior of an N -particle gas model with binary collisions on the level
of the N -particle distribution function fN . The linear MKE may be transformed into
the nonlinear Boltzmann equation when N → ∞ and the molecular chaos condition is
satisfied (see, e.g., [5]). Since a finite number of simulated particles is used in the DSMC
simulations, it is natural to directly use MKE for constructing numerical schemes of the
DSMC method. The procedure of constructing MCF schemes is described in detail in
Appendix 1.

The extension of the majorant collision frequency schemes obtained from MKE to the
case of multispecies chemically reacting mixtures is straightforward. It implies the change
in cross-sections of the corresponding inelastic processes and, hence, the change in the
collision algorithm only in the part that is related to the collision mechanics.

The procedures of modeling gas-surface interaction for two reflection models (specular-
diffuse and Nocilla models) can be found in Appendix 2.

Currently used numerical schemes of the DSMC method (NTC [1], NCT [6], MCF [2,
7]) are very close both in terms of efficiency and numerical implementation. At present,
there are no essential internal resources for increasing the efficiency of the collision stage
of the DSMC method. The main effort in improving the method efficiency is directed to
the study of influence of the grid type, the use of multi-zone approaches, variable time
step, grid adaption procedures, etc [8,9,38].
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3 REAL GAS EFFECT MODELS FOR DSMC

3 Real gas effect models for DSMC

An accurate prediction of high-temperature rarefied flows, such as those behind the
shock wave formed about a space vehicle at high altitudes, requires the use of adequate
models of physical and chemical processes - so-called real gas effects, and effective numer-
ical procedures. An example of the impact of these processes on the flow is given in Fig.
1 where the translational temperature fields about the Soyuz capsule at an altitude of 85
km are shown for nonreacting and reacting gases [9].

Two most important effects of chemical reactions are the decrease in temperature in
the shock front and a smaller shock stand-off distance. In conventional continuum gas

Figure 1: Translational temperature fields about a reentry capsule, al-
titude 85 km, velocity 8 km/s. Nonreacting (left) and reacting (right)
air.

dynamics the real gas effects are usually understood as such high-temperature phenomena
as molecular vibration, dissociation, ionization, surface chemical reactions, and radiation.
In describing the problems of rarefied gas dynamics, with a typical large, often of the
order of the reference flow scale, shock wave width and rarefaction effects exerting the
determining effect on the flow structure, it is convenient to consider the “real gas effects”
in a wider sense. As applied to kinetic methods based on the microscopic approach and
used for studying RGD problems, it seems natural to relate the real gas effects with all
phenomena associated with molecular collisions, namely, molecular interaction potential,
rotational degrees of freedom, vibrational degrees of freedom, chemical reactions in gas,
ionization, and radiation.

One of the most challenging problems remaining in terms of the method development
and improvement is related to the need to effectively and reliably simulate processes of
energy transfer between internal and translational modes, chemical reactions, ionization,
and radiation. The presence of one or more of these processes drastically changes flow
properties such as density and temperature, and the development of adequate models is
therefore very important. A number of DSMC techniques and models were suggested
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3 REAL GAS EFFECT MODELS FOR DSMC

and used in the last decade that cover different aspects of the problem (see, for example,
Refs. [10]-[14] and references therein). Currently, there is a lack of models that are
general enough to treat various molecular interactions and processes, sufficiently accurate
to capture complex flow physics, easy to implement, and computationally efficient to be
applied to calculate near-continuum flows.

In what follows we would like to mention the collision models that are both compu-
tationally efficient, easy to implement, and sufficiently general to be applied for any type
of interactions between atoms and diatomic and polyatomic molecules. The Variable Soft
Sphere (VSS) model [15] is one of the most widely used models of intermolecular inter-
action. In this model the total collision cross-section depends on the relative collision
velocity, and two parameters of the model are determined from the condition of coinci-
dence of diffusion and viscous cross-sections of the VSS and the inverse-power potential
models. Even though the model does not include the attractive part of the potential, it is
applicable for most conditions where the DSMC is used. Rotational energy distribution
is conventionally assumed to be continuous, which makes the energy transfer algorithms
simpler, especially for polyatomic molecules.

The discrete description was suggested in [16] for different types of polyatomic molecules.
The traditional Larsen-Borgnakke (LB) model [17] is most widely used in the DSMC
method to describe the energy exchange between the translational and rotational modes
of colliding particles. In this model, the energy spectrum of rotational mode is assumed
continuous, and some fraction ϕ = 1/ZR of the total number of collisions takes place
with the energy exchange between translational and rotational degrees of freedom. The
post-collision rotational and relative translational energies are simulated in accordance
with the local equilibrium distribution functions and are proportional to the number of
degrees of freedom of the mode. Several improvements were suggested for the LB model
to make the rotational relaxation rate in the DSMC modeling correspond to the contin-
uum and experimental rates. First, temperature-dependent rotational collision number
was suggested [12]. Then, a correction factor was derived that establishes a relation of
ZR employed in the DSMC method with a continuum analog used in the Jeans relax-
ation equation [18]. Finally, a particle selection methodology was proposed [19], which
prohibits multiple relaxation events during a single collision, and matches Jeans equation
for general gas mixtures. In contrast to the traditional LB model, the particle selection
methodology prohibiting multiple relaxation events does not include directly rotational-
rotational energy transfer. Note that this type of energy transfer has not been studied
separately in the DSMC method. Since the translational-rotational energy transfer is fast,
and rotational distribution is usually less important for chemical reactions and radiative
processes than vibrational distribution, accurate modeling of the translational-rotational
energy transfer is sufficient for most cases.

The spacing between rotational energy levels is small, and the continuum model of ro-
tational mode approximates well the discrete distribution [20]. It is therefore reasonable to
use the continuum Larsen-Borgnakke model with the temperature-dependent relaxation
number, the correction factor [18] and a selection methodology that prohibits multiple
relaxation events. Two models for the vibrational energy distributions, continuous and
discrete, are traditionally used in the DSMC method. Generally, the continuity of the
vibrational energy mode may be a too rough allowance, since the vibrational spectrum of
real molecules is characterized by large gaps between the neighboring energy levels. Be-
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3 REAL GAS EFFECT MODELS FOR DSMC

sides the physical reason, there are several numerical problems connected with the use of
the continuum vibrational energy spectra. These are the need for special cut-off parame-
ters for the LB model when the number of vibrational degrees of freedom is less than two,
additional assumptions that have to be used in the LB collision energy transfer modeling,
and an inaccurate shape of the internal energy distribution functions at equilibrium [20].
The last point is important for reactions whose cross-sections directly depend on vibra-
tional states (such as vibrationally favored reactions). Also, internal energy distribution
strongly affects the flow radiation. The discrete internal energy model does not have these
drawbacks, but requires a special correction procedure to be used for the chemical reac-
tion rates to follow the experimental rates expressed in the Arrhenius form. Many discrete
models for the translation-vibration energy transfer were suggested in the literature. They
differ considerably in the way of determining the vibrationally inelastic cross-sections. A
discrete version of the LB model is presented in [21]. In the model [22], the probability
of VT transitions is determined using the inverse Laplace transformation for a simple
harmonic oscillator from the temperature-dependent relaxation rate [23]. The approach
[24] is based on the use of the information theory for determining post-collision states. In
the model [25] the cross-sections for vibration-translation transitions are used, obtained
for an anharmonic oscillator from a quasi-classical approximation of the scattering theory.

The vibration-vibration energy transfer was also modeled in the DSMC method. We
mention here the model [26] where both vibration-translation and vibration-vibration
transitions for a simple harmonic oscillator have been considered. The vibration-vibration
energy exchange model based on the quasiclassical approach was developed in [25]. This
energy transfer process was found to be important for the vibrational populations in
hypersonic flows at high altitudes. All these and many other models have been developed
only for diatomic molecules. Because of this, it seems most reasonable at present to
use the LB model with particle selection. Temperature-dependent vibrational relaxation
rate has to be specified using vibrational mode characteristic temperatures of polyatomic
molecules. A correction factor [27] has to be used that enables one to match the vibrational
relaxation rates in the DSMC modeling to the relaxation rate given by the Landau-Teller
equation. Note that the LB model was not yet applied to vibration-vibration energy
transfer. Such an application would require to specify the corresponding collision numbers
that may not be known for many molecular systems.

The DSMC method has been used for calculating rarefied hypersonic chemically re-
acting flows for more than two decades. The major problem in generating the model
of chemical reactions is the determination of energy-dependent cross-sections of chemi-
cal reactions. Note here that the temperature dependences of chemical reaction rates,
traditional for the continuum approach, cannot be applied to the DSMC method, and
energy-dependent reaction cross-sections have to be used. As the exact expressions for
these cross-sections are not available now even for simple dissociation reactions in air,
some approximations have to be employed. The first simplistic models have been replaced
by the total collision energy (TCE) model [28] built on the basis of collision theory for
chemical reactions. This model is efficient and is used presently for calculating two- and
three-dimensional flows. It employs the major assumption that the reaction probability
depends on the total collision energy. A specific form of this dependence is assumed that
allows analytic determination of unknown coefficients. The derivation uses the reaction
rate coefficient in Arrhenius form and the Hinshelwood expression for the equilibrium en-
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4 DSMC VERSUS CONTINUUM CFD

ergy distribution function that implies continuous distribution of internal modes [28]. The
problems inherent in continuous vibrational energy models that were discussed above lead
to the conclusion that the use of discrete models in the DSMC method is preferable. One
problem related to the use of discrete energy levels is that the existing chemical reaction
models derived for continuous internal energies need special modifications to be applied
for discrete energies. In this case, a correction procedure is necessary for the reaction rates
in the DSMC method match available experimental data. Such a correction procedure
was developed in [20]. It utilizes a Monte Carlo approach to find modified constants in
the reaction cross-section energy dependence, the use of which enables one to match the
original reaction rates at equilibrium.

The procedure is applied to the total collision energy model, but is generally applicable
to any reaction model based on the collision theory for chemical reactions. Several models
that include a direct dependence of the reaction cross-sections on the collider vibrational
energy (so-called vibration-dissociation coupling) were proposed earlier [10, 13, 14]. The
deficiency of these models is that they imply some fixed or variable parameters that
determine the extent of vibrational favoring. These parameters are extracted or verified
through comparison with available experimental data. Note that some reactions may not
have vibrational favoring, and therefore the model [28] may turn to be reasonable [29].

4 DSMC versus continuum CFD

The areas where the continuum and kinetic approaches are currently applied over-
lap in the regime of low Knudsen numbers. The recent experimental and computational
activity related to accurate prediction of laminar flow separation in the near-continuum
regime shows that even for non-reacting gases there are still problems of validation and
verification of numerical approaches that need to be resolved. Numerical analysis of such
flows is traditionally performed using Navier-Stokes (NS) equations, with the initial ef-
fects of rarefaction taken into account through the slip velocity and temperature jump.
The use of slip conditions is caused by the fact that rarefaction effects can be observed
for slender bodies even for rather high Reynolds numbers (Re = 20, 000 − 30, 000). The
state-of-the-art algorithms of the DSMC method (adaptive grids, variable time step, etc.)
allow one to simulate flows at such high Reynolds numbers. This makes realistic the
study of the applicability area of the continuum approach to model laminar separated
flows. The study was started in [30] and continued in [31] where a detailed numerical
modeling of an axisymmetric shock wave / laminar boundary layer interaction was per-
formed by the continuum (NS) and kinetic (DSMC) approaches for the ONERA R5Ch
wind tunnel conditions. The DSMC results showed the presence of a high slip velocity
and temperature jump near the wall. The application of slip conditions for the NS solver
has a substantial effect on the entire flow field and allows one to decrease the difference
between the continuum and DSMC results. The left part of Fig. 2 shows that the profile
of the gas velocity at the wall Ug obtained by the DSMC method is in excellent agreement
with the Ug profile calculated from the NS slip velocity using the solution for the velocity
distribution across the Knudsen layer [32]. However, the NS solver with slip conditions
predicts a larger length of the separation region than the DSMC method. To eliminate

RTO-EN-AVT-194 18 - 9 

 



4 DSMC VERSUS CONTINUUM CFD

Figure 2: Slip and gas NS velocities and gas DSMC velocity at the wall (left). Density
(center) and temperature (right) profiles for a monatomic gas.

the effect caused by different descriptions of translational/rotational energy exchange for
both methods, NS and DSMC simulations of a laminar separated flow of a monatomic gas
(argon, M = 10) were performed in [32]. The central part of Fig. 2 shows the comparison
of density profiles in the cross-section X/L = 0.3. The use of slip conditions for the NS
solver reduces the slope of the leading-edge shock wave and generally gives a good agree-
ment with the DSMC results. The comparison of temperature profiles (right part of Fig.
2) shows that the difference between the no-slip continuum and kinetic results reaches
40%. The use of the slip conditions allows one to obtain the temperature near the body
surface that is very close to the DSMC values, and also decrease the difference inside the
boundary layer. Still, the temperatures inside the boundary layer for DSMC and NS with
slip conditions differ by about 20%. Figure 3 shows the distributed aerothermodynamic

Figure 3: Distributed surface characteristics for monatomic gas. Pressure coefficient (left),
skin friction coefficient (center), and Stanton number (right)

characteristics obtained using the continuum and kinetic approaches. The differences in
the pressure and skin friction coefficients and the Stanton number are mainly due to the
following two factors. First, the length of the separation region is different. An earlier
flow separation in NS results leads to a lower pressure peak and smaller heat flux on the
flare surface. Second, there is a strong flow nonequilibrium near the leading edge. This
is why the NS solver with either no-slip or slip conditions predicts a significantly larger
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5 NUMERICAL ACCURACY OF THE DSMC METHOD

heat flux (up to a factor of four) than the DSMC method in the vicinity of the leading
edge. This also leads to a significant decrease in the flow temperature downstream and
an earlier separation of the boundary layer. The studies conducted for a hypersonic flow
around a hollow-cylinder flare clearly showed that the Navier-Stokes equations, even with
slip conditions, are inapplicable in the vicinity of the leading edge. The flow near the
leading edge affects the flow structure downstream, for example, leads to an increase in
the separation region length.

5 Numerical accuracy of the DSMC method

An important problem that arises when modeling near-continuum flows is the eval-
uation of the numerical accuracy. Applying the DSMC method to compute transitional
flows (Kn ∼ 1), one can usually perform additional computations on a finer grid and
with a larger number of simulated molecules in order to analyze the numerical accuracy.
For a near-continuum regime, the computations are often conducted using all available
computer resources, and no additional accuracy-establishing computations are possible in
this case. The question is therefore what is the accuracy of results obtained, and how
far they are from the solution of the Boltzmann equation. This question is especially
important for the near-continuum flows.

The sources of numerical error have been analyzed in the continuum CFD for many
years. There are many techniques available such as the analysis of truncation errors,
the grid convergence study, etc., that enable one to estimate the accuracy of the results.
There is nothing similar for the DSMC method. The accuracy analysis in DSMC is
complicated by the presence of different errors that may be classified as follows: (1)
statistical errors; (2) spatial resolution and time step errors; (3) errors due to the finite
number of simulated molecules. The complete analysis of the accuracy should include the
derivation of the governing equation that describes the modeling process, and establishing
of the connection between this equation and the Boltzmann equation. This connection
can hardly be established for the NTC and NCT schemes because these schemes were
formulated at the phenomenological level.

The MFS scheme was derived fromMKE, which describes the behavior of anN -particle
gas model with binary collisions. This equation may be transformed to the Boltzmann
equation when N → ∞ and the molecular chaos condition is satisfied. Let us examine
the molecular chaos requirement in more detail. A finite number of molecules N is always
used in DSMC modeling. Therefore, there is a statistical dependence between simulated
particles [33]. The magnitude of this dependence depends on the total number of simulated
molecules in the system, and generally decreases when the number of molecules increases.
It is necessary to estimate the level of statistical dependence and its contribution to the
results of DSMC computation. A significant level of statistical dependence, or particle
correlations, means that the molecular chaos hypothesis, used in the Boltzmann equation,
is no longer valid. The molecular chaos hypothesis may be written in terms of one- and
two-particle distribution functions, f1 and f2 , as

f2(νA, νB) = f1(νA)f1(νB),
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5 NUMERICAL ACCURACY OF THE DSMC METHOD

where νA and νB are the velocities of the two collision partners, A and B. For some
function of velocity, h ≡ h(ν), we can write

∫ ∞

−∞

f2(νA, νB)h(νA)h(νB)dνAdνB =

∫ ∞

−∞

f1(νA)h(νA)dνA

∫ ∞

−∞

f1(νB)h(νB)dνB

This expression may be rewritten as

〈h(νA)h(νB)〉 = 〈h(νA)〉〈h(νB)〉

where 〈...〉 denotes averaging. As was mentioned above, the molecular chaos hypothesis is
not strictly valid for a finite number of particles, which means that the above expression
does not hold. Let us introduce the following correlator G2,

G2 =
〈h(νA)h(νB)〉
〈h(νA)〉〈h(νB)〉

− 1

Obviously, this correlator may serve as an indicator of the presence of molecular corre-
lations. The smaller the correlations, the closer G2 is to 0. The value of G2 may be
directly calculated in the DSMC method over all cells in the computational domain, and
h(ν) = V 2

x is usually used for this purpose [34], [35]. An additional criterion that allows
for a practical verification of the presence of the statistical dependence between simu-
lated particles is the relative number of repeated collisions [34]. Repeated collisions are
collisions between the same pair of particles during their lifetime in the computational
domain. The number of repeated collisions is directly related to the number of particles
Nλ in a volume with the linear size equal to the local mean free path. If Nλ > 1, one can
say that the simulation results are close to the solution of the Boltzmann equation. Let

Figure 4: 1D shock wave, monatomic gas. Density n and parallel temperature Tx (left).
Correlator G2(V 2

x ) and repeated collision fraction (right).

us consider a 1D shock wave structure as an example where the G2 correlator and the
repeated collision number are used. A monatomic gas of hard sphere molecules is used
with M = 8. The computational domain was 15 upstream mean free paths. Three cases
were considered here. 20 particles in the upstream cells was used in Case 1 (baseline case),
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5 NUMERICAL ACCURACY OF THE DSMC METHOD

with the cell size L of 0.25 of the upstream mean free path λ. For Case 2, 2 particles per
upstream cell was used with L = 0.25λ. The number of particles for case 3 was the same
as in Case 1, but L = 0.00625λ. The average number of particles in the upstream cells
was therefore 0.5 in this case.

The density and parallel temperature distributions inside the shock wave are shown
in Fig. 4 (left). The profiles are very similar for Cases 1 and 3, and somewhat different
for Case 2. The G2 correlator and repeated collision fraction are given in Fig. 4 (right).
For Case 1, the values of G2 are close to zero, being less than 0.01 even in the region
of strong nonequilibrium, and the number of repeated collisions is not greater than 2
percent of the total number of collisions. The values of the correlator and repeated
collision fraction increase about ten times for Case 2 compared to case 1, even though the
collision frequency is the same since the MFS scheme is used. The increase in the particle
statistical correlations is the reason for the difference in the macroparameters observed
in Fig. 4 (left). Obviously, the difference is due to the decrease in the total number of
simulated particles in the computational domain. We can therefore state that an accurate
calculation of the collision frequency in a cell is not sufficient for obtaining an accurate
result. An interesting fact is that the reduction of the cell size while preserving the total
number of molecules (Cases 1 and 3) does not change macroparameters and only slightly
changes the correlator and the number of repeated collisions. This shows that the number
of particles in cell is not a determining factor for MFS. The important parameters are the
total number of particles in the system and Nλ.

This fact is illustrated below for a flow over a cylinder in CO2/N2 mixture [36]. A
free-stream velocity of 7400 m/s, temperature of 137.4 K and Knudsen number Kn = 0.01
were taken. The mole fractions of CO2 and N2 were assumed to be 0.9537 and 0.0463,
respectively. A diffuse reflection with complete energy accommodation was employed
at the surface with temperature value of 1000 K. The computations were performed for
different numbers of simulated molecules in the computational domain in order to examine
the impact of Nλ on results. An adaptive grid refinement technique was used to satisfy
the Knc > 1 condition in the entire computational domain. The profiles of translational
and vibrational temperatures along the stagnation line are plotted in Fig. 5 (X = 0
corresponds to the stagnation point). The results are shown for different values of Nλ

in the free stream which corresponds to different values of the total number of simulated
particles. The Nλ distribution along the stagnation line is also presented here. The local
Nλ is not less than 1 for the free stream Nλ = 20, and this case is therefore considered
to be the reference. It is seen that for Nλ = 2.5 in the free stream the results agree with
the reference case inside the shock wave, but are somewhat different near the stagnation
point. This is because Nλ in this region decreases sharply and becomes less than 1. When
the free stream Nλ is further decreased, the results are relatively close to the reference
case inside the shock, but significantly differ inside the boundary layer. It should be noted
that the impact of Nλ is more pronounced for the vibrational temperature than for the
translational one. The results presented show that the condition Nλ > 1 must be satisfied
in DSMC simulations for the impact of particle correlations be insignificant.
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6 HIGH-ALTITUDE AEROTHERMODYNAMICS OF A PROMISING CAPSULE

Figure 5: Translational Tt (left) and vibrational Tv (center) temperatures and Nλ (right)
along the stagnation line for different free stream Nλ values.

6 High-altitude aerothermodynamics of a promising

capsule

PPTS (Prospective Piloted Transport System), unofficially called Rus, is a project be-
ing undertaken by the Russian Federal Space Agency to develop a new-generation manned
spacecraft. Its official name is Pilotiruemyi Transportny Korabl Novogo Pokoleniya or
PTK NP meaning New Generation Piloted Transport Ship. The goal of the project is to
develop a new-generation spacecraft to replace the aging Soyuz which was developed by
the former Soviet Union more than forty years ago.

At the initial stage of spacecraft design, it is necessary to study its aerothermodynamic
characteristics in a wide range of free-stream parameters. During de-orbiting, the vehicle
passes through the free-molecular flow, then through the transitional zone, and the flight
is finalized in the continuum flow. The loads on the vehicle during its descent are consid-
erably changing. The efficiency of control surfaces is also changing. To predict the zone
of spacecraft landing, one should know the aerodynamic characteristics of the vehicle at
all stages of its descent. The results of statistical simulation of aerothermodynamics of a
promising space capsule at altitudes from 120 to 60 km are presented below (for details,
see [47]).

The aerothermodynamic parameters of the space vehicle at altitudes from 120 to 60
km were studied by the local bridging method. Standard atmosphere parameters were
taken for computations from GOST 4401-81. The DSMC method was used to model the
flow at several altitudes with the parameters listed in Table 1.

H, km 75 80 85 90 100 110
M∞ 25.9 26.5 27.2 27.3 26.3 22.5
T∞, K 208.4 198.6 189.0 186.7 196.6 255.5
ρ∞, kg/m3 ·106 39.9 18.5 8.21 3.42 0.56 0.093
Kn∞ 0.38 · 10−3 0.8 · 10−3 0.18 · 10−2 0.43 · 10−2 0.27 · 10−1 0.17

Table 1: Parameters of the atmosphere (GOST 4401-81)

The space vehicle considered is shaped similar to the Apollo capsule. The nose part is
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6 HIGH-ALTITUDE AEROTHERMODYNAMICS OF A PROMISING CAPSULE

spherical, and the rear part is beveled at an angle of 20◦. The vehicle geometry is shown in
Fig. 6. A qualitative difference from the Apollo capsule is the presence of trimming flaps.
One of the objectives of the present activities was to determine the changes in efficiency
of these flaps with variations of the angle of attack and with allowance for real gas effects.
The temperature of the entire body was assumed to be constant and equal to 1000 K.

The influence of chemical reactions proceeding in the flow on the efficiency of control
surfaces was determined in an axisymmetric formulation. As the axisymmetric formu-
lation allows us to obtain the aerodynamic characteristics of only those elements that
are obtained by means of rotation by 360◦, but the trimming flaps have finite size, their
contribution to the aerodynamic parameters was taken into account with the following
procedure: the aerodynamic loads (CX and CY ) on a circular flap were identified; then
the fraction of the loads on the flap in accordance with its angular size was calculated;
finally, the pitching moment generated by the flaps was found from the loads obtained
(CX flap and CY flap).

The DSMC computations were performed with the use of the SMILE software system
[7]. The internal energy exchange was modeled in accordance with the Larsen–Borgnakke
model. Chemical reactions that occur during particle collisions were also taken into ac-
count. Diffuse reflection from the surface with complete accommodation of energy was
assumed.

The computations were performed on clusters of the Interdepartmental Supercomputer
Center (Moscow, Russia) and of the Khristianovich Institute of Theoretical and Applied
Mechanics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Rus-
sia). Up to 128 processors were used. The computations at an altitude of 75 km required
approximately 7000 processor-hours.

The local bridging method used in this work is based on the technique proposed in [46].
The influence of the flow on an elementary area is described by the following formulas:

P = P0 + P1wn + P2w
2
n τ = τ0wt + τ1wnwt (1)

Here P and τ are the pressure and friction coefficients of aerodynamic forces normalized

to the dynamic pressure q = ρ∞V 2
∞

2
, ~w is the normalized free-stream velocity vector,

and wn and wt are the normal and tangential components of the velocity vector to the
surface. The parameters P0, P1, P2, τ0, and τ1 are calculated using the following formulas:

P0 = P id
0 + (P fm

0 − P id
0 )FP0 P1 = P fm

1 FP2 P2 = P id
2 + (P fm

2 − P id
2 )FP2 (2)

τ0 = τ fm0 Fτ0 τ1 = τ fm1 Fτ1 (3)

(~n is the normal vector to the surface and ~τ is the tangential vector). These vectors lie in
one plane.

The bridging coefficients FP0, FP1, FP2, Fτ1, and Fτ1 are used to take into account
the influence of the free-molecular or continuum flow regime under particular conditions.

The formulas for calculating the bridging functions FP and Fτ were derived semi-
empirically in [46] Here we give their final form:
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6 HIGH-ALTITUDE AEROTHERMODYNAMICS OF A PROMISING CAPSULE

Figure 6: Space vehicle geometry

FP0 =
1

a
√
Re0 + exp(−bRe0)

, where (4)

a =
(γ − 1)

√
tw +M−1

√

2(γ − 1)

(0.56 + 1.2tw)(M + 2.15)
b = 0.35 + 0.005M (5)

FP1 = FP2 = exp
(

−(0.125 + 0.078tw)Re0 · 10−1.8(1−sinαl)
2

)

(6)

Fτ0 = [a1Re0 + exp(−b1Re0)]−3/4 , where (7)

a1 =
γ − 1

2

[
√

πγ

2
M(0.208 + 0.341tw)

]−3/4

b1 = 0.213− 0.133tw (8)

Fτ1 =
[

0.145R + exp
(

7.2 · 10−3R− 1.6 · 10−5R2
)]−1/2

, where (9)

R = (0.75tw + 0.25)−2/3 Re0 · 10−2.4(1−sinαl)
3

(10)

Figure 7 shows the pressure fields calculated for non-deflected control flaps and for flaps
deflected by 30◦. The calculations were performed for a gas without chemical reactions. As
it could be expected, the flap influence extends to a fairly small distance upstream, but the
field in the wake behind the vehicle is noticeably changed. Thus, for instance, the pressure
in the middle of the vehicle base area is approximately 90 Pa for the non-deflected flap
and about 50 Pa for the flap deflected by 30◦. In a hypersonic flow (M = 25.9), the base
pressure does not exert any significant influence on the values of the total aerodynamic
coefficients. Flap deflection increases the drag coefficient CD from 1.50 to 1.54. The lift
coefficient is CL = 0.103 for the flap deflected by 30◦.

The effect of chemical reactions on the flow field is illustrated in Fig. 8, which shows
the pressure fields around the space vehicle obtained in a chemically reacting flow (upper
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P, Pa

3.254e+00
6.779e+00
1.061e+01
1.479e+01
1.937e+01
2.440e+01
2.997e+01
3.616e+01
4.307e+01
5.084e+01
5.966e+01
6.973e+01
8.135e+01
9.491e+01
1.109e+02
1.302e+02
1.537e+02
1.830e+02
2.208e+02
2.712e+02
3.417e+02
4.474e+02
6.237e+02
9.762e+02

Figure 7: Pressure fields. Altitude 75 km. Chemically inert gas. Non-deflected flap
(upper) and flap deflected by 30◦(downer).

figure) and in a chemically inert gas (lower figure) for the flap deflected by 30◦. The
calculations were performed for an altitude of 75 km. It is seen that the flow fields are
drastically different in the entire computational domain. Indeed, as the major part of the
free-stream energy is spent on dissociation of diatomic molecules, the flow temperature in
the case of a chemically reacting gas is substantially lower than the temperature obtained
with the chemical reactions being ignored. In addition to temperature fields, the Mach
number fields are also essentially different. Therefore, we can conclude that the entire
flow structure and the shock waves near the vehicle are formed in a different manner.

P, Pa

3.246e+00
6.762e+00
1.058e+01
1.475e+01
1.932e+01
2.434e+01
2.989e+01
3.606e+01
4.296e+01
5.071e+01
5.950e+01
6.955e+01
8.114e+01
9.467e+01
1.106e+02
1.298e+02
1.533e+02
1.826e+02
2.202e+02
2.705e+02
3.408e+02
4.463e+02
6.221e+02
9.737e+02

Figure 8: Pressure fields. Altitude 75 km. Flap deflection angle 30◦. Chemically reacting
gas (upper figure) and chemically inert gas (lower figure).

Figure 9 shows the distributions of temperature and pressure normalized to the free-
stream pressure over the stagnation lines at altitudes of 75, 85, and 90 km. The plots
show the stagnation lines obtained for chemically reacting and chemically inert gases.
The plots on the left show the free-stream parameters, and the plots on the right show
the situation with the body located at X = 0. It is seen that the temperature of the
flow behind the bow shock wave is substantially lower if chemical reactions are taken
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6 HIGH-ALTITUDE AEROTHERMODYNAMICS OF A PROMISING CAPSULE

into account. In addition, the stand-off distance of the bow shock wave is changed. The
influence of chemical reactions becomes attenuated with increasing flight altitude. Thus,
for instance, the difference in the shock-wave stand-off distance is 0.187 m at an altitude
of 75 km, 0.133 m at 85 km, and 0.093 m at 90 km.

At altitudes from 75 to 90 km, the space vehicle moves in the flow regime close to
continuum (the Knudsen number changes from 3.7 ·0−4 to 4.3 ·10−3). The drag coefficient
CD at altitudes from 75 to 90 km is almost independent of the flight altitude and the
presence of chemical reactions; its value is approximately 1.55. The heat-transfer coeffi-
cients Ch = Q

ρ∞V 3

2
S∗

obtained in computations with and without chemical reactions are

listed in Table 2. It is seen from the Table that the heat-transfer coefficient decreases by
more than a factor of 3 at an altitude of 75 km and by a factor of 2 at an altitude of 90
km if chemical reactions are taken into account.

To determine the efficiency of control surfaces, we performed three-dimensional com-
putations of spacecraft aerodynamics with the flap deflected by 0, 20◦, and 30◦at altitudes
from 80 to 110 km for angles of attack 0 and 40◦. As an example, Fig. 10 shows the pres-
sure field and the surface distribution of the pressure coefficient at an altitude of 80 km at
a zero angle of attack and 40◦. It is seen from these figures that the control flap induces
an extremely weak perturbation into the flow at a zero angle of attack, but its influence
on the flow field becomes fairly significant as the angle of attack is increased to 40◦.

The DSMC method is too expensive to perform a multiparametric study of aerother-
modynamic characteristics of the space vehicle at different angles of attack, different
altitudes, and different angles of flap deflection.

For this reason, another series of computations was performed by the engineering lo-
cal bridging method. To estimate their accuracy, the results of these computations were
compared with the DSMC results. Figure 11 shows the aerodynamic characteristics as
functions of the angle of attack for a flap deflection angle of 30◦. The curves show the
results for the angle of attack equal to 0 (1), 10 (2), 20 (3), 30 (4), and 40◦(5). Dahsed
curves 6 and 7 show the results of the 3D DSMC computations for the angles of attack
equal to 40◦and 0, respectively. There is no curve that refers to the zero angle of attack
in the CN(H) plot, because the normal force is close to zero at the zero angle of attack.

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 X, m0 

4000 

8000 

12000 

16000 
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24000 
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75_chem 75_non-chem      85_chem
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-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 X, m0 
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Figure 9: Overall temperature (left) and pressure (right) along the stagnation line at
different altitudes. Axisymmetric computation.
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6 HIGH-ALTITUDE AEROTHERMODYNAMICS OF A PROMISING CAPSULE

Altitude, km 75 80 85 90
Chemically reacting flow 1.30 · 10−2 2.11 · 10−2 3.38 · 10−2 6.18 · 10−2

Chemically inert flow 4.30 · 10−2 6.22 · 10−2 9.47 · 10−2 1.36 · 10−1

Table 2: Heat-transfer coefficient Ch of the vehicle. DSMC results. Non-deflected flaps.
Axisymmetric model

Figure 10: Pressure field and surface distribution of the pressure coefficient. Altitude 80
km. Flap deflection angle 30◦. Angle of attack: 0 (left) and 40◦(right)

The moment characteristic differs from zero, because the center of gravity is shifted down
on 0.156 m from the spacecraft axis. The curves obtained by the engineering method
describe the aerodynamic coefficients in the range of altitudes between 120 and 60 km.
The difference from the DSMC results is approximately 5% for the force characteristics.
The accuracy of the moment characteristics is lower, especially at an angle of attack of
40◦at altitudes of 100 and 110 km (about 50%). It should be mentioned, however, that the
value of the pitching moment coefficient is close to zero, and the large relative difference
actually means insignificant absolute difference in the pitching moment coefficient. The
DSMC computations reveal a significant effect of chemical reactions on the flow fields
around the spacecraft and on the heat-transfer coefficient at altitudes below 90 km. Be-
cause of considerable changes in the flow structure near the base surface of the spacecraft,

60 70 80 90 100 110 H, km0.8
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-0.04
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0.12

0.16Cm
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Figure 11: Axial and normal force coefficients and pitching moment coefficient versus
altitude for different angles of attack. Flap deflection angle 30◦. Angle of attack 0◦(1),
10◦(2), 20◦(3), 30◦(4), and 40◦(5); DSMC results for the angle of attack equal to 40◦(6)
and 0◦(7).
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there is a several-fold difference in the values of the pitching moment and the lift force of
the vehicle with deflected control surfaces, which were obtained with and without chem-
ical reactions. Simultaneously, chemical reactions proceeding in the gas exert practically
no effect on the drag coefficient. The changes in the aerodynamic characteristics with
variations of the angle of attack and the angle of flap deflection at altitudes from 80 to
110 km were computed by the DSMC method. The aerodynamic characteristics of the
spacecraft at altitudes from 120 to 60 km were also calculated by the engineering local
bridging method. Comparisons with the DSMC results showed that the axial and normal
force coefficients are calculated rather accurately (within 5%). The results obtained can
be used to design the thermal protection system of the space vehicle and to construct its
de-orbiting trajectory.

7 Prospects for the DSMC method

In conclusion, let us mention the directions for the DSMC method development that
we believe will be important in the next several years.

• near-continuum flows: modeling of flows at relatively high Reynolds numbers (20,000
and higher) using both conventional DSMC method and computationally efficient
hybrid approaches

• real gas effects: development of general models applicable for any type of molecules
that would accurately predict the energy transfer processes and chemical reactions

• numerical accuracy check: use of available and development of new criteria that
enable one to evaluate the numerical accuracy of results obtained, especially in the
near-continuum regime

• extensive validation of models and algorithms: comparison of DSMC results with
experimental data and contin- uum results in different gas dynamic situations for
inert and reacting gases

• efficient parallel algorithms with dynamic load balancing: these are critical for mod-
eling of computationally intensive two- and three-dimensional problems
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A APPENDIX 1. MAJORANT COLLISION FREQUENCY SCHEMES

A Appendix 1. Majorant collision frequency schemes

The DSMC method is traditionally considered as a method of statistical simulation of
the behavior of a great number of model gas molecules. Usually the number of simulated
particles is large enough (∼ 105−108), but this is extremely small in comparison with the
number of molecules that would be present in the real gas flow. Each simulated particle
is then regarded as representing an appropriate number of real molecules.

The state of each simulated particle is characterized by its coordinate r̄ and velocity v̄.
The state of the whole system of N particles is described by the 6N -dimensional vector
{R̄, V̄ } = {r̄1, v̄1, ..., r̄N , v̄N}. The evolution of such a system can be represented as a
jump-like motion of a point in the 6N -dimensional phase space. The DSMC method can
be then treated as statistical simulation of the 6N -dimensional random jump-like process.
For such a simulation, it is necessary to generate the trajectory of the random process.
To this end, it is needed to determine a technique for simulation of the initial trajectory
point of the random process (t0, R̄0, V̄0), transition in time between subsequent collisions
(free motion) from the state (t0, R̄0, V̄0) to the state (t1, R̄1, V̄0), and the changes in particle
velocities after collisions, i.e. the transition from the state (t1, R̄1, V̄0) to (t1, R̄1, V̄1). Then
transitions from state 1 to state 2, etc. are considered. The trajectory is terminated when
tn > T where T is the modeling time.

In the traditional approach of constructing numerical schemes of the DSMC method
[1], the description of procedures for trajectory simulation of the random process is based
on physical concepts of rarefied gas and on physical assumptions that form the basis for
the phenomenological derivation of the Boltzmann equation.

The kinetic theory of gases makes use of the so-called“master”kinetic equations (MKE)
[3,4] which describe the behavior of an N -particle gas model with binary collisions. These
linear MKE transform to the nonlinear Boltzmann equation when N → ∞ and molecular
chaos conditions are satisfied (see, e.g., [5] ). Since a finite number of simulated particles
is used in numerical simulation, it is natural to utilize directly these MKE equations for
constructing numerical schemes of the DSMC method. Such an approach to the derivation
of numerical schemes of the DSMC method was presented in [2,33,37].

First, let us consider a spatially-uniform rarefied gas flow, and present the main steps
of constructing numerical schemes directly from the MKE. In this case, it is possible to
use the Kac master equation [3]:

∂

∂t
fN(t, V̄ ) =

n

N

∑

i<j

∫ 2π

0

dǫij

∫ ∞

0

bijdbij|v̄i − v̄j|{fN(t, V̄ ′
ij)− fN(t, V̄ )}, (1)

where V̄ = (v̄1, . . . , v̄N) is a 3N -dimensional vector of particle velocities; V̄ ′
ij = (v̄1, . . . ,

v̄′i, . . . , v̄
′
j , . . . , v̄N); bij and ǫij are the impact parameters; (v̄′i, v̄

′
j) and (v̄i, v̄j) are the pre-

and post-collisional velocities of i, j molecules, n is the number density, and the sum over
i < j means the summation over N(N − 1)/2 collision pairs.

This is a linear integro-differential equation that describes the time behavior of the
N -particle distribution function fN(t, V̄ ),

∫

fN(t, V̄ )dV̄ = 1.
In accordance with the general theory of Monte Carlo methods [39,40], the following

approach is used: the transition from an integro-differential form of the master kinetic
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equation to a linear integral equation whose probability treatment serves as the basis for
constructing an appropriate random process of direct simulation.

Using a function w – the probability density of transition of a pair of particles from
(v̄′i, v̄

′
j) to (v̄i, v̄j), eqn (1) is written as

∂

∂t
fN(t, V̄ ) + ν(V̄ )fN(t, V̄ ) =

n

N

∑

i<j

∫

fN(t, V̄
′
ij)w(v̄

′
i, v̄

′
j → v̄i, v̄j)dv̄

′
idv̄

′
j, (2)

where ν(V̄ ) is the total collision frequency

ν(V̄ ) =
n

N

∑

i<j

∫

w(v̄′iv̄
′
j → v̄i, v̄j)dv̄

′
idv̄

′
j =

n

N

N
∑

l=j

∫

σ (gij, ξij) δ3
(

v̄i + v̄j − v̄′i − v̄′j
)

×

×δ1
(

(v̄i − v̄j)
2 −

(

v̄′i − v̄′j
)2

2

)

dv̄′idv̄
′
j =

n

N

∑

i<j

σt(gij)gij <∞ (3)

and g is the relative collision velocity, σt(gij) and σ(gij, ξij) are the total and differential
collision cross-sections, and χij is the deflection angle.

The total collision frequency (3) determines the time of the next collision in the system
and depends on velocities of all particles, and it is necessary to recalculate its value after
each collision. This is rather time-consuming if the number of particles N is large, since
the summation is performed over all possible N(N − 1)/2 collision pairs.

Let us introduce the majorant collision frequency [33]

νm =
N(N − 1)

2
[gσt(g)]max ≥ ν(V̄ ). (4)

Then we add to the both sides of eqn (2) the corresponding sides of the equality

[νm − ν(V̄ )]fN(t, V̄ ) =
n

N

∑

i<j

∫

fN(t, V̄
′)
{

[gσt(g)]max − g′ijσt(g
′
ij)
}

δ(V̄ − V̄ ′)dV̄ ′

and join the right-side integrals to have

∂

∂t
fN(t, V̄ ) + νmfN(t, V̄ ) =

=
n

N

∑

i<j

∫

fN(t, V̄
′)

{

[

[gσt(g)]max − g′ijσt(g
′
ij)
]

δ(v̄i−v̄′i)δ(v̄j−v̄′j)+w(v̄′i, v̄′j → v̄i, v̄j)

}

dv̄′idv̄
′
j.

(5)
Here δ denotes Dirac’s delta-function.

Let us introduce the function ψ(t, V̄ ) as

fN(t, V̄ )ν(V̄ ) =

∫ ∞

0

K2(t
′ → t|V̄ )ψ(t′, V̄ )dt′,

where K2 is the kernel

K2(t
′ → t|V̄ ) = θ(t− t′)ν(V̄ ) exp

{

−ν(V̄ )(t− t′)
}
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and θ is the Heaviside function, then eqn (5) may be transformed to an integral form

ψ(t, V̄ ) =

∫ ∞

0

∫

K21ψ(t
′, V̄ ′)dV̄ ′dt′ + δ(t)f 0

N(V̄ ) (6)

with the kernel
K21 = K2(t

′ → t|V̄ ′)K1(V̄
′ → V̄ ).

Here
K2(t

′ → t|V̄ ′) = θ(t− t′)νm exp{−νm(t− t′)},

K1(V̄
′ → V̄ ) =

∑

i<j

2

N(N − 1)
×

×
{

[

1−
g′ijσt(g

′
ij)

[gσt(g)]max

]

δ(v̄i− v̄′i)δ(v̄j− v̄′j)+
g′ijσt(g

′
ij)

[gσt(g)]max

w(v̄′i, v̄
′
j → v̄i, v̄j)

g′ijσt(g
′
ij)

}

N
∏

m=1

m 6=i,j

δ(v̄m− v̄′m).

The probability treatment of eqn (6) enables one to construct a random process that
describes the behavior of the N -particle gas model. To calculate the initial trajectory
point of this process, the free term from eqn (6) is used as the probability density, while
the kernel K21 yields the probability density of the transition from

the state (t′, V̄ ′) to the state (t, V̄ ).

This transition is modeled sequentially from

the state (t′, V̄ ′) to (t, V̄ ′)

in accordance with the distribution density K2(t
′ → t|V̄ ′).

Then, in compliance with the kernel K1(V̄
′ → V̄ ) the transition (t, V̄ ′) → (t, V̄ ) occurs.

For this purpose, a collisional pair (i, j) is uniformly chosen from N(N − 1)/2 pairs
(this is evidenced by the presence of the factor 2/N(N − 1) in the kernel K1). A collision
of this pair occurs with the probability

P =
g′ijσt(g

′
ij)

[gσt(g)]max
,

and with the probability (1 − P ) the velocities will not change (this is evidenced by the
presence of the product of two delta-functions in the first term of the kernel K1), i.e. a
fictitious collision occurs. The product of delta-functions inK1 (the last factor) shows that
after a collision of the pair (i, j) velocities of other particles remain unchanged, whereas
velocities (v̄′i, v̄

′
j) for real collisions are replaced by post-collisional velocities (v̄i, v̄j).

Collision impact parameters are selected with the probability

w(v̄′i, v̄
′
j → v̄i, v̄j)

g′ijσt(g
′
ij)

,

and the presence of two delta-functions δ3 and δ1 in w (see (3)) shows that new velocities
are calculated in accordance with momentum and energy conservation laws.
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Thus, all required procedures for trajectory simulation of the random process are
specified, and the numerical scheme of the DSMC method is constructed for a spatially
uniform case. Its computer cost is proportional to the number of simulated particles [2].

Usually in problems of rarefied gas dynamics it is required to determine gas parameters
at the time moment tk, which have the form

Ih(tk) =

∫

h(v̄)f1(tkv̄)dv̄ =

∫

H(V̄ )fNdV̄ ,

where h(v̄) is the function of velocity, and

H =
1

N

∑

h(v̄).

To calculate functionals, such as Ih(tk), it is possible to use the estimates known
from the general theory of Monte-Carlo methods [40]. In particular, a counterpart of the
non-biased absorption estimate has the form

ξψ = H(V̄s), s = max{n : tn < ti, n = 0, 1, ...}.

Approximate values Ĩh(tk) of the functionals Ih(tk) are given by

Ĩh(tk) = L−1

L
∑

l=1

ξψ(l),

where L is the number of independent N -particle trajectories of a random process. Fol-
lowing [33], it can be shown that the mathematical expectation is

E[ξψ] = Ih(tk),

and the variance of random variable ξψ is

V ar [ξΨ] = N−1

{
∫

h2 (v̄) f1 (t, v̄) dv̄ − I2h (tk)

}

+

+
N − 1

N

∫

h (v̄1)h (v̄2) {f2 (t, v̄1, v̄2)− f1 (t, v̄1) f (t, v̄2)} dv̄1dv̄2. (7)

It is known [39] that the variance of absorption estimate is limited and, by the central
limit theorem, the following inequality is valid:

∣

∣

∣

∣

∣

L−1

L
∑

l=1

ξlΨ − Ih (tk)

∣

∣

∣

∣

∣

≤ 3

√

V ar [ξΨ]

L

It is commonly believed that the statistical error of the DSMC method is determined
only by the overall volume of the sampling, (N · L). It follows from (7) that under the
condition of molecular chaos (f2 = f1f1) the second term vanishes, and the statistical
error is proportional to

1/
√
N · L.
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For finite N , however, there is always a statistical dependence of particles (see [33] for
more detail); and, hence, the statistical error is proportional to

1/
√
L.

To analyze the relationship between simulation results and the solution of the Boltz-
mann equation, it is necessary to consider the kinetic equation for the one-particle distri-
bution function

f1(t, v̄1) =

∫

fN(t, V̄N)dv̄2...dv̄N .

If Kac MKE equation (1) is integrated over (N−1) variables v2, ..., vN , then we obtain
a kinetic equation for the one-particle distribution function

∂

∂t
f1 =

N − 1

N
n

∫ 2π

0

dǫ

∫ ∞

0

b db×

×
∫

dv̄2|v̄1 − v̄2|(f1(v̄′1)f1(v̄′2)− f1(v̄1)f1(v̄2))+

+
N − 1

N
n

∫ 2π

0

dǫ

∫ ∞

0

b db

∫

dv̄2|v̄1 − v̄2|(g′2 − g2), (8)

where g2 = f2 − f1f1. In the general case the solution of equation (8) differs consider-
ably from the solution of the Boltzmann equation, since it depends on the variation of
the two-particle correlation function g2(t, v̄1, v̄2). Examples of the influence of statistical
dependence of particles on the simulation results were presented in [33]. Equation (8) is
transformed into the Boltzmann equation [41] when N → ∞ and the molecular chaos
hypothesis is valid. Strictly speaking, only under these conditions the results of statistical
simulation precisely correspond to the solution of the Boltzmann equation.

It is shown therefore, that the use of the MKE allows one to obtain not only a prob-
abilistic procedure for simulation of the random process and statistical estimates for cal-
culating the gas parameters, but also to assess the statistical error of results. In addition,
the relationship between the results of simulation of the N -particle gas model and the
solution of the Boltzmann equation has become more transparent.

The next step is to illustrate how the approach described can be extended to a spa-
tially nonuniform case. The traditional approach [1] employs the discretization of spatial-
temporal evolution of the N -particle gas model. A continuous process of motion and
collisions of molecules is uncoupled, the computational domain is divided into cells, and
the following processes are sequentially simulated at each step ∆t:

• spatially uniform relaxation of the gas in each cell;

• free-molecular movement of simulated particles over the distances appropriate to ∆t
with regard for boundary conditions.

A different approach was proposed by Ivanov and Rogasinsky [2] who constructed
numerical schemes for simulating a 6N -particle, continuous in time, random process of
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spatially nonuniform evolution of a system of N particles. These schemes were derived
directly from the Leontovich master kinetic equation [4]:

∂fN
∂t

+
N
∑

i=1

v̄i
∂fN
∂r̄i

fN =
∑

i<j

δ(r̄i − r̄j)

∫

{f ′
N − fN}|v̄i − v̄j|bijdbijdǫij. (9)

Here fN = fn(t, R̄, V̄ ), f ′
N = fn(t, R̄, V̄

′
ij) are the N -particle distribution functions, and

∫

fNdV̄ dR̄ = 1.

The relationship between this equation and spatially nonuniform Boltzmann equation
was studied in [5].

The presence of the delta-function in collision integral (9) indicates the collision “lo-
cality”, i.e. identical coordinates of colliding particles, like in the Boltzmann equation.
For numerical simulation one has to perform the regularization of collision integral (9),
i.e. introduce “smeared”particle interactions. Using the function wρ, the collision integral
in eqn (9) takes the form

JN =
N
∑

i=j

∫

(

f
′

N − fN

)

wρdv̄
′

idv̄
′

j,

where
wρ

(

v̄
′

i, v̄
′

j → v̄i, v̄j|r̄i, r̄j, ρ
)

is the probability density of transition of the pair (i, j) from the state (v̄′i, v̄
′
j) to the state

(v̄i, v̄j) with fixed values of particle coordinates (r̄i, r̄j) and regularization parameter ρ. In
this case,

wρ

(

v̄
′

i, v̄
′

j → v̄i, v̄j|r̄i, r̄j, ρ
)

→ δ (r̄i − r̄j)w
(

v̄
′

i, v̄
′

j → v̄i, v̄j

)

when ρ→ 0

Let us consider the following regularization

wρ

(

v̄
′

i, v̄
′

j → v̄i, v̄j|r̄i, r̄j , ρ
)

= h(r̄i, r̄j)w
(

v̄
′

i, v̄
′

j → v̄i, v̄j

)

,

h(ri, rj) =

{

ω−1
0 , if |r̄i − r̄j| < ρ,
0, if |r̄i − r̄j| > ρ,

ω0 =
4

3
π ρ3.

The parameter ρ defines the dimension of the “interaction region” of particles, and its
value depends on the required accuracy of calculation of flow parameters.

Then, the total collision frequency of an N -particle gas model is as follows

νρ(R̄, V̄ ) =
N
∑

i<j

h(r̄i, r̄j)gijσt(gij) <∞, (10)
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and it depends on the particle coordinates and velocities. As in the case of a uniform
gas model, the calculation of this collision frequency requires the summation of N(N −
1)/2 pairs with checking the distance between the particles, which is time-consuming.
Therefore, here it is again profitable to majorize the collision frequency, and contrary to
(4) not only with respect to the particle velocities, but also to the coordinates of colliding
particles.

Let us choose the majorant collision frequency in the form

νm =
N(N − 1)

2
ω−1
0 [gσt(g)]max ≥ ν(R̄, V̄ ), (11)

and transform the Leontovich equation, similar to the uniform case, to the following form:

∂fN
∂t

+
N
∑

i=1

v̄i
∂fN
∂r̄i

fN + νmfN =

=
N
∑

i<j

∫

f ′
N

{

h(r̄i, r̄j)ω
−1
0 w(v̄′i, v̄

′
j → v̄i, v̄j)+

+
(

[gσt(g)]maxω
−1
0 − h(r̄i, r̄j)ω

−1
0 gijσt(gij)

)

× δ(v̄′i − v̄′i)δ(v̄
′
j − v̄′j)

}

dv̄′idv̄j. (12)

The collision integral here consists of two parts corresponding to real (first term) and
fictitious (second term) collisions.

The use of such a majorant collision frequency νm allows one, therefore, to trans-
form the nonuniform problem under consideration to a spatially uniform problem with a
constant collision frequency.

If eqn (12) with appropriate initial and boundary conditions is transformed to a linear
integral equations (see details in [2]), then the probability treatment of the kernel and free
term of this equation allows for formulating a new scheme of direct statistical simulation
of spatially nonuniform rarefied gas flow with continuous time.

Below, the salient points in simulation of a 6N -dimensional trajectory of the random
process of the transition of an N -particle system from the state (t′, R̄′, V̄ ′) to (t, R̄, V̄ ) are
briefly described.

We shall not dwell here upon the simulation of particles entering the computational
domain and the interaction of particles with the body surface. All details can be found
in [2].

The time of the next collision t has the probability density distribution

νm exp {−νm(t− t′)} ,

while the probability density of the transition of a system of N particles from the state
(t′, R̄′, V̄ ′) to (t, R̄, V̄ ′) is the delta-function

δ(R̄− R̄′ − V̄ ′(t− t′)).

This means that all simulated particles move during the time t − t′ from point R̄′ to R̄
with velocities V̄ ′.
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An examination whether the collision is real is performed as follows:
if |r̄i− r̄j| > ρ then the collision is fictitious, else the collision is real with the probability

gijσt(gij)

[gσt(g)]max

and fictitious with the complementary probability.
Thus, all probabilistic procedures necessary for the numerical generation of the tra-

jectories of a 6N -dimensional random process of evolution of a spatially nonuniform N -
particle gas model are described.

For regularization of the collision integral in eqn (9) it is also possible to use a usual
approach of the DSMCmethod: the computational domain is divided into non-intersecting
cells dk, so that

M
∑

k=1

dk = V0,

and a collision may occur only between particles that belong to the same cell. Then the
majorant collision frequency has the form

νm =
N(N − 1)

2
[gσt(g)]maxd

−1
min, dmin = min(dk). (13)

A collision of the pair (i, j) randomly chosen from all N(N − 1)/2 pairs is fictitious if the
particles i and j are in different cells.

The use of the majorant collision principle for spatially nonuniform case with the
regularization of the type (11) or (13) allows one, therefore, to obtain a new exact time-
continuous scheme of the DSMC method.

A salient point that differs this scheme from the conventional DSMC method is the
transfer of all particles after each collision. Certainly, this is extremely expensive; there-
fore, only examples of using this algorithm for 1D rarefied gas dynamic problems (shock
wave structure and Couette flow) are now available. However, the mere fact that it is
possible to simulate rarefied gas flows, avoiding uncoupling of a continuous process of
molecular motion and collisions, is of principal importance. Possibly, this approach can
be used in future when the computer performance significantly increases.

It is natural to consider an approximate simulation scheme with separated and se-
quentially calculated collisions and motions of particles.

Let us introduce discrete time instants tn = n ·∆t and choose a step ∆t such that for
each τm, provided

∑

m τm ≤ ∆t, the following condition is valid:

νρ
(

R̄ + τm · V̄ , V̄ |ρ
)

≈ νρ
(

R̄, V̄ |ρ
)

This means that the change in collision probability of pairs due to particle displacement
is ignored during the time ∆t. Then an approximate simulation scheme is as follows: the
time between consecutive collisions is chosen on the basis of the probability density

νm exp {−νm(τ)} .

If
∑

τ lm < ∆t,
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then a collision (real or fictitious) occurs. All particles are displaced at a distance pro-
portional to ∆t one time, at the end of the step ∆t.

Numerical schemes with a continuous and discrete time that make use of the majorant
collision frequency with the regularization of types (11) or (13) do not employ the sorting
of particles over cells and, therefore, can be called free cell schemes. The determination
of distributed and total aerodynamic characteristics can be conducted directly using only
the collisions of a particle with the body surface. The calculation of flowfields requires a
grid for sampling the gas parameters, but this grid is not related to collision simulation.

The value of the free cell majorant can be reduced by sorting the particles over the
cells. Then

νm =
M
∑

k=1

νkm =
M
∑

k=1

Nk(Nk − 1)

2

[gσt(g)]
k
max

dk
, (14)

where Nk is the number of molecules in the k-th cell. Obviously,

νcellm < νfreecellm

and, hence, the computational cost of the cell scheme is smaller than that of the free cell
scheme. In the cell scheme, however, it is necessary to take into account the cost of particle
sorting over cells. This sorting is very simple in the case of a rectangular Cartesian grid,
but with using more complex adaptive body-fitted grids its cost drastically increases.

When using the cell regularization with the majorant (14), having determined the time
of the next collision τ lm at the step ∆t, one has to determine the number of the cell in
which this collision occurs. The cell number, k, is selected with the probability νkm/νm.
Then a pair (i, j) is uniformly chosen in the k-th cell from Nk particles. The collision is
real with the probability

gijσt(gij)

[gσt(g)]max

and fictitious with the complementary probability.
The mean number of collisions in a system of N particles during the time ∆t is νm∆t,

and each cell is chosen with the probability νkm/νm. Consequently, during the time ∆t
each cell is chosen νkm∆t times in the average. Then for νkm∆t ≫ 1 there is no need to
sample the cell number, and the usual sequential computation of collisions over all cells
can be employed.

The scheme that uses the cell regularization with particle sorting and probabilistic
choice of the cell number where a collision will occur can be called a cell majorant collision
frequency scheme.

Our experience of using the cell and free cell schemes, which has been accumulated
up to now, shows that these schemes should not be set in opposition. Vice versa, it is
desirable to use them together. For this purpose, the computational domain is divided
into uniform Cartesian cells with the linear dimension of the order of λ∞, and the cell
scheme is used there. In flow areas where the local mean free path strongly decreases and
in the vicinity of the body surface, the free cell scheme is used with a small regularization
parameter in order to increase the spatial collision resolution.

Now a few words about the influence of the finite number of simulated particles on
the results of computations. In the nonuniform case, the main criterion that allows for
a practical verification of the presence of a statistical dependence between the simulated
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particles is the relative number of repeated collisions. Here, repeated collisions are colli-
sions between the same pair of particles during their lifetime in the computational domain.
This number is directly related to the number of particles Nλ in a volume with linear size
of the local mean free path. If Nλ ≥ 1, we can definitely say that the simulation results
are close to the solution of the Boltzmann equation.

This is certainly only an intuitive, experience-based criterion. A more detailed study
of the influence of statistical dependence with the use of autocorrelation functions and
the number of repeated collisions can be found in [42].

The extension of the majorant collision frequency schemes, directly obtained from the
MKE, to the case of multi-species chemically reacting mixtures is straightforward. It
implies the change in cross-sections of the corresponding inelastic processes and, hence,
the change in the collisional algorithm only in its part that refers to collision mechanics.
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A Appendix 2. Gas/surface interaction models

Calculation of aerodynamic forces by the DSMC method requires setting the veloc-
ity distribution functions for molecules reflected from the object surface. A simplified
representation of this function is used, which must take into account the major features
of gas-surface interaction which have been revealed in experiments (force action, angu-
lar distribution of molecules escaped), on the one side, and it must be simple enough in
application, on the other side.

The main requirement of the surface properties definition is to introduce for every
element of the space object the following surface properties:

1. Wall temperature

2. Scheme of gas-surface interaction (Maxwell or Nocilla) model, accommodation and
interaction coefficients.

If a space object consists of several hundred or thousand elements it is not convenient
for user to introduce or edit the properties of each element. So a procedure was found to
give the user a fast possibility for introducing and editing with a maximum flexibility:

1. Setting surface properties for the geometric model. For each compound and element
a list of surface properties can be assigned.

2. Introducing and checking the surface properties of a compound. The system shows
the actual content of this compound and to each element surface properties can be as-
signed.

3. To check the correct settings of the surface properties the system provides a visu-
alization tool.

One of the oldest and most widely used distribution functions for the reflected molecules
is due to Maxwell [43].

It is constructed on the assumption that a fraction 1− σ of the molecules is reflected
from the surface in a specular fashion, while the fraction σ is re-emitted diffusely, with
the Maxwellian distribution:

fr(~r, ~ξr) = (1− σ) fi (~r, ~ξr − 2(~ξr · ~n)~n) + σ π−3/2 c′
−3
r exp

{

−
~ξ2r
c′2r

}

where ~ξr is the reflected velocity ~n is the external normal of the surface in point ~r, c′r is
the most probable speed at the temperature Tr.

The parameter σ is called the tangential momentum accommodation coefficient. Ev-
idently, for completely specular reflection, σ = 0, while for complete diffuse reflection,
σ = 1.

This implementation of the specular-diffuse scheme implies either specular or diffuse
reflection of particles. Therefore, at first, each particle is sampled to experience a par-
ticular type of reflection. If the pseudo-random number is smaller than σ, the particle
experiences diffuse reflection; otherwise, it experiences specular reflection.

In the case of specular reflection, the velocity component normal to the surface changes
its sign, and the tangential components of velocity remain unchanged.
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The velocity of diffusely reflected molecules is sampled in the local polar coordinate
system, directed along the outer normal of the to surface of the vehicle, in the following
manner:

| ~ξr |= c′r
√

− ln(R1R2);

cos(ψ) =
√

R3;

φ = 2π R4,

where | ~ξr | - module of the velocity of reflected particle; ψ, φ - polar and azimuthal angles
and R1, R2, R3, R4 are random numbers;

Following ref.[43] an energy accommodation coefficient σE = Ei−Er

Ei−Ew
is used. When

the accommodation coefficient σE = 0 then the molecules don’t exchange energy with the
wall, and σE = 1 if the incident molecules reached thermal equilibrium with the wall.

If we write the energy of a molecule in terms of its velocity, Eq. A takes the form:

σE =
ξ2i − V 2

r

ξ2i − c′2r
;

accordingly, the value of velocity with which the particles are reflected is written as

Vr =
√

(1− σE)ξ2i + σEc′
2
r

Thus, for each diffusely reflected molecule, the absolute value of its sampled velocity
| ~ξr | should be corrected by the coefficient

k =
Vr
c′r

=
√

(1− σE)ξ2i /c
′2
r + σE,

and hence

| ~ξr |= kc′r
√

− ln(R1R2).

The distribution function [44-45] for the velocities of reflected particles which is often
used in practice has the following form:

fr = nr

(

1

π

m

2kTr

)
3

2

exp

{

− m

2kTr

[

~ξ − ~Ur

]2
}

=

= nr

(

1

π

m

2kTr

)
3

2

exp







−
[

(

m

2kTr

)
1

2

~ξ − ~Sr

]2






=

= nr

(

1

π

m

2kTr

)
3

2

exp

{

−
[

(

m

2kTr

)
1

2

ξy − Snr

]2

−
[

(

m

2kTr

)
1

2

ξx − Sτr,x

]2

−
[

(

m

2kTr

)
1

2

ξz − Sτr,z

]2}

Here m and ~ξ are the mass and velocity of molecules reflected from surface, and
parameters of particle number density nr, temperature Tr and speed ~Ur depend on the

  

18 - 32 RTO-EN-AVT-194 

 

 



A APPENDIX 2. GAS/SURFACE INTERACTION MODELS

velocity vector of a molecule incident upon the surface, as well as on its energy, surface
characteristics and total mass flow of incident molecules. These dependences transform
to those of five scalar parameters of function fr on the base of available experimental data
and mass conservation law.

The experiments [44] showed that the vector of the mean reflected velocity is located in
the same plane as the vector of the incident velocity. Thus, if we construct the right-hand
Cartesian coordinate system at the point of particle reflection so that the x axis is the
projection of the incident velocity vector onto a plane tangential to the surface, the y axis
coincides with the external normal to the surface, then the side component of reflected
velocity is Sτr,z = 0.

The four parameters of this function Snr, Sτr,x, Tr, nr are found[44,45] as follows:

Snr = 0.1− 0.65
2θ

π
,

Sτr,x =
τr,x
pr

· J2(Snr)
J1(Snr)

,

2
k

m
Tr =

(

pr
qmr

)2 [
J1(Snr)

J2(Snr)

]2

,

nr = qmr

(

2
k

m
Tr

)− 1

2

J−1
1 (Snr),

τr,x = −
(

aτ + bτ
4θ − π

2π

)

ξ sin(θ) qmi

pr =

{

(

an + bn
2θ

π

)

ξ +

(

π

2

kTw
m

)
1

2

}

qmi

J1(t) =
1√
π

∫ ∞

0

q exp
[

−(q − t)2
]

dq =
1√
2π

[

e−t
2

+
√
π t (1 + erf(t))

]

,

J2(t) =
1√
π

∫ ∞

0

q2 exp
[

−(q − t)2
]

dq =
1√
2π

[

te−t
2

+
√
π (

1

2
+ t2) (1 + erf(t))

]

,

erf(t) =
2√
π

∫ t

0

e−s
2

ds,

qmr = qmi = mq1; q1 = 1[m−2 s−1].

Here θ is the angle between the incident velocity vector and internal normal to the surface,
Tw is the surface temperature, qmr and qmi are the fluxes of reflected and incident molecules,
which is used to normalize the distribution function fr in the Monte-Carlo method.

The values of model parameters an, bn, aτ , and bτ depend on the type of material, and
the following values were obtained [44,45] based on experimental data:
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A APPENDIX 2. GAS/SURFACE INTERACTION MODELS

Materials an bn aτ bτ

Ceramics 0.06 0.05 -0.03 0.26
White enamel 0.07 0.10 -0.01 0.16
Black enamel 0.065 0.08 -0.03 0.11
Scree-vacuum glass Cloth 0.07 0.03 -0.05 0.11
Anodized aluminium-magnesium Alloy (AMA) 0.10 0.10 -0.06 0.04
Chemically polished AMA 0.11 0.18 -0.19 -0.04
Glasses 0.17 0.09 -0.10 -0.08
Enamels 0.07 0.06 -0.01 0.12

Sampling of velocity with which a particular particle is reflected involves the proba-
bility density of reflected molecules, which is obtained from the distribution function and
is written in the following form:

Fr,x =
1√
π
√
Tr
exp

{

−
[

(

m

2kTr

)
1

2

ξx − Sτr,x

]2}

Fr,y =
2√

π
√
Tr J1(Snr)

(

m

2kTr

)
1

2

ξy exp

{

−
[

(

m

2kTr

)
1

2

ξy − Snr

]2}

Fr,z =
1√
π
√
Tr
exp

{

−
[

(

m

2kTr

)
1

2

ξz

]2}

The velocity ξy is simulated by the Neumann method, and the velocities ξx and ξz are
simulated on the basis of the relations

ξx
c′r

=
√

− ln(R1) cos(2π R2) + Sτr, x

ξz
c′r

=
√

− ln(R1) sin(2π R2)

where R1 and R2 are pseudo-random numbers.
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