

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
18-04-2012

2. REPORT TYPE

Final Technical
3. DATES COVERED (From - To)

08-15-2010 to 02-14-2012
4. TITLE AND SUBTITLE

(U) CONTINUED FUNDING FOR PRIME DEVELOPMENT
5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-10-1-0450

5c. PROGRAM ELEMENT NUMBER

61102F
6. AUTHOR(S)

Michael Frenklach
5d. PROJECT NUMBER

2308

5e. TASK NUMBER

BX

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California at Berkeley
8. PERFORMING ORGANIZATION REPORT
 NUMBER

Department of Mechanical Engineering
Berkeley, CA 94720-1740

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Office of Scientific Research
875 North Randolph Street
Suite 325, Room 3112
Arlington, VA 22203-1768

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The initiative named PrIMe (for Process Informatics Model) is designed to keep track of models, model
parameters, and experimental data in a global, integrated framework for the field of Combustion. It is aimed
at curation of community data with the objective of collaborative development of reaction mechanisms of
scientific explorations and predictive models for practical systems. The present project was a continuation of a
prior AFOSR grant (FA9550-08-1-0003, Program Manager: Dr..Julian Tishkoff), which enabled, among other
things, initial development of one of the principal PrIMe components, PrIMe Workflow Application. The
additional funding under the present AFOSR Grant allowed us to bring this development to its stable
operational version, Workflow 2.0. Also, with this additional support we added new scientific tools to the
Workflow. In this Report outline our past-year accomplishments and describe the details of the PrIMe
Workflow 2.0 release.

15. SUBJECT TERMS
Modeling, combustion, global systems, web-based application, collaborative science

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Dr. Chiping Li
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

 66

19b. TELEPHONE NUMBER (include area
code)
(703) 696-8574

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

AFRL-OSR-VA-TR-2012-1016

u

2

Continued	Funding	for	
PrIMe	Development	

Michael Frenklach

Final Technical Report to AFOSR

April 18, 2012

Department of Mechanical Engineering
University of California

Berkeley, CA 94720

3

Table of contents

Report documentation page .. 1

1 Introduction .. 5

2 Past Year Accomplishments and Current Status of PrIMe .. 6

2.1 PrIMe Portal .. 6

2.2 PrIMe Data Warehouse .. 6

2.3 PrIMe Workflow Application .. 6

2.4 Building Predictive Combustion Models through PrIMe ... 7

2.5 PrIMe Instrumental Model .. 7

3 PrIMe Workflow Architecture ... 8

4 The common system structure .. 9

5 PrIMe Portal ... 10

6 System architecture of the SCU and PWA .. 11

7 Scientific Component Uploader (SCU) .. 12

7.1 Use Case systems .. 13

7.2 SCU clickonce application structure ... 14

7.2.1 Main SCU modules ... 14

7.2.2 SCU clickOnce classes diagram ... 16

7.3 Backend structure ... 19

7.3.1 Main part of SCU backend .. 19

7.3.2 Back end classes diagram .. 20

7.4 Database structure ... 22

7.5 Web services .. 25

8 PrIMe Workflow Application ... 25

8.1 System Architecture ... 25

8.2 Use Case PWA ... 26

8.3 Component types ... 28

8.4 Component terms ... 29

8.5 The component integration with the PWA .. 29

8.5.1 Local components (MATLAB) ... 29

4

8.5.2 Local components (.NET) .. 32

8.5.3 Remote components ... 33

Input parameters ... 33

Output parameters .. 35

Status File .. 35

8.6 Executing a Project ... 36

8.7 User’s computer ... 39

8.7.1 Main modules of the PrIMeKineticsClient.dll library .. 40

8.7.2 Classes diagram .. 41

8.8 Application server structure .. 47

8.8.1 Application server structure ... 47

8.8.2 Classes diagram .. 49

8.9 Backend structure structure .. 52

8.9.1 Main modules .. 52

8.9.2 Classes diagram .. 53

8.9.3 Database structure .. 55

8.10 Web service Description ... 58

9 PrimeHandle Web Services ... 59

9.1 PrimeHandle Web Service methods ... 59

9.2 PrimeHandle Web Services authentication mechanism ... 62

10 System Configuration and Maintenance .. 64

11 Technologies used ... 65

11.1 PrIMe Portal .. 65

11.2 Scientific Component Uploader and PrIMe Workflow Application 65

11.3 Application server ... 65

12 Personnel Supported ... 66

13 Publications and Presentations .. 66

14 Significant Interactions ... 66

5

1 Introduction

The objective of this project was to sustain and extend the development of the PrIMe cyber-
infrastructure (CI) for the practical use by the Combustion community. PrIMe (Process
Informatics Model) is a new approach for developing predictive models of chemical reaction
systems that is based on the scientific collaboratory paradigm. The primary goals of PrIMe are
collecting and storing data, validating the data and quantifying uncertainties, and assembling the
data into predictive models with quantified uncertainties to meet specific user requirements.
The principal elements of PrIMe include: a data Warehouse which is a repository of data
provided by the community, a data Library which archives community-evaluated data, and
computer-based tools to process data and to assemble data into predictive models.

Optimizing combustion efficiency and understanding the mechanisms that prevent full
energy utilization of fuels relies on detailed knowledge of the underlying physics and chemistry.
These systems are generally complex enough that models have been used to explore the effect
of different feed and reactor conditions and have been successful in optimizing fuel mixtures
and combustor performance. However, the models are extremely complex and often
controversial. The data, which parameterize the models and are compared to model
predictions, are themselves complex and often open to interpretation. Further, they are
developed by multiple labs using different technologies. To keep track of models, parameters,
and data in an integrated framework has proven a necessity in the field of Combustion. The
PrIMe initiative is designed to fill this need. In its scientific content, PrIMe is a system approach
aimed at establishing the infrastructure, both scientific and CI, in support of developing
predictive models of combustion.

The initial phase and development of PrIMe CI has focused on underlying chemical
reaction models. There are several important reasons for this strategy. First, modeling of a
combustion process begins with a reaction model, which determines the concentrations of
chemical specifies and the heat flux, and hence it is only natural to start the new development
from this founding stage. It has been our experience1 that most disagreements between models
and experiments and most controversies begin with and trace to the selected reaction model.
Another factor for starting with reaction models is the fact that chemical kinetics has
accumulated much needed data and the missing data can be evaluated using quantum and
reaction-rate theories. And finally, the scientific underpinning of the process, also illustrating the
feasibility of the approach, has been piloted by the GRI-Mech project.

The present project was a continuation of a prior AFOSR grant (FA9550-08-1-0003,
Program Manager: Dr. Julian Tishkoff), which enabled, among other things, initial development
of one of the principal PrIMe components, PrIMe Workflow Application. The additional funding
under the present AFOSR Grant allowed us to bring this development to its stable operational
version, Workflow 2.0. Also, with this additional support we added new scientific tools to the
Workflow.

In this Report, we first outline our past-year accomplishments, and then describe the
details of the PrIMe Workflow 2.0 release.

6

2 Past Year Accomplishments and Current Status of PrIMe

The PrIMe infrastructure has the following principal elements, a Data Warehouse, Tools,
and Workflow, as well as a community Portal. During the past year we made progress in all
these areas.

2.1 PrIMe Portal

The PrIMe Portal is based on the Drupal open-source software. During the past year we
upgraded it to version 6.

There are currently over 350 registered users and over 20 Work groups.

During the past year we developed many new video tutorials on operation of the PrIMe
CI components.

2.2 PrIMe Data Warehouse

The PrIMe Data Warehouse has been populated with:

 over 100,000 records of data on chemical species, species thermodynamics,
chemical reactions, reaction rate coefficients, reaction models

 over 400 records of experimental data related to combustion, collected in shock
tubes, flow reactions, and laminar premixed flames: ignition delays, species profiles,
flame speeds, soot

 during the past year, in collaboration with Markus Kraft of Cambridge University, UK,
and JoAnn Lighty of the University of Utah, a large collection of data on soot
formation

2.3 PrIMe Workflow Application

The PrIMe Workflow is a centerpiece of the PrIMe cyber-infrastructure. It links data and
apps and enables the users to conduct their research activities in a “menu-driven”, web-based
operation. Building it was made possible by employing a professional programmer, which, in
turn, was made possible by the MACCCR funding received from Dr. Julian Tishkoff in 2008 and
a continuation of it with the present Grant.

During the past year, we developed and implemented Version 2.0 of the PWA. It is built
on a cloud-based model and currently offers:

 a much more stable operation

 faster response time

 support for different types of applications; those written in C# and Matlab run on client
machines and those implemented in any other way can run on a remote server linked
via built for this purpose PrIMe web services

 novel scientific applications, those of uncertainty quantification

 redesigned menu-driven component submission interface

7

2.4 Building Predictive Combustion Models through PrIMe

The ultimate goal and purpose of PrIMe is to support development of truly predictive
combustion models. During the past year, we added two new scientific tools:
DataCollaboration, an on-line application for systematic uncertainty quantification, and most
recently, a sensitivity-analysis tool, currently limited to shock-tube ignition. We completed the
first global system for on-demand model building: the user can now build, on the fly, a reaction
model for hydrogen combustion that meets his/her specific conditions/requirements, or an
experimenter can test whether his/her new results (on H2/O2) are consistent with and
complement the existing data, and how much improvement is gained in predictiveness of the
hydrogen-combustion model overall. We published a manuscript describing this: “Process
Informatics Tools for Predictive Modeling: Hydrogen Combustion”, X. You, A. Packard,
M. Frenklach, Int. J. Chem. Kinet. 44:101-116, 2012.

2.5 PrIMe Instrumental Model

During the past year, we continued our joint project with Professor Phillip
Westmoreland’s NCSU group on the PrIMe Instrumental Data Model, aiming at a systematic
approach to dealing with the “raw” experimental data. The user is asked to submit not only
his/her data (raw or processed, experimental or theoretical) but also “describe” the exact
procedure used to “process” these data. The PrIMe data-management software will capture
and archive this information in a computer-readable form. The initial development was done
using a “simpler” case, using the shock-tube ignition data, and the code is now in place. During
the past year, we extended this work to a more complex case, analysis of data collected in a
fuel-lean C2H2/O2/Ar premixed laminar flat flame, mapped with VUV-photoionization molecular-
beam mass spectrometry at the Advanced Light Source of Lawrence Berkeley National
Laboratory. The experimental signals were modeled with a premixed laminar flat-flame code
augmented with an Instrumental Model, designed to link raw signals to derived properties. The
consistency of the model and raw experimental data are quantified, and features of the mole
fraction profiles for weak-signal observations of O, OH, C2H3 and unknown background H2O are
predicted. The approach to model-versus-data assessment demonstrated in this study
promises to advance the science and practical utility of modeling, establishing validity rigorously
while identifying and ranking the impacts of specific model and data uncertainties. A manuscript
summarizing these results (“Integrated Analysis of Acetylene-Flame Data and Model
Uncertainties Using an Instrumental Model Approach”, D. R. Yeates, W. Li, P. R.
Westmoreland, T. Russi, A. Packard, and M. Frenklach) is in preparation for publication.

8

3 PrIMe Workflow Architecture

The PrIMe Workflow Application (PWA) is a web-based application that unifies the
components of PrIMe into a single interface. The purpose of this document is to describe the
PrIMe Workflow Application architecture and its internal structure. The functionality of PWA
components is depicted in the form of Use Case diagrams. Class diagrams, consistency
diagrams, data-base scheme, and components diagrams are used to demonstrate system
design and component interaction.

The document describes the following aspects of the PrIMe Workflow Application
architecture:

1. The common system structure and the purpose of its modules.

2. PrIMe portal description and functionality.

3. Component Uploader general architecture description and functionality.

4. PrIMe Workflow Application general architecture description and functionality.

9

Figure 1. Components of the PrIMe structure

4 The common system structure

The common structure of PrIMe is shown in Figure 1. It consists of the following
components:

1. PrIMe Portal is responsible for system user management. It implements user
authorization and authentication services, assigns user roles, and manages user
permissions. Additionally, it enables users to collaborate. In the PrIMe portal one can
find information such as the latest changes, documentation, and operating instructions.
The Development Portal provides an interface for two additional systems―Scientific
Component Uploader and PrIMe Workflow Application.

2. Scientific Component Uploader (SCU) is used to develop and deploy new scientific
components. It allows the scientific component developer to upload a new scientific
component, assign resources to components, and edit properties and configuration
information of his/her previously developed components. All changes made by
developers are stored as separate revisions, allowing a developer to open and edit any
existing revisions. Only a user with administrator privileges can create a new revision
and deploy it to the PrIMe Workflow Application (PWA).

3. PrIMe Workflow Application (PWA) is the “environment” where a user creates and
executes scientific workflow projects. The scientific workflow project is built using
preconfigured scientific components that are linked together in a network. The user can
set input and output information for each scientific component and, if applicable, the user

10

can set configurable properties of a scientific component. In the PrIMe Workflow
Application a user can create new scientific workflow projects, open existing projects,
and execute valid workflow projects.

5 PrIMe Portal

Purpose

The purpose of the PrIMe Portal is to administer user management functions and stores
workflow project information. The main system Use Case is represented in Figure 2.

System functions:

1. User management functionality. The PrIMe Portal implements user authentication and
authorization. Additionally, it assigns roles to each user and grants permissions to
view/edit the user’s previously existing workflow projects and scientific components.

2. Content management functionality. The PrIMe Portal manages all application
documentation, which includes the scientific components manuals, system structure
changes, and information concerning development of new scientific components.

Figure 2. PrIMe portal Use Case diagram

User

Content managment

Work with site
statistics

User managment

Project
administration

Site configuration

11

3. Authentication/authorization management for PWA and SCU. The PrIMe Portal
authenticates, authorizes, and assigns user roles allowing a user to access PWA and
SCU. This management is done automatically as the user navigates to the PWA and
SCU.

6 System architecture of the SCU and PWA

Architecture presents on the figure 2. It consists of the next things:

1. SCU and PWA were implemented as ClickOnce application.

2. Backend server includes business logic implemented in the core, data-access layer and
provides WCF-services for communication with client. It hosts inside asp.net web
application.

3. WCF services. Provide all necessary functionality for working with workflows,
components and so on.

4. Back-end code. Includes data-access layer for interaction with database, business logic,
AA logic.

5. Also, there is clickOnce application which includes UI for PWA and SCU and will deploy
on the client machine. When client opens page in his browser, clickOnce application
deploys on the client machine and runs, using this application user can manage
components via SCU or work with workflows.

There are next benefits why clickOnce technology was selected

1. User doesn’t need to install application, just go to the web-site and launch it.

2. Upgrade is very easy and performs every time when user runs application, if there is
new version, of course.

12

Figure 2. System architecture of the PWA and SCU.

7 Scientific Component Uploader (SCU)

The main purpose of the Scientific Component Uploader is to facilitate the development
and deployment of scientific components. It enables development of scientific components by
managing existing component revisions, component properties, component resources, and
configuration information and allows creation of new scientific components. The Scientific

 deployment Deployment Model

Backend serv er

asp.net web application

ms sql serv er

WCF serv ices

backend core

Web browser

ClickOnce
application

ClickOnce application

PWA SCU

WCF proxies

13

Component Uploader also allows a developer to test the component before it is deployed to the
PWA.

7.1 Use Case systems
The SCU manages scientific components, resources, and component configuration
information. The main functions of the SCU are listed below, and the SCU Use Cases
are represented in Figure 4.

Main functions:

1. Manage component resources. The user can upload new component images, edit
images, and remove existing images associated with a scientific component from the
server.

2. Manage scientific components. The SCU enables the user to add, remove, and edit
scientific components.

3. Configure scientific components. The user can configure scientific components by
adding, editing, and removing component inputs, outputs, and other properties.

4. Store scientific component location. If the scientific component is a remote type, the
SCU points to the server from which the remote scientific component is executed.

5. Manage component revisions. The SCU captures and saves all changes made by the
user when editing components, resources, and configuration information as revisions.
The MS SQL server stores all revision information.

6. Scientific component testing. The SCU allows the scientific component developer to test
his/her component and confirm that it will work appropriately with PWA.

7. Scientific component deployment. The SCU allows an administrator to deploy any
revision of a scientific component to the PWA.

14

Figure 4. Use Case of the SCU

7.2 SCU clickonce application structure
In the clickOnce application the actions related to resources, components, configuration
information, and scientific component deployment into production.

7.2.1 Main SCU modules

The library structure is represented in Figure 5.

The library consists of the following modules:

1. Images―The module to manage resources. It provides operations to add new
resources or delete resources from the server.

2. Components―The module to manage scientific components. It provides operations to
add components, edit components, and delete components.

3. Libraries―The module for working with libraries. It provides functions to add, edit, or
delete libraries.

 uc scu

Admin

System settings

Work with
components

Manage rev isions

Dev eloper

View settings
Change settings

View rev isions

Upload to production

Create new
component

Create new
component's version

Delete component

View components

Test component

«extend»
«extend»

«extend»

«extend»

«extend» «extend»

«extend»

«extend»

«extend»

15

4. Revisions―The module to manage system revisions. It provides the creation of new
revisions, and deletion and deployment of selected revisions to the PWA production
server.

5. Settings – service for managing system preferences(matlab preferences, hdf viewer and
so on)

Figure 5. SCU structure

 cmp scu structure

Rev isions

Add new revision

Delete revision

Components

Add component

Delete component

Create new revision

Settings
Save settings

Images

Add image

Remove image

Assign image with component

Libraries

Add library

Delete library

Assign library with component

16

7.2.2 SCU clickOnce classes diagram

The main SCU clickOnce classes diagram is shown in Figure 6.

Figure 6. SCU classes

A summary of the classes available in SCU is given below.

class Shape

UserControl

Components

- cmdEdit_Click(object, EventArgs) : void
- cmdInstall_Click(object, EventArgs) : void
- cmdRemove_Click(object, EventArgs) : void
+ Components()
- LoadComponentList() : void
- lvComponents_Click(object, EventArgs) : void
- lvComponents_SelectedIndexChanged(object, EventArgs) : void

UserControl

Rev isions

- btnProduction_Click(object, EventArgs) : void
- Convert(ComponentInfoHolder) : ComponentHolder
- LoadConfigutation() : void
+ LoadRevision(int) : void
+ Revisions()
+ SaveVersion() : void
- SetVersion() : void

UserControl

Resources

- GetResourcesCallback(object, GetResourcesCompletedEventArgs) : void
- Instal lCallback(object, InstallComponentCompletedEventArgs) : void
- LoadRemoteFilesList() : void
- lvRemote_Click(object, EventArgs) : void
- lvRemote_SelectedIndexChanged(object, EventArgs) : void
- previewLocalFile(ResourceInfo) : void
- ResourceDownloadCallback(object, AsyncCompletedEventArgs) : void
+ Resources()
- SendFile() : void
- SetCurrentResource(ResourceInfo) : void

UserControl

Manager

+ ADMIN_ROLE: string = "admin"
+ comps: List<ComponentHolder> = new List<Compon...
- current_revision_id: int = 0
- currentResource: ResourceInfo = null
- currentUser: string
+ DEBUG: bool = false
- DEVELOPMENT_ROLE: string = "development"
+ dic: Dictionary<ResourceInfo, bool> = new Dictionary<...
- first: bool = true
- h: ComponentHolder
+ manager: Manager
- new_revision_id: int
+ resources: List<ResourceInfo> = new List<Resour...
- role: string = ADMIN_ROLE

+ ComponentLoadedEventHandler(string) : void
+ ComponentNotLoadedEventHandler() : void
+ Manager()
- Manager_Paint(object, PaintEventArgs) : void
+ NotifySessionBroken() : void
- PerformInitialSetup() : void

«event»
+ ComponentLoaded() : ComponentLoadedEventHandler
+ ComponentNotLoaded() : ComponentNotLoadedEventHandler

UserControl

Shapes

+ Shapes()
- UpdateShapeDefCallback(object, AsyncCompletedEventArgs) : void
+ UpdateShapesPreview() : void
- UploadShapeCallback(object, InsertShapesDefCompletedEventArgs) : void
- ValidateXML(string, string) : bool
- ValidationCallBack(object, ValidationEventArgs) : void

Form

Rev isionManager

- manager: Manager
- revisions: RevisionHolder ([])
- service: SubmitService = new SubmitService()

- cmdCancel_Click(object, EventArgs) : void
- cmdDelete_Click(object, EventArgs) : void
- cmdOpen_Click(object, EventArgs) : void
- lvRevisions_ColumnClick(object, ColumnClickEventArgs) : void
- lvRevisions_MouseDoubleClick(object, MouseEventArgs) : void
- OpenRevision() : void
+ RevisionManager(Manager)

Form

InstallComponentForm

- manager: Manager

- cmdCancel_Click(object, EventArgs) : void
- cmdChContainer_Click(object, EventArgs) : void
- cmdChDll_Click(object, EventArgs) : void
- cmdChSupportDll_Click(object, EventArgs) : void
- cmdInstall_Click(object, EventArgs) : void
- InstallCallback(object, InstallComponentCompletedEventArgs) : void
+ InstallComponentForm(Manager)
- SelectDLL() : string
- ValidateAndUpload() : bool

17

Manager―This class implements main GUI library

Method Assignment

Manager_Paint This method activates at window repainting.

PerformInitial Activates once at library download. In this
method the revisions for the current user are
downloaded, and the library download process
is displayed.

NotifySessionBroken Informs the user about the errors which
occurred during the process.

componentLoaded Downloads component.

Resources―In this class the work with resources is implemented. This class directly
processes user’s activities.

Method Assignment

LoadRemoteFileList Downloads the resource list from the server

SendFile Downloads the file to the server

GetResourceCallBack Responds after the resources have completed
downloading to the server

InstallComponentsForm―This class implements the GUI for working with components

Method Assignment

ValidateandUpload Validates the input data and saves the
components

cmdInstall_Click Processes the request to save the component

cmdChDll_Click Processes the request to select the
component from the library

InstallComponentForm Adds a new component

18

Components―The work with components is implemented in this class

Method Assignment

LoadComponentList Downloads a list of the components

cmdInstall_Click Opens the form to input component
information

LvComponents_Click Processes the selection of components from
the list. Outputs the detailed information about
the component

Revisions―The work with the revisions is implemented in this class

Method Assignment

btnProduction_Click Processes the requests to download revisions
to PWA

LoadRevision Downloads the specified revision

saveVersion Saves revisions

Shapes―The work with shapes is implemented in this class

Method Assignment

ValidateXml Checks xml-description of shapes

UpdateShapesPreview Refreshes shapes after updating

UploadShapesCallBack Stores shapes

RevisionManager―The GUI which works with revisions

Method Assignment

cmbDelete_Click Deletes revisions

cmdOpen_Click Opens a specified revision

lvRevision_Click Selects the revisions

19

7.3 Backend structure
In the library user authorization and authentication management is implemented. Additionally
the core implements server side functionality of the SCU by storing scientific components,
configuration information, and resources in the database. Figure 7 shows a schematic of the
backend structure.

7.3.1 Main part of SCU backend

The library consists of the following modules:

1. Authentication module. Its main functions are to receive the user credentials, to get the
users roles, and to start a new session for the user.

2. Revision module. The main functions of the revision module are to get a revision by id,
delete a revision, identify the current revision, and add a new revision.

3. Configuration Information (Shapes) Service. The library provides such functions as gets
shapes on revision number, paste the new shape, and get shape by id.

4. Component module. The main functions of the component module are to get all of the
scientific components, to get the scientific components by revision, to add a new
scientific component, and to update the scientific component.

Figure 7. Utility.dll structure

cmp utility

Authentification
module

startUserSession

getUserBySession

getRoles

getUser

Rev ision module
getRevisionById

deleteRevision

getRevisionByUser

insertRevision

Shapes Serv ice

getCurrentShapes

getShapesByRevision

insertShapes

getShapesById

Component modulegetAllComponents

getComponentsByRevision

UpdateComponents

insertComponent

20

7.3.2 Back end classes diagram

The structure of classes diagram is shown on Figure 8. The library consists of the following
main classes.

Figure 8. SCU backend classes

UserService― The service for work with users is implemented in this class

Method Assignment

GetCurrentRoles Returns the current user roles

GetCurrentSession Returns the session of the current user

GetDrupalUsers Returns all the users who are registered in the
system

GetUserBySession Returns the users on session

StartUserSession Starts the new session for the specified user

class Class Model

Rev isionServ ice

+ ClearProductionResource() : void
+ createRevisionDirectory(string) : void
+ DeleteRevision(int) : void
+ GetMasterRevision() : RevisionHolder
+ GetMaxRevisionByUser(int) : RevisionHolder
+ GetRevisionById(int) : RevisionHolder
+ GetRevisionsByUser(string) : RevisionHolder[]
+ InsertRevision(string, bool, string, string, DateTime) : int
+ SetMaster(int) : void

ShapeServ ice

+ DeleteShapes(int) : void
+ GetAllShapesDefs() : ShapeDefHolder[]
+ GetCurrentShapes() : ShapeDefHolder
+ GetShapesById(int) : ShapeDefHolder
+ GetShapesByRevisionId(int) : ShapeDefHolder
+ InsertShapesDef(string, string, string, int) : int
+ SetCurrentShapes(int) : void
+ UpdateShapesDef(int, string, string) : void
+ UpdateTestShape(string) : void

UserServ ice

+ GetCurrentRoles() : string
+ GetCurrentSession() : string
+ GetCurrentUser() : string
+ GetDrupalUserByName(string) : DrupalUserInfo
+ GetDrupalUsers() : DrupalUserInfo[]
+ GetUserBySession(string) : string
+ StartUserSession(string, string) : void

ComponentsServ ice

+ GetAllComponents() : ComponentInfoHolder[]
+ GetAvailableComponents() : ComponentInfoHolder[]
+ GetComponentByRevision(int) : ComponentInfoHolder[]
+ InstallComponent(string, string, string, string, string, string, string, string, string, string, int) : void
+ SetObsolete(int, bool) : void
+ UpdateComponent(int, string, string, string, string, string, string, string, string, string, string) : void

Utils

- enc: ASCIIEncoding = new ASCIIEncoding()
- md5: MD5 = new MD5CryptoSe...

+ GetMd5Sum(string) : string

Rev isionHolder

- _public: bool
- author: string
- date: DateTime
- description: string
- master: bool
- revision_id: int
- user_id: int

«property»
+ Author() : string
+ Date() : DateTime
+ Description() : string
+ Master() : bool
+ Public() : bool
+ Revision_id() : int
+ User_id() : int

21

RevisionService―The service for work with revisions

Method Assignment

CreateRevisionDirectory Creates a new catalog, where all the revisions
and the library components will be stored

DeleteRevision Deletes of the specified revision

GetMaxRevisioByUser Returns the last revision that the user edited

InsertRevision Inserts a new revision

GetRevisionById Returns a revision by specified id

ComponentService―The service for work with components

Method Assignment

GetAllComponents Returns all the components

getComponentsByRevision Returns the components by revision

UpdateComponents Updates the information about the specified
component

InstallComponent Adds a new component

ShapeService―The service for working with shapes

Method Assignment

DeleteShapes Deletes a specified shape

GetAllShapesDef Returns all shapes

InsertShapesDef Adds new shape descriptions

UpdateShapesDef Updates a specified shape

GetShapesByRevision Returns the shapes description for a specified
revision

GetShapesById Returns the shape description by specified id

22

7.4 Database structure
The database structure is shown in Figure 9.

Figure 9. Database structure.

 class Data Model

component_to_user

«column»
*PK component_to_user_id: int
* component_id: int
* user_id: int

«PK»
+ PK_component_to_user(int)

components

«column»
*PK component_id: int
 name: nvarchar
 description: nvarchar
* group_id: int

«PK»
+ PK_components(int)

groups

«column»
*PK group_id: int
 name: nvarchar

«PK»
+ PK_groups(int)

images

«column»
*PK image_id: int
 name: ntext

«PK»
+ PK_images(int)

libraries

«column»
*PK library_id: int
* name: nvarchar
 description: nvarchar
* dll1: nvarchar
 dll2: nvarchar
 dll3: nvarchar
 dll4: nvarchar
 dll5: nvarchar
* support_dll: nvarchar
* date: datetime
* user_id: nvarchar
 runtime_required: bit

«PK»
+ PK_MatlabComponents(int)

rev isions

«column»
*PK revision_id: int
* user_id: nvarchar
 description: nvarchar
* date: datetime
* image_id: int
* library_id: int
* component_id: int
 property: ntext

«PK»
+ PK_revision(int)

shape_defs

«column»
*PK shape_def_id: int
* xml: ntext
 author: nvarchar
* update_time: datetime

«PK»
+ PK_ShapeDefs(int)

system_preferences

«column»
*PK system_preferences_id: int
* matlab_display_name: nvarchar
* matlab_major_version: nvarchar
* matlab_minor_version: nvarchar
* matlab_path: nvarchar
* matlab_path64: nvarchar
* prime_server: nvarchar
* prime_protocol: nvarchar
* prime_host: nvarchar
* prime_port: nvarchar
* prime_guest: nvarchar
* guest_password: nvarchar
* web_dav_root: nvarchar
* index_catalog: nvarchar
* access_time_interval: int
* hdf_version: nvarchar

«PK»
+ PK_syspref(int)

23

Revisions―Stores the revisions created by the users

Field Description

revision_id Revision identifier

user_id User identifier, who stored this revision

description Revision description

date Creation date

image_id Reference on the image

library_id Reference on the library

component_id Reference on the component

ShapeDefs―Stores the shape descriptions

Field Description

ShapeDefId Shape description identifier

Xml Xml-description of the shape

Description Shape description

Author The author who created the shape

updateTime The update time

Revision_id The revision identifier, to which the shape refers

Libraries―Stores libraries information

Field Description

library_id Unique id

Name Library name

Description Component description

Dll1, Dll2, Dll3, Dll4, Dll5 Libraries names

SupportDll Library name that provides the interface of the
connection with the PWA

Date Creation date

User_id User who last updated library

Runtime_required Indicates if component requires matlab runtime

Images―Stores images

Field Description

24

Image_id Unique id

name Image name

Groups―Stores groups

Field Description

group_id Unique id

name Group name

Components―Stores components

Field Description

component_id Unique id

name Component name

description Component description

Group_id Reference on group

Component_to_user―Stores permissions on the components

Field Description

component_to_user_id Unique id

Component_id Reference on component

User_id Reference on user

System_preferences―Stores system settings

Field Description

System_preference_id Unique id

Matlab_display_name Name of current matlab version in registry

Matlab_major_version Current matlab major version

Matlab_minor_version Current matlab minor version

Matlab_path Path to current x86 matlab runtime

Matlab_path64 Path to current x64 matlab runtime

Prime_server Warehouse server

Prime_protocol Protocol for communication with warehouse server

Prime_host IP or DNS warehouse server

Prime_port port

Prime_guest Login to warehouse server

25

Guest_password Password to warehouse server

Web_dav_root Root path on the web_dav server

Access_time_interval Allowed interval for connection

7.5 Web services
Web services provide a convenient method of communication between client and server

via HTTP protocol. A short description of main methods is presented below.

Method Description

GetAllComponents Returns all the components from the server

GetShapesById Returns shapes by id

GetResources Returns resources by revision

GetLastRevisionToUser Returns the last revision for the user

InstallComponent Adds new components

InsertShapesDef Adds new shapes

GetShapesByRevision Returns shapes by resource identifier

GetComponentByRevision Returns components by revision identifier

8 PrIMe Workflow Application

The purpose of the PrIMe Workflow Application (PWA) is to provide a user interface for
working with scientific workflow projects. Using the PWA, the user can create, open, and
execute scientific workflow projects. A scientific workflow project is comprised of a network of
linked scientific components.

8.1 System Architecture
The general system architecture of the PWA is represented in Figure 10.

The PWA consists of the following elements:

1. Server. The server is the main server from which the PWA is executed. All of the
functions of the server are accessed through back end core. The authorization and
authentication process and the database work are accomplished by means of the core.
The interaction with the client’s browser and application servers is facilitated through wcf
services.

2. Application server. Remote applications are executed remotely from the client on the
application servers. Web services facilitate interaction with the client’s browser and
PWA.

26

3. Client. The PWA is executed from the client’s browser with the use of the clickOnce
application. Through the client the user can create scientific workflow projects, update
existing scientific workflow projects, and execute scientific workflow projects. The
clickOnce application interacts with MATLAB components through a library called
ComponentsFromMatLab.dll, with which it directly communicates.

4. MATLAB components. The MATLAB components are downloaded to the client and
activated at the execution of the scientific workflow project.

MS SQL SERVER

Backend core

Web browser

clickOnce application

Web services

Internet

ComponentsFromMa
tLab.dll

MatLab

Server

Client

ASP.NET web site

MatLab component1

MatLab component2

MatLab componentN

...

Application serverM

Web service

Tomcat

Application1 ApplicationK...

Local stored with
with the application

descriptions and
result of the work of

application

Application server1

Web service

Tomcat

Application1 ApplicationP...

Local stored with
with the application

descriptions and
result of the work of

application

...

Figure 10. PWA Architecture

8.2 Use Case PWA
The function of the PWA is to work with scientific workflow projects. Use Case of the

PWA is represented in Figure 11.

The main functions of the PWA are:

27

1. Project management. The PWA enables creating, editing, and deleting of scientific
workflow projects.

2. Project collaboration. The PWA allows a user to classify a scientific workflow project as
private, shared, or public. Setting a scientific workflow project as shared or public allows
multiple users to collaborate on a project.

3. Custom project building. The PWA allows the user to create a scientific workflow project
from available scientific components. The user creates the workflow project by moving
scientific components to the project plane, defining the scientific component
relationships with links, and specifying scientific component inputs and properties.

4. Project execution. Once the scientific workflow project is created, the scientific
components linked, and the inputs and properties are set for each scientific component,
the project can be executed in the PWA. Following execution, the results can be viewed
in PWA.

28

Figure 11. Use Case diagram of the PWA

8.3 Component types
There are two types of scientific components available for building of scientific workflow

projects: local and remote. The following is a description of each type.

1. Local components. The local components created either by MATLAB or with .NET,
are executed directly from the user’s computer. Upon execution of a scientific

uc PWA

user

Work with workflow

Work with shapes

Create new workflow

Edit workflow

Open workflow

Run workflow

Share workflow

add shapes

delete shapes

Input data

Save workflow

«extend»

«extend»

«extend»
«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

29

workflow project local components are copied to the client computer. The work
results from each local component also are saved on the client computer.

2. Remote components. Remote components are executed from remote servers and
interact with the PWA using web services. Multiple remote components can be
hosted on a single server.

8.4 Component terms
The following terms are important in understanding components.

1. Scientific Component (component) – refers to a prebuilt, compiled scientific
component which can be executed on a local machine or a remote server.

2. Remote Server Application – refers to a server application installed on remote server
to manage remote component(s) execution.

3. Shape – a graphical representation of a scientific component. Shapes are located on
PWA shape pane in a predefined shape’s group. Shapes can be drag-and-dropped
onto the workflow project pane.

4. Node – represents an instance of a shape in a workflow project. Nodes are linked
into a network for workflow execution.

5. Group – used to visually group PWA shapes into multiple categories. Some
examples of groups are: input, output, process, e.g.

6. shapeID – a ten character string used to uniquely identify scientific
components/shape. The first five characters of shapeID are s h a p e. Following five
characters contain five digits (i.e. shape00322). shapeID is automatically generated
by the system for each scientific component.

8.5 The component integration with the PWA
8.5.1 Local components (MATLAB)

In order for the PWA to execute the local MATLAB components on a user’s computer the
MATLAB runtime library must be installed.

A special support library, called ComponentsFromMatLab.dll, provides the interface
between the client browser and the local scientific components. clickOnce application
communicates with the local scientific components through the ComponentsFromMatLab.dll
library. Upon execution of a scientific workflow project, each component is executed by means
of the library methods that control it. At the beginning of project execution, the support library
downloads each MATLAB component to the local computer. Each component is executed by
the MATLAB runtime library. The support library, ComponentsFromMatLab.dll, controls the
execution of each local scientific component.

When the scientific workflow project is executed, all of the project information is stored
on the client’s computer in a catalog called ProjectData.xml. This catalog encodes the scientific
component relationships, description, properties, the location of results, and the completion
status of each component. The paths of each component results are specified in the catalog.

30

ProjectData.xml is recorded only once at the time of scientific workflow project execution.
Below, an xml example is represented. Each component in the project is represented by a
<node> element, in which all of the input properties and information about the connected
components are recorded. The completion status of each component is recorded as 1
(success) or 0 (failure).

<?xml version="1.0" encoding="utf-8" ?>
<project id="165" modified="29.09.2008 15:26:55" executed="" creator="alx" status="1" lastInternalId="8" >

<nodes>
<node id="2" name="Model 1" group="Models" type="Model" >

<properties>
<status>0</status>
<resultObj></resultObj>
<about>This node supplies a model.</about>
<icon>model.gif</icon>
<list description="Model Source" group="attributes" name="Source" readOnly="False">

<option value="1" caption="PrIMe Warehouse" link="http://prime-
warehouse.berkeley.edu/depository/models/catalog/m00000003.xml" selected="true" >from PrIMe Warehouse</option>
<option value="2" caption="local" link="" >from local machine</option>

</list>
<list description="Model Type" group="attributes" name="Type" readOnly="False">

<option value="1" caption="detailed" link="" selected="true" >A detailed model</option>
<option value="2" caption="reduced" link="" >reduced model</option>
<option value="3" caption="tabulated" link="" >tabulated model</option>

</list>
</properties>
<location width="92" height="62" x="43" y="315" />
<layout>

<image x="0" y="0" file="model.gif" />
</layout>
<inputs>
</inputs>
<outputs>

<output id="1" x="45" y="54" linkNodeId="4"
linkNodeInputId="1">c:/PrIMe_Workflow/projects/project_165/nodes/node_2/grimech30.mat</output>

</outputs>
</node>

</nodes>
</project>

We now review the ComponentFromMatLab.dll in more detail. The purpose of the
ComponentsFromMatLab.dll library is to provide methods for scientific components developed
by third-party developers, such as custom built MATLAB programs, to be integrated with the
PWA. Scientific components must follow integration rules defined in the PWA (ProjectData.xml).
The interface library must contain one or more classes, with methods having the following
prototype:

public static string outputXml RunComponent(string inputXml)

Where inputXML contains input information required for component execution, and outputXML
contains the component's execution results.

Input XML

This section represents sample input XML and describes input XML elements.

<inputData>
 <currentNode shapeID=”shape00105”>
 <outputDir value="C:\Prime_Workflow\projects\project_1\nodes\node_1"/>
 <userInput>
 <float description="Reactor residence time (msec)" group="attributes" name="Residence time
(msec)" readOnly="False" value="0,233"/>
 <list description="Code Specification" group="attributes" name="Numerical Code" readOnly="False">

31

 <option value="1" caption="Matlab application"
link="http://reactionlab.sourceforge.net/">ReactionLab</option>
 <option value="2" caption="Code of Heinz Pitsch" link=""
selected="true">FlameMaster</option>
 <option value="3" caption="" link="">Other</option>
 </list>
 </userInput>
 </currentNode>
 <linkedNodes>
 <linkedNode shapeID=”shape00108” >
 <userInput>
 <float description="Pressure" group="Init state" name="Pressure" readOnly="False"
value="12"/>

 </userInput>
 <resultFiles>

 <file>C:\Prime_Workflow\projects\project_1\nodes\node_2\result1.data</file>
 <file>C:\Prime_Workflow\projects\project_1\nodes\node_2\result2.data</file>

 </resultFiles>
 </linkedNode>

 <linkedNode shapeID=”shape00109”>
 <userInput>
 <bool description="Temperature" group="Init state" name="Bool value" readOnly="True"
value="False"/>
 </userInput>
 <resultFiles>

 <file>C:\Prime_Workflow\projects\project_1\nodes\node_3\result.data</file>
 </resultFiles>
 </linkedNode>
 </linkedNodes>
</inputData>

The input XML's root node inputData has two child elements: currentNode and linkedNodes.
CurrentNode element contains output directory and user input information for the currently
executed node.

outputDir – specifies where the current component should deposit result data files.

userInput – provides component properties and other information entered by user.

linkNodes element contains information about all input nodes (currently we support up to two
input nodes).

LinkNode is a child of linkNodes element. It contains userInput data, resultFiles location, and
other node properties.

Output XML

After component execution is completed, the component should return a string in XML
format (outputXML). The outputXML contains the execution status and other component-
specific information. At this point, additional information is the pft-type, error text (if status=2),
which is necessary to change in the diagram after the component completed. We can expand
the list of return values, by adding new sections in the outputData XML. The status field can
have the following values:

Value Description

1 Success

2 Failed

32

In any case, the component should return a value. Until then the system is blocked, and will not
be able to run other components.

 Below is an example of the component output xml:

<outputData>
 <status> 2 </ status>
 <errorMessage>message text</errorMessage>
 <nodeCaption>Model7.1</ nodeCaption>
 <nodeProperties>some data</ nodeProperties >
</ outputData>

Below is an example of a .NET interface for local MATLAB components:

using System;
using System.Collections.Generic;
using System.Text;
public class MatlabCompsSupportClass
{
 public static string RunPFR(string input)
 {
 MatlabComponents mc = new MatlabComponents(@"c:\PrIMe_Workflow\matlab_comps");// instantiating main class for
//components bundle
 return mc.run_pfr(input).ToString();// running the component
 }
}

It is necessary to modify the main stub class generated by MATLAB Builder for .NET in
order to pass the CTF file location explicitly; otherwise the current directory is used by default.
The only requirement is to replace the static constructor with a constructor having the
installation path as a parameter. An example is shown below.

public MatlabComponents(string ctfFilePath)
 {
 if (MWArray.MCRAppInitialized && mcr == null)
 {
 mcr = new MWMCR(MCRComponentState.MCC_matlab_comps_name_data,
 MCRComponentState.MCC_matlab_comps_root_data,
 MCRComponentState.MCC_matlab_comps_public_data,
 MCRComponentState.MCC_matlab_comps_session_data,
 MCRComponentState.MCC_matlab_comps_matlabpath_data,
 MCRComponentState.MCC_matlab_comps_classpath_data,
 MCRComponentState.MCC_matlab_comps_libpath_data,
 MCRComponentState.MCC_matlab_comps_mcr_application_options,
 MCRComponentState.MCC_matlab_comps_mcr_runtime_options,
 MCRComponentState.MCC_matlab_comps_mcr_pref_dir,
 MCRComponentState.MCC_matlab_comps_set_warning_state,
 ctfFilePath, true); // pass contuctor parameter to MWCR initializer
 }
 else
 {
 throw new ApplicationException("MWArray assembly could not be initialized");
 }
 }

8.5.2 Local components (.NET)

As was mentioned above, PWA supports two types of local components; components
created in MATLAB and components created in .NET. The .NET component interface is
identical to MATLAB components. For more details see sample Input and Output XML above in
section “local components (MATLAB)”. The difference with .NET components is that you don’t

33

need to compile and install MCR, the MATLAB runtime library, and you don’t need to compile

MatlabCompsSupportClass.

8.5.3 Remote components

Remote server application is implemented in Java to support multiplatform
implementation requirement.

Remote components are configured in PWA Uploader application. Among other
information, the component developer should provide remote component (application) name,
application id, remote server IP address and port number to be used. In addition, the component
developer may configure the user’s work group association. This information is used to limit
component execution access only to authorized users.

Each remote component execution request (job) is assigned a unique jobid. The following job
attributes are logged during the remote component execution: projectid, nodeid, applicationid,
execution status, and jobid.

PWA remote components are executed as a part of PWA project. Here is what happens during
the execution:

1. PWA client execution process makes request to the PWA server to check
component execution status.

2. Next PWA client validates if user has permissions to run the remote component.

3. If component is not running the PWA client makes a web service call to the Remote
Server Application to launch the remote component.

4. When remote component is launched, it’s responsible for creating a status file and
setting status file to 0 – “processing”

5. PWA client starts polling remote component execution status.

6. The PWA user can cancel remote component execution at any point by pressing a
cancel button.

7. When remote component completes execution it populates all fields in the status file
and sets status to 1-success or 2-failed. If execution failed, the component has to
populate an error message into status file.

8. At this point execution is returned back to PWA client.

Input parameters
Remote components are launched by remote server application from command line with

one XML input parameter. The XML parameter contains information about input nodes, user
entered input and user information (e.g. userid, groupid, user login).

Below is demonstrated a sample input XML and description of input XML elements.

<inputData>

34

 <userInfo>

 <userId>330</userId>

 <login>aljokan</login>

 <groups>

 <group>PrIMe Team</group>

 <group>ReactionDesign</group>

 </groups>

 </userInfo>

 <currentNode shapeID="shape0118">

 <outputDir value="C:\prime\jobs\job_270\nodes\node_3" />

 <userInput>

 <float description="Residence Time in seconds." group="attributes" name="Residence Time (sec)" readOnly="False"

value="1" />

 <list description="System Heat Constrains" group="attributes" name="Energy Control" readOnly="False">

 <option value="1" caption="adiabatic" link="" selected="true">No heat exchange</option>

 <option value="2" caption="isothermal" link="">Constant temperature</option>

 </list>

 <list description="Process" group="attributes" name="Process" readOnly="False">

 <option value="1" caption="isobaric" link="" selected="true">Constant pressure</option>

 <option value="2" caption="isochoric" link="">Constant volume</option>

 </list>

 </userInput>

 </currentNode>

 <linkedNodes>

 <linkedNode shapeID="shape00103">

 <userInput>

 <list description="Target Source" group="attributes" name="Source" readOnly="False">

 <option value="1" caption="PrIMe Warehouse" link="" selected="true">from PrIMe Warehouse</option>

 <option value="2" caption="local" link="">from local machine</option>

 </list>

 </userInput>

 <resultFiles />

 </linkedNode>

 <linkedNode shapeID="shape00107">

 <userInput>

 <list description="Model Source" group="attributes" name="Source" readOnly="False">

 <option value="1" caption="PrIMe Warehouse" link="http://prime-

warehouse.berkeley.edu/depository/models/catalog/m00000003.xml" selected="true">from PrIMe Warehouse</option>

 <option value="2" caption="local" link="">from local machine</option>

 </list>

 </userInput>

 <resultFiles>

 <file>C:\prime\jobs\job_270\nodes\node_2\grimech30.h5</file>

35

 </resultFiles>

 </linkedNode>

 </linkedNodes>

</inputData>

inputData is a root node with following child elements:

currentNode, linkedNodes, userInfo and groups

userInfo and groups elements provide information about the user which performs the request,
and user’s work group association.

currentNode element contains node unique id, output directory and user input information for
currently executed node.

outputDir – specifies where current component should deposit resulted data files

userInput – provides component properties and other information entered by user

linkNodes element contains information about all input nodes (currently we support up to two
input nodes.

LinkNode is a chiled of linkNodes element. It contains userInput data, resultFiles location, and
other node properties.

Below is an example how a remote server application launches a remote component from the
command line:

../prime/components/component1 /usr/local/prime/projects/project_1/data.xml

Output parameters
When a remote component starts execution, it should create a file (in component’s

folder) called 'status' and set status value to 0. The file will contain execution state code and
error message. The status can have one of the following values:

Value Description

0 Processing

1 Success

2 Failed

Status File

Below is an example of output status file:

<outputData>

 <status>2</status>

 <errorMessage>

 ERROR: Reading Reactor Model Inputs: Did not find InitialState file; unable to initialize reactor.

 This file is produced by connecting the 'State' input object to the reactor object.

 ERROR: Reading Reactor Model Inputs: Unable to obtain required input files or output file location.

36

 Please rerun your project from the beginning.

 </errorMessage>

</outputData>

8.6 Executing a Project
After creating the scientific workflow project, the user can execute it. The scientific

workflow can consist either of local components (MATLAB) or of remote components, which are
implemented on remote application servers. The execution logic is the same for remote and
local components. In Figure 12 the process of executing a scientific workflow project is shown.

37

Figure 12. Activity diagram of executing a scientific workflow project

The process to start the execution of local components is trivial. The appropriate
method from the support library simply is activated. The execution of a remote component is
represented more exactly in Figures 13 and 14.

custom User Interface Model

yes

CreateList of the
incomplete shapes. Store

current count of the
incomplete shape

Inclomplete l ist empty? Remote l ist empty?

Get shape

Shape are local or remote?
Execute local shape

Execute remote shape

Add shape to remote list

CheckStatus node.
Check status remote

components

38

Figure 13. State diagram of execution of the remote component

39

Figure 14. Activity diagram of executing a remote component

8.7 User’s computer
Upon starting the PWA, the following three libraries are copied to the client computer:

PrimMeKineticsClient.dll, ComponentsFromMatLab.dll, and matlab_component.dll. All functions
for working with diagrams, starting project implementation, and interaction with server
applications are executed in these libraries. Figure 15 shows all of the elements of the PWA
that are stored on the client computer.

PrIMeKineticsClient.dll―This library is implemented as clickOnce application, in which
all the functions for creating and editing scientific workflow projects and their execution are
implemented.

Support Library (ComponentFromMatLab.dll)―This library represents the interface
for the interaction with MATLAB components. PrIMeKineticsClient.dll does not know about the
components and their structure, yet it only knows the methods of the support library by which
they are controlled.

40

MATLAB component (matlab_comps.dll)―This is the library that directly controls the
programs from MATLAB. This library is generated by the MATLAB Builder for the .NET
application. The MATLAB component library is connected to the support library and represents
the required classes and functions for MATLAB programs.

Figure 15. System components which are located on the user’s computer

8.7.1 Main modules of the PrIMeKineticsClient.dll library

The general structure of the PrIMeKineticsClient.dll library is represented in Figure 16. It
consists of the following parts:

1. Workflows. This module provides the methods that control scientific workflow projects
such as creation, opening, and deletion of projects and managing of the system users’
access to the existing projects.

2. Shapes. In this module the graphical editor is controlled. It includes methods that control
how a component is displayed, the properties and input data of each component, and
the relationships of each component in a scientific workflow project.

cmp client

Web browser

MatLab component(matlab_comps.dll)

Execute MatLab component

Support Library(ComponentFromMatLab.dll)
Run component

PriMeKineticsClient.dllRun workflow

Local storage

ProjectDirectory

ProjectData.xml

Node directory 1

Node directory 2

Node directory 3

result.data

result.data

MatLab Runtime

41

3. Execute workflow. This module controls how each component is executed and how the
scientific workflow project is executed as a whole. The module manages the process
and order of execution of every component and identifies whether the component is local
or remote.

Figure 16. General PrIMeKineticsClient.dll structure

8.7.2 Classes diagram

The Classes diagrams for the PrIMeKineticsClient.dll library are presented in Figures 17
and 18. Below a description of each method and class assignment is presented.

uc PriMeKineticsClient

WorkflowscreateNew Workflow

OpenWorkflow

delete workflow

share workflow

ShapesaddShapes

moveShapes

deleteShapes

InputParam

Execute workflow ExecuteShape

ExecuteLocalComponent

ExecuteRemoteComponent

CheckStatus

42

Figure 17. PrIMeKineticsClient.dll classes diagram

class PWA

ShapeProperty

- m_converter: string = ""
- m_description: string = ""
- m_editor: string = ""
- m_group: string = ""
- m_name: string = ""
- m_readOnly: bool = false

+ Copy() : ShapeProperty
+ GetDefault() : object
+ GetTypeValue() : object
+ GetValue() : object
+ LoadFromXml(XmlNode) : void
+ SetDefault(object) : void
+ SetValue(object) : void
+ ToXml() : string

«property»
+ Converter() : string
+ Description() : string
+ Editor() : string
+ Group() : string
+ Name() : string
+ ReadOnly() : bool
xml_name() : string

ControlLib.Shape

Connector

- ApplyAlign() : void
+ Connector()
- Connector_MouseEnter(object, EventArgs) : void
+ Copy() : Shape
+ DoMouseDown() : void
+ DoMove() : void
+ DoPostDrag() : void
+ DrawArrow(Graphics, Pen, int, int, int, int) : void
+ DrawShape(Graphics) : void
NotifyInvalidate(Rectangle) : void
+ RemakeSizeAndLocation() : void
+ UnLink() : void

UserControl

Shape

+ AddConnectionPoint(ShapeConnectionPoint) : void
+ AddConnectionPointAsync(ShapeConnectionPoint) : void
+ AddConnectionPointDelegate(ShapeConnectionPoint) : void
+ AddResizer(ShapeMode) : void
+ AddResizerAsync(ShapeResizePoint) : void
+ AddResizerDelegate(ShapeResizePoint) : void
+ ChangeShapesChainStatus(int) : void
+ CheckStatusBefore() : bool
+ Copy() : Shape
+ DoMouseDown() : void
+ DoMove() : void
+ DoPostDrag() : void
+ DrawShape(Graphics) : void
- DrawStatus() : void
+ GetInputById(string) : ShapeConnectionPoint
+ GetOutputById(string) : ShapeConnectionPoint
+ GetPropsForDesigner() : PropertyTable
+ isInputRequiredValue() : bool
+ MoveShape(int, int) : void
+ ProcessStatus() : void
+ ProcessStatusChain() : void
+ RecalculateCoords(bool) : void
+ RecurseCheckStatus() : bool
- RedrawThreadProc() : void
+ RemakeSizeAndLocation() : void
+ RemakeSizeAndLocation(int, int) : void
+ SetLocation(Point) : void
+ SetLocationDelegate(Point) : void
+ SetProps(PropertyTable) : void
+ SetResizerLocation(ShapeResizePoint, Point) : void
+ SetResizerLocationDelegate(ShapeResizePoint, Point) : void
+ SetShapeHeight(int) : void
+ SetShapeHeightDelegate(int) : void
+ SetShapeWidth(int) : void
+ SetShapeWidthDelegate(int) : void
+ SetSize(int, int) : void
+ Shape()
+ ToXml() : string
+ UnLink() : void
+ ValidateInputNodes() : bool
- XmlAttr(string, object) : string

UserControl

WorkflowClientCtl

- ApplyState() : void
- checkCompletedNode() : void
- CheckMCR77Installed() : bool
+ ClearWorkflow() : void
- createComponentInputXml(string, string, string, string) : string
+ CreateIntegrationCatalogs() : void
- deleteOption_Click(object, EventArgs) : void
- deleteToolStripButton_Click(object, EventArgs) : void
- deleteToolStripMenuItem_Click(object, EventArgs) : void
- ExecuteShape(Shape) : bool
- getInputDataByNode(XmlDocument, string) : string
- getLinkedNode(string, string) : List<int>
- GetWorkflowXml() : string
- LoadAssemblyDll() : void
- LoadMatlabComponents() : void
+ LoadProjectFromMatlab() : void
- LoadRecentWorkflows() : void
+ LoadShapes(string) : void
+ LoadWorkflow() : void
- LoadWorkflows() : void
+ LoadWorkflowXml(string) : void
- PerformInitialSetup() : void
- PFR_CheckAndInstall() : bool
+ RemoveShape(Shape) : void
+ RemoveShapeDelegate(Shape) : void
- RepaintShapes() : void
+ RunProject() : void
+ RunProjectInternal() : void
- saveAsStripButton_Click(object, EventArgs) : void
- saveToolStripButton_Click(object, EventArgs) : void
- SelectGroup(int) : void
+ SetProcessStatus(string) : void
+ SetProcessStatusDelegate(string) : void

Form

ShapePropertyDialog

- executed: bool = false
- hasExecute: bool = false
- hasRemote: bool = false
- oldStatus: int = (int)ShapeState...
- onlyStatusModify: bool = true
- parent: WorkflowClientCtl
- shape: Shape
- valueChanged: bool = false

- cmdCancel_Click(object, EventArgs) : void
- cmdOK_Click(object, EventArgs) : void
- ExecuteClick(object, EventArgs) : void
- RemoteClick(object, EventArgs) : void
+ SetShape(Shape) : void
+ ShapePropertyDialog(WorkflowClientCtl)

Form

WorkflowShareDialog

- sharedUsers: List<int>
- userDict: Dictionary<string, int>

- btnCancel_Click(object, EventArgs) : void
- btnSubmit_Click(object, EventArgs) : void
+ WorkflowShareDialog(List<int>*)

UserControl

ShapeConnectionPoint

+ ConnectToPoint(ShapeConnectionPoint) : void
+ ConnectToPoint(ShapeConnectionPoint, bool) : void
+ Copy() : ShapeConnectionPoint
- DoMouseUp() : void
- DoMove(Point, bool) : void
+ DoMove(Shape, Point, bool) : void
+ DoMoveDelegate(Shape, Point, bool) : void
- DrawPoint(Graphics) : void
OnPaint(PaintEventArgs) : void
OnPaintBackground(PaintEventArgs) : void
+ PointToScreeenAsync(Shape, Point) : Point
+ PointToScreeenDelegate(Shape, Point) : Point
- RedrawThreadProc() : void
- SetLocation() : void
+ ShapeConnectionPoint()
+ ToXml() : string
+ UnLink() : void
+ UnLink(bool) : void
XmlAttr(string, object) : string

43

Shape―The components element, its presentation, setting properties and editing are controlled
by this class

Method Description

AddConnectionPoint Adds entry or exit to shape

ChangeShapesChainStatus Changes the shape status at editing its
connections with other shapes.

Copy Creates a copy of the shape. Is activated when the
user drags a new shape on the diagram

DoMouseDown Processes the user’s mouse clicking on shape

isInputRequiredValue Checks whether or not the field is required for
execution

MoveShape Processes the relocation of shapes

SetLocation Positions the shapes in a specified location

SetProps Sets properties that are entered by the user

ToXml Converts the shape and all its properties to xml

UnLink Activates a connection deleting connections with
other elements on a diagram

ValidateInputNodes Validates inputs and outputs

XmlAttr Returns by name the attribute value

GetInputById Returns the shapes input by identifier

GetOutputById Returns shapes output by identifier

SetSize Sets shape size

RedrawThreadProc Displays a semi-transparent flow diagram when
moving shapes.

ShapeConnectionPoint―This class used for the connecting components displayed in the
scientific workflow project

Method Description

ConnectToPoint Connects the set point with another set point

SetLocation Sets the position of the shape

DrawPoint Displays a point on the screen

ToXml Converts all the point properties to xml

UnLink Deletes the connection of the selected point

44

Connector―Is used for displaying lines which connect two diagram elements

Method Description

doMouseDown Processes the user left mouse click and starts
to draw the connecting line

doMove Displays the connector while the user moves it
around the diagram

remakeSizeAndLocation Changes the size and position of the
connector while it is being moved.

UnLink Removes the connector

ApplyAlign Applies the changes set by user

ShapeProperty―Is used to set shape properties

Method Description

LoadFromXml Downloads property from xml

SetValue Sets property value

ToXml Converts property to xml

GetValue Returns the property value

WorkFlowClientCtl―Used by main GUI library

Method Description

ApplyState Applies a new condition to the diagram

CheckCompletedNode Checks diagram nodes

CheckMCR77Installes Checks whether or not the MATLAB Runtime
is installed

ClearWorkflows Creates a new workflow

ExecuteShape Executes the component in the application,
which is connected with the indicated shape

getInputDataByNode Returns the shape properties, inputted by the
user

LoadAssemblyDll Downloads client component

LoadProjectFromMatLab Downloads xml which MATLAB modified when
the component was executed

45

LoadWorkflow Opens workflow

RunProject Executes the project at the users request

RepaintShapes Repaints shapes on the diagram

RunProjectInternal Runs the project in separate flow and
manages the diagram starting process

SetProcessStatus Displays the diagram starting progress

SaveAsStripButton_Click Stores the project

getLinkedNode Returns all the shapes that are connected on
the diagram with the set

CreateIntagrationCatalog Creates the catalogue on the user’s
computer, to which work results will be stored

PerformInitialSetup Activates the workflow after downloading,
makes all the necessary initialization, and
displays the library download process in
client’s browser

RemoveShapes Deletes the shape from the diagram

LoadRecentWorkflows Downloads recent workflows that are available

WorkflowShareDialog―GUI to provide the user access to shared projects

Method Description

btnSubmitClick Applies rights set by the user

btnCancel_Click Processes when the user clicks cancel

workflowShareDialog Downloads and displays the list of all the
system users with which the workflow is
shared

ShapePropertyDialog―GUI that sets the shape property

Method Description

cmdCancel_click Processes when the user clicks cancel

cmdOK_Click Applies all the properties set by the user

SetShape Connects the selected shape from the GUI
data, displays the inputted properties, and
remembers the shape for storing new
properties

46

Figure 18. PrIMeKineticsClient.dll class diagram

Classes displayed in Figure 18 are used for the storing information about the scientific workflow
projects and their structure stored in ProjectData.xml.

BaseNode―The base class which is used for storing information in ProjectData.xml

Method Description

FromXml Creates the node on the basis of the xml
description

GetNodeName Returns the node name

XmlAttr Returns the attribute by indicated name

XmlNode Creates XmlNode from indicated information

class PWA

BaseNode

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string
XmlAttr(string, object) : string
XmlNode(string, object) : string

Bool

- m_defaultValue: bool = false
- m_description: string = ""
- m_group: string = ""
- m_name: string = ""
- m_readOnly: bool = false

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ DefaultValue() : bool
+ Description() : string
+ Group() : string
+ Name() : string
+ ReadOnly() : bool

ShapeProperty

BoolPropety

- m_boolValue: bool? = null
- m_defaultBoolValue: bool = false

+ GetDefault() : object
+ GetTypeValue() : object
+ GetValue() : object
+ LoadFromXml(XmlNode) : void
+ SetDefault(object) : void
+ SetValue(object) : void

«property»
+ BoolValue() : bool?
xml_name() : string

Circle

- center: Position = new Position()
- m_r: int
- m_type: LineType

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ Center() : Position
+ Radius() : int
+ Type() : LineType

Float

- m_defaultValue: double = 0
- m_description: string = ""
- m_group: string = ""
- m_name: string = ""
- m_readOnly: bool = false

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ DefaultValue() : double
+ Description() : string
+ Group() : string
+ Name() : string
+ ReadOnly() : bool

Int

- m_defaultValue: int = 0
- m_description: string = ""
- m_group: string = ""
- m_name: string = ""
- m_readOnly: bool = false

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ DefaultValue() : int
+ Description() : string
+ Group() : string
+ Name() : string
+ ReadOnly() : bool

Image

- m_fi le: string
- position: Position = new Position()

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ File() : string
+ Position() : Position

RemoteExec

- description: string
- host: string
- id: string
- name: string
- port: string

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ Description() : string
+ Host() : string
+ Id() : string
+ Name() : string
+ Port() : string

ShapeProperty

RemoteProperty

- appServerId: string
- description: string
- host: string
- name: string
- port: int

+ GetDefault() : object
+ GetTypeValue() : object
+ GetValue() : object
+ LoadFromXml(XmlNode) : void
+ SetDefault(object) : void
+ SetValue(object) : void
+ ToXml() : string

«property»
+ AppServerId() : string
+ Description1() : string
+ Host() : string
+ Name() : string
+ Port() : int
xml_name() : string

List

- m_description: string = ""
- m_group: string = ""
- m_name: string = ""
- m_readOnly: bool = false
+ options: List<ListOption> = new List<ListOp...

+ FromXML(XmlNode) : void
+ GetDefaultInstance() : object
+ GetNodeName() : string
+ ToXML() : string

«property»
+ Description() : string
+ Group() : string
+ Name() : string
+ Options() : List<ListOption>
+ ReadOnly() : bool

ShapeProperty

IntPropety

- m_defaultIntValue: int
- m_intValue: int? = null

+ GetDefault() : object
+ GetTypeValue() : object
+ GetValue() : object
+ LoadFromXml(XmlNode) : void
+ SetDefault(object) : void
+ SetValue(object) : void

«property»
+ IntValue() : int?
xml_name() : string

ShapeProperty

FloatPropety

- m_DefaultValue: double
- m_floatValue: double? = null

+ GetDefault() : object
+ GetTypeValue() : object
+ GetValue() : object
+ LoadFromXml(XmlNode) : void
+ SetDefault(object) : void
+ SetValue(object) : void

«property»
+ FloatValue() : double?
xml_name() : string

47

All the other classes Bool, Int, Float, List, RemoteExec―inherit from the BaseNode class. Their
methods are trivial and hence their description is omitted.

8.8 Application server structure
The Application server stores the applications that are implemented remotely from the

client’s computer. The interaction with the application server is accomplished through web
services. The main components of the application server are discussed below.

Web service―Web service is installed on the application server. Web service provides
the interface for the interaction with PWA. Web service also allows input parameters,
component properties, and component results to be communicated between the application
server and the main server.

Application―The application makes the necessary calculations based on the input
parameters. Each application must correspond to defined requirements, which are described in
the following paragraph.

Local storage (config files) ―These are the necessary configuration files, used by the
web application.

1. Application.xml―A file where the applications register and the path of the execution
file is indicated.

2. Jobs.property―A property file where the information about the current tasks is
stored.

3. Config.properties―A configuration profile where the indicated path to the catalog of
application results is saved. This file also creates a log and stores the path of the
application.xml and jobs.property files.

4. ProjectDirectory―For each project a project directory is created that stores the
project information in a ProjectData.xml file. Each project node has its own directory
where the specific node results are stored.

8.8.1 Application server structure

In Figures 19 and 20 the structure and modules of the Application server are shown. The
web service facilitates the interaction of the application server with the PWA and manages the
application starting process.

The main modules are presented below.

1. WebService. This module calls the methods which are used for the interaction with
PWA, and manages the process of starting the application on the Application server.
ComponentRun. This module also controls the execution of the scientific application.

2. Config. This module provides access to the main configuration files.

48

cmp Application

Application

Web serv er

Application

Local storage(config files)

application.xml

Web-serv icescreateJob

addParameter

startJob

getJobStatus

getJobResult

addParameterToNode

jobs.property

config.properties

Local storage

ProjectDirectory

ProjectData.xml

Node directory 1

Node directory 2

Node directory 3

result.data

result.data

cmp ApplicationWebSeriv e

Web-Serv icecreateJob

addParameter

startJob

getJobStatus

getJobResult

addParameterToNode

clean

Config
getApplication

getJobs

getLog

getPathToProject

ComponentRun
Run

Log
writeLog

Figure 20. Application Server main modules

Figure 19. Application server structure

49

8.8.2 Classes diagram

The main classes of the Application server are represented in Figure 21. A description
of the Application server and classes follows.

Figure 21. Application Server class diagram

class AppServ er

Application

- commandLine: String
- name: String

+ getCommandLine() : String
+ getName() : String
+ setCommandLine(String) : void
+ setName(String) : void

Thread

ComponentRun

- job_id: int

+ ComponentRun(int)
+ run() : void

FileTransfer

+ addFileToJob(String, String, String, String) : void
- getFile(String, String) : void
+ getFileResulJob(String, String) : String

«interface»
IApplicationService

+ addParameter(int, String) : boolean
+ addParameterToNode(String, int, int, String) : void
+ createJob(int, int, int, int) : boolean
+ getJobResult(int) : String
+ getJobStatus(int) : int
+ ping() : boolean
+ startJob(int) : boolean

KineticsConfig

- applicationfi le: String
- config: KineticsConfig = new KineticsConfig()
- configfi le: String
- jobs: Properties
- jobsfi le: String
- log: String
- logger: FileWriter
- pathProjects: String
- resultStore: String
- urlResults: String

+ getApplication(int) : Application
+ getConfigfi le() : String
+ getInstance() : KineticsConfig
+ getJobs() : Properties
+ getJobsfi le() : String
+ getLog() : String
+ getLogger() : FileWriter
+ getPathProjects() : String
+ getResultStore() : String
+ getUrlResults() : String
+ KineticsConfig()
+ setLog(String) : void
+ setPathProjects(String) : void
+ setResultStore(String) : void
+ setUrlResults(String) : void

Logger

+ writeLog(String) : void

com.softindustry.primekinetics.appserver.webservice.ApplicationSoap

ApplicationSoap12Impl

+ addParameter(int, java.lang.String) : void
+ addParameterToNode(byte[], int, int, java.lang.String, boolean) : void
+ clean(int) : void
+ createJob(int, int, int, int) : boolean
+ getJobResult(int) : java.lang.String
+ getJobStatus(int) : java.lang.String
+ getPathProjects() : java.lang.String
+ getPathSeparator() : java.lang.String
+ ping() : boolean
+ startJob(int) : boolean

50

IApplicationService―the interface describes all the web methods

Method Description

addParameter Receives the input information for a specified
node

addParameterToNode Receives the files, which contain the work
results of nodes connected with the specified
nodes

Clean Clears the catalogue of the specified node

createJob Creates the new job on the server

getJobResult Receives the work result of the indicated job

getJobStatus Receives the work status of the specified job

getPathProjects Returns the path to the catalogue, in which all
the files of current projects are stored

getPathSeparator Returns the file separator for current OS(“/” for
Unix or “\” for Windows)

startJob Executes the indicated job

Application―Contains the information about the scientific application

Method Description

getCommandLine Returns the command line, which will start the
applications

getName Returns the name of the scientific application

setCommandLine Sets the command line

setName Sets the application name

51

ComponentRun― Used for starting the scientific application. Each application is started in a
separate flow

Method Description

Componentrun The constructor that receives as an input
parameter job identifier

Run Starts the scientific application

KineticsConfig―The class that provides the access to the main configuration files

Method Description

getApplication Returns the application by identifier

getConfigFile Returns the path to the main configuration file

getJobsFile Returns the path to the file, where the
identifiers of current jobs are stored

getPathProjects Returns the path to the catalogue, where the
information of current projects is stored

getUrlResult Returns the url, where the applications work
results will be stored

getLogger Returns the url on Logger class, which can be
used for logs

52

8.9 Backend structure structure
Core library in the server is used in executing remote applications. In this library the
authorization, authentication, and database work are managed. The main structure of the
library is represented in Figure 22 and consists of the following parts:

Authentication module: Provides the site’s users authorization and authentication service on the
application server.

1. Application Service―The service used to process scientific application requests.

2. JobService―The service used to process current jobs and track execution status.

3. ComponentService―The service for component downloads.

4. WorkflowService―The service for work with the workflow.

8.9.1 Main modules

Figure 22. PWA backend main modules

cmp PWA Utility.dll

Authentification
module

startUserSession

getUserBySession

getRoles

getUser

ApplicationServ ice getAllApplications

getApplicationId

checkApplication

JobServ iceinsertJob

getJobById

updateStatus

WorkflowServ ice
addWorkflow

saveWorkflow

getRecentWorkflow

deleteWorkflows

ShapeServ ice
getShapesDef

ComponentServ ice
getComponents

53

8.9.2 Classes diagram

The main library classes are presented in Figure 23.

Figure 23. Utility.dll classes diagram

ApplicationService―The service for storing and receiving information about the scientific
applications

Method Description

CheckApplication Checks whether the specified application
exists in the database or not

GetAllApplication Receives all the available applications

GetApplicationById Returns the applications by the identifier

GetApplicationById Returns the application by name, host, and the
port on which it functions

class Utility PWA

ApplicationServ ice

+ CheckApplication(string, string, int, string, int) : void
+ GetAllApplications() : ApplicationHolder[]
+ GetApplicationById(int) : ApplicationHolder
+ GetApplicationId(string, string, int, int) : int

JobServ ice

+ GetJobById(int) : JobHolder
+ getJobByInfo(int, int, int) : JobHolder
+ InsertJob(int, int, int, int) : int
+ UpdateStatus(int, int) : void

WorkflowServ ice

+ DEFAULT_STATUS: int = 0

+ AddWorkflow(string, string, string, string, bool, DateTime) : int
+ DeleteWorkflow(int) : void
+ GetRecentWorkflows(string) : WorkflowHolder[]
+ GetUserBySession(string) : string
+ GetWorkflowById(int) : WorkflowHolder
+ GetWorkflows(string) : WorkflowHolder[]
+ GetWorkflowStatus(int) : WorkflowStatusHolder
+ IsProjectNameUnique(string, string) : bool
+ RunWorkflow(int) : void
+ SaveWorkflow(string, string, string, string, string, bool, DateTime) : void
+ setPublic(int, bool) : void
+ UpdateXmlById(int, string) : void

UserServ ice

+ GetCurrentRoles() : string
+ GetCurrentSession() : string
+ GetCurrentUser() : string
+ GetDrupalUserByName(string) : DrupalUserInfo
+ GetDrupalUsers() : DrupalUserInfo[]
+ GetUserBySession(string) : string
+ GetWorkflowSharedUsers(int) : List<int>
+ ShareWorkflow(int, List<int>) : void
+ StartUserSession(string, string) : void

ComponentsServ ice

+ GetAllComponents() : ComponentInfoHolder[]
+ GetAvailableComponents() : ComponentInfoHolder[]

ShapeServ ice

+ GetCurrentShapes() : ShapeDefHolder

54

JobService―The service for the work with the current tasks on applicationServer

Method Description

GetJobById Receives a job by the identifier

insertJob Adds a new job

UpdateStatus Updates the status of a job

getJobByInfo Returns a job by project identifier, node and
application

UserService―The service for work with users is implemented in this class

Method Assignment

GetCurrentRoles Returns the current user roles

GetCurrentSession Returns the session of the current user

GetDrupalUsers Returns all the users who are registered in the
system

GetUserBySession Returns the users on the session

StartUserSession Starts the new session for a specified user

ShapeService―This class is used to download the shapes to PWA

Method Assignment

GetCurrentShapes Returns the shapes set as the xml-description

ComponentService―This class is used to download a client’s component

Method Assignment

GetAllComponents Returns the available components

WorkflowService―This class provides the work with diagrams

Method Assignment

AddWorkflow Adds the new diagram

DeleteWorkflow Deletes the diagram

GetWorkflowById Retrieves the diagram by the identifier

SaveWorkflow Saves the changes in the diagram

setPublic Makes the diagram available for system users

getRecentWorkflows Retrieves all the available diagrams

55

8.9.3 Database structure

The database structure is represented in Figure 24.

Figure 24. Database structure

class Data Model

applications

«column»
*PK application_id
* application_serverid
* name
* description
* host
 port

«PK»
+ PK_application(int)

jobs

«column»
*PK job_id
* project_id
* node_id
* application_id
* status

«PK»
+ PK_jobs(int)

MatlabComponents

«column»
*PK ComponentId
* Name
 Description
 Dll1
 Dll2
 Dll3
 Dll4
 Dll5
 Container
 SupportDll
* UploadTime
* Author
 Obsolete
* revision_id

«PK»
+ PK_MatlabComponents(int)

ShapeDefs

«column»
*PK ShapeDefId
* Xml
 Description
 Author
* UpdateTime
 Current
* revision_id

«PK»
+ PK_ShapeDefs(int)

UserSession

«column»
* SessionID
 UserName
* Roles

WorkflowProcess

«column»
*PK WorkflowProcessID
* CreateTime
 SubmitTime
* UserId
* Name
 Description
 Public = ((0))
* Detail
* PercentDone = ((0))
* StatusID = ((0))

«PK»
+ PK_WorkflowProcess(int)

«FK»
+ FK_WorkflowProcess_WorkflowProcessStatus(int)

WorkflowToUser

«column»
*PK WorkflowToUserId
* WorkflowId
* UserId

«PK»
+ PK_WorkflowToUser_1(int)

56

ShapeDefs―Information about the shapes description

Field Description

ShapeDefId Shape description Identifier

Xml Xml description of the shape

Description Shape description

Author The author who created the shape

updateTime The update time

Revision_id The revision identifier, to which the shapes
refer

MatLabComponents―Information about the components

Field Description

ComponentId Component identifier

Name Component name

Description Component description

Dll1, Dll2, Dll3, Dll4, Dll5 Libraries names

SupportDll Library name, which provides the interface of
the connection with the PWA

Revision_id Revision identifier, to which the component is
referring

Author The author who created the component

Obsolete The indication that the component is out of
date

UploadTime The component download time

57

WorkflowProcess―Information about the created projects

Field Description

WorkflowProcessId Unique project identifier

CreateTime Creation date

SubmitTime The last starting time

UserId The user identifier who created the project

Name Project name

Description Project description

Public The indicator that the project is available for all
the users

UserSession―In this table the unique line that identifies the user’s session is stored

Field Description

SessionId Session identifier

UserName User’s login

Roles User’s roles

Applications―Information about the servers’ applications registered in the system

Field Description

applicationId Unique identifier of the application server

Application_serverid The identifier of the applications on the server

Name Name

Description Description

Host IP address or DNS host name

Port The port on which the web-server is working

58

Jobs―Information about the current tasks on application servers

Field Description

Job_id Job unique identifier

Project_id Project identifier

Node_id The node identifier on the diagram

Application_id Applications identifier

Status Implementation status

WorkflowToUser―Information about the user’s access to the project

Field Description

WorkflowToUserId Unique identifier

WorkflowId Unique project identifier

UserId User identifier

8.10 Web service Description
The PrIMeKineticsClient.dll library interacts with the server by means of the web service.

The main methods used are represented below:

Method Description

GetWorkflow Returns the workflow by identifier

DeleteWorkflow Delete the workflow

GetAvailableComponents Retrieves all the available components

GetCurrentShapes Retrieves the current shapes

GetWorkflowSharedUsers Retrieves the users, who have the access to
the project

ShareWorkflow Sets the rights for the project access of
specified users

SetPublicWorkflow Makes the project public

insertJob Saves a new job on the server

updateJobStatus Updates the job status

clearProduction Deletes all components and resources

uploadProduction Uploads the new resources, components, and
shapes

59

9 PrimeHandle Web Services

PrimeHandle web services are implemented to allow easy access from PWA
components to prime data warehouse repository. PrimeHandle web services incapsulate
WebDAV interface and enables PWA components to query and update prime data warehouse
via web services. See the architectual diagram for more details:

9.1 PrimeHandle Web Service methods

PrimeHandle WebServices

{

\

Server

Client

Data warehouse Web Services

L
-

Primekinetics.org (
Drupal Data warehouse

\,
WebDAV Access Layer

-
L

qeirch
Re~~ est

Role validation/Authorization
Authentication

Module I ~ Module

~~,-------D--at_a_w~aLre_h_o_u-se-------.
WebServices

. S<.J
p s

Search Component

Data warehouse K.,~===J\~) WebService

Search Component '" 2. v Proxy
Request

UIDIPASS

~ ,~.----------------------------'

PWA

l I r,
/1 __.. Prime

Data Warehouse]
'J J. 6.

--,.
earch Request \ If

I r
t WebDAV II. PrimeKinetics se

SQL database J
redentials

,.
\t

60

Below is the list of currently implemented prime data warehouse methods:

Copy
Copy method can be used to copy a file from the WebDAV source path to the destination path.

Usage: Copy(string sourcePath, string destPath, string login, string password)

Example:
Copy('depository/experiments/catalog/x00000001.xml','depository/experiments/catalog/_atti
c/x00000001_0.xml','Username','Password')

Delete
Delete method can be used to delete a WebDAV file.

Usage: Delete(string strPath, string login, string password)

Example: Delete('depository/experiments/catalog/x00000001.xml','Username','Password')\

Exist
Exist method is to check if an XML file or a directory exists on a specified WebDAV path.

Usage: Exist(string strPath, string login, string password)

Example: Exist('depository/experiments/catalog/x00000001.xml','Username','Password')

GetDetails
GetDetails method is to get the details of a WebDAV XML file.

Usage: GetDetails(string strPath, string login, string password)

Example:
GetDetails('depository/experiments/catalog/x00000001.xml','Username','Password')

GetFile1
GetFile1 method can be used to download a WebDav file.

Usage: GetFile1(string strPath, string login, string password)

Example: GetFile1('depository/experiments/catalog/x00000001.xml','Username','Password')

GetPropertyNames
GetPropertyNames method is to list property names of the specified WebDAV file.

Usage: GetPropertyNames(string strPath, sstring login, string password)

Example:
GetPropertyNames('depository/experiments/catalog/x00000001.xml','Username','Password')

GetXml
GetXml method is to get the XML description of the specified WebDAV XML file.

Usage: GetXml(string strPath, string login, string password)

61

Example: GetXml('depository/experiments/catalog/x00000001.xml','Username','Password')

Move
Move method can be used to move a file from the WebDAV source path to the destination path.

Usage: Move(string sourcePath, string destPath, string login, string password)

Example:
Move('depository/experiments/catalog/x00000001.xml','depository/experiments/catalog/_atti
c/x00000001_0.xml','Username','Password')

PropFind
PropFind method is to get a property of the specified WebDAV file.

Usage: PropFind(string strPath, string propName, string login, string password)

Example:
PropFind('depository/experiments/catalog/x00000001.xml','getlastmodified','Username','Pas
sword')

PropPatch
PropPatch method can be used to set a property of the specified WebDAV file.

Usage: PropPatch(string strPath, string propName, string propValue, string login, string
password)

Example:
PropPatch('depository/experiments/catalog/x00000001.xml','submittedBy','submitter','Usern
ame','Password')

Search
Search method can be used to search WebDAV database.

Usage: Search(string collectionPath, string searchArg, string depth, string login, string
password)

Example:
Search('depository/experiments/catalog','CONTAINS('shock')','DEEP','Username','Password
')

Submitfile
Submitfile method is to submit file byte[] to a specified WebDAV path, and propatch username
and reason.

Usage: Submitfile(byte[] buffer, string strPath, string newOrOld, string reason, string login,
string password)

Example: Submitfile(buffer,'depository/bibliography/catalog/b00000000.xml', 'new', 'new file
from Username', 'Username','Password')

62

Upload1
Upload1 method is to upload a file byte[] to a specified WebDAV path.

Usage: Upload1(byte[] buffer, string strPath, string login, string password)

Example:
Upload1(buffer,'depository/experiments/catalog/x00000001.xml','Username','Password')

ValidateXml
ValidateXml method can be used to check if an XML string is valid against Schema.

Usage: ValidateXml(string strXml, string login, string password)

Example: TextReader tr = new StreamReader('C:/x00000001.xml');
String strXml = tr.ReadToEnd();
ValidateXml(strXml,'Username','Password')

The number of web service methods will expand in the future, so please use the
following link to get the latest information on availalble prime data warehouse web service
methods:

http://dispatcher.primekinetics.org/workflow_dev_test/services/PrimeHandle.asmx?wsdl

9.2 PrimeHandle Web Services authentication mechanism
PrimeKinetics.PrimHandle.dll was implemented to encapsulate PrimeHandle WebDAV

authentication mechanism (see the digram above). PrimeKientics.PrimeHandle.dll is located on
prime server and provides abstraction layer for PrimeHandle web service methods to
authenticate on WebDAV datawarehose before they can gain access WebDAV data.

63

WebDAV admin user login and password information is stored on the server in Prime
SQL database and is configurable from primekinetics admin user interface.

See Primehandle web interface configuration section for configuration details

64

10 System Configuration and Maintenance

Matlab runtime version configuration

This user interface was designed to ease the process of upgrading the system to a latest
Matlab version. To upgrade PWA to a new Matlab version the following steps have to be taken:

1. Obtain latest Matlab runtime executable and upload (FTP) it to PWA server to the
following location: C:\Inetpub\wwwroot\workflow

2. Open System Preferences tab on PWA Component Uploader application
http://dispatcher.primekinetics.org/workflow_dev/manager.aspx and configure following
Matlab runtime parameters

 Matlab display name
 Matlab major version
 Matlab minor version
 Matlab path (x32) – location of Matlab runtime on 32-bit system
 Matlab path (x64) – location of Matlab runtime on 64-bit system

Primehandle web interface configuration

This user interface was developed to configure PWA for WebDAV system access. The
following parameters have to be specified:

Prime server – WebDAV server URL

Prime host – WebDAV server name

Prime port – port number (optional) to access WebDAV server

Prime protocol – network protocol used to access WebDAV server

WebDAV user – WebDAV system user name

WebDav password – WebDAV system user password

Prime Index Catalog – WebDAV root catalog

65

Prime WebDav – not used

Prime Access Interval – not used

HDF Version – version of the HDF viewer

11 Technologies used

11.1 PrIMe Portal
The PrIMe portal is executed using the PHP language with the help of CMF Drupal-6.

The standard modules of the Drupal core set are developed by third parties and obtained from
the repository drupal.org. Part of the modules was modified specifically for the PrIMe portal.

The PrIMe portal uses MySQL for the database technology. It is working on the web
server technology Apache2 under the ОС Windows-2003 Server management.

11.2 Scientific Component Uploader and PrIMe Workflow Application
Both the SCU and the PWA utilize Microsoft .NET technologies. All codes are written in

C#. To enable the feature of native code implementation in the context of the client’s browser,
Active X technology was used.

In the capacity of DBMS the MS SQL Server 2005 is used. It is run on the web server
IIS under the management of the ОС Windows-2003 Server.

11.3 Application server
The application server utilizes Java technologies. For the creation of web services the

AXIS framework is used. It is run on the Tomcat 6 web server.

66

12 Personnel Supported

This project supported mainly the programming consultant, Michael Gutkin, a graduate student,
Devin Yeates, along with the Principal Investigator, Professor Michael Frenklach.

13 Publications and Presentations

1. “Methodology and Infrastructure for Predictive Modeling”, Korea University, Research
Institute of Korean Studies, Seoul, Korea, October 18, 2010.

2. “Methodology and Infrastructure for Predictive Modeling”, Swiss Federal Institute of
Technology (ETH Zurich), Institute of Process Engineering, May 2, 2011.

3. “Is Your Experiment Informative?” Stanford University, Mechanical Engineering
Department, High-Temperature Gas-Dynamics Laboratory, November 16, 2011.

4. “Uncertainty-Quantified Analysis of Complex Experimental Data,” D. R. Yeates, W. Li,
P. R. Westmoreland, T. Russi, A. Packard, and M. Frenklach, Proceedings of the 7th
U.S. National Combustion Meeting, Atlanta, GA, 2011, Paper No. 2D01.

5. “UQ-Prediction on the Feasible Set,” M. Frenklach, A. Packard, T. Russi, X. You,
D. Yeates, W. Speight, M. Gutkin, 13th International Conference on Numerical
Combustion, Corfu, Greece, April 27-29, 2011.

6. “Methodology and Infrastructure for Predictive Modeling,” M. Frenklach, A. Packard,
T. Russi, X. You, D. Yeates, W. Speight, and M. Gutkin, The 7th International Conference
on Chemical Kinetics, MIT, Cambridge, MA, July 10-14, 2011.

7. “Process informatics tools for predictive modeling: Hydrogen combustion,” X. You,
A. Packard, and M. Frenklach, Int. J. Chem. Kinet. 44, 101-116 (2012).

14 Significant Interactions

In collaboration with Professor Phillip Westmoreland’s group, we applied the developed here
tools to the analysis of data collected in a fuel-lean C2H2/O2/Ar premixed laminar flat flame,
mapped with VUV-photoionization molecular-beam mass spectrometry at the Advanced Light
Source of Lawrence Berkeley National Laboratory.

	AFD-070820-034
	final_report_2012

