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Abstract

It has been shown that thousands of industrial control devices are exposed to the

Internet, however, the extent and nature of attacks on such devices remains unknown.

The first step to understanding security problems that face modern supervisory control and

data acquisition (SCADA) and industrial controls networks is to understand the various

attacks launched on Internet-connected field devices. This thesis describes the design and

implementation of an industrial control emulator on a Gumstix single-board computer as

a solution. This emulator acts as a decoy field device, or honeypot, intended to be probed

and attacked via an Internet connection. Evaluation techniques are developed to assess

the accuracy of the emulation implemented on the Gumstix and are compared against

the implementation on a standard PC and the emulation target, a Koyo DirectLogic 405

programmable logic controller (PLC).

The results show that the both the Gumstix and PC emulator platforms are over

97% accurate for Nmap OS Fingerprint Scans, over 99% for standard web and industrial

protocol queries, and 100% accurate for Metasploit exploit execution. The logging

capabilities of both platforms are excellent, with 97.21% of all packets being logged by the

Gumstix and 99.99% of all packets being logged by the PC when the results of all scenarios

are combined. Though the timing-level accuracies for the PC platform are significantly

faster than the target PLC, the results of the Gumstix platform significantly slower as

defined by the 99% confidence intervals for the mean.

Based on these results, extensive knowledge of the specific implementations of the

protocols or timing profiles of the target PLC are required to identify and fingerprint

the Gumstix device as a honeypot. Furthermore, there are very few actively maintained

SCADA honeypot systems available, and the number of ICS honeypots accessible from

the Internet is also likely very few. As a result it is speculated that SCADA honeypots

iv



are not actively being looked for by attackers. Based on this, the results suggest that

a honeypot implemented on a Gumstix emulator is suitable for applications in SCADA

attack-landscape research. Further research should be conducted to increase the timing

performance of the emulator before being deployed in applications that are sensitve to

emulation timing discrepancies, such as SCADA laboratory research. In these types of

applications, the PC platform should be used.
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EMULATION OF INDUSTRIAL CONTROL FIELD DEVICE PROTOCOLS

I. Introduction

1.1 Motivation

In 2011, it was shown that a substantial number of Industrial Control Systems (ICS)

devices were actively connected to the Internet despite claims to the contrary [Lev11]. The

research provides strong evidence that ICS devices are exposed to the Internet, however, it

is still largely unknown to what extent the identified industrial control devices and others

are being attacked. The life expectancy, cost, and remote physical location of distributed

control systems (DCS) and supervisory control and data acquisition (SCADA) devices

make asset owners reluctant to replace them for the sole purpose of applying security

[HoL10]. With the high number of attack opportunities that Internet exposure provides,

and lack mandatory compliance with current security policies, there is little hope that these

devices are safe. However, data is still needed describing the frequency and severity of

attacks of Internet connected industrial controlled devices.

Furthermore, studying attacks of industrial systems requires researchers knowledge-

able in industrial control systems and Information Technology (IT) infrastructure as well

as data from past industrial attacks. Costs of even a modest industrial control system for

purely educational use can quickly surpass $100K, making research, education, and train-

ing a significant investment.

A need exists for a scalable and cost effective solution that is suitable to address

research problems both in the laboratory and on the Internet. In addition, a need exists for

a platform for training and education of SCADA and ICS attacks before progress can be

made in understanding, and ultimately preventing attacks on industrial networks. Current
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solutions exist that address one of these aspects, but none are adequate to address all needs

in a cost effective manner.

One solution is the emulation of field devices such as programmable logic controllers

(PLC) that can interact with other SCADA and DCS components including other field

devices and control software. Emulation is different from simulation because simulators

model the way a target system works, but do not actually need to behave the same, as in a

flight simulator [Rot00]. Therefore, an emulated field device is able to perform the same

actions as the target PLC, but is implemented completely in software. Emulated industrial

control systems therefore combine the best of both real hardware devices for research and

education, and software simulations for scalability and low cost through custom software

implemented on dedicated hardware.

1.2 Research Goals

The goal of this research is to develop a low-cost, portable, and configurable industrial

control emulator for a popular type of PLC for application-level services. The design of the

emulator is based on criteria that prioritize cost and performance in the implementation of

a SCADA attack-landscape research honeypot. The target PLC is a low-cost PLC with

Internet connectivity, the Koyo DirectLogic 405 with the ECOM-H4 Ethernet Module

[Aut12b]. Though it is less common in critical infrastructure, this device is widely used at

the plant and factory level in systems across many industry sectors [Dig12a].

This research aims to establish metrics to quantify the emulator’s performance on

two popular computing platforms, the Gumstix single board computer, and a standard

laptop PC. The metrics are chosen to assess the accuracy of the emulation and its viability

as a PLC honeypot for SCADA landscape research. These metrics are compared to

baseline measurements taken for the emulation target (the Koyo PLC) to determine the

quantitative accuracy of the emulation with regard to response packet bytes, Nmap OS

Fingerprinting, Metasploit attack success, and response timing. Logging capability of the
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emulator platforms is also measured to ensure suitability as honeypot and research tool to

log all interactions.

The experiments conducted seek to answer questions about the accuracy and logging

performance of the emulator on the Gumstix and PC platforms. The questions address

packet, scanning, attack, and timing levels of accuracy, as well as the extent that queries

and responses to and from the emulator are logged. The impact of request frequency and

emulator platform (Gumstix vs PC) is also assessed.

These accuracy and logging metrics are designed to determine the suitability of the

emulator as a honeypot and research tool. It is hypothesized that the industrial controls

emulator implemented on both the Gumstix and PC platforms is accurate to both standard

and non-standard queries, and is able to log all packets to a remote logging service. The

metrics are designed to compare the target PLC and emulated systems to quantify the

accuracy of the emulator. The results form the basis for a qualitative determination on

emulator authenticity, as describe in Chapter 3.

1.3 Thesis Layout

This chapter introduced the motivation and goals of the thesis research. Chapter

2 provides background information and fundamental concepts on SCADA systems and

emulators, as well as recent work related to SCADA and ICS field device emulation.

Chapter 3 details the design and implementation of the PLC emulator system. Chapter

4 outlines the methodology used to quantitatively asses the accuracy and functionality of

the implementation. Chapter 5 provides discussion and analysis of the experimental results.

Chapter 6 discusses conclusions from the results and provides details and suggestions for

future work.
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II. Literature Review

2.1 Introduction

This chapter provides background information needed for a basic understanding of

SCADA systems, emulators, and honeypots. Section 2.2 provides relevant information on

industrial control and SCADA, including relevant protocols, threats to their security and

previous attacks on SCADA networks. Section 2.3 discusses the concept of the device

emulation, examples of implementations, and applications. Research related to industrial

control emulators and honeypots is discussed in Section 2.5

2.2 SCADA

Supervisory Control and Data Acquisition (SCADA) systems are large, highly-

distributed networks that monitor and control industrial processes and are highly integrated

into critical national infrastructure systems. In fact, SCADA systems are the nervous

system of the industrial infrastructure animal. Many national infrastructures such as oil

fields, power grids, Uranium enrichment facilities, and utility delivery systems depend

on SCADA networks and, on a smaller scale, distributed control systems (DCS). These

systems provide real-time sensor data from the field to operators that may be miles or even

thousands of miles away and are capable of remotely adjusting control system parameters.

DCS and SCADA both fall under the broader classification of industrial control systems

(ICS), and the three terms are often interchanged depending on the specific industrial

application being discussed [SFK11]. Although the focus of the background research is

on SCADA systems, all of the concepts developed, are directly applicable to DCS.

The main purpose of SCADA systems is to extend the operator’s visibility and

interaction to processes that would normally be impossible due to distance or access

restraints [Boy09]. To increase the operator’s span of control, SCADA systems are made
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up of complex networks that include both hardware and software components. Figure 2.1

shows different sub-systems of a typical SCADA system, with the primary control center

at the top. Inside the control center, are the human operator, the console with integrated

human machine interface (HMI), and Master Terminal Unit (MTU), along with additional

support equipment.

If the operator is the heart of the system, the MTU is the brains. The MTU is

a computer whose primary role is to store and process data collected from distributed

field devices, which is no small task considering there may be thousands of field devices

scattered over thousands of square miles. In this context, anything local to the operator is

considered to be physically located in the control center, and anything located remotely is

considered to be in the field.

In addition to communicating with field devices, the MTU communicates with the

operator via some type of HMI or console. For very simple systems, the entire HMI may

simply be a switch board and lights. However, modern systems typically implement the

HMI on a computer running customized software. The operator has complete view and

control of the system through a graphical interface. He or she can poll data from different

field units, modify the status of actuators or valves based on usage requirements, and in

many cases, even re-program field devices. In addition to the primary control center, many

large SCADA networks may also implement regional control centers. The primary control

center delegates process supervision to regional control centers to more effectively control

the system. This delegation both increases the span of control of the primary control center

and reduces the distance that information must travel from remote field stations to the

regional control center before being processed. Because of the distance between a primary

and regional control center, the communication link may consist of a Wide Area Network

(WAN), telephone network, or even satellite. Though the operator does have the ability to

make changes to the SCADA system via the HMI, more than 99% of all messages from
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the MTU are automatic [Boy09]. This is particularly true for very complex or very large

systems where thousands of measurements and control signals are sent to and from the

MTU every second.

Figure 2.1: A Typical SCADA System(Adapted from [SFK11])

Remote development and maintenance is a significant consideration for SCADA

systems. Despite the fact that many field devices in SCADA networks are not easily

accessible or situated in harsh locations, their application software still needs to be

upgraded and maintained. For this type of system development and troubleshooting, a

special type of HMI called an engineering workstation is used and is typically located in

the control center. This workstation has the same functionality of an HMI but includes
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development tools that allow system designers to program remotely, collect diagnostic data

not typically displayed to the operator, and modify the HMI software used on the operator’s

console. Since these workstations have access to the SCADA network in the same way as

a standard operator’s HMI, they are sometimes used as an operator’s workstation when

not used for development [Cap10]. When the MTU (or operator) queries a remote unit,

the message travels from the control center to remote field locations and into specialized

control units and measurement devices that directly interact with physical processes. There

are many different types of field devices controlled by the MTU depending on the specific

industry and the processes being controlled. The two primary hardware field devices with

which the MTU communicates are remote telemetry units (RTU) (as opposed to remote

terminal units) and programmable logic controllers (PLC).

While similar in concept, there are differences between RTUs and PLCs. Legacy

RTUs, are limited to collecting sensor data and controlling actuators based solely on

commands from the MTU, with very limited computational power to independently control

processes. This type of RTU is only a slave device, responding to requests from the MTU,

and does not initiate queries of its own.

PLCs, on the other hand, have complex software programs that allow them to not only

transmit sensor data to the MTU, but also to control field processes independently. The

ability to build automated control loops using PLCs independently from the MTUs makes

them powerful. PLCs control complex processes locally based on user-programmed ladder

logic and set points, maintaining only routine interaction with the MTU. In addition to

reducing the amount of communication required between the MTU and PLCs, local control

also promotes fault tolerance, a main objective of SCADA systems [Jae08]. In a SCADA

system, PLCs are considered a slave device with respect to the MTU but are considered

masters of the processes they independently control. While some PLCs can act as master

devices to other PLCs, this functionality is more indicative of a small scale DCS rather
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than a true SCADA system. The attractive cost, availability, and versatility, make PLCs the

most universal field device. In addition to the PLC, MTUs also communicates with remote

terminal units, another popular type of field device.

Modern remote terminal units (RTU) are very complex, flexible, extensible, and

customizable with computational capacities far superior to even the most capable PLC.

A single modern RTU for a custom application can support many different protocols

simultaneously, provide long-term data logging, have expandable program memory

capacity, and endure a wide range of operating environments [Mot07]. There is a price

to be paid for such flexible and complicated systems, however. Lengthy setup time and

considerable cost put RTUs at a disadvantage, not to mention complicated requirements

scoping and lead times because they are often made-to-order systems.

Terminal RTUs frequently act as both the master and slave in SCADA networks. In a

standard SCADA system, intelligent electronic devices (IED) are slave devices to a master

RTU. IEDs include valves, breakers, sensors and protective relays which communicate on

any of a dozen different protocols. Where money and lead-time are no object, modern

RTUs may certainly be the answer, but this situation is practically non-existent in industry.

PLCs are a better alternative for most applications.

2.2.1 The Programmable Logic Controller.

PLCs date back to the late 1960s, where their primary motivation was to replace the

electromechanical relay-based control systems, which were prevalent in industrial systems

[Boy09]. By adopting PLC technology, system engineers traded in relay systems built using

hundreds of hard-wired devices with flexible, rapidly re-programmable, and physically

smaller microprocessor-based devices. The main advantages of PLCs over RTUs are their

relative low cost and modularity. PLCs are commercial off-the-shelf (COTS) devices, and

are readily available and replaceable while most modern RTUs are custom- built devices.
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PLCs are specialized embedded computers with many different manufacturers and

implementations. PLCs are a type of low-level field device in SCADA and industrial

networks that actually control the physical processes. For the purposes of this research,

all PLCs are considered to have common core characteristics: (1) ability to complete

electronic circuits and measure electronic signals, (2) are programmable in that, for some

arbitrary input, they are able to respond with some predefined response, and (3) in the case

of SCADA and industrial control systems, are networked with other devices.

2.2.2 ICS and SCADA Protocols.

Many different protocols exists for communicating between SCADA and ICS

equipment. Some protocols are open, meaning that the standards and specifications are

published, while others are proprietary, meaning the standards are unpublished. Open

protocols can be well understood simply by reading the specifications. Proprietary

protocols, however, can have many intricacies that can only be understood after observing

many different types of protocol interactions. Even then, fully understanding a proprietary

protocol may be impossible. Depending on the application, the proprietary specifications

may be released to developers by the manufacturer under a non-disclosure or other written

agreement.

2.2.2.1 Modbus Protocol.

One of the most widely used ICS protocol is the Modbus protocol. In 1979 Modicon

corporation released Modbus as the first industrial communications network protocol which

was soon adopted as an industry standard [Plc12]. The ease of use without authentication

or excessive overhead makes Modbus one of the most widely deployed industrial control

communications protocols today. The protocol operates at the application layer of the open

systems interconnection (OSI) model, meaning it operates independently of the underlying

communication network. In the case of the Internet, the underlying communication

network utilizes the transmission control protocol and Internet protocol (TCP/IP). The
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Modbus protocol is limited to one-way data initiation, meaning that queries only originate

from the MTU or other master device, to which the slave device responds [Kna11]. There

are several variants of Modbus including Modbus RTU and Modbus ASCII which are very

similar, and Modbus TCP. Any specific implementation of a SCADA network might use a

combination of these or other protocols.

Modbus RTU and Modbus ASCII Variants. Both the Modbus RTU and Modbus

ASCII communication variants are transmitted via serial communications protocols, and

are virtually identical. The nature of serial protocols such as RS-232 and RS-485

limits the end-to-end lengths between communicating devices. The current Modbus RTU

Specification and Implementation Guide [Mod06] states that the maximum length for a

cable depends on "baud rate, the cable (Gauge, Capacitance or Characteristic Impedance),

the number of loads on the daisy chain, and the network configuration." Considering these

factors, practical implementations of Modbus RTU/ASCII on RS-485 are limited to a

maximum length of 1000m while RS-232 is limited to less than 20m [Mod06]. These

factors severely limit direct serial connections for SCADA networks.

The useful range of the Modbus RTU/ASCII protocol can be significantly increased

with modems to span the long distances using means such as radio, plain old telephone

system (POTS), cell phone service, or even satellite. Modems operate at the data link and

physical layers of the OSI model. Their job is to receive serial data from an MTU in

the Modbus RTU or ASCII protocol, encapsulate and transmit the data to another modem

across the selected medium. The second modem receives and decodes data back into a

serial message at the remote location and transmits it to the PLC. The PLC then sends

information back to the MTU the same way.

The need for dedicated modems to communicate across long distances makes the

Modbus RTU and Modbus ASCII protocols less attractive than their Modbus TCP

counterparts in many configurations. Additional considerations such as addressing limits,
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serial repeaters, and other electrical requirements make direct Modbus RTU and Modbus

ASCII less suitable for modern day, large-scale SCADA operations as compared to Modbus

TCP.

Modbus TCP Variant. Of the three Modbus protocol variants, Modbus TCP has

become the most widely used. As the name implies, Modbus TCP is designed for use across

TCP/IP networks, commonly referred to as The Internet. In Modbus TCP, the Modbus

protocol fields are encapsulated in TCP packets in order to make remote communications

between the MTU and the PLC easier, since they can be routed over modern information

technology (IT) networks [Kna11].

Modbus TCP allows for an easier IT network topology to be designed and configured

compared to serial networks. Furthermore, Modbus TCP is not constrained by the

addressing or distance limits because Internet protocols and specifications already address

those issues. There are very few reasons to build dedicated long-distance networks for

modern SCADA and ICS implementations using serial protocols, when the infrastructure

that comprises the Internet already exists. Many systems incorporate both serial and TCP

versions of Modbus. In these systems, Modbus RTU and Modbus ASCII are used for short

distance communication between devices at a remote field location, and Modbus TCP for

the long-haul between the MTU in the command center and remote PLCs. Thus, even

Modbus RTU and Modbus ASCII systems may encapsulate data in TCP/IP packets and

send them across the Internet exposing the SCADA or ICS network.

2.2.2.2 DirectNet Protocol.

The DirectNet protocol is an open-source protocol used by the DirectLogic family of

PLCs manufactured by Koyo Electronics Industries. This is a simple protocol used to read

and write memory locations on a PLC from another PLC, HMI, or engineering workstation.

Common uses of DirectNet are to upload or download system data such as Timer/Counter

status, I/O information, and variable memory information [Aut12a]. Like Modbus, the
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protocol is used across serial connections such as RS-232 and RS-422 or encapsulated in

IP packets for traversal across an IT infrastructure. Though DirectNet is not an industry-

standard protocol, a popular variant known as the Communications Control Module (CCM)

protocol is virtually identical to the DirectNet specification. It is supported by most General

Electric PLCs and legacy Texas Instruments devices [Sof12, Gei10, Koy12].

2.2.2.3 K-Sequence Protocol.

The K-Sequence protocol is a proprietary protocol used exclusively by Koyo and

Automation Direct branded PLCs, including the DirectLogic family. This protocol can also

be transmitted across a serial connection or encapsulated in an IP packet. The primary use

of K-Sequence is to communicate between HMI software and PLCs including password

protection of memory segments, and transferring ladder logic to and from the device

[Aut11].

Because K-Sequence is a proprietary protocol, it is difficult to compare to the

DirectNet protocol and where one protocol is used over the other. Many of the

capabilities between the two protocols appear equivalent based on published features. One

published difference between the capabilities of these protocols is that the K-Sequence

protocol can perform direct write operations on individual memory bits, giving it the

ability to control individual I/O points, while the DirectNet protocol is only writable at

the byte (8 bit) resolution [Tho05]. The K-Sequence protocol is implemented on all

Koyo/AutomationDirect PLCs, while DirectNet may not, making the K-Sequence protocol

more universal.

2.2.2.4 Host Automation Products (HAP) Protocol.

The HAP protocol is a proprietary protocol used for Ethernet communications

between an HMI or engineering workstation and ECOM Ethernet Module which is an

optional component for all Koyo/Automation Direct PLCs. HAP is also used for PLC

to PLC communications. This protocol is encapsulated in a user datagram protocol
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(UDP) packet, and is used to configure communications settings, upload firmware, and

to encapsulate other protocols, such as DirectNet and K-Sequence. Though this protocol

is proprietary, many free resources exist to help dissect it manually, including a software

development kit (SDK) provided by the manufacturer [Hos12, Wig12]. The manufacturer

can provide the SDK source code written in C to individuals directly for a legitimate use

[Hos12].

2.2.3 SCADA Communication Networks.

Depending on the application, any variety of communication protocols may be utilized

between an MTU and field PLCs. Many of them, like Modbus, K-Sequence, and DirectNet,

offer different variants optimized for use over a particular medium. Modbus offers a TCP

version intended to operate across a private IT network, but is often extended beyond the

private network across SCADA control networks to the Internet.

Whether intentional or not, there are consequences for utilizing the Internet for

SCADA communications. The most significant advantage for using the Internet for long

distance communication is cost. Everyone with an Internet connection shares the cost

to maintain the overall network, including the infrastructure. Furthermore, access to the

Internet is easy even in remote locations with complex networks of satellites, telecom

equipment, television cable, fiber optics, and radios connecting information systems

globally.

There are also negative consequences for connecting devices to the Internet. For

example, anyone can scan an Internet-connected device and potentially access it. Evildoers

are able to identify, probe, and exploit unprotected computers in as little as fifteen minutes

[Spi03a]. Attacks on Internet connected devices are commonplace, including attacks on

Internet connected ICS devices, and will continue to be a problem well into the future

[Con13].
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Connecting devices to the Internet puts the devices and the entire system at risk. Risk

is defined on a two-dimensional scale as a direct function of probability and consequence.

With the integration of equipment running Internet protocols like Modbus TCP and HAP,

SCADA system designers are accepting the risk of an attack as soon as they plug the PLC

into the network. The higher the consequences of an attack, and the higher the probability,

the more risk one accepts when connecting a device. Though the millions of people who

connect personal devices to the Internet every day accept a similar risk, the SCADA risk is

much greater because the consequences are much more severe.

Every SCADA device connected to the Internet is vulnerable to an attack, simply by

being connected. Vulnerabilities [PeP09, Saw11, San11] and automated exploits [Wig12,

Ras11, Rob12, Rap12] are released regularly. As more vulnerabilities are exposed, the list

of potential ICS targets on the Internet increases, and automated exploits put sophisticated

tools in the hands of all potential attackers, including low-skill script kiddies. The

consequences of a successful SCADA attack using such automated tools are almost endless

e.g., lack of drinkable water, electrical grids shutting down, oil pipelines burst, power

generators destroyed, etc.

2.2.4 SCADA on the Internet.

In an attempt to discover just how many SCADA devices are connected to the Internet,

and to what extent they are vulnerable, graduate student Eireann Leverett of the University

of Cambridge developed a search tool in 2011 to match a list of vulnerable SCADA devices

to publicly-available exploits, and visualize the vulnerable systems on a map [Lev11]. The

methodology and results of the research are detailed in his Master’s thesis. Leverett used the

SHODAN search engine which allows users to find specific Internet connected devices like

routers, servers, PLCs, HMIs, etc, based on simple search terms [Sho10]. The difference

between SHODAN and a search engine like Google is that SHODAN allows users to search

for devices as opposed to websites by indexing response messages (banners) from Internet
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hardware. In combination with SHODAN, he used a well-known exploit engine to identify

which devices could be attacked with open-source exploits. Leverett’s SHODAN search

turned up many types of SCADA devices including HMIs, engineering workstations, and

various field devices by popular manufacturers including Allen Bradley, Powerlink and

SoftPLC.

At the 2011 SCADA Security Scientific Symposium (S4) conference, Leverett

announced that he discovered a total of 10,358 SCADA devices globally were directly

connected to the Internet over a two year span [Pet11]. The United States had by far the

most of any country with 3,920 Internet-connected devices [Lev11]. While not all of these

devices were remotely exploitable, many of them were. The exact number of exploitable

devices is unpublished. The fact that these SCADA devices were connected to the public-

facing Internet at all puts them at risk, since new vulnerabilities are released regularly.

Leverett’s research proves that SCADA devices are, in actuality, being connected to the

Internet, giving cause for concern. When presented with the results, many asset owners

associated with the Internet-exposed SCADA systems were unaware that their devices were

connected to the Internet at all.

To validate Leverett’s work two security consultants and researchers from InfraCriti-

cal.com began project SHINE (SHodan INtelligence Extraction) in April, 2012 [Dhs12a,

RaB12]. Also using the SHODAN search engine, an inital list of almost 500,000 of

Internet-exposed control devices was compiled. Working with the ICS computer emer-

gencey response team (ICS-CERT), the researchers were able categorized each of the

500,000 suspect IP addresses by sector type, organization, and location, and determined

approximately 7,200 control system devices across the United States were exposed on the

Internet. This work undeniably confirms that SCADA and ICS devices are connected to the

Internet, and heightens the need for better understanding of the SCADA attack landscape.
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According to a 2009 Government Accountability Office (GAO) report, SCADA

systems are often exposed via corporate IT networks [Gao09]. The integration of

automated utility billing and the development of the smart grid are driving commercial

business networks to interact directly and automatically with control networks.

Another reason SCADA and DCS devices are exposed to the Internet is by their default

configuration. Security features on newly installed products are often turned-off by default

for ease of installation [Doe02]. New models advertise their SCADA products as "drop-in

replacements" with advanced features and capabilities such as remote maintenance, email

service, and web service turned-on by default, whether needed or not [Doe02]. Unless

SCADA system integrators are cognizant enough to notice or diligent enough to check,

these features will remain on, leaving not just a single PLC but potentially the entire

SCADA network vulnerable [Doe02].

Default settings pose a common problem among many Internet-connected devices;

the manufacturers leave it to the users to protect themselves. Unlike most traditional IT,

SCADA systems tend to be more fragile, especially to network scanners. Two popular

network scanning utilities that are used to detect vulnerabilities on traditional IT networks

are Nmap [Lyo12] and Nessus [Nes12].

Nmap is a multipurpose port scanning tool that scans computers for potential

vulnerabilities such as open ports and services. It is also used to map complete network

topologies. A view of open ports, services, and topologies on a system is vital to

understanding and securing the network. Similarly, Nessus scans network computers, but

is able to compare the vulnerabilities with publicly available exploits, giving the user a

practical assessment of device security. These types of scanning tools are vital to traditional

IT security administrators to control and assess their networks. The tools are also useful

for scanning SCADA networks with the same benefits. However, network scanners like

these have been shown to cause significant disruptions when used on SCADA networks.
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For example, a 2005 report from Sandia National Laboratory describes several occurrences

of real world losses due to network scans on SCADA networks [Dug05]. Actual examples

of negative behavior in response to network scans include the erratic movement of a 9 foot

robotic arm in an area shared with personnel, the malfunction of a microchip manufacturing

process resulting in $50,000 worth of lost electrical components, and a gas utility company

that had to shut-down gas delivery to its entire customer base due to unresponsive SCADA

equipment [Dug05]. SCADA system operators and maintainers are understandably hesitant

to scan their systems for vulnerabilities when the systems are directly connected to physical

processes. However, it is difficult to defend a network that cannot be adequately assessed

for security vulnerabilities and misconfigurations.

Besides scanning sensitivity, other differences make SCADA systems more difficult to

secure than traditional IT as well. The life expectancy of SCADA equipment is much longer

than typical IT equipment at around 7-20 years as opposed to only a few years for most IT

equipment [HoL10]. By nature of being highly distributed, many SCADA field devices are

in areas that are physically isolated or difficult to reach. These factors also weigh heavily

on SCADA managers, who concede it is far too expensive to replace equipment for the sole

purpose of applying security [HoL10].

Aside from these differences, SCADA systems are beginning to look more like

traditional IT networks in other ways. Modern SCADA networks implement SCADA

protocols that ride on Internet protocols, while legacy SCADA networks are being

retrofitted. Familiar user-level application interfaces, like web servers and email, are

emerging on individual devices exposing new vectors into old systems. Like the Internet,

the vast majority of our national critical infrastructure, much of which is controlled by

SCADA, is privately owned and operated, with estimates as high as 90 percent held

in the private sector [SFK11]. As SCADA networks start to look more like traditional

IT networks, the "air-gap" (i.e., physical isolation of industrial networks from insecure
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networks) between internal control and external corporate networks is being reduced. A

need to protect SCADA networks like traditional IT networks exists in order to prevent

them from being attacked.

2.2.5 SCADA Threats.

Because of both the similarities and differences from traditional IT, SCADA networks

are vulnerable to attack. While the consequences of a successful attack on a corporate IT

network can have devastating economic, personnel, and political consequences, traditional

IT attacks do not have the immediate physical impact that attacks on infrastructure have.

Stouffer et al. describes possible incidents can occur on ICS networks [SFK11]. In

particular, any SCADA or ICS element could be the target of an attack, from the HMI

all the way down to the field-level PLC devices, depending on what the desired outcome of

the attack is. Stouffer’s list of possible incidents includes:

• Blocked or delayed flow of information through ICS networks, which could disrupt
ICS operation

• Unauthorized changes to instructions, commands, or alarm thresholds, which could
damage, disable, or shut down equipment, create environmental impacts, and/or
endanger human life

• Inaccurate information sent to system operators, either to disguise unauthorized
changes, or to cause the operators to initiate inappropriate actions, which could have
various negative effects

• ICS software or configuration settings modified, or ICS software infected with
malware, which could have various negative effects

• Interference with the operation of safety systems, which could endanger human life

As a primary mitigation, Stouffer et al. emphasize the separation of industrial control

networks from corporate networks to reduce the exposure of the control network. Gone,

however, are the days where SCADA security can be based primarily on isolation; physical

access to the network is no longer necessary. As discussed in [HoL10], SCADA networks

are distributed by nature, and corporate networks often must be connected to control
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networks to function properly. There is no better proof of Internet-connected SCADA

systems than the recent empirical results from Leverett and Project SHINE, described in

Section 2.2.4. With over 7,200 Internet-connected devices discovered in the U.S. alone, no

one can dispute the Internet presence of SCADA.

Physical access is needed to infiltrate some systems. To emphasize this, Knapp

adds another possible incident to Stouffer’s list: malicious software (malware) infection

[Kna11]. The threat of malware on SCADA systems represents a different concern

that is unmitigated by system isolation as proposed in [SFK11]. The fact is, that even

truly air-gapped systems may still be susceptible via other means. By carefully crafting

malware to automatically propagate via removable media such as a USB drive, the

malware is able to arrive at its target: the air-gapped SCADA network. A malware

attack is particularly significant because, not only can malware initiate additional incidents,

but it can also force significant downtime due to forensic analysis, cleaning and even

replacement. Furthermore, malware attacks often go undetected by antivirus and other

protection mechanisms due to their constantly changing signatures. Examples ranging from

proof-of-concept SCADA malware [CNM08], to fully operational malware discovered in

the wild are readily available. The most famous example of the latter is Stuxnet, which

propagated onto an isolated network via a USB device, which is discussed further in Section

2.2.6. Both air-gapped and Internet-connected SCADA networks alike have vulnerabilities

that have been exploited by attackers in the past, and will continue to be targets in the

future.

2.2.6 Cyber Attacks: The Modern State of the SCADA Landscape.

One of the first publicly disclosed SCADA attacks was the 2000 attack on the sewage

control system in Queensland, Australia. A disgruntled former employee who worked for

the contractor that installed radio-controlled sewage equipment for the Maroochy Shire

Council used stolen equipment and knowledge of the SCADA systems to release 264,000

19



gallons of raw sewage into local parks, rivers and the grounds of a Hyatt Regency hotel

[AbW08]. The 46 attacks occurring over two months resulted in significant loss of wildlife,

public health hazard, and an unbearable stench. This event demonstrated the consequences

of an intentional, targeted attack by a person with specialized knowledge of SCADA

systems, who in fact, was never even an employee of the organization he attacked [AbW08].

The SCADA network relied on wireless communication to transmit messages between

control units and field devices, which is a concept similar to being connected to the Internet

because potentially anyone with the appropriate equipment and knowledge can attack the

SCADA system.

Many examples of SCADA malware attacks exist. Perhaps one of the most widely

publicized has been the Stuxnet worm. Stuxnet is an example of a highly-targeted

attack suspected to be directed towards nuclear enrichment control processes [Cla10,

BMS11]. Taking advantage of several unpublished vulnerabilities or zero-days in Microsoft

Windows, the self spreading mechanism of Stuxnet enabled it to move from an insecure

system to the air-gapped industrial network via a USB connection. Once in place on the

target network, Stuxnet gradually manipulated Siemens PLCs in a manner intended to ruin

the Uranium enrichment process. Stuxnet then modified information sent to the HMI to

make the operator believe the process was running correctly [FMC11]. The Stuxnet attack

demonstrates the consequences of an air-gapping-only protection strategy.

In November 2011 the deputy assistant director of the FBI’s Cyber Division

announced that hackers had accessed and been in control of SCADA systems in three

different cities, with one being a major US city [Hod11]. Though no actual attacks were

mentioned, it was said the attackers could "dump raw sewage into the lake" or "shut down

the power plant at the mall." This is a clear indication of the state of SCADA security.
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2.2.7 Researching SCADA Threats.

To research current threats and vulnerabilities, SCADA research facilities have been

developed within the public and private sector. Recognized as an issue of national concern,

the National SCADA Testbed was developed as a collaboration effort between the Idaho

National Engineering and Environmental Laboratory and Sandia National Laboratory in

2003 at a cost of $114 million. As the Nation’s premier SCADA research facility, it is

used to research the identification and mitigation of existing system vulnerabilities and

to develop advanced system architectures for more secure and robust SCADA systems

on a full-scale industrial level [Ken09]. This system provides a suitable testbed for real-

world SCADA security threats, but is hardly a design an educational institution can follow

[Ine03].

On a smaller scale, the Mississippi State University has implemented their own

educational SCADA network, but it is limited to five control devices and two master

stations, which is practical for educational purposes, but inadequate for large industrial-

scale research [MVD10, Vau09].

In addition to testbeds that use actual SCADA equipment, pure software-based

simulations of SCADA networks as well as hybrid software-hardware configurations have

been implemented, such as the University of Illinois’ Cyber Security Testbed, or Royal

Melbourne Institute of Technology’s SCADA Security Testbed [DTO+06, QMJ+09]. These

test station configurations are used primarily for SCADA research, and are inferior to

commercial hardware configurations because the models are limited. However, their low

cost and scalability make them attractive particularly for researching SCADA network

protocols and interactions. These types of testbeds are typically built using network

simulation frameworks such as the Real-time Immersive Network Simulation Environment

for Network Security Exercises (RINSE) used in the University of Illinois’s configuration,

and Emulab [Emu12] and are useful for performing protocol simulations in complex
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network situations. These testbeds lack fine adjustments needed to adequately simulate

SCADA-specific aspects, such as firmware uploads or propagation of SCADA-specific

malware, making extension to applications that require a standard user interface awkward

at best.

Emulated industrial control systems combine the advantages of dedicated hardware

and cost effective, scalable software simulations. Emulators achieve this by implementing

industrial control system protocols and services on flexible programming platforms such as

Linux.

2.3 Emulators

An emulator is a "program that runs on one computer and thereby virtually recreates

a different computer" [Sla03]. An emulation is virtual because it is not actually physically

implemented, but functions like the original device. In many applications, the goal of

emulation is to reproduce the functionality of the target device with high enough fidelity

that emulation can replace it. The original device must be well understood at some level

because its intent is to accurately represent functionality of the original target device.

Emulation can be implemented at three different design levels, the application software

level, system software level, or hardware level [HoW05]. These three levels are a starting

point to define the difficulty in building an emulator.

Application level emulators reproduce the operation of individual programs, such as

a document reader or editor. These types of emulators are difficult to implement because

application software is often very complex and proprietary. Furthermore, it is difficult to

properly define the actual behavior of the system due to size and complexity of applications

and a total lack of specifications. Application level emulators can only reproduce the

functionality of the specific application for which they are designed. This type of emulator

is independent of the system software or hardware. It is also highly dependent on the
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operating system and hardware configuration in its environment to function, just like the

original application.

Emulating system software (i.e., operating system software) can be similarly

challenging because, it also consists of proprietary programming code. However, there are

usually much more complete specifications for system software compared to application

software. These specifications exist to make it easy for software programmers to write

applications based on the system software. Without them applications could not be written,

making the system software useless. Accurate and complete emulation of system software

enables execution of any arbitrary application. However, a system software emulation is

still dependent on the hardware device on which it was implemented.

Unlike these kinds of software emulations, hardware emulations are easier to define

and specify because the target hardware system must have been properly specified to be

built in the first place [Rot00]. Software is meant to be interpreted automatically by

hardware, and therefore the software is the specification. Hardware on the other hand

is meant to be interpreted by humans (or software) to actually produce a physical device

used as a building block for other hardware and software [Rot99]. Therefore, very detailed

specifications are usually available again because programmers need to know how to access

the hardware to write system and application software. After the hardware is accurately

emulated, arbitrary system and application software can be used as-is to perform their

respective operations.

In many modern implementations, especially embedded computing devices, all three

emulation levels might be proprietary and its software, closed-source. In this case, the only

"specification" available might be the actual operations and observable characteristics of

the application software, restricting emulation only to application level implementations.
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2.3.1 Emulated Honeypot Services.

There are many applications of emulators including the preservation of digital media

[Sla03], the implementation of obsolete game platforms [Sal05] and to promote business

efficiency as in the use of virtual machines like VMWare [Vmw13]. However, emulation

is used in the cyber security context in development of computer decoys or honeypots used

by security professionals to deter, delay, and gather information on network attacks.

Many honeypots emulate services and protocols designed to look and feel like the real

thing, but are non-working. Emulation produces better results than re-purposing production

machines because emulators can be customized to provide any set of services. Furthermore,

robustness and security can be prioritized as design features in emulators, which may not

be the case for a production device. These emulated honeypots usually provide only basic

responses to a very limited set of commands invoked by attackers. Honeyd is an example

of this type of emulated honeypot system. Created by Niels Provos, Honeyd is open-source

honeypot software that allows networks of arbitrary devices and services to be implemented

on an a single device [PrH07]. In addition to providing services for attackers to probe and

compromise, logging is a critical function for all honeypots. Specifically, the logging of all

network packets is critical to have a complete record of an attack. This record is used to

dissect attack methodologies, capture custom tools, and gather information on the attackers

themselves. The use of emulated honeypots is extended from traditional IT into industrial

control systems in Section 2.3.3.1.

2.3.2 Industrial Control Emulators.

Implementation of industrial control emulators at the hardware level is most desirable.

This allows emulation of the ICS hardware in software to run the industrial control device’s

firmware on any platform desired. Besides the legal and financial implications of reversing

proprietary embedded platforms, there are significant technical challenges as well. Even on

the same device, the use of many different architectures, platforms, and languages is likely,
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making the task very challenging. Additionally, the components inside these devices are

often unmarked, or are marked with custom serial numbers, revealing little about their

primary function.

To further complicate the task, firmware can be packed or cryptographically encoded

to only be decoded by the specific hardware [CKS+06]. From start to finish, the process

of emulating the true hardware configuration of an industrial control device is possible,

but it would be very expensive and time consuming. Furthermore, errors or failures in

the target device’s operating firmware would be in the emulator, by extension. From an

accuracy standpoint this may be desirable, but not from a robustness standpoint. Thus,

the best approach is to design and implement an application-software-level emulator on

dedicated hardware that reproduces observable and measurable network services available

on the target industrial control device.

2.3.3 Uses of ICS field device emulators.

With the development of an ICS field device emulator, extension of traditional IT

technologies and methods into industrial settings is possible. The focus of this thesis is

on applications for research of unknown SCADA attack factors for field devices exposed

to the Internet, which is discussed in this subsection. Additional applications include

laboratory research, evidence collection, cyber sensing, and SCADA education, and are

each developed in Appendix A.1.

2.3.3.1 SCADA Landscape Research Using Emulated Honeypots .

Traditional IT honeypots are often used to learn more about the specifics of attacks

on computer network systems. Lance Spitzner, a honeypot pioneer and founder of The

Honeynet Project, defines a honeypot as "a security resource whose value lies in being

probed, attacked, or compromised [Spi03a]." Industrial control emulators can be used

in the same way to implement SCADA honeypots to learn more about SCADA attacks.

Honeypots excel at surveying the landscape of a specific industry, commercial enterprise,
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or single company for threat trends, attack tools, and techniques specifically targeting that

area. Honeypots are especially effective in new research areas or industrial environments

where there is little to no data available. Questions about the current environment can be

answered such as: who is attacking, does exploit code exist for a particular vulnerability,

or has injectable malware been developed.

This lack of data on attacks and trends describes the current state of the SCADA

attack-landscape. It is suspected that many SCADA incidents go unreported. When they are

reported, usually very little data is made available to effectively monitor trends, however,

attack data is needed. SCADA vulnerabilities and exploits that target currently-deployed

devices are available, as discussed in Section 2.2.6. However, it is unknown if industry

wide attacks are actively occurring, and if so, what trends exist. Industrial control emulators

designed as honeypots could provide answers to these questions.

Just as research honeypots provide data on new vulnerabilities and exploits for

traditional IT systems, so too can SCADA honeypots achieve the same for industrial

networks. SCADA honeypots can also collect information on the attackers and their tools,

of special importance in SCADA applications where very little current data exists. In

the past, security research was limited to the tools that hackers left behind, but SCADA

honeypots can allow researchers to observe an entire attack from beginning to end because

of the common characteristic of all honeypots to maintain extensive logs of interactions.

Honeypots can be used to capture and identify automated attacks, as well as human-based

attacks. They can also serve as an early warning indicator or to record new methods or

approaches that have not been seen before, to understand the reasons behind an attack,

or even to better understand elite hackers [Spi03b]. Though some of these applications

might be beyond capabilities of emulated protocols and services, the concept of a SCADA

honeypot to perform exploratory attack research is sound.
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In these types of Internet landscape research applications, the main business of the

network revolves around the honeypot and its logging capability. As such, it must be

specially maintained to attract attention from hackers. Furthermore, it must look as

authentic as possible, fail like the target devices, and allow the collection of useful research

results in a conspicuous fashion. It is especially important to disguise the true function of a

honeypot. For example, if attackers can fingerprint the system as a honeypot, they can feed

it bad information over long periods in an effort to corrupt trend data.

Honeypots are of significant value on corporate networks as cyber sensors as well.

They alert security professionals that someone has gained unauthorized access to a system

or network when any interaction with the honeypot occurs. Alerts can simply be log

entries sent by the honeypot to a remote logging server, indicating interaction with the

honeypot. Because honeypots have no production value, there is no reason any legitimate

traffic should be flowing to or emanating from the honeypot. All traffic flow is suspect,

and as a result only interesting packets and details pertinent to an attack are logged. This

implies that many fewer log entries must be analyzed compared to other IT protection

mechanisms. As opposed to having to sort through gigabytes of logs and reports generated

by IDSs, firewalls, and servers, megabytes may be generated daily. Less data means it

can be analyzed in a more timely fashion, since almost all data generated by a honeypot is

valuable.

As an emulator, a honeypot can be designed to operate on any platform. Because of its

computing power, a standard PC is a strong candidate to implement a honeypot emulator.

The capability of the PC and the efficiency of the emulator implementation may even make

it possible for an entire network of many emulated honeypots (also called a honeynet)

to be implemented on a single device, similar to Honeyd. Another approach is to use

embedded systems with lower computing capacities to implement an emulated honeypot.

A device that is small, inexpensive, and capable of running a complete emulator would
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have many applications beyond use as a research tool, such as an educational tool, fly-

away emergency response tool, and dedicated SCADA sensor. This research explores both

approaches—emulation via a standard PC approach, and via an embedded platform, the

Gumstix single-board computer.

2.4 The Gumstix Platform

Gumstix is the brand name of a small single board computer that is capable of running

various standard operating systems including Linux distributions. An example of its small

form factor is seen in Figure 2.2. First developed in 2002, the Gumstix platform has become

a popular embedded platform because it is inexpensive, small, and very powerful. They are

available in two different processor architectures, ARM Cortex-A8 architecture on a Texas

Instruments OMAP3503 applications processor, and the XScale architecture on a Marvell

processor [Gum12a, Gum12b]. The Cortex-A8 is a 600MHz 32-bit processor based on the

Advanced RISC Machine (ARM) architecture, where RISC stands for reduced instruction

set computer. The OMAP3505 gives the Gumstix device the ability to run general purpose

32-bit operating systems such as Linux or Windows, which makes it different than other

popular, less expensive embedded platforms such as the Arduino (based on the Atmel AVR

architecture) or popular PIC architecture based devices, which are programmed for specific

functions.

When coupled with an open-source, general purpose operating system like Linux, the

Gumstix becomes a superior development platform because application software as well as

kernel software can be reused, tailored, and optimized for a specific purpose in a familiar

environment. The advantages of using the Gumstix over another embedded platform are

specifically, the ability to run a full-featured operating system. This avoids many challenges

with process scheduling, network control, and memory management.

Much of the software used on Gumstix computers was originally developed for the

x86 platform. Since most of the differences between x86 and ARM are abstracted away, the
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development on the Gumstix platform becomes Linux development rather than embedded

development. Different Gumstix models are available and boast features like embedded

wireless local area network (WLAN) (IEEE 802.11b/g standard), added Digital Signal

Processors (DSPs), and extended operating ranges [Gum12a].

Figure 2.2: Gumstix Module to Scale [Gum112]

The Overo Earth COM, an ARM Cortex-A8 model, used in this research provides a

600MHz processor, with 512MB of RAM and 512MB of non-volatile on-board memory

in addition to a microSD card slot for additional memory. These modules ship with the

Angstrom Linux distribution 2.6.34 installed [Gum12a]. Another requirement for this

research is the use of an Ethernet expansion board to provide use of two Ethernet interfaces;

allowing collection of data over one Internet-facing connection and out-of-band logging

capabilities over the other LAN-facing connection. Despite the fact that the hardware

configuration of the Gumstix modules themselves is proprietary, the expansion modules

are open-source, making troubleshooting and development easier. The Tobi-Duo expansion

board provides two high-performance Ethernet controllers enabling simultaneous Ethernet
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connections. This duo-connection configuration lends itself well to the implementation of

an emulator for this research.

2.5 Related Research

Despite the fact that ICS field device emulators have the potential to fill a void in ICS

network security, the concept remains relatively unimplemented. While many commercial

solutions exist for traditional IT honeypots, there are no known commercial solutions that

implement ICS honeypots in a complete form.

Berman’s [Ber12] research entitled, "Emulating Industrial Controls System devices

Using Gumstix Technology," motivated the further investigation and development of

SCADA field device emulators on embedded devices for this Master’s thesis. Berman’s

work demonstrated that it is possible to emulate basic functionality of the Modbus TCP

protocol and out-of-band network logging on a low-interaction honeypot implemented on

a Gumstix single board computer.

Among the open-source community, there is currently one known actively-maintained

SCADA honeypot device developed by Digital Bond [Dig12b]. This project emulates key

high-interaction and low-interaction components of Modbus TCP, FTP, Telnet, HTTP, and

SNMP services for use on a Virtual Machine (VM). Because of the bulky VM, and steep

system requirements, such a device cannot run on a Gumstix.

Another interesting open-source implementation available from Digital Bond is a

honeywall. In this setup, an actual PLC is used to provide authentic interaction with the

attacker while the honeywall, also implemented on a VM, sits between the attacker and

PLC and is used to track and manage the attacker with various monitoring and capture

tools. This configuration has value mostly as a research tool because the significant setup

and overhead, in addition to the dedication of an actual PLC, makes implementation in an

actual industrial environment impractical.
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The first open-source SCADA honeynet project was developed by the Cisco Critical

Infrastructures Assurance Group (CIAG) lead by Pothamsetty et al. [PoF05], but became

defunct in 2005. The honeypot was based on Honeyd, the popular low-interaction honeypot

developed by Niels Provos. Source code and limited documentation are still available at

[PoF05], but the tool is no longer supported.

At least one implementation of the CIAG honeypot has been documented and

the results published. According to a report for the European based Critical Utility

Infrastructural Resilience (CRUTIAL) project, a low interaction honeypot based on the

work by Pothamsetty et al. was deployed for a nine month period in 2008 [FAA+09]. Ports

associated with published SCADA vulnerabilities were exposed to the Internet, as well as

network ports commonly used for SCADA protocols including port 502 for Modbus TCP,

and port 20000 for DNP3. TCP port 80 for HTTP and TCP port 21 for FTP were also

exposed. Over the observation period, very little interaction took place across the exposed

SCADA ports, with the majority of traffic occurring across the FTP port.

2.6 Summary

SCADA and ICS are exposed via the Internet. ICS vulnerabilities and exploits

are discovered regularly and despite their criticality, expense and convenience often

overshadow security priorities. Because of the cost and complexity of ICS equipment,

there is insufficient exploratory Internet and laboratory research being conducted to better

understand and combat risks to ICS and SCADA networks.

Emulation is a way to virtually replicate functions of complex systems, including

proprietary protocols and security measures. The development of an accurate ICS field

device emulator for use as a honeypot is a viable solution to researching ICS attacks,

particularly at the field device level where the actual control of processes occurs.

Despite the importance of ICS networks and their security, the extension of emulated

ICS honeypots as both a research and security tool for ICS networks has been slow
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to progress because of the proprietary and complicated nature of the devices, making

emulation difficult. This thesis simplifies the implementation of an ICS field device

emulator designed as a honeypot by duplicating the operation of key functionality on a

single-board solution which requires minimal setup and minimal operational impact.
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III. Device Description

This chapter describes the design criteria and implementation of the PLC field

device emulator destined for this thesis research. Section 3.1 outlines important design

considerations for building an industrial control emulator for the purposes of SCADA

attack environment research. Section 3.2 describes in detail the design of the emulator

implemented for this research effort. Finally, Section 3.3 describes the how this specific

implementation is consistent with the criteria established in Section 3.1.

3.1 Design Considerations

Despite the fact that industrial control systems are fragile, quickly antiquated, and

often designed without security consideration, they are expensive, complex, and are

networked with other devices providing a vector into otherwise secure IT networks.

Through this network interface, most modern PLCs provide application-level services such

as web configuration interfaces, file transfer services, remote programming services, and

remote monitoring services, all which need to be replicated to create a valid emulation for

any particular application.

Industrial control emulators have several design requirements in common with

standard network emulators, but specific design requirements are defined by the industrial

control honeypot application itself. In addition to the considerations of accuracy,

scalability, cost, and configurability for a network emulator such as those described in

[ZhN03], industrial control emulators must also consider authenticity, robustness, and

record keeping.

3.1.1 Accurate and Authentic.

Like network emulators, ICS emulations must be accurate to be authentic. Though

related, these ideas are distinctly different. Accuracy is quantitative and can be observed,
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measured, and emulated. Authenticity, however, is qualitative. Authenticity is the belief

that the emulation is what it claims to be [Lee05]. It is a measure of how realistic the

emulation is, compared to the target device. If the user looks at some emulated aspect

and finds what is expected, authenticity is established through accurate emulation. In other

words, based on the accuracy of the emulation, the user (human or machine) makes a

determination on the device’s authenticity and decides to proceed or not.

An emulation of a web-based interface, present on most modern PLCs, is accurate if

the page has the same banner, form elements, graphics, etc. based on how the page looks

in the web browser. If the web browser is the extent of the user’s interaction, then posing as

an authentic device is easier. However, if the user inspects individual packets, a device may

reveal itself as inaccurate if the packets do not match the target device, and therefore may

be discovered as inauthentic. To identify the target areas that require emulation, the concept

of levels of accuracy is developed which describes observable characteristics a user may

interrogate to establish device authenticity. To give the feeling of authenticity, an emulation

must be accurate on as many levels as practical. The following are examples of levels of

accuracy:

1. Superficial accuracy is established when a user believes the devices is authentic
based on what is visually observed, such as how the website or HMI looks.

2. Packet-level accuracy is established when a user believes the device is authentic
based on at the packets sent to and received from the device.

3. Timing-level accuracy is established when a user believes the device is authentic
based on the timing of queries and responses to and from the device.

4. Scanning tool accuracy is established when a user believes the device is authentic
based on the results of a scanning tool.

5. Attack tool accuracy is established when a user believes the device is authentic based
on the success of an exploitation tool.

The more skeptical a user is about authenticity of the device, the deeper the

interrogation. Therefore, the overall goal is to anticipate how deep a user will look for

signs of authenticity, and make those portions of the emulator accurate.
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The implementation of a perfectly accurate emulation is more difficult than simply

presenting the same web page as the target device. For some applications, such as

education and training applications, an emulation that is less accurate is acceptable because

authenticity need not be established; the device can be presented as an acknowledged

emulation with no ill effects to the training. However, as a landscape research honeypot, it

is hard to predict which features users will interrogate to establish authenticity. As research

is conducted, the emulation can evolve and become more accurate, and eventually look

authentic to everything that interacts with it.

A highly accurate device should operate exactly as the target device, but it should

also fail like the target device. Just because an emulator appears to fail the same way as

the target device, does not mean the emulator actually has to fail. It still can log inputs

despite no response from the emulator. Or in a honeypot or cyber sensing application a

better solution is to have the emulator re-manifest itself on a different network location to

allow for another attacker to find it and exploit it again, thinking that it is a different device.

This approach makes it look as though the original device went offline, corresponding

with device failure, but does not actually take down the honeypot, wasting potential data

collection opportunities.

3.1.2 Robust Operation.

It is important that any software-based device, especially those destined for research

environments be robust. A robust emulation is able to operate when any common computer

error occurs, such as when out-of-bounds or malicious input is entered or the device runs

out of memory, even when the target device would have failed (under conditions such as

buffer overflow, DoS attack, bad firmware uploaded, etc.).

Industrial control devices are notoriously sensitive due to lack of input sanitization

and testing as well as non-robust implementation of communications protocols. Even

seemingly benign network mapping tools can cause serious problems on industrial control
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devices as discussed in detail in Section 2.2.4. This makes industrial control emulators

more attractive than using a real device for training and research applications. As briefly

mentioned in Section 3.1.1, if the target device fails, an accurate emulator would appear to

fail similarly, but would continue to operate, or at least fail gracefully.

A significant advantage over real industrial controls is that the emulator cannot be

made unusable, commonly refereed to as being bricked. Even if the emulator locks-

up, there is no flash bootloader to accidentally overwrite, or electronically erasable

programmable read-only memory (EEPROM) to accidentally erase because the emulator

is implemented purely in software, ideally on a dedicated piece of hardware.

3.1.3 Cost Effective.

An industrial control emulator must also be cost effective. In fact, it is likely that most

use cases for an industrial control emulator (including honeypot applications) consider cost

a main driver for emulated versus using real hardware. Considering that single PLCs can

easily exceed $10,000, even using a high-end desktop PC as the emulation platform would

seem inexpensive, but good emulators can be implemented for much less than that.

Aside from monetary cost, the power budget may also be a driving factor in developing

an industrial control emulator. Hundreds of PLC systems emulating a network of many

honeypots (honeynet) may not be possible simply due to power requirements.

3.1.4 Rapidly Configurable.

Configurability is also an important factor in the design of a an industrial control

emulator, but the extent is application dependent. For honeypot applications, there is value

in rigid, hard-coded designs that emulate only a single type of device. These designs

allow for configuration of only device-specific parameters, such as networking features,

integrated protocol attributes, or firmware versions, by simply tweaking a configuration

file that defines the emulator’s operation. A single model or brand of PLC popular in a

specific industry can be chosen as the emulation target to conduct research specific to that
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industry. Despite the significant amount of effort required to implement a honeypot specific

to a single industry, once the design work is complete, the honeypot can be in service for

years, since a single PLC model might be used in industry for decades.

Nevertheless, a highly configurable device which enables the emulator to look like a

Siemens, Allen-Bradley, or Koyo PLC is even more valuable as an ICS honeypot because

a single device can be used to conduct research across any industry. Furthermore, an

emulator that can quickly and easily be configured to act like any arbitrary device has

significant potential in all ICS field device emulator applications. However, the amount of

research and development required for this type of rapidly-, highly-configurable device is

multiplied by the number of devices it can emulate, which may make it impractical from a

design standpoint.

3.1.5 Scalability.

An emulator is scalable if it can be easily ported to new platforms, and interoperate

effectively when large numbers of emulators (and possibly real devices) are chained

together in a honeynet. Scalability is an important consideration for any network-enabled

device and must be considered during the requirements stage. Because network-oriented

services that typically run on an industrial control system are designed to run on an

embedded computing platform on the ICS device(e.g., web configuration servers, industrial

control protocols like Modbus or HAP, FTP servers and email clients), the emulation of

such services does not require a significant amount of memory or computational power.

However, if the intent is to emulate many control devices on a single PC or limited-

resourced Gumstix computer, scalability might become a significant challenge while trying

to emulate device timing accurately and consistently.

3.1.6 Record Activity.

Record keeping is the heart of an industrial control honeypot. Though most industrial

control systems do not provide this feature at a field-device level, it is invaluable to conduct
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attack research because complete and accurate records are required to fully dissect an

attack. Though logging can take place either locally on the device, remote logging via some

type of distributed service such as Syslog is superior because it can be used to instantly

alert researchers that a device is being accessed, a feature also critical for cyber sensing

applications.

The effectiveness of a logging mechanism is measured by the accuracy of the log

entries, and its ability to keep up with the activity that is occurring on the honeypot.

Considering that a typical device fingerprinting tool generates over 200,000 packets when

performing a port and services scan on a device, the logging mechanism must ensure that

it works efficiently but correctly in the sense that no entries are missed [Lyo09].

3.2 Implementation of the PLC Emulator

This section describes the emulator designed and implemented for this research thesis.

The tool is a PLC emulator designed primarily as a SCADA landscape research, and as a

result, seeks to optimize cost, accuracy, scalability, efficient logging, and to a limited extent,

configurability.

3.2.1 Custom Design Overview.

The PLC emulator is implemented on the 600MHz Gumstix Overo Earth single board

computer running embedded Angstrom Linux distribution 3.0.0 with a Tobi Duo network

expansion board to provide two 10/100 Ethernet connections. The Linux kernel is built

with iptables and Netfilter NFQUEUE modules to provide necessary Linux firewalling and

user-space network packet functionality. Iptables (pronounced "I-P-tables") is the standard

Linux firewall that is available for all Linux distributions. The NFQUEUE kernel module

allows packets to be pulled out of the Linux kernel and queued into user-space processes.

The target PLC is comprised of the Koyo DirectLogic 405 CPU, D4-08ND3S

Digital Input module, D4-08TR Digital Relay module and the H4-ECOM-100 Ethernet

Communications Module to provide the PLC with network connectivity. This hardware
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configuration is chosen because of its low cost, networking functionality, and the work done

by DigitalBond’s Project Basecamp that demonstrated significant security vulnerabilities

including an automated method to crack the device password [PeP09, Wig12].

To provide acceptable performance as well as reduced development time, the emulator

has portions written in both C and interpreted Python modules. The emulator consists of

seven simultaneously running user-space processes plus the Linux iptables firewall module

to provide three network services to users. The three emulated services are (1) a web

service on TCP port 80 that provides a configuration interface, (2) a Modbus TCP service

on TCP port 502, and (3) a Host Automation Products protocol (HAP) service on UDP port

28784, consistent with the target PLC.

3.2.2 Process Layout and Implementation.

In addition to the seven custom-designed user-space processes, five Linux command-

line scripts are used to configure, start, and stop these processes correctly. In addition to

the user-space processes, the Linux iptables user-space program is critical to the operation

of the emulator [Ayu10]. The iptables application, which is available as a Linux kernel

module, allows implementation of a kernel firewall whose operation and properties are

defined through a user-space interface [Eyc12]. In addition to iptables’ ability to accept or

drop arbitrary packets based on their source, destination, or content, iptables can pull both

incoming and outgoing packets out of the kernel TCP/IP stack into user-space processes

for deeper packet inspection or packet mangling through what is known as an NFQUEUE

target. This allows for precise packet characteristic matching to identify arbitrary packets

to allow, drop, or modify them in any way, even before or after the packet has been to the

kernel TCP/IP stack for routing.
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3.2.3 Emulator Configuration and Process Control Scripts.

There are a total of two configuration scripts that establish the correct operating

environment for the implemented emulator, and three process control scripts that start and

stop the emulator processes. This section defines these scripts.

3.2.3.1 iptables_rules.sh.

This configuration script establishes the necessary iptables rules that filter and queue

the packets, which enter and leave the emulator. Iptables configuration rules build on each

other, and therefore the order of rules is important. Table 3.1 shows the iptables rules

described in the order they appear in iptables_rules.sh.

In Table 3.1, the queue number (i.e., "queue number 3") refers to a designated

userspace program to which iptables sends packets. These userspace programs are shown

in Figure 3.1 and discussed later in this Section. This feature is enabled by including the

NFQUEUE module into the kernel at compile time. Marking packets is another feature

of iptables. Packets that meet rule criteria can be marked with an arbitrary number that

remains with the packet as it traverses across the remaining iptables rules. Marks help

ensure certain rules do not get run more than once. The actual rules in iptables syntax are

available in Appendix C.

3.2.3.2 configure_emulator.sh.

This configuration script sets global OS network settings that establish the operation

of the Linux kernel network stack. The values applied to these parameters in the

configure_emulator.sh script are temporary. That is, they return to their original default

value after operating system is reset. Parameters configured and their values are shown in

Table 3.2.
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Table 3.1: Iptables rules in the order they appear in iptables_rules.sh and their description.

Rule 1: "For all incoming packets on eth0 that have not been marked with 0x02 send
them to queue number 3"

Rule 2: "For all incoming TCP packets on eth1, with TCP destination port 22 (SSH),
accept"

Rule 3: "For all incoming TCP packets on eth0 with destination port 80, send them
to queue number 1"

Rule 4: "For all incoming TCP packets on eth0 with destination port 1, send them
to queue number 1"

Rule 5: "For all incoming TCP packets on eth0 with source port 502 (Modbus),
accept"

Rule 6: "For all incoming TCP packets on eth0 with destination port 502 (Modbus),
accept"

Rule 7: "For all incoming TCP packets on eth0 that do not match a previous rule,
reject with TCP reset"

Rule 8: "For all incoming UDP packets on eth0 with destination port 28784 (HAP),
accept"

Rule 9: "For all incoming ICMP packets on eth0, send them to queue number 1"

Rule 10: "For all incoming UDP packets on eth0 with destination port 1, send them
to queue number 1"

Rule 11: "For all incoming UDP packets that do not match a previous rule, reject with
ICMP port unreachable"

Rule 12: "For all outgoing TCP packets on eth0 with destination port 80, that have
not been marked with 0x1, send them to queue number 2"

Rule 13: "For all outgoing TCP packets on eth0 with destination port 80, that have
been marked with 0x1, accept"

Rule 14: "For all outgoing UDP packets on eth0 with destination port 28784 (HAP),
that have not been marked with 0x1, send them to queue number 2"

Rule 15: "For all outgoing UDP packets on eth0 with destination port 28784 (HAP),
that have been marked with 0x1, accept"

Rule 16: "For all outgoing packets on eth0, set the TTL to 255"

Rule 17: "For all outgoing TCP packets on eth0, send them to queue number 3"
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Table 3.2: Temporary settings configured in configure_emulator.sh and their description.

Parameter Modified via Description Value

mtu "ifconfig" command

The Maximum Transmis-
sion Unit is used to control
the maximum segment size
(MSS) of the TCP segments.
The MTU equals the MSS
plus 40 bytes.

552

hw ether "ifconfig" command

Defines the Ethernet address
of the Internet facing interface
to be within the vendor’s pre-
fix range.

00:e0:62:60:46:25

icmp_ratelimit
/proc/sys/net/ipv4/

icmp_ratelimit

Defines the wait time between
ICMP replies from the inter-
face.

0

tcp_sack
/proc/sys/net/ipv4/

tcp_sack

Controls the use of TCP Se-
lective Acknowledgments in
TCP connections. Configura-
tion is either enabled (1) or
disabled (0).

0

tcp_window_scaling
/proc/sys/net/ipv4/

tcp_window_scaling

Controls the use of TCP win-
dow scaling on TCP connec-
tions. Configuration is either
enabled (1) or disabled (0).

0

tcp_timestamps
/proc/sys/net/ipv4/

tcp_timestamps

Controls the use of TCP
timestamps on packets from
the kernel stack. configuration
is either enabled (1) or dis-
abled(0).

0

3.2.3.3 start_emulator.sh.

Start_emulator.sh is the single starting point for the emulator from which all other

scripts and processes are started. This script first executes the two configuration scripts

(iptables_rules.sh and configure_emulator.sh), builds and runs the C programs, and then
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starts the Python modules. This process control script is used when changes are made to

program header files (.h files)to alter certain parameters (such as the device ID, used to

identify log entries for a specific honeypot in a the remote log).

3.2.3.4 start_emulator_no make.sh.

This process control script is identical to the start_emulator.sh script, but does not

build the C programs. This saves time during test execution because building executables

natively from C source on the Gumstix can take about a minute.

3.2.3.5 stop_emulator.sh.

This process control script stops all processes and flushes the iptables rules. It does

not, however return the parameters changed by configure_emulator.sh back to their original

values.

3.2.4 Custom User-space Processes.

Of the seven custom processes, six involve network packet manipulation for

recognizing different types of queries and responding appropriately. As a result, these

processes revolve tightly around the iptables firewall (the seventh process is used to

generate simulated input/output data to/from the device to act like a real PLC, discussed

in a Section 3.2.4.4). Figure 3.1 depicts the entire routing process of packets in the PLC

emulator system through the iptables firewall and Linux kernel. This diagram gives a full

view of all processes to clarify the complex path a single query-response packet interaction

takes through the emulator system.

3.2.4.1 infilter.o.

The purpose of the infilter.o process is to identify Nmap OS fingerprinting packets,

and deal with them according to a complex set of rules. This separate process is necessary

because the level of filtering and mangling required to identify and handle fingerprinting

packets reaches far beyond the functionality that iptables is able to provide.
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Figure 3.1: Routing of packets in the PLC emulator system. If the packet matches the listed
iptables rules, the packet will be diverted to the side path, if the packet does not match the
rule, it continues to the next iptables rule until a match is made, or until it reaches the end
of the iptables chain, in which case the packet will be rejected.

44



The infilter.o process is written in C and receives packets from iptables NFQUEUE

target queue number 1 (according to iptables rules 3, 4, 9, and 10) before they are sent to

the Linux kernel TCP/IP stack for routing. Its functionality is depicted in Figure 3.2. If the

received packets are identified as OS fingerprinting packets, they are dropped to prevent

them from continuing deeper into the Linux kernel stack. Based on the contents of the

dropped fingerprinting packet, infilter.o crafts a new packet from scratch to send back to the

scanning PC. This new packet contains appropriate Ethernet, IP, and TCP or UDP headers

to ensure it is correctly routed back to the scanning PC, but incorporates scan response

data from the actual target PLC to fool the Nmap scanner into thinking the emulator is the

target PLC. This functionality is sometimes called packet mangling. If the query packets

are not dropped by infilter.o, two response packets would be sent to the scanner, one from

the Linux kernel stack, and one from infilter.o, which is highly undesirable. If the packet

is not identified as an Nmap OS probe scan packet, the packet is accepted by infilter.o, and

continues on its way to the next iptables rule.

3.2.4.2 outfilter.o.

The purpose of the outfilter.o process is to alter parameters in the IP packet header

that are not configurable otherwise. Though iptables has the capacity to change certain OSI

layer 2 fields such as the IP TTL field, many fields such as the IP ID cannot be changed

by iptables. Therefore, outfilter.o is required for modification of arbitrary header fields in

outgoing packets. The functionality of outfilter.o is depicted in Figure 3.3.

The outfilter.o process is written in C and receives packets from iptables NFQUEUE

target queue number 2 (according to iptables rules 12 and 14) before they enter the

Linux kernel TCP/IP stack routing mechanism. This process increases the accuracy of

the emulation by changing header fields to match those of the target PLC. To match

functionality of the target PLC, the outfilter.o process only changes the IP ID of the packets

to zero. The iptables rules match output packets destined for the querying computer
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Figure 3.2: Example packet flow for Nmap OS probes for both query packets (green)
and response packets (orange). The upper (green) portion of iptables contains input rules
that match query packets, while the lower (red) portion contains output rules that match
response packets.

originating from the webserver.py or ecom_svr.o processes where responses are created

from queries. If the output packets match rule 12 or 14, the IP ID is changed to zero and

the packets are re-injected back into iptables starting with the next rule. The functionality

of this processes is scalable to change any byte of any outgoing packet (not just the IP ID)

to match the output of any target PLC.

3.2.4.3 ecom_svr.o.

The purpose of the ecom_svr.o process is to receive HAP protocol queries from a

user on UDP port 28784, and generate responses to those queries in the same way as the

target PLC. The functionality of ecom_svr.o is depicted in Figure 3.4. This is the core of
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Figure 3.3: Example packet flow for a packet that has its IP ID changed by outfilter.o.

the industrial protocol interface and defines all of the protocol functionality for the HAP

industrial protocol. Process development requirements for deep protocol dissection, reverse

engineering, and low-level memory manipulations make this process the most complex,

and warrant further description. Though many standard functions of the protocol are

implemented, it is only a subset of the total capability of the HAP protocol. A complete list

of the functions that are implemented is located in Appendix E.

The ecom_svr.o process is written in C using the Libpcap Application Programming

Interface (API) to receive packets, and Libnet API to send packets. An initial

implementation of this processes was developed in Python using the Scapy network packet

module, but early testing on the Gumstix platform showed that this configuration was too
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Figure 3.4: Example packet flow for a query and response from ecom_svr.o. Query packets
(green) are received by the process from the iptables firewall rules. Appropriate responses
(orange) are formed by the process and sent back into the iptables firewall to be sent to the
querying computer.

slow, causing the querying software on the user workstation to timeout. The early decision

to use the Libpcap and Libnet libraries over standard Linux UDP sockets is arbitrary, and

the ecom_svr.o process could easily be modified to utilize Linux UDP sockets if the Libpcap

or Libnet APIs are not available.

To aid in the development of the HAP emulator, the source for an API from

Host Engineering must be obtained [Hos12]. The API (written in C) is intended for

developing applications that communicate with HAP systems, such as the target PLC. This

functionality of this software had to be reversed to make it communicate with HAP software
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interfaces. The most important piece of information obtained from the API source is the

HAP.h header file that included data structure definitions used throughout the target PLC.

The acquisition of the API source code enables rapid development of the HAP

emulator, but does not trivialize its implementation. The HAP protocol is used on all

Koyo PLCs to encapsulate several other industrial protocols (described in Section 2.2.2)

over traditional IT infrastructure, giving it a great deal of flexibility, but also adds to

the importance of a thorough understanding of the protocol. Deep protocol dissection

using packet captures of real HAP traffic are tedious but critical to troubleshooting and

understanding the protocol well enough to create an accurate emulator.

The ecom_svr.o process is compiled from two separate source files that divide the

core network functions. The packet_rcv.c source file uses the Libpcap API to receive

query packets (that have arrived via iptables rule 8), validate them, and decide what the

appropriate response to the query should be. Once packet_rcv.c decides a response it passes

execution to functions in the packet_send.c source file. The packet_send.c functions then

create responses from scratch including custom HAP checksums and sequence numbers.

The packet_send.c process then uses the Libnet API to encapsulate the HAP protocol data

into UDP/IP response packets, and send them out of UDP port 28784 where they eventually

arrive at the iptables output rules, and back out to the querying computer.

User Interfaces to the ecom_svr.o(HAP protocol emulator). To access the function-

ality of the HAP protocol there are three tools considered. Two are manufacturer’s tools,

NetEdit3 and DirectSOFT5 Programming, and the third is a non-standard tool to exploit

vulnerabilities in the protocol, Metasploit. Despite the fact that these three interfaces to the

HAP protocol emulator are the focus of this research, any software that follows the HAP

industrial protocol specification should be able to access the emulator.

NetEdit3 . This tool is used to view and set parameters related to the communication

and operation of the device, and is available free from the target PLC manufacturer [Hos12].
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A screenshot of the NetEdit3 tool displaying three devices, two of them emulated, is shown

in Figure 3.5. The real (target) PLC has Ethernet address that ends in 23. The ecom_svr.o

process that runs the HAP protocol emulator is intended to respond to queries in the same

manner as the target PLC. The NetEdit3 tool communicates with devices on UDP port

28784 through both broadcast and addressed IP traffic depending on the parameter being

accessed. This tool is chosen as a primary focus because of the straightforward interface it

provides to the target PLC and emulator.

Figure 3.5: NetEdit3 interface communicating using the HAP industrial protocol. Shown
are three devices, one real PLC (ID 5) and two emulated PLCs (ID 6, 7). The emulated
PLCs are also denoted with an ’F’ in the Name column for easy identification (’F’ for fake,
’R’ for real).

DirectSOFT5. The primary programming interface to Koyo brand PLCs, including

the target PLC, is the DirectSOFT5 package. The manufacturer provides the DirectSOFT5

software free for limited use from its website [Aut12c]. This software allows direct access
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to the device memory (which may be password protected) enabling a user to read and write

arbitrary memory segments, view status of PLC switches and coils, and download and

upload ladder logic programs. There are hundreds of different commands that can be sent

to the device using this software, but only a few of the most critical are implemented in

the emulator. To support the superficial level of accuracy, the emulator can be locked and

unlocked with a 7-digit password and allows the ladder logic program to be downloaded

from the device, exactly like the target PLC. The emulator also supports viewing a dynamic

representation of the ladder logic that displays the constantly changing state of the PLC.

The dynamic representation feature of the emulator makes it look as though the

emulator is actually controlling a process as the switches, coils, and timers in the ladder

logic view change. Figure 3.6 and Figure 3.7 show screenshots of DirectSOFT5 being used

to view the changing status of the control elements on the emulator. The fields highlighted

are coils and switches that are currently active. The dynamic functionality is controlled by

the output_simulator.py process discussed in Section 3.2.4.4, and is readily configurable.

Metasploit. The final interface to HAP industrial protocol is the Metasploit

exploitation tool [Met12]. This is a popular, open-source, extensible tool used for

exploiting vulnerabilities in computer systems. It is used as a penetration testing tool

to identify and correct vulnerabilities in IT systems. The use of Metasploit is extending

beyond traditional IT however, and security researchers are actively developing Metasploit

modules to exploit vulnerabilities in SCADA devices as well. A screenshot of the

Metasploit module successfully obtaining the password from the emulator device is

shown in Figure 3.8. The target Koyo PLC is one such device that has a Metasploit

exploit available that uses brute force to crack the HAP protocol password that would

normally be entered through the DirectSOFT5 interface giving full, unrestricted access

to the device [Wig12]. The application of the device password is described in Section

3.2.4.3. The password vulnerabilities, listed with ICS-CERT in January 2012 include weak
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Figure 3.6: DirectSOFT 5 programmer interfacing with the HAP protocol emulator. When
the Status button is depressed, the emulator displays a dynamic view of the current state of
the PLC ladder logic.

authentication and unlimited attempts with no lockout period [Dhs12]. The vulnerabilities

are corrected with firmware version 4.0.1776 dated 26 March 2012. Firmware versions

4.0.1735 and 4.0.1745 are confirmed to have this vulnerability. The vulnerability of the
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Figure 3.7: Status of emulator ladder logic a few moments later. Observe the alternate state
(highlighting shows an electrically closed connection).

target PLC with firmware version 4.0.1735 is implemented on the emulator to ensure that

the emulated device fails in the same way as the target PLC. Though this software is not
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the most current, it is feasible for outdated, insecure software to be loaded on a PLC, as

discussed in Chapter 2.

Figure 3.8: Metasploit exploit software brute-forcing the password on the emulator.
Metasploit found the password to be A0000322, and will unlock the device.

3.2.4.4 Dependencies of ecom_svr.o (HAP protocol emulator).

In addition to the executable, there are several configuration files and a helper

executable, output_simulator.py used to make the emulator more accurate, configurable,

and scalable. By removing as many configuration options as possible from the executables

and into dedicated files, settings can be changed without the need to re-compile the

emulator binary files.

config.txt. This configuration file is used to keep track of stateful parameters such

as the device name, ID, firmware version, and password. In total, there are 437 different

parameters that can be manipulated to give the emulator the desired characteristics. The

HAP protocol emulator reads and writes all parameters to config.txt. Therefore, many

config.txt files can be made ahead of time with different system configurations and selected

at a later time to give the emulator any personality just by replacing the config.txt file.
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To provide consistency, config.txt is also used by the webserver.py process. When

asked to serve or change data, webserver.py also consults config.txt to ensure changes made

with one interface are immediately readable by the other interface.

ccmdictionary.txt and kseqdictionary.txt. These files are dictionaries of query-

response fields that are used often by the emulator based on two different protocols,

DirectNet (aka CCM), and K-Sequence. DirectNet is an open industrial protocol used by

Koyo devices to read and write memory values on the target PLC discussed in Section 2.2.2.

On this particular target PLC, the DirectNet protocol (encapsulated in the HAP protocol)

is used to exchange CPU identification information to NetEdit3 and DirectSOFT5, as well

as provide the dynamic status representation described in Section 3.2.4.3, Figure 3.6, and

Figure 3.7. K-Sequence is a proprietary protocol used by Koyo devices to read and write

memory values on the target PLC. On the target PLC, the K-Sequence protocol (also

encapsulated in the HAP protocol) is used to exchange large amounts of data quickly, such

as the ladder logic program. The dictionary files can be thought of as a way to emulate

different memory locations on the PLC. That is, when a query is received, the emulator

reads or writes to the file as if it were memory on the target PLC.

Both the ccmdictionary.txt and kseqdictionary.txt files contain a "query = response"

format that ecom_svr.o uses to decide which message to send in response to a query for the

protocol. For example, when ecom_svr.o receives a query that contains a CCM message

of "1e01010132", it responds with the CCM payload of "00000b" as dictated by the entry

in ccmdictionary.txt. An excerpt from ccmdictionary.txt is provided in Figure 3.9, showing

this "query = response" format. Though not shown, kseqdictionary.txt works exactly the

same, but the queries and responses are much longer.

output_simulator.py. The small output_simulator.py helper process is written in

Python and changes several response values in ccmdictionary.txt in specific ways to

simulate changing memory values. Since ccmdictionary.txt is used to emulate memory
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[CCM_READ]
1e01010132 = 00000b
1e01010133 = 000000
1e01010333 = 000007
1e01810133 = 000000
1e04010031 = 000000000000
1e01777736 = 60000
1e010f0036 = 00005a
1e06ee0f31 = 0000000000000000
1e01840132 = 000000

Figure 3.9: Excerpt from ccmdictionary.txt

locations, the responses modified by output_simulator.py correspond to the locations in

memory on the PLC that keep track of the current status of its coils, switches, and counters.

The way that output_simulator.py modifies ccmdictionary.txt is not arbitrary. The values

specifically reflect valid operation according the ladder logic that is stored on the emulator.

That is, the simulated values follow the logic to represent real functionality of some real

control process. By altering this process, the emulator can appear to be controlling any

type of system desirable for the particular emulator application.

Even though the values of the current state of the coils, switches, and counters are

stored in ccmdictionary.txt, the actual ladder queries the emulator for its ladder logic

program, ecom_svr.o simply retrieves the values from kseqdictionary.txt. Therefore, to

send back a different ladder logic program to DirectSOFT5, values for a different ladder

logic program must be recorded, and placed into kseqdictionary.txt. Different methods for

accomplishing this are left for future work and discussed in Section 6.4

3.2.5 logging.o.

The purpose of the logging.o process is to send a copy of all packets arriving and

departing from the Internet facing interface of the emulator to a remote Syslog server via

the LAN facing interface on the emulator. Iptables has a built-in logging capability, but only
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logs the packet headers, and not the complete packet. This is not suitable for maintaining a

complete record of activity on the emulator required for honeypot applications, therefore,

logging.o is required to log all bytes of every packet coming from, or going to the emulator.

The functionality of logging.o is depicted in Figure 3.10.

Figure 3.10: Example packet flow packet logging both query packets (green) and response
packets (orange) in logging.o.

The logging.o process is written in C and receives packets from the iptables queue

number 3 at two different times in a query-response interaction (according to iptables rules

1 and 17). According to iptables rule 1, packets are sent to queue 3 before they are sent to

the Linux kernel TCP/IP stack for process routing. Similarly, according to iptables rule 17,

packets are sent to queue 3 after they leave the Linux kernel TCP/IP stack for routing back

to the querying computer, but before they are transmitted on the wire. After the packets

are logged by logging.o, the packets are re-injected back into iptables starting with the
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next rule, or in the case of rule 17, are sent to the kernel for transmission to the querying

computer.

3.2.6 webserver.py.

The purpose of the webserver.py process is to emulate the HTTP web server

functionality of the target PLC. The webserver interface on the device allows for reading

and writing of many of the same industrial control settings and communication parameters

as the HAP protocol interface, and more. The webserver interface is valuable to a user

because no special tools (such as NetEdit3) are required to set or view the parameters; any

web browser can be used to access the website. As a universal portal to the target device,

the emulated webserver service implemented by webserver.py is critical to the accuracy of

the PLC emulator. The functionality of the webserver.py process is depicted in Figure 3.11.

Figure 3.11: Example query-response flow for a web request from webserver.py.
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Python is a natural choice for implementation of the web server because of its

extensive collection of modules that make implementation of a generic web server easy.

However, to accurately emulate the target PLC’s web server, extensive modifications are

made to the base HTTP web server. One example of a required modification is the

number and format of the HTTP error messages. On the target PLC no error messages

are sent to the browser— the webserver simply times out (not robust). The webserver.py

process suppresses these messages and overrides other imported classes to create a custom

webserver environment. The ease of changing these types of operations, as well as

the existing Python runtime environment, make a Python webserver a good choice for

industrial control emulators over other web servers like Apache. A screenshot of the main

webpage served by the emulator is shown in Appendix E.

The webserver.py process uses template .html pages to serve static pages to the web

browser. This strategy allows a single template for each webpage whose fields are filled in

just before the page is sent back to the web browser.

Similar to ecom_svr.o, only select functionality of the webserver is implemented into

the emulator. A complete list of all functions implemented, including those implemented by

webserver.py is located in Appendix D. Though not all available functions are operational,

every form and entry field on the website is stateful. For example, although the email

functionality of the target PLC is not implemented in the emulator, the email fields such as

the email server address, sever port, and timeout values can be saved and retrieved later.

3.2.7 modbus.py.

The purpose of this Python process is to emulate generic Modbus protocol

functionality in the industrial control emulator. It is a direct integration from a previous

research effort conducted by Dustin Bermen in 2012 [Ber12]. His Master’s thesis titled

"Emulating Industrial Controls System devices Using Gumstix Technology" contains the

implementation details of the modbus.py process.
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3.3 Incorporation of Design Considerations

The PLC emulator is designed primarily as a tool for studying the SCADA/ICS attack-

landscape as a ICS honeypot. An emulator that accurately implements communication

protocols and services has applications in laboratory research and educational environments

as well (discussed in Appendix A.1), but this design remains focused on implementation

of a SCADA/ICS landscape research honeypot. As a result, all design considerations

discussed in Section 3.1 play a significant role in the implementation.

3.3.1 Accuracy.

To develop an accurate emulation that responds to service queries in the same manner

as the target PLC, it is first necessary to decide how many layers of accuracy are necessary

to feel authentic. The Modbus service is not considered because this research focuses

on higher-level application protocols. Therefore, only the web and HAP protocols are

evaluated for accuracy based on the tools that are frequently used with the target PLC.

Five levels of accuracy emulated– (1) superficial accuracy, (2) packet accuracy, (3) timing

accuracy, (4) scanning tool accuracy, and (5) attack tool accuracy. In other words, the

emulator feels authentic when a user:

1. looks at the website or uses a manufacturer tool to view HAP data,

2. looks at packet bytes associated with the standard types of web or HAP queries,

3. measures the timing associated with queries and responses,

4. conducts an OS fingerprint scan on the device to see that the results tell the same
story as the webpage, and

5. executes a publicly-available exploit for a known vulnerability on the device.

The two emulated services, web and HAP, are subdivided into standard, and non-

standard types of interactions. The emulator then provides accurate responses for these four

different query request types to feel authentic: (1) standard web request type (browser), (2)

non-standard web request type (Nmap scan), (3) standard HAP request type (NetEdit3),

and (4) non-standard HAP request type (Metasploit module), defined as follows:
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1. Standard Web queries are interactions with the web server which is listening on
TCP port 80. The queries represent normal, within-bounds requests from an Internet
Explorer web browser.

2. Non-standard Web queries are OS fingerprinting scans using the Nmap tool that
attempt identification of the device based on the response to non-standard TCP, IP,
and ICMP packets sent to the device. By default, Nmap chooses the lowest open
TCP port on the device to perform its tests on, and therefore will always pick TCP
port 80 unless told otherwise.

3. Standard HAP queries are interactions with the HAP industrial protocol server which
is listening on UDP port 28784. These queries represent normal, within-bounds
requests from the free manufacturer tool, NetEdit3.

4. Non-Standard HAP queries are attacks on the HAP protocol security measures
using the koyo_login Metasploit module to exploit vulnerabilities found by Project
Basecamp.

The emulator is designed to mimic responses to each type of request as accurately as

possible when compared to the target PLC.

The HAP service provides two additional levels of superficial accuracy beyond the

Metasploit attack. After logging into the device using the password from the Metasploit

attack, the DirectSOFT5 software downloads firmware from the emulator (first additional

level) through the ecom_svr.o process. When the user attempts to view the current status

of coils and switches, the emulator provides a dynamic view of the ladder logic as its

values fluctuate as depicted in Figure 3.6 and Figure 3.7 (second additional level). Being

superficial levels of accuracy, they are subjective and difficult to quantify and therefore are

not tested in this research.

Among all the emulator design considerations, accuracy is the most difficult to

measure and quantify. Chapter 4, describes the method used in this research for quantifying

the accuracy of the emulator implementation.

3.3.2 Robustness.

Robustness is also an important consideration for the design. Since the device is

implemented completely in software, there is minimal risk to bricking the device to the
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point of un-usability. The target PLC has several DoS vulnerabilities that render the

webserver unusable for a period of several minutes as described in the January 2012

ICS-CERT notification [Dhs12]. These vulnerabilities include webserver buffer overflow

and resource exhaustion. The device is protected against the known and reproducible

vulnerabilities of the target PLC which including the resource exhaustion vulnerabilities.

However, not enough information is known about the buffer overflow conditions to

reproduce them on the target PLC and therefore, emulate its functionality. Because the

emulator is implemented on a different architecture (presumably in a different manner), it

is very unlikely that the emulator suffers the same vulnerability. While this is good news

for emulator robustness, it means that the emulator does not accurately represent the buffer

overflow vulnerability.

In support of accuracy and robustness, the emulator appears to fail under the

conditions of the resource exhaustion vulnerability, but does not actually fail. To make

a more accurate emulation, the emulator is configurable via the webserver.py Python

script to block for several minutes, just like the target PLC. With additional research and

improvements, the device can be made to emulate the buffer overflow vulnerability in a

similar, configurable way.

3.3.3 Cost Considerations.

Existing methods of implementing a SCADA/ICS honeypot involve using real PLCs,

(discussed in Section 2.5) which dramatically increases cost. The design implemented for

this thesis research lowers these costs significantly though the use of the Gumstix platform.

The cost and features of the Gumstix device are described in Section 2.4. Because the

emulator software is easily copied to other Gumstix or Linux computers, a single design

can be used to emulate an entire network, compounding the cost savings as the number of

devices increases.
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The Gumstix platform is a cost-effective solution with respect power budgets as well

[Gum12c]. Because of the low power consumption of an embedded platforms, the Gumstix

computer can even run on batteries, making the device portable and rapidly deployable.

Additional cost effective solutions are suggested in the Section 6.1.

3.3.4 Configurability.

The more configurable the emulator, the more portable to other applications it will

be. However, this implementation only emulates the DirectLogic 405 PLC. From a single-

device standpoint, the emulator is very configurable. Every stateful web or HAP field can

be modified and customized for the particular research or educational application du jour.

3.3.5 Scalability.

Because the emulator is designed primarily as a honeypot and can be potentially inte-

grated into a honeynet, both scalability and code portability are important considerations.

The choice to use Linux is a result of selecting to uses the Gumstix single-board computer.

Using Linux gives the device the ability to run on many hardware configurations due to

it being highly customizable. Furthermore, the use of Linux allows the integration of the

very powerful iptables firewall.

3.3.6 LoggingAbility.

Logging is a critical function for an ICS field device emulator applied as a honeypot.

This implementation uses the second Ethernet port on the Gumstix device to send out-of-

band logging to a remote Syslog server, an open-source Linux based program for large-

scale enterprise logging. By using a robust, scalable logging service, potentially hundreds

of emulators creating log entries as part of a large SCADA/ICS honeynet could be managed

with a few entries in a Syslog configuration file.

Because of its importance to SCADA/ICS attack-landscape research, the logging

ability of this emulator implementation is directly measured and assessed. Chapter
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4, describes the method used for quantifying the logging ability of the emulator

implementation, and the results of the experiments are analyzed in Chapter 5.

3.4 Summary

The design of an industrial control emulator is complex. Depending on the intended

application, many design elements including accuracy, robustness, cost, configurability,

scalability and record keeping must be considered. The emulator implementation for

this research effort incorporates all of these considerations for applications in exploratory

SCADA/ICS attack-landscape research into design of the PLC emulator based on the

emulation target, the Koyo DirectLogic 405 PLC.
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IV. Experimental Methodology

4.1 Goals

As discussed in Chapter 3, accuracy and authenticity are important design consider-

ations for an emulator designed for exploratory Internet research as a honeypot. The goal

of this experiment is to quantify accuracy and logging capability of the emulator to assess

its usefulness as an attack-landscape research device. Six questions about the accuracy and

logging performance of the emulator on the Gumstix and PC platforms are addressed:

1. To what extent are the responses from standard queries accurate at the packet level
for the emulator compared to the target PLC?

2. To what extent are the responses from non-standard queries from scanning and attack
tools accurate for the emulator compared to the target PLC?

3. To what extent are the timing of responses for standard and non-standard queries
accurate for the emulator compared to the PLC?

4. To what extent are the queries and responses to and from the emulator logged?

5. To what extent does request frequency affect the accuracy and timing performance
of the emulator?

6. How significant is the impact of running the emulator on the Gumstix platform versus
the PC platform for all five of the above categories?

4.2 Approach

This is accomplished by methodically dividing the goal into testable and quantifiable

experiments. Chapter 3 previously defined accuracy at five levels: superficial, packet,

scanning, attack, and timing. Therefore to quantify accuracy, the experiments include

scenarios designed to test each of these levels independently.

The emulator is divided into two services, web and HAP. Both are subdivided by

the types of interactions the emulator is designed to handle: (1) web standard, (2) web

non-standard, (3) hap standard, (4) hap non-standard. These reflect interactions with the
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emulator via web browser, Nmap, NetEdit3, and Metasploit respectively. The services and

query types are summarized in Table 4.1.

Table 4.1: Two services broken into
four query types.

Service Query Type Tool
Web Standard Browser

Non-Standard Nmap

HAP Standard NetEdit3

Non-Standard Metasploit

The approach to test accuracy of the emulator on both the Gumstix and PC platforms

is to send identical queries to each of the Gumstix, PC, and target PLC configurations in

different experimental scenarios to cover all aspects of accuracy and logging. A comparison

of the responses to these queries is made between the target PLC and both emulator

platforms. Additionally, the completeness of the number of log entries is assessed to

determine the ability of the emulator to successfully log all query-response interactions. To

ensure complete coverage for accuracy testing, Table 4.2 maps the five levels of accuracy

to the services in Table 4.1. In this experiment, packet-level accuracy is considered to be a

more rigorous determination on authenticity than superficial (or visual) accuracy, and thus

superficial accuracy is not measured.

It is hypothesized that the industrial controls emulator implemented on both the

Gumstix and PC platforms is (1) accurate to both standard and non-standard queries at

the five levels when compared to the target PLC, and (2) able to log all packets to a

remote logging service. A comparison of target PLC and emulated system quantifies the

accuracy of the emulator and forms the basis for a qualitative determination on authenticity,

66



Table 4.2: Levels of accuracy mapped to emulator services.

Levels of Accuracy
Superficial Packet Timing Scanning Attack

R
eq

ue
st

Ty
pe

s
W

eb Standard(browser) X X X

Non-Standard(Nmap) X X

H
A

P Standard(NetEdit3) X X X

Non-Standard(Metasploit) X X

as describe in Chapter 3. That is, the more accurate the emulator, the more authentic

interactions with it will feel to the user.

4.3 System Boundaries

The system under test (SUT), shown in Figure 4.1, is the PLC Control System

consisting of the industrial network interface connecting the PLC device to the Internet, the

Logging Interface where the emulator connects to the logging server, and the PLC device

itself. The PLC device component is the component under test (CUT) and is controlled by

the PLC device Type parameter. Depending on the experimental scenario, the CUT is at

one of three levels, (1) the target PLC to define baseline metrics, (2) the emulator running

on the Gumstix platform, or (3) the emulator running on the PC platform.

4.4 Services and Outcomes

There are four services the system provides as discussed in Chapter 3, three Internet

services and a logging service. The Internet services include (1) a web service that enables

configuration of the device through an interactive interface, (2) a HAP protocol service

that allows direct access to module memory including programmable logic (ladder logic)

of the device as well as configuration, and (3) a generic Modbus service used to control

functionality of the device. The logging service (4) provides a record of incoming and
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Figure 4.1: PLC control system

outgoing packets (sent to and from the three Internet services) in emulator experiments.

Only the web, HAP, and logging services are considered because the scope of this research

concentrates on higher application-level protocols. The process that runs the Modbus

service was developed as an independent research effort [Ber12]. The validity of this

software module is not tested beyond general functionality before integration into the ICS

field device emulator.

The logging service is provided while the PLC device component is at either of the

two emulator levels, the Gumstix platform or the PC platform. There is no logging on

the target PLC device, but logging is a critical function of an ICS field device emulator

designed for honeypot applications, as described in Section 3.3.6.

4.5 Parameters and Factors

Two types of parameters are considered in this experiment, Workload Parameters

and System Parameters. Both types of parameters affect the performance of the SUT, as

measured by the metrics. Varied parameters are called factors. Levels are the values or
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conditions at which each factor is held during an experiment. In this section, experimental

elements are introduced and justified as they apply to this SUT. A summary of chosen

factors and their levels is listed in Table 4.4.

4.5.1 Workload Parameters and Factors.

The workload is Internet traffic most likely to be sent to a real PLC by users in

cyber sensing, laboratory, and educational applications. Since any traffic to a honeypot

is suspicious as discussed in Chapter 2, any traffic and therefore any workload sent to the

system is treated as malicious. There are two workload parameters based on how a user

would submit workload requests to the SUT, Request Type and Request Frequency.

4.5.1.1 Request Type.

Depending on the user, different requests are made to the device. The Request Type

parameter defines four different workloads corresponding to the four different query types

sent to the system to represent different requests made by users to a standard PLC. These

four request types are selected because they are the most likely ways a user would interact

with the target PLC.

Request type is a factor in this experiment, and the levels are divided into four

categories according to Table 4.1: (1) web standard workload type, (2) web non-standard

workload type, (3) industrial standard workload type, and (4) industrial non-standard

workload type using the following definitions.

Web Standard Workload Requests. The web standard workload request represents

a typical workload any user could submit to the webserver. This type of request would

be used in all emulator applications including cyber sensing, laboratory research, and

education.

The specific workload request chosen is to display the device homepage. A screenshot

of the homepage served from the emulator is available in Appendix E. On the homepage

(main.html), the current configuration of the device is displayed with hyperlinks to other
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pages where the configuration can be changed. This workload is chosen for the experiment

because the main.html file is sufficiently large as to force TCP segmentation. The maximum

segment size (MSS) of a TCP segment dictates the maximum amount of data that can

be sent in a single TCP packet. The MSS on the target PLC is 512 bytes while the

size of main.html is 1,932 bytes, this forces delivery of the page into four deterministic

TCP packets. Additionally, the serving complexity of main.html is higher than other

pages because of large numbers of memory read operations that pull information from

the emulated device’s configuration file to send in response to the query, as described in

Chapter 3.

As an alternative to a web browser such as Internet Explorer or Firefox, an automated

tool is created to generate web standard workload requests to obtain consistent results

between trials and configurations. This tool, written in C, uses raw TCP sockets to open

a connection to the CUT’s webserver, send the HTTP GET request, accept data, and

handle connection tear down. The tool is multi-threaded to allow an unlimited number

open sockets to the webserver at a time. This enables many simultaneous connections

without waiting for the previous GET request to have been handled by the CUT. Additional

information about this custom workload generator is available in Appendix G.

Web Non-standard Workload Requests. Beyond standard users, those interested

in exploiting the device are more likely to challenge it with different tests of accuracy

to determine its authenticity. A common approach is using a network scanner such as

Nmap and observing what is returned. If the results are consistent with what are expected,

authenticity is further established.

Using Nmap for the web non-standard workload request is a good choice because it

is popular, open-source, and free. Additionally, the documentation available is excellent,

which is a major enabler for the Nmap probe handling process (infilter.o) of the emulator

described in Chapter 3. Because of the default configuration of Nmap, the first open port
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found on a device is the port selected for OS fingerprinting probes. On the target PLC, this

is TCP port 80, the webserver. The basic command issued to Nmap to conduct a single

web non-standard workload request is:

nmap -sS -sU -p 1-65535 -T3 - -O -v - -max-parallelization 1

Industrial Standard Workload Requests. Like the web standard workload request,

the industrial standard workload request represents a typical request a user submits to the

HAP protocol server on UDP port 28784. As described in Chapter 3, NetEdit3 can be used

to submit standard workloads to the CUT on this interface. This type of request would be

used in all emulator applications including SCADA attack-landscape research.

The specific request chosen is the request of the Module Description via the HAP

protocol. This workload is chosen for the experiment because the CUT responds with the

most bytes of any other HAP response (267 data bytes).

As an alternative to the proprietary NetEdit3 tool, an automated tool is also created

to generate standard industrial workload requests to obtain consistent results between

trials and configurations. This tool, written in C, uses raw UDP sockets to send the

query and receive for the response. The functionality is similar to the custom workload

generator developed for the standard web workload, and additional information is available

in Appendix G.

Industrial Non-standard Workload Requests. Again, non-standard requests are sent

by those interested in exploiting the device. After a device has been identified, either

through information found on the website or via an Nmap scan, publicly-available exploits

may be attempted to verify authenticity of a device. A common tool used to execute

exploits is the Metasploit exploitation framework. An exploitable vulnerability gives more

authenticity to an emulated device by failing similarly to the target PLC

Metasploit is free, easy to use, and is ubiquitous among highly-skilled and lower-

skilled hackers alike (because it is free and easy to use). Written in Ruby, the framework is
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easily extended making the addition of new exploits by anyone straightforward, which

is how the exploit for the target PLC was created [Wig12]. The module used is the

koyo_login.rb module. The module successfully exploiting the target PLC is seen in Figure

3.8. The exploit is executed through the Metasploit console:

$use auxiliary/scanner/scada/koyo_login

$set rhosts 10.1.0.79

$exploit

4.5.1.2 Request Frequency.

The request frequency workload parameter defines how quickly workload requests are

sent to the SUT. This metric is chosen because the rate at which the requests are sent by the

workload generator is easily reproduced by attackers trying to determine the true identity

of the device. The accuracy of the log generated by the SUT (if CUT is the emulator)

may be affected as the time in between requests decreases. Additionally, the elapsed time

and response rate metrics may be affected depending on the ability of the SUT to process

responses as fast as or faster than the request frequency. These are both experimental

questions outlined in Section 4.1.

Request Frequency is a factor in this experiment. All three devices are tested at

two levels, slow and PLC Break. Depending on the level of the Workload Request Type

factor, the standard and accelerated frequencies are different values. The levels chosen are

the result of pilot studies conducted on the system for each of the target PLC, Gumstix

emulator, and PC emulator platforms. These nominal levels are summarized in Table 4.3.

The Slow level is defined as the fastest rate that all three devices can handle

successfully, without dropping requests. The PLC Break level is defined as the fastest

rate that the target PLC can handle without failing to respond to queries. In addition to

these levels, a level only performed on the emulators is called the Emulator Break level. To

72



Table 4.3: Selected nominal request frequency levels for all four types of frequency
requests. These levels are a result of pilot studies.

Slow(query/sec) PLC Break(query/sec)
Emulator Break (query/sec)

PC Gumstix

Standard Web 10 27.49 203.198 10.263

Standard HAP 100 382.203 2023.976 259.238

Non-Standard Web T3† T5‡ n/a n/a

Non-Standard HAP 0.637 2.066 1328.643 2273.404

†timing: Standard T3 Nmap Speeds plus options: -max-parallelism 1 -max-scan-delay 5 -max-retries 2
‡timing: Insane T5 Nmap Speeds plus options: -max-scan-delay 1 -max-retries 2
NOTE: this is not the frequency at which the PLC breaks, simply a faster Nmap scanning profile.

determine these values, the emulators are driven to their own break frequencies to establish

the maximum request frequency they can handle without failing to respond to queries.

As seen in Table 4.3, the Non-standard web request (Nmap scan) does not list specific

frequency values, only that the default Nmap timing profile (T3) plus options, and the

insane timing profile (T5) plus options are used. Because of the nature of the Nmap scan,

the true timing and parameters are trivial, and beyond the scope of this research. Default-

plus-option timing profiles are used to simplify the experiment since there are at least 10

variables that affect the frequency of probe packets sent by Nmap. Additionally, each Nmap

scan takes several minutes, and attempting to find the exact point that the scans begin to

fail is difficult and not productive to this research.

For the non-standard HAP workload, the slow level is the standard brute force

password attack as executed using the default Metasploit speed. In Metasploit, there are no

options to change the rate at which queries are made. Therefore, the tool tcpreplay [Syn12]

is used to record and play back the Metasploit attack packets at arbitrary speeds to facilitate

the PLC Break and Emulator Break request frequency levels. Again, pilot studies are used
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to determine the actual break levels for each CUT. The selected levels shown in Table 4.3

are those used in the actual experiments.

4.5.2 System Parameters and Factors.

Only the PLC device parameter is a factor in this experiment. Other parameters that are

not being considered but acknowledged as potentially significant are the device architecture

(Gumstix: ARM, PC: x86) and operating system (Gumstix: Angstrom 3.3.0, PC: Ubuntu

2.6.35)

4.5.2.1 PLC Device.

The PLC Device parameter defines the device that is plugged into the system. The

PLC Device parameter specifies which component under test (CUT) is in the system. The

PLC Device parameter is a factor being considered in this experiment. The PLC Device

parameter has three levels (1) target PLC, (2) emulated PLC on Gumstix platform, and (3)

emulated PLC on PC platform.

Table 4.4: Summary of Factors and Levels.

Factors Levels

Request Frequency†
Slow

PLC Break

Emulator Break

Request Type

Web Standard

HAP Standard

Web Non-standard

HAP Non-standard

PLC Device
Target PLC

Emulated on Gumstix

Emulated on PC

†As assigned by Table 4.3 according to request types.
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4.6 Performance Metrics

There are no standard objective metrics for measuring the effectiveness of an emulator

to imitate its target device and therefore metrics are developed to quantify emulator

accuracy. A summary of the performance metrics measured for each request type and

corresponding levels of accuracy is shown in Table 4.5.

4.6.1 Packet Bytes.

The packet bytes metric measures the byte values of a response from the CUT to

a query. Packet level accuracy is determined by how many packet bytes of an emulator

response match the expected response bytes from the target PLC. In the SUT, packet bytes

are measured for two request types, (1) the web standard workload, and (2) the industrial

standard workload. Therefore, the metric is only measured during scenarios 1, 2, 2a, 5, 6,

6a, 9, 10, 10a, 13, 14, 14a, 15, 16, 16a, 17, 18, 21, 22 according to Appendix F.

The expected response of the emulator is defined as the response provided by the

PLC Control System when the target PLC device is in the system as the CUT. A baseline

response for the target PLC is measured for all other variable factors, and the response

under those same conditions is measured with the emulators in the system as the CUT to

determine the packet byte accuracy.

All deterministic bytes from the emulator response must be identical to the equivalent

bytes in a response from the target PLC for the emulator response to be 100%

accurate. Deterministic bytes in the Internet headers include parameters whose accuracy

is considered not relevant, including fields such as the query source port number, initial

sequence number, etc. The complete list of bytes considered non-deterministic in this

experiment is available in E. If all deterministic bytes are not identical, then the accuracy

is less than 100% for that query.
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4.6.2 Nmap OS Fingerprinting Fields.

The Nmap OS Fingerprinting Fields (hereafter referred to as Nmap fields) metric

measures selected values found in the output of an Nmap OS Fingerprint scan. Scan

level accuracy is determined by how many Nmap field values of a response from the

emulator match the expected field values from the target PLC for same scan. This metric

is only measured during the experiments that submit web non-standard queries to the CUT

(scenarios 3, 4, 11, 12, 19, 20 according to Appendix F).

The fields considered are the Port Status, OS Guesses, Scan Details, TCP sequence

Prediction (which is also reported as the SP field in the Scan Details section), IP ID

Sequence Generation. The results of an Nmap scan with these fields highlighted is seen

in Figure 4.2.

4.6.3 Successful Unlock.

The successful unlock metric measures whether the Metasploit exploit is successful,

or not. This metric is binary, either the device is successfully unlocked by the attack or it is

not. Attack level accuracy is determined by the outcome of the Successful Unlock metric.

This metric is only measured during the experiments that submit HAP non-standard queries

to the CUT (scenarios 7, 8, 8a, 15, 16, 16a, 23, 24 according to Appendix F).

4.6.4 Response Time.

The response time metric measures the time from when the first packet of the

workload is sent from the workload generator to the CUT, to when the final packet of

the response is sent from the CUT back to the workload generator. Timing accuracy

is obtained by comparing the measured baseline response times of the target PLC to

the measured performance of the emulator CUTs. This metric is measured during all

experiments. This is a common metric in network analysis and is of particular interest for

the emulator system because it is easy to measure by researchers, students, and attackers

alike. The measurement of elapsed time or latency has been shown to be a fingerprintable
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Figure 4.2: Example OS Fingerprint scan results. The values of the fields highlighted are
measured by the Nmap OS Fingerprinting fields metric.

characteristic in other computer service emulator systems such as the popular open-source

program Honeyd [FYC06].

4.6.5 Logging Ability.

The logging metric counts the number of Syslog packets sent from the emulator to

the remote Syslog server. Correct operation of the logging service requires that a Syslog

entry be created on the LAN- facing interface for every packet to and from the emulator

seen on the Internet-facing interface. Because capturing all emulator interactions is one of

the most important functions, the logging metric is a critical measurement. This metric is

measured during all experiments that submit queries to an emulator CUT(scenarios 1-16a

according to Appendix F). Since the emulator logging is out-of-band (meaning log traffic
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travels across a different communication channel than the workload), no timing rate is

associated with the logging service. As long as all interactions are sent to the log allowing

time for send and receive buffers to clear, it is not important how long it takes for them to

get there. The method used to test this is described in Section 4.8.1.7.

Table 4.5: Performance metrics measured for each request type and corresponding levels
of accuracy.

Levels of Accuracy Logging
AbilityPacket Timing Scanning Attack

R
eq

ue
st

Ty
pe

s
W

eb Standard(browser) X X X

Non-Standard(Nmap) X X X

H
A

P Standard(NetEdit3) X X X

Non-Standard(Nmap) X X X

Packet Bytes Response Time Nmap Fields Successful
Unlock

Logging

Performance Metrics Measured

4.7 Experimental Design

A total of thirty query-response scenarios are divided into the four workload

components. Based on an expectation of relatively low variability in all three metrics,

this experimental setup is expected to result in 99% confidence intervals to determine

performance differences. A partial factorial design is used for this experiment because

the target PLC is only submitted to two request frequency levels, Slow and PLC Break. A

complete list of all scenarios and factors is listed in Appendix F.
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4.8 Evaluation Technique

4.8.1 Accuracy.

4.8.1.1 Standard Web Workload Packet-Level Accuracy.

The selected web standard workload queries are GET requests sent to the CUT to

retrieve the homepage, main.html. The response to these queries is measured by the Packet

Bytes metric. Scenarios examined during the web standard workload accuracy trials are

listed in Table 4.6. The baseline with the PLC Device at the Target PLC level is recorded in

scenarios 17 and 18 according to Appendix F. For every query, exactly 2,372 bytes across 8

packets are sent by the CUT including the TCP connection setup, data exchange, and TCP

connection teardown. Of these 2,372 bytes, 2,330 bytes are deterministic.

Table 4.6: Scenarios examined during the
Web Standard Workload.

Scenario
Request

Frequency
(queries/sec)

Platform

1 10 PC

2 27.124 PC

2a 203.198 PC

9 10 Gum

10 27.124 Gum

10a 10.263 Gum

17 10 PLC

18 27.124 PLC

With the PLC Device factor at the Emulated PLC levels (scenarios 1, 2, 2a, and 9,

10, 10a according to Appendix F) the results are again recorded. A binary comparison

(match or do not match) is then done between the deterministic bytes of these responses

to the baseline measurements taken for the Target PLC. A quantitative assessment is then
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made on packet-level accuracy for web standard queries. A depiction of the byte-by-byte

comparison between target and emulated PLC for all 8 packets of a response is shown in

Figure 4.3.

Figure 4.3: Example of byte-by-byte comparison of target PLC responses to emulator
responses for a homepage request query. The CUT responds with exactly 2,372 bytes
across 8 packets. 2,330 deterministic bytes are compared.

Because the response is always exactly the same for the same query, theoretically only

one trial is necessary to perform an assessment of packet-level accuracy. However, the

Response Time metric requires more trials. Therefore, with the ease of conducting trials

using the automated workload generator, a large number of trials is conducted, significantly

reducing the size of the confidence intervals for the Response Time metric, as well as
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provide confidence in packet-level accuracy. A total of 1000 trials of the web standard

workload are sent to each CUT. Based on an expectation of relatively low variability

in packet byte accuracy and timing accuracy, this experimental setup, a 99% confidence

interval (CI) is chosen to determine performance differences.

4.8.1.2 Standard HAP Workload Packet-Level Accuracy.

The HAP standard workload for the emulators is evaluated in exactly the same way

as the web standard workload. Scenarios examined during the HAP standard workload are

listed in Table 4.7. The baseline, with the PLC Device factor at the Target PLC level, is

done in scenarios 21 and 22. For every query, exactly 309 bytes in 1 UDP response packet

are sent by the CUT. Of these 309 bytes, 302 bytes are deterministic. With the PLC Device

at the Emulated PLC levels (scenarios 5, 6, 6a, and 13, 14, 14a according to Table 4.7) the

results are recorded and a binary comparison is again made to the baseline for 1000 trials.

Table 4.7: Scenarios examined during the
HAP Standard Workload.

Scenario
Request

Frequency
(queries/sec)

Platform

5 100 PC

6 382.203 PC

6a 2023.976 PC

13 100 Gum

14 382.203 Gum

14a 259.238 Gum

21 100 PLC

22 382.203 PLC
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4.8.1.3 Nmap OS Scanning-Level Accuracy.

The web non-standard workload response is evaluated similarly to the packet-level

accuracies just described, but Nmap fields are measured instead of packet bytes. Scenarios

examined during the web non-standard workload accuracy trials are listed in Table 4.8.

There are 113 fields in an Nmap OS Fingerprint scan across the five categories seen

previously in Figure 4.2. The baseline, with the PLC Device at the target PLC level, is

done in scenarios 19 and 20. With the PLC Device at the Emulated PLC levels (scenarios

3, 4, and 11, 12) the scan results are recorded and a binary comparison is done to the

baseline. All Nmap fields from the emulators should match the baseline.

Table 4.8: Scenarios examined during the
Web Non-standard Workload.

Scenario
Request

Frequency
Platform

3 T3(+options) PC

4 T5(+options) PC

11 T3(+options) Gum

12 T5(+options) Gum

19 T3(+options) PLC

20 T5(+options) PLC

Five scan trials are done to ensure validity of test results. The lengthy duration of

around 11 minutes for each scan and the complexity of the data output make it very

difficult to compare the results of many trials, which must be done manually. Based on

an expectation of relatively low variability in accuracy, this experimental setup is expected

to result in 99% CI to determine performance differences in accuracy based on the five

trials.
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4.8.1.4 Metasploit Attack-Level Accuracy.

The HAP standard workload response is evaluated simply by running the exploit under

each test configuration, and verifying that the exploit is successful. Scenarios examined

during the HAP non-standard workload accuracy trials are listed in Table 4.9. The workload

input values show the tcpreplay playback multiplier needed to generate the nominal request

frequency for the indicated scenario. Successes is determined using the DirectSOFT5

software; if the software asks for a password before downloading the ladder logic, then

the device is locked, otherwise if the software begins downloading the ladder logic without

asking for a password, the device is unlocked and the exploit was successful. For each

experimental scenario, the passwords of all devices are set to the same arbitrary value.

Similar to the Nmap OS Scans described in Section 4.8.1.3, five trials are conducted.

Based on an expectation of relatively low variability in attack-level accuracy, this

experimental setup is expected to result in 99% CI to determine performance differences in

accuracy based on the five trials.

4.8.1.5 Timing of Standard Requests.

Timing for standard requests is evaluated from packet capture timestamps, and

validated by outputs generated by the workload generators. The start reference for each

trial begins with the initial query packet’s timestamp and ends with the final packet of the

response.

For the web standard workload, the clock for an arbitrary query starts with the first

packet of the TCP handshake, and concludes with the final TCP ACK packet from the

CUT. The HAP standard workload is connectionless UDP with only one packet for every

query and one packet for every response. The clock starts with the timestamp of the query,

and ends with the timestamp of the response.

This data is collected at the same time as the packet byte level accuracy metrics.

Therefore, 1000 trials are conducted to provide a 99% CI for the response time for standard
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Table 4.9: Scenarios examined during the HAP Non-standard
Workload.

Scenario
Request

Frequency
(queries/sec)

Workload
Input Value

Platform

7 0.637 0.071 PC

8 2.066 0.2304 PC

8a 1328.643 500 PC

15 0.637 0.081 Gum

16 2.066 0.266 Gum

16a 2273.404 480 Gum

23 0.637 1 PLC

24 2.066 3.2555 PLC

requests. Based on low expected variability in the timing data, 99% CI is a reasonable

expectation based on the selected number of trials.

4.8.1.6 Timing of the Non-standard Requests.

Timing for the HAP non-standard (Metasploit) requests is evaluated the same way as

described in Section 4.8.1.5 for HAP standard workloads.

Timing for web non-standard requests is evaluated differently. Because the web non-

standard (Nmap) queries are collections of many packets and responses, time is measured

as the difference between the first packet sent by the workload generator and the last packet

sent by either the workload generator or the CUT as recorded in the packet capture of the

scan.

Because of the significant amount of time needed to conduct each test and low

expected variability, a minimal number of five trials is conducted to obtain confidence

intervals of 99% to compare response times of the respective non-standard workload

scenarios.
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4.8.1.7 Logging.

The logging metric records the number of log entries sent to the remote logging

server on the LAN-facing network interface via a packet capture program running on the

remote logging server. The number of packets sent is equal to the number of log entries

generated. Simultaneously, a packet capture program is running on the workload generator

recording all traffic going to and from the emulator. Every packet captured on the workload

generator going to or from the CUT should have a packet generated on the logging server.

The number of packets captured by each packet capture program is compared to make a

quantitative assessment on the ability of the CUT to generate log entries.

Performing rigorous statistical analysis on logging is difficult because the data is

pooled. When the number of log packets sent does not equal the number of query and

response packets sent, there is no easy way of determining which specific packet was not

logged. Therefore the analysis of the logging metric is limited to discussing the ratio of log

entries made to expected entries.

4.9 Experiment setup

To conduct this experiment, the operational system is implemented and measured

according to the diagram in Figure 4.4. A Dell Latitude D630 with 2GB RAM, Intel Core2

Duo CPU, 2.00GHz Processor, running Linux Ubuntu 2.6.35 is used as the CUT that runs

the emulator. This computer adds an additional Ethernet port via an SMC Networks USB

to Ethernet stick model number SMC2290USB/ETH. A second computer is running Linux

Ubuntu 3.2.0 used as both the workload generator and the response recorder. The computer

is also a Dell Latitude D630 loaded with VMWare Player 4.0.2 with a Windows XP SP3

virtual machine to run the NetEdit3 and DirectSOFT5 HAP tools. The computer is also

loaded with Nmap version 5.12 to generate the web Non-standard workload and receive

the response, and Metasploit version 4.4 to generate the HAP non-standard workload and

receive the response. The two custom workload generators for web standard and HAP

85



standard are called htmlget_mt and hap_mt respectively. Wireshark version 1.8.1 packet

sniffer is used to measure the response accuracy and timing metrics. Instructions for setting

up the emulator are found in Appendix I.

A third computer running Ubuntu Linux version 11.10 with Syslogd server version

1.5.0 records the out-of-band logging from the emulated honeypot device, and is only

used during measurements that involve the emulator CUT. This computer is also running

Wireshark version 1.8.1 to record the number of logging packets sent to the logging server

from the CUT.

Figure 4.4: Experimental Setup.

The scope of this experiment is limited to a quantitative assessment of the emulator

to the Koyo DirectLogic DL405 PLC with firmware version 4.0.1735 for the four types of

workloads described, and the emulator’s logging capabilities.

4.10 Validation of Custom Tools

Because two custom workload generators are used to send and collect data from the

CUT, a tool validation is done to ensure that the tools represent valid data representative of
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what is sent by real tools. The workload generated by the custom web workload generator,

htmlget_mt, is compared to the workload sent by Internet Explorer version 9.0.8112 to

ensure similar queries are generated. Similarly, the custom HAP workload generator,

hap_mt, is validated against the NetEdit3 manufacturer tool.

In addition to workload tools, several custom packet capture parsing tools are

developed to automate packet and timing accuracy measurements described in Section

4.8 for the 1000 trials for standard workloads. Further details about the tools and their

validation are found in Chapter 5 and Appendix G.

4.11 Summary

This chapter describes the methodology used to quantify accuracy and logging

capability of the emulator. Four request types are used to test accuracy or the emulator

on four levels: packet, scanning, attack, and timing. These request types are conducted at

different request frequencies to determine the effects on accuracy and logging capability.

All scenarios are conducted on the target PLC to establish baseline values for the selected

metrics. The scenarios are then conducted on the PC and Gumstix measuring the same

metrics, which are compared to the baseline and each other.

It is hypothesized that the Gumstix and PC emulators are 100% accurate at the

packet, scanning, and attack levels for all request types and request frequencies. It is also

hypothesized that the response times of the Gumstix and PC emulators for all request types

and request frequencies are faster or equivalent to the target PLC. Finally, it is hypothesized

that all packets going to and from the Gumstix and PC emulators for all request types and

request frequencies are successfully logged.
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V. Results and Analysis

This chapter discusses the results of the experiments described in Chapter 4. The

results show that the emulator on both the Gumstix and PC platforms are over 95% accurate

for web non-standard workloads (Nmap OS Scans) and over 99% accurate for all other

types of workloads. The logging capabilities of both platforms are also excellent, with

99.99% of all packets being logged by the PC and 97.21% of all packets being logged

by the Gumstix when the results of all scenarios are combined. Though the timing-level

accuracies for the PC platform are significantly faster than the target PLC, the results of the

Gumstix platform significantly slower as defined by the 99% confidence intervals for the

mean.

5.1 Validation of Custom Tools

The use of custom tools to generate the workload and parse the experimental data are

necessary because of the large number of scenarios and trials. Two workload generators

are used to produce the web and HAP standard workloads, htmlget_mt and hap_mt,

respectively whose function is described in Chapter 4. Validation is accomplished by

measuring the query and response using the custom web and HAP workload generators

and comparing them to browser and NetEdit3 interactions, respectively. The details of the

workload generators and their validation are in Appendix G.

In addition to custom workload generation tools, data parsers are necessary to parse

the packet captures (.pcap format) collected for each experiment. Three custom parsers are

developed: web_time_parse.py and udp_time_parse.py, for reading the packet timestamps,

and pcap_accuracy_parse.py to compare responses of two .pcap files to similar workloads

to determine differences in response bytes. The details of how the timing and accuracy

parsers work as well as their validation are in Appendix G.
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5.2 Packet Level Accuracy

Packet level accuracy only considers responses from the web standard queries and

HAP standard queries of both the Gumstix and PC platforms. Each scenario is repeated

1000 times to ensure consistency in packet level accuracy. The metric used to measure the

packet-level accuracy is the percentage of packet bytes correct which is a derived metric

based on the packet bytes metric. The percentage of packet bytes correct is the percentage

of packet byte values measured with the emulator in the system, compared to the baseline

packet byte values measured with the target PLC in the system. Both the Gumstix and PC

platforms are evaluated using this metric.

5.2.1 Gumstix Packet-Level Accuracy Results .

The results for packet-level accuracy as measured by the percent packets bytes correct

metric of the Gumstix and percentage of packets logged are shown in Table 5.1. The results

show that almost every byte of response is accurate on the Gumstix emulator for all 1000

of the standard web queries. There are a total of 2,432 bytes sent from actual and emulated

PLC servers for a single standard web query for the index.html page seen in Appendix E.

Excluding non-deterministic header fields also defined in Appendix E, there are 2,330 bytes

across eight packets that should be identical. Of these total bytes, the Gumstix emulator

differs by 5 bytes for a success rate of 99.79%. Four of these byte differences occur in

the TCP header for three packets of the response and are a result of how the target PLC’s

TCP/IP stack is implemented. These results are confirmed for all successful trials at all

three request frequency levels. For packet-level accuracy, there are no confidence intervals

because there is no variance among the trials conducted.

The differences between the Gumstix emulator and target PLC responses are in the

handling of the TCP Push flag and TCP congestion window and are not correctable outside

of the Linux kernel in the current emulator implementation. Figure 5.1 shows an example

of one of these differences manifested in packet 4 of the standard web response, indicated
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Table 5.1: Packet level accuracy and logging results for the Gumstix for
standard web and HAP workloads.

Scenario Service Request
Frequency

Successful
trials

%packet
bytes correct

%packets
logged

9 Web slow 1000/1000 99.79% 100.00%

10 Web PLC Break 319/1000 99.79% 100.00%

10a Web Gum Break 1000/1000 99.79% 100.00%

13 HAP slow 1000/1000 100.00% 100.00%

14 HAP PLC Break 636/1000 100.00% 76.96%†

14a HAP Gum Break 1000/1000 100.00% 100.00%

†This percentage is revised to 98.98% after accounting for the 364 queries
not seen by the emulator.

by the arrow between packets. This example shows the difference in byte 0x2F, the TCP

Flags field. Value 0x10 in the Gumstix response indicates that the TCP Acknowledgment

(ACK) flag is set, while the PLC response shows value 0x18, indicating that the TCP ACK

and TCP Push (PSH) flags are both set. The presence of the PSH flag tells the receiver that

the sender has no more data to send right now, and that it can push what is in its receive

buffer to the application. This feature is not controllable in user-space, and its use varies in

TCP/IP stack implementations [Ste93]. Making these corrections with the kernel is a topic

for future work, described in Chapter 6.

Of the five byte differences between the emulator and the target PLC, the fifth different

byte is the 0x37th byte of response packet 6, which is the second byte of HTML data

payload in this packet. As seen in Figure 5.2, the emulator value is 0x3a, an ASCII colon

(’:’) character, and the PLC value is 0x0a, an ASCII line feed character. Because this

difference occurs with a whitespace character, it is likely due to a copy-and-paste situation

where a change to whitespace characters occurs when the byte that is pasted is not what is

copied. Another possibility is that a mistake was made when preparing the .html document
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Figure 5.1: Partial response packet number 4 for the Gumstix emulator and PLC. The solid
rectangles identify non-deterministic bytes identified in Appendix D. The arrow points to
the TCP Flags byte in both responses. This is a fingerprintable difference.

to be served by the Python webserver. Whatever the cause, this difference is easily fixed

once it has been discovered by changing the index.html document served by the Gumstix

emulator.

Figure 5.2: Incorrect HTML byte in emulator, likely due to copy and paste error during
implementation.
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The accuracy of the responses for the HAP standard requests is better than that of

web standard requests, seen in Table 5.1. This is because of the simplicity of UDP which

encapsulates the HAP protocol. There are a total of 309 bytes across one packet in a

HAP standard workload response. After excluding non-deterministic header fields defined

in Appendix E, 305 are deterministic, and exactly 305 are accurately emulated for each

query. Thus, the Gumstix emulator is 100% accurate for these types of queries. Again,

there are no confidence intervals because there is no variance among the trials conducted.

Also in Table 5.1 are results for the three request frequencies (detailed in Section

4.5.1.2) for both types of queries. Each scenario in Table 5.1 shows that the Gumstix has

no loss in packet-level accuracy as the frequencies are varied for either the web or HAP

standard workloads.

At the PLC Break request frequency level for both the web and HAP standard

workloads, only a fraction of the 1000 queries made to the Gumstix emulator are

successfully completed. Only the 319 and 636 respective completions are considered

in the percentage of packet bytes. Since the timing is the only parameter varied in this

scenario, these data suggests that the request frequency does not have an impact on packet

byte accuracy of the Gumstix emulator, since there is exactly zero difference in accuracy

between the different request frequencies for every successful trial.

5.2.2 Logging of Standard Workloads on the Gumstix Platform.

The percentage of packets logged is a derived metric based on the logging metric that

compares the number of packets sent to and received from the workload generator by the

emulator to the number of packets sent out-of-band to the logging server by the emulator.

The percentage of packets logged metric considers all the packets from all trials, and the

results of all 1000 trials for each timing level are pooled. Pooling is allowed because they

are all samples of same population, taken at different times.
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For 1000 successful standard web queries, 8,000 packets are sent to the emulator,

and 8,000 packets are received from it, for a total of 16,000 packets. The percentage

of logging packets sent to the logging server compared to the 16,000 total packets is the

percent packets of packets logged metric.

Table 5.1 shows that for every packet sent and received, 100% are logged for all

scenarios except the HAP workload at the PLC Break frequency, which is at 76.96%

packets logged. However, a closer look at this scenario shows a higher measure for the

percent of packets logged. Of the 1000 packets sent by the workload generator, only 636

are responded to by the emulator. After accounting for the 364 queries not seen (1000

queries – 636 responses), only 1272 packets should have been logged by the emulator

bringing the total percentage of packets logged to 98.98% as expressed by

1259logged
1636 − 364received by emulator

=
1259
1272

= 98.98%packets logged (5.1)

Because all results are pooled it is difficult to conclude that, across all three request

frequencies the logging performance of the Gumstix emulator to standard web and HAP

workloads are statistically the same or different. While pooling makes it easier to determine

overall results, it prevents a confidence interval from being calculated since each log entry

is not tied directly to an individual query or response packet. However, the 100% success

rate for all web workload frequencies is strong evidence that no difference exists between

the Gumstix logging capability for these scenarios. The 1% difference among the standard

HAP logging percentages is also very favorable, and would likely have little to no impact

on real world applications of this emulator.

5.2.3 PC Packet Level Accuracy Results.

Table 5.2 shows the packet-level accuracy results the PC emulator platform. These

results are very similar to those for the Gumstix emulator platform presented in Section

5.2.1. The percentages of packet bytes correct are the same as the Gumstix. The differences
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between the PC emulator and target PLC byte values are exactly the same as the Gumstix

emulator, which is expected. The differences between the Gumstix and PC results are

reflected in the PLC Break request frequency scenarios, where the PC shows no degradation

in performance, in successful trials or packets logged.

Table 5.2: Packet level accuracy and logging results for the PC emulator.

Scenario Service
Request

Frequency
Successful

trials
%packet

bytes correct
%packets

logged

1 Web slow 1000/1000 99.79% 100.00%

2 Web PLC Break 1000/1000 99.79% 100.00%

2a Web PC Break 1000/1000 99.79% 100.00%

5 HAP slow 1000/1000 100.00% 100.00%

6 HAP PLC Break 1000/1000 100.00% 100.00%

6a HAP PC Break 1000/1000 100.00% 100.00%

Despite the different Linux platforms and therefore the likely different implementa-

tions of Linux kernel TCP/IP stacks, the same differences in the deterministic fields as

compared to the target PLC platform occur in the PC as they do in the Gumstix platform.

The result is identical values for the percentages of packet bytes correct metrics for both

the standard web and standard HAP workloads.

The different request frequencies seem to have no effect on the accuracy of the PC

emulator, with both web and HAP percentages of bytes correct metrics consistent across

all three request frequency levels at 99.79% and 100% for the standard web and HAP

workloads, respectively.

5.2.4 Logging of Standard Workloads on the PC Platform.

The logging performance of the PC platform as measured by the percentage of packets

logged metric shows that the PC logs all packets successfully. The ability of the PC to log
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standard workloads is only different under the PLC break conditions when compared to the

Gumstix platform. Though pooling of the trials prevents a statistical analysis, the results

suggest that the logging capability between the Gumstix and PC platforms for standard web

and HAP workloads is equivalent.

Despite the fact that the accuracy rate of 99.7% is less than 100% for the web standard

workload, it is concluded that these results are suitable for cyber sensor and honeypot

applications because attackers are not actively looking for ICS honeypots because there are

very few known implementations, and none using this target PLC.

5.3 Scanning Level Accuracy

5.3.1 Gumstix Scanning-Level Accuracy Results.

The percentage of Nmap Fields correct is a derived metric based on the Nmap OS

Fingerprinting Fields metric, similar to the percentage of bytes correct metric. Instead of

comparing bytes, the percentage of Nmap Fields correct metric compares the results of the

emulator Nmap fields metric to the baseline Nmap fields metric for the target PLC.

There are 113 unique fields across four sections. Like the packet bytes metric, there

are non-deterministic fields. These fields vary across repeated scans of the target PLC.

The non-deterministic fields unique to Nmap for OS detection scans include the Sequence

Prediction Index (SP) (also reported as the TCP sequence prediction), TCP Initial Sequence

Number Counter Rate (ISR), and Unused ICMP port unreachable field nonzero (UN) fields.

A screenshot of the non-deterministic fields and their values is seen in Figure 5.3. The SP

and ISR fields report statistical data of the TCP initial sequence numbers (ISN) of response

packets returned by the scanned device. The TCP ISN is intended to be pseudorandom

(i.e., non-deterministic) to protect against TCP hijacking and other attacks.

The scope of this research is to accurately reproduce the most important, deterministic

fields, which excluded accurate reproduction of the target PLC’s sequence number
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Figure 5.3: Comparison between the results of the Nmap Scans of the Gumstix emulator
and the target PLC with the non-deterministic fields highlighted.

generation algorithm. Relative to the other purely deterministic fields, these three Nmap

fields are much harder to fingerprint because a statistical analysis must be done to determine

differences between the emulator and target PLC. The design of the emulator uses recycled

ISNs from hard-coded configurations in the infilter.o executable, and further investigation

of comparison of emulator to target PLC sequence number generation is left for future

work. Because no effort has been done to disprove that the ISN numbers are statistically

different, and because this is an acknowledged difference between the Gumstix (and PC)

emulation and the target PLC, these three fields are classified as important, and incorrect

matches in these fields count against the accuracy.

The UN field represents data that is incorrectly placed in the last four bytes of the

ICMP header, in contradiction to ICMP request for comments (RFC) 792 [Lyo09, Pos81].

When these bytes are set, Nmap places their value in the UN in the OS Scan details section.
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This field also seems random based on the observed responses from the target PLC, but

without statistical proof that Gumstix (and PC) emulation of the UN field is the same as the

target PLC, incorrect matches in this field count against the accuracy. Thus, the emulator is

97.25% accurate (106 correct out of 109 deterministic fields) at the scanning-level overall

when accounting for deterministic fields.

Table 5.3 shows that scanning-level accuracy of the Gumstix emulator platform as

measured by the percentage of Nmap Fields correct metric is 97.25% at both slow and fast

request frequency levels. The slow and fast frequency levels are defined in Section 4.3.

Table 5.3: Scanning-level accuracy and logging results for the Gumstix emulator. The
percentages include include the non-determinisic fields.

Scenario
Request

Frequency
Successful

trials
%Nmap

fields correct
%packets

logged

11 slow 5/5 97.25% 95.64%

12 fast 5/5 97.25% 98.75%

Despite the fact that the Gumstix emulation differs by 3 fields, the results are still

excellent, and the chances of the emulator being fingerprinted by the Nmap OS fields are

small. This is primarily due to the fact that the vast majority of fields are consistent with

the device, and if a public fingerprint of the device was available in the Nmap OS database,

there is a very high probability that the emulator would match that fingerprint. Additionally,

to fingerprint the device based on these erroneous fields, a user would have to know the

underlying distribution of the sequence numbers for the target device a priori, which is not

likely. The user then must accurately measure the distribution of the emulator’s sequence

numbers, also not likely.
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The accuracy rate among all deterministic fields is 97.25%. It is concluded that the

results for scanning-level accuracy are suitable for the emulator’s application in SCADA

attack-landscape research as a honeypot based on this analysis.

The results for both slow and fast request frequencies shown in Table 5.3 indicate that

the Gumstix has no change in accuracy as the request frequencies are varied. Because this

is the only parameter varied in this scenario, and the number of trials conducted, the data

suggests that the request frequency does not have an impact on Nmap field accuracy of the

Gumstix emulator.

5.3.2 Logging Results of Non-Standard Workloads on the Gumstix Platform .

To determine the ability of the Gumstix emulator to log non-standard workloads, the

percentage of packets logged metric is again used. Table 5.3 shows 95.64% success for

all packets for the five trials at the slow request frequency and 98.75% success for the five

trials at the high frequency. The results of all five trials for each timing level are pooled,

generating over 1.3 million packets for each timing level. They can be pooled because they

are all samples of same population, taken at different times.

It is difficult to do the same type of analysis performed with Equation 5.1 because of

the complexity of Nmap probes. The calculation performed in Equation 5.1 depends on the

fact 636 packets are known to have been received by the emulator because responses for

636 queries were sent. With Nmap scans, there is no easy way of knowing which probe

packets are received by the emulator, because some Nmap probe packets illicit no response

(i.e., an open UDP port sends no response when probed).

A comparison in Figure 5.4 of the percentages of packets logged at the different

request frequency timing levels shows that the Gumstix logs a higher percentage of packets

when scanned at the faster, more efficient (T5) timing profile, compared to being scanned

at the slower, less efficient, default (T3) timing profile, and it is concluded that request
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frequency does have an affect on the Gumstix ability to log non-standard web workload

(Nmap scan).

This is an interesting and counterintuitive observation which may be due to a number

of confounding factors related to the complexity of Nmap OS scans. These T5 timing

profile configuration features include differences in handling of parallelization, probe

retries, and timeouts designed to make the T5 profile (also known as the "insane" timing

profile) faster and more efficient. It is evident by Figure 5.4 that in this scenario, these

efficiencies enable better performance for the Gumstix emulator for the T5 timing profile.

As a result, fewer probes are actually sent to the emulator, which means fewer packets

needed to be logged. For example, the five trials for the T3 timing profile generates

1,377,140 packets (logging 95.64% according to Table 5.3), while the T5 timing profile

generates only 1,330,925 packets (logging 98.75% according to Table 5.3).

5.3.3 PC Scanning-Level Accuracy Results.

Table 5.4 shows the scanning-level accuracy results for the PC emulator platform.

These results are similar to those for the Gumstix emulator platform presented in Section

5.3.

Similar to the Gumstix, the different request frequencies have no affect on the

scanning-level accuracy of the PC emulator, with the percentage of correct Nmap fields

consistent across both request frequency levels, both at 97.25%. These values are the same

as the Gumstix because the differences between the PC emulator and target PLC Nmap

fields are exactly the same as the Gumstix emulator, as expected. Figure 5.5 shows that

there is no apparent difference in the percentages of packets logged for the PC emulator

between the fast and slow web non-standard workload frequencies, however every packet

is not logged in either scenario.
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Figure 5.4: Comparison of percentage of packets logged by the Gumstix emulator at
different request frequency levels showing 99% CI for the mean.

Table 5.4: Scanning-level accuracy and logging results for the PC emulator. The
percentages include include the non-determinisic fields.

Scenario
Request

Frequency
Successful

trials
%Nmap

fields correct
%packets

logged

3 slow 5/5 97.25% 99.97%

4 PLC Break 5/5 97.25% 100.00%
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Figure 5.5: Comparison of percentage of packets logged by the PC emulator at different
request frequency levels showing 99% CI for the mean.

With such high numbers of packets, it is difficult to assess exactly why packets at

respective timing levels for both the Gumstix and PC did not get logged. Because the

number of packets needing to be logged is so high (around 270,000 for each scan), it is

likely that when the send buffer on the LAN-facing interface of the Gumstix becomes full,

queued packets are simply dumped.

Is it also a possibility that, like experimental scenario 14 described in Section 5.2.1, a

number of packets are never seen by the emulator, and therefore are not logged. However,

due to the large number of packets, the same type of analysis performed in Section 5.2.1
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Figure 5.6: Comparison between Gumstix and PC logging functionality for web non-
standard workload at both request frequencies.

is not possible. Figure 5.6 shows the results of a comparison of all percentages of packets

logged. No statistical difference between the Gumstix and PC ability to log Nmap scan

workloads at the T5 request frequency is evident. However the PC’s logging capability

is significantly better (at a 99% CI) for the T3 Nmap scan workload compared to the

Gumstix’s logging ability at the same level. The higher percentage of packets logged of

the T5 workload versus the T3 workload for the Gumstix are explained in Section 5.3.2.
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5.4 Attack Level Accuracy

The successful unlocks metric measures if the Metasploit exploit successfully

unlocked the CUT. The results for the baseline target PLC in Table 5.5 show all attacks are

successful at unlocking the target PLC for both the slow and PLC Break request frequency

levels. Thus, the baseline for the emulators is that all 5 trials at the prescribed request

frequencies complete successfully.

Table 5.5: Attack results for the target PLC.

Scenario
Request

Frequency
Workload

Input value
Trials

successful
unlocks

%packets
logged

23 slow 1 5 5 100.00%

24 PLC Break 3.2555 5 5 100.00%

5.4.1 Gumstix Attack-Level Accuracy Results.

The results for attack-level accuracy as measured by the successful unlocks metric

of the Gumstix and percentage of packets logged are shown in Table 5.6. All attacks are

successful at all timing levels.

Table 5.6: Attack-level accuracy and logging results for the Gumstix emulator.

Scenario
Request

Frequency
Workload

Input value
Trials

successful
unlocks

%packets
logged

15 slow 0.081 5 5 100.00%

16 PLC Break 0.266 5 5 100.00%

16a Gum Break 480 5 5 100.00%
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5.4.2 PC Attack Level Accuracy Results.

The results for attack-level accuracy as measured by the successful unlocks metric of

the PC and percentage of packets logged are shown in Table 5.7. All attacks are successful

at all timing levels.

Table 5.7: Attack-level accuracy and logging results for the PC emulator.

Scenario
Request

Frequency
Workload

Input value
Trials

successful
unlocks

%packets
logged

7 slow 0.071 5 5 100.00%

8 PLC Break 0.2304 5 5 100.00%

8a PC Break 3000 5 5 100.00%

It is concluded that the Gumstix and PC are both 100% accurate for all request

frequency levels for attack-level accuracy. Request frequency also appears to have no effect

on logging for either the Gumstix or PC since 100% of packets are logged under all request

frequency levels.

5.5 Timing Level Accuracy

The Deviation from the Baseline is a derived metric based on the Response Time metric

used to compare the results for the emulator responses to the baseline target PLC responses.

The data shown are from the scenarios already presented, but are discussed separately

because they represent a different level of accuracy.

The emulator results are compared to the baseline two different ways, additive and

multiplicative. Both values are shown to allow for intuitive interpretation of the results.

Negative signs in Table 5.8 through Table 5.14 indicate that the mean response time for

emulator responses is longer than the baseline (target PLC) mean response time.
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5.5.1 Gumstix Timing Level Accuracy Results for Standard Workloads.

The timing results for the web and HAP standard workloads are shown in Table 5.8.

Only successful trials are considered when calculating the mean. For all scenarios, the

Gumstix responded slower than the target PLC. The most notable differences occur at the

PLC Break request frequency levels for both the web and HAP standard workloads. The

purpose of this experimental scenario is to determine how the Gumstix emulator performs

at the maximum capability of the target PLC.

Table 5.8: Timing accuracy results for Gumstix emulator for the web and HAP standard
workloads.

S
ce

na
ri

o Service
Request

Frequency
Success

Trials
Response

(s)

PLC
Baseline

(s)

Deviation from
baseline

Mean S.D.

9 Web slow 1000 0.0842 3.70e-3 0.0376 -0.046s 2.2 × Slower

10 Web PLC Break 319 2.3503 6.44 0.093 -2.256s 25 × Slower

10a Web Gum Break 1000 0.1831 3.16e-2 -2.439s 1.9 × Slower

13 HAP slow 1000 0.0034 4.39e-4 0.0026 -0.0007s 1.3 × Slower

14 HAP PLC Break 636 0.2003 1.74e-4 0.0020 -0.193s 98.6 × Slower

14a HAP Gum Break 1000 0.1522 1.40e-1 -0.350s 74.9 × Slower

The results show the Gumstix emulator is up to 25 and 98.6 times slower in response

to web and HAP respectively compared to the PLC. Figure 5.7 plots the 319 successful web

standard requests by their response time. The dashed lines on the graph represent 1, 2, 4,

and 8 standard deviations in response times above the mean. The distribution of response

times shows that the majority of queries are completed with a response time around 0.678s.

There are only 47 of 319 observations above the mean return time of 2.3503s, meaning that

the results are drastically skewed due to the very high relative response times of only a few

data points.
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Additional investigation into these extreme data points reveals that they are valid and

represent actual response times. The cause is long TCP timeout values that go into effect

after the TCP three-way handshake has been completed. Figure 5.8 shows the capture of

the TCP stream for the connection that is over eight standard deviations from the mean in

Figure 5.7. The stream shows that after the initial handshake, the GET request times out

three times before the emulator finally responds. Because the TCP retransmission delay

doubles with each timeout, the workload generator waits 45.123s before getting an ACK

from the emulator. Therefore, it is concluded that because these extreme response times

represent valid functionality of TCP, the data points are valid, and must be considered in

the analysis.

Another interesting result of the scenarios in Table 5.8 is that the mean response times

for the data at the device’s respective break request frequency (PLC Break or Gumstix

Break) are longer than those of the respective slow request frequencies. The target PLC is

slower to respond, on average, to consecutive requests at its maximum request frequency

when compared to the target PLC’s response times for the slow request frequency. The

same observation is true for the Gumstix. This implies that as the request frequency

increases to and beyond the device’s maximum response rate, the trials are no longer

independent. That is, the trials begin to interact with each other, which is not the original

intention of this experimental scenario. To verify this phenomenon, Figure 5.9 shows a plot

of response times in the order that they are observed. The Gumstix and the target PLC are

shown both at the PLC break request frequency level. The upper graph shows the response

time for the Gumstix linearly increasing to a plateau at 0.678s, and the lower graph shows

the response times of the target PLC gradually increasing, then gradually decreasing over

1000 trials. On both graphs the mean and delay between queries are shown by dashed

lines. In both cases, the delay between queries is just below the very first response from the

device, indicating that queries are arriving at the devices faster than they can respond. The

106



Figure 5.7: Response times for the Gumstix emulator at the PLC break frequency showing
the data points that are 1, 2, 4, and 8 standard deviations from the mean.

result is a steady increase in response times. While the Gumstix plateaus, the target PLC

exhibits a cyclic pattern. These phenomena are likely due to the handling of the send and

receive buffers on the respective devices.

Figure 5.10 shows the results of the three request frequency levels for the Gumstix at

99% CI for the mean for the web standard workload. The graph shows there is a statistical

difference between the means of all three response speeds for the three different request

frequency levels. Therefore, it is concluded that request frequency does affect the timing

accuracy of the Gumstix emulator for the web standard workload.
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Figure 5.8: TCP connection with anomalous response time 8 SD above the mean.
Highlights show workload generator repeatedly trying to sent the GET request and timing
out.

The Gumstix timing accuracy results for the HAP standard workload are also in Table

5.8 and follow a similar pattern as the web mean response times: all mean response times

for the Gumstix are slower than the target PLC.

Observing the results of the response times for Gumstix at the PLC Break request

frequency level, another interesting trend is apparent in Figure 5.11. Drastic jumps in

response time of around one-quarter second each are seen. The dashed lines represent

where all but 3 of the 364 dropped queries for this workload occurred. Again, this repetitive

behavior at the Gumstix boundary conditions is likely due to receiving buffer limitations.

As the receive buffer gradually becomes full, response times lengthen as queries spend

more time waiting in the input buffer. When the receive buffer is full, additional incoming

queries are dropped. It is possible that quarter-second increases occur when the receive

buffer is being processed, or possibly when the log packets are sent from the second LAN-

facing interface, but it is impossible to tell exactly what causes these regular jump without
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Figure 5.9: Response times plotted against observation number for web Standard workload
at PLC break frequency. These graphs demonstrate that as the request frequencies approach
(lower graph) or exceed (upper graph) their fastest response time, trials are no longer
independent. Not all observations are shown for the Gumstix responses.
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Figure 5.10: Results comparing all three request frequency levels of the Gumstix for the
web standard workload.

diving deep into the Gumstix Ethernet hardware and Linux drivers, which is beyond scope

of this research.

Because neither PC or PLC platforms exhibit this behavior at this request frequency

for the HAP standard workload (graphs available in Appendix H), the response time

measurement may be a way to fingerprint the Gumstix hardware, independently of the

emulator application. Further investigation of fingerprinting of the Gumstix hardware via

timing is beyond scope of this research, and is left for future work.
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Figure 5.11: Non-continuous jumps in response time of a quarter second (nominal) for the
Gumstix. The dashed lines represent where most of the queries are dropped.

The results for the HAP standard workload on the Gumstix also show there is a

statistical difference between the means of all three response speeds for the three different

request frequency levels at the 99% CI. The plot of this data is similar to Figure 5.10 and

can be found in Appendix H. Therefore it is concluded that request frequency does affect

the timing accuracy of the Gumstix emulator.

5.5.2 PC Timing Accuracy Results for Standard Workloads.

Results for the PC timing-level accuracy for standard workloads are shown in Table

5.9. All mean response times are faster for the PC as compared to the mean response times
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for the target PLC. The results show that, compared to the baseline for the web standard

workload, the PC is 13.4 times faster at responding to the slow request frequency workload,

and 38.4 times faster at responding to the maximum target PLC request, when compared

to the target PLC. The PC is 6.8 and 5.6 times faster at responding to the HAP standard

workloads when compared to the target PLC for the respective request frequency levels.

An analysis similar to the Gumstix is performed to determine if the means of the

results at different request frequency levels are statistically different. For the web standard

workload on the PC, there is no statistical difference between the slow and PLC Break

request frequencies, but there is a difference from these two levels to PC Break request

frequency, all at the 99% CI for the mean. For the HAP standard workload on the PC, all

three means show a statistical difference at the 99% CI. The resulting graphs can be found

in Appendix H. Therefore, it is concluded that request frequency does have a significant

effect on PC response times for web and HAP standard workloads.

Table 5.9: Timing Accuracy results for PC emulator for the web and HAP standard
workloads.

S
ce

na
ri

o Service
Request

Frequency
Success

Trials
Response

(s)

PLC
Baseline

(s)

Deviation from
baseline

Mean S.D.

1 Web slow 1000 0.002817 6.26e-4 0.037685 0.0349 13.4 × Faster

2 Web PLC Break 1000 0.002449 6.58e-4 0.09395 0.0915 38.4 × Faster

2a Web PC Break 1000 0.003034 6.11e-4 0.0885 39.6 × Faster

5 HAP slow 1000 0.000397 2.04e-4 0.002699 0.0023 6.8 × Faster

6 HAP PLC Break 1000 0.000362 4.55e-5 0.002032 0.0017 5.6 × Faster

6a HAP PC Break 1000 0.000309 4.56e-5 0.0014 6.6 × Faster
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Table 5.11 compares mean response times of the Gumstix and PC for all web and HAP

standard workload scenarios. The data show that the PC has a faster mean response time

for all scenarios.

A comparison between all three devices and their mean response times for the web

standard workload is shown in Figure 5.12 with the 99% confidence intervals for the mean.

Two groups for the standard and PLC Break request frequency levels are shown.

To aid visual comparison, two scales are also shown, one for the Gumstix at PLC

Break request frequency level scenario, and one for the other five scenarios. The confidence

levels for five of the plots are not visible with the shown scale which is accounted for by

the high number of samples taken and the low variability of the samples.

The Gumstix at PLC Break request frequency level shown in Figure 5.12 does have

a visible confidence level (note the scale). The results show that there is a statistically

significant differences between all three devices at both the slow (std) and PLC Break

request frequency levels.

To verify these results, an analysis of variance (ANOVA) test is conducted for all

three devices, grouped by request frequency level. The results are shown in Table 5.10

with resulting p-values of 2.2e-16. The p-value here is the probability of seeing results at

least as extreme as these assuming that the three means are equal. The ANOVA confirms

that the three means are different. Therefore, it is concluded that for the standard web

workload, the PC has significantly faster return times compared to the Gumstix.

Table 5.10: Results of ANOVA test conducted on web standard workload for all three
devices.

Df Sum Sq Mean Sq F Value Pr(>F)

Factor(levels) 2 4.0875 2.0437 45301 <2.2e-16

Residuals 2997 0.0141 0.0000
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Table 5.11: Comparison between Gumstix and PC emulator for timing accuracy results.
S

er
vi

ce
Request

Frequency
Gumstix PC

Deviation

S
ce

na
ri

o Response Time
(s)

S
ce

na
ri

o Response Time
(s) (s) Times

Mean S.D. Mean S.D.

Web slow 9 0.0842 8.42e-02 1 0.002817 6.26e-4 -0.0813s 29.9 ×

Web PLC Break 10 2.3503 2.35e+00 2 0.002449 6.58e-4 -2.3478s 959.7 ×

Web Device Break 10a 0.1831 1.83e-01 2a 0.003034 6.11e-4 -0.1800s 60.3 ×

HAP slow 13 0.0034 3.40e-03 5 0.000397 2.04e-4 -0.0030s 8.6 ×

HAP PLC Break 14 0.2003 2.00e-01 6 0.000362 4.55e-5 -0.1999s 553.3 ×

HAP Device Break 14a 0.1522 1.52e-01 6a 0.000309 4.56e-5 -0.1518s 492.6 ×

A similar analysis is performed for the HAP standard workload. The shapes of the

graph is almost identical to the results in Figure 5.9. The results of the ANOVA done

on these scenarios are shown in Table 5.12. These values are extremely low (2.2e-16) and

confirm that none of the three means are the same. This graph can be found in Appendix H.

The conclusion is also that the PC response times are significantly faster than the Gumstix

for the HAP standard workload.

Table 5.12: Results of ANOVA test conducted on HAP standard workload for all three
devices.

Df Sum Sq Mean Sq F Value Pr(>F)

Factor(levels) 2 0.0049516 0.00247579 31126 <2.2e-16

Residuals 2317 0.0002384 0.00000008

5.5.3 Timing Accuracy Results for Web Non-Standard Workloads .

The results for the mean completion times for the Nmap scans (web non-standard

workload) for all three devices are shown in Table 5.13. Like the previous results for the
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Figure 5.12: Mean response times for Gumstix, PC, and PLC for the web standard
workload (Standard and PLC Break request frequencies).

standard workloads, the mean response time for the Gumstix is slower than that of the

target PLC by multiples of 4.36 and 2.59 relative to the request frequency levels. The PC

performs faster than the target by 1.48 and 1.55 times, respectively. When compared to

the PC, the Gumstix performs 16.43 times slower for the slow request frequency level and

10.13 times slower for the PLC Break request frequency level. Figure 5.13 confirms that

there is a significant difference between all three devices for their respective response times

with 99% CI for the mean. While there is no significant difference between the fast (T5)

and slow (T3) frequency request levels for either the PC or target PLC, there is a statistically

significant difference between the two levels for the Gumstix. The results show that the PC

response time is significantly faster than the target PLC to the web non-standard workload,

and the Gumstix is significantly slower.
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Table 5.13: Timing Accuracy results for Gumstix and PC emulators for the Web Non-
Standard (Nmap) Workload.

Scenario Device Request
Frequency

Average
Completion

time (s)

PLC
Baseline

deviation from baseline

11 Gumstix slow 693.068 129.376s 563.6920 4.36 × Slower

12 Gumstix PLC Break 385.942 107.464s 278.4780 2.59 × Slower

3 PC slow 42.19 129.376s -87.1860 1.48 × Faster

4 PC PLC Break 37.992 107.464s -69.4720 1.55 × Faster

Figure 5.13: Mean response times for the Nmap scan for all devices at the Fast (T5) and
Slow (T3) request frequencies.
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5.5.4 Timing Accuracy Results for HAP Non-Standard Workloads .

The results for the mean completion times for the Metasploit attack (HAP non-

standard workload) for all three devices are shown in Table 5.14. During pilot studies

to determine request frequency levels, the Metasploit workload frequency is artificially

increased using tcpreplay to create multiple request frequency levels. The PLC break

request frequency level is determined by recording the final request frequency at which

the Metasploit exploit would no longer work on the target PLC.

Table 5.14: Timing accuracy results for the Gumstix and PC for the HAP non-standard
(Metasploit) workload.

Scenario Query Request
Frequency

Mean
Response Time

(s)

PLC
Baseline

deviation from baseline

15 Gumstix slow 0.009335 0.014877 -0.0055 1.59 × faster

16 Gumstix PLC Break 0.0086 0.016386 -0.0078 1.91 × faster

16a Gumstix PC Break 0.38192

7 PC slow 0.000927 0.014877 -0.0140 16.05 × faster

8 PC PLC Break 0.000571 0.016386 -0.0158 28.70 × faster

8a PC PC Break 0.01428

Figure 5.14 shows a graphical comparison of all three devices at the PLC break and

slow (std) request frequency levels. Both the Gumstix and PC emulators mean response

times are faster than the mean response time of the target PLC. Figure 5.14 also shows that

the request frequency does not have a statistically significant effect on the target PLC, but

it does have a significant effect on the response times of the Gumstix and the PC.

Figure 5.15 and Figure 5.16 respectively show the results for the mean response times

for both PC and the Gumstix emulators at all three tested request frequency levels. The
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Figure 5.14: Results for Metasploit scenarios comparing mean response time of all three
devices.

results show a very small statistical significance differential in the means for both emulators

at the 99% CI. At the 99% CI, values are extremely close, with a difference on the order of

10-4. To provide clear analysis, the decision to drop the level from 99% CI is made because

95% CI is still acceptable.

Figure 5.16 shows two graphs of the same data, but at different scales. The lower

graph is provided because it is unclear in the upper graph if the CIs of the means overlap or

not. Based on these results, it is concluded that request frequency does have a significant

effect on the mean response times for both the PC and Gumstix emulators for the HAP

non-standard workload.
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Figure 5.15: Mean response times for the PC for the HAP non-standard (Metasploit)
workload at all three request frequency levels.

5.6 Summary

This chapter presents the results and analysis for the scenarios conducted on the

emulator at different request frequencies for four different workload types. Results and

analysis includes metrics for packet bytes, Nmap fields, successful Metasploit execution,

and response time. Finally, logging results and analysis are also presented.
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Figure 5.16: Mean response times for the Gumstix for the HAP non-standard (Metasploit)
workload at all three request frequency levels.
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VI. Conclusions

6.1 Introduction

This chapter summarizes the overall conclusions of the research. Section 6.2 presents

conclusions based on the results and analysis from Chapter 5. Section 6.3 discusses the

significance of this research. Section 6.4 discusses recommendations and approaches for

future research.

6.2 Research Conclusions

6.2.1 Accuracy of Standard Queries at the Packet Level.

At the packet level, the Gumstix and PC are both very accurate with both achieving

99.79% and 100% bytes of accuracy for the standard web and HAP workloads, respectively.

For packet-level accuracy, confidence intervals are zero due to no variance among the

trials conducted. Therefore, the performance of both platforms is equivalent with regard

to packet-level accuracy. Accuracies less than 100% that are consistent and predictable

enable fingerprinting of the emulated device. These rates however, are not expected to

affect SCADA landscape research applications. The number of ICS honeypots accessible

on the Internet is likely very few, and therefore there is no reason that an attacker would

suspect an emulator to be anything but authentic. These results are detailed in Section 5.2.

6.2.2 Accuracy at the Scanning and Attack Levels .

At the scanning-level, both the Gumstix and PC platforms are equivalently accurate

with each of them being 97.25% accurate at all request frequency levels. The fields that

are not accurate are associated with the difference between the emulator’s and target PLC’s

initial sequence number generator algorithm. To fingerprint the emulator based on these

erroneous fields, significant additional information and analysis is needed. Considering the
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fact that the purpose of tools like Nmap is to make such analysis unnecessary, it is not likely

any user would second guess the Nmap results, and conduct such analysis.

At the attack-level, both platforms performed perfectly in all request scenarios, with

each tested scenario resulting in 100% of attacks executed being successful. These results

lead to the conclusion that the scanning-level and attack-level accuracies of both emulator

platforms are adequate for all applications, including as a SCADA landscape research tool.

These results are detailed in Sections 5.3 and 5.4.

6.2.3 Accuracy at the Timing Levels .

There are significant departures from the baseline timing measurements taken for both

emulator platforms. For nearly all of the standard and non-standard scenarios, the Gumstix

platform underperformed the target PLC with regard to mean response times, being as

much as 98.6 times slower for some workloads when compared to the target PLC. The PC

emulator platform however, over-performed the target PLC for all scenarios with regard

to mean response times, being as much as 959.7 times faster for some workloads when

compared to the target PLC. While it is trivial to increase the delay of the PC to more

closely match the timing profile of target PLC, it is more difficult decrease the delay of the

Gumstix.

A qualitative assessment of the emulator is based on scenarios that are likely to occur

during standard use as an emulated honeypot. At request frequencies that would be typical

in an actual attack (slow request frequencies), the Gumstix timing performance for the Web

standard and HAP standard workloads are only 0.046s and 0.0007s slower when compared

to the target PLC. An increase of 0.046s is very unlikely to be noticed by a user interacting

with the emulator across the Internet, even if the emulator is implemented on the same

node as an actual PLC. Therefore, both device platforms are suitable as honeypot emulators

based on to timing performance to perform attack landscape research.
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For applications that require a high level of timing accuracy, such as laboratory

research, the PC platform is preferred over the Gumstix platform. With enhancements

and optimizations for speed, it is speculated that the Gumstix platform could be brought

within the timing range of the target PLC. These results are detailed in Section 5.5.

6.2.4 Logging Performance .

Both platforms did exceptionally well logging all incoming and outgoing packets,

with a success rate of 97.21% for the Gumstix and 99.99% for the PC. The most significant

deficiencies of logging packets for both platforms occurred during the web non-standard

(Nmap scan) workloads. However, because there are other methods to log (as opposed to

logging every single packet), and it is not practical to log Nmap scans anyway (the size of

the logs reaches 34 MB for a single OS scan), these results could be even better.

Based on the ability of both emulators to successfully log over 97% at such high data

throughputs, it is likely that a subset of all incoming and outgoing packets will be logged at

the same or better rates since logging every packet of an Nmap OS Fingerprint scan is not

desired or practical. A better approach for these scans is to identify an active scan, and log

vital packets only. This is much more desirable, and is left for future work. Therefore, it is

concluded that the logging performance of both emulator platforms is considered adequate

for all applications. These results are detailed in Sections 5.2, 5.3, and 5.4.

6.2.5 Performance Effects of Request Frequency.

The effects of varying the request frequency during test scenarios differ among the

various workloads. While the PC is able to perform with no significant loss of accuracy or

logging performance at the PLC Break request frequency level in all scenarios, the Gumstix

does suffer loss in both accuracy and performance. These results are likely linked with

the Timing Accuracy results, and are only solved by decreasing the response time of the

Gumstix emulator. As the request frequency approaches the Gumstix’s fastest response

rate, the response time increases and some queries stop receiving replies. It is likely the
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Gumstix’s receive buffer is being filled faster than it can process the responses until it

reaches a plateau at which point queries start begin dropped, and the Gumstix is never

able to recover. It may be possible to increase the receive buffer of the Gumstix to reduce

dropped packets, but the response times will grow significantly based on the results in

Section 5.5.1. The only viable solution is to increase the Gumstix’s top response speed,

which also increases the emulator’s timing accuracy.

The PLC break request frequency level is specifically designed to test the emulators

at the target PLC’s maximum limits. These rates are not indicative of standard or even

common conditions a real PLC would ever see in operation unless it is under a DoS or

other attack, or being fingerprinted. At standard request frequencies, Gumstix response

times could easily be due to link delay, as opposed to device delay. These results are

detailed in Chapter 5.

6.2.6 Impact of the Gumstix Platform.

The results show that there is an impact to timing accuracy when the emulator operates

on the Gumstix platform, and a marginal impact to logging capability. It is speculated

that there are very few SCADA honeypots currently on the Internet. Therefore it is not

likely that the minor timing differences between the target PLC and the Gumstix honeypot

emulator would be attributed to anything besides latency. In other applications that warrant

precise timing accuracy, a PC could be used to perform the emulation. These results are

detailed in Chapter 5.

6.2.7 Final Assessment.

Based on the results, extensive knowledge of the specific implementations of the

protocols or timing profiles of the target PLC are required to identify and fingerprint the

Gumstix device as a honeypot. Furthermore, there are very few actively maintined SCADA

honeypot systems available and it is speculated that SCADA honeypots are not actively

being looked for by attackers. These facts coupled with the experimental data suggest that
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a honeypot implemented on a Gumstix emulator is suitable for applications in SCADA

attack-landscape research. Further research should be conducted to increase the timing

performance of the emulator before being deployed in applications that are sensitve to

emulation timing discrepancies, such as SCADA laboratory research. In these types of

applications, the PC platform should be used.

6.3 Significance of Research

It has been shown that there are thousands of industrial control devices, including field

level devices such as PLCs exposed on the Internet, but the extent that these devices are

being exploited is still largely unknown. Furthermore, costs of even a modest industrial

control systems comprised of several devices escalates very quickly, making research,

education, and training of ICS attacks and protection methods significant investment.

The accuracy and logging performance of the PLC emulator implemented on the

Gumstix single-board computer for this effort are quantified and compared against the

emulator implemented on a standard PC and the actual PLC that the emulation seeks

to imitate. The research suggests that the Gumstix platform provides highly accurate

responses in all categories except response timing.

Therefore, the Gumstix and PC platforms are adequate for applications such

as SCADA attack-landscape research and cyber sensing, two functions that can be

implemented with SCADA honeypots. Even if the device is fingerprinted as a honeypot,

valuable data will be gathered from the attack that will provide information on how to

better hide honeypots in the future. For other applications that require a high degree of

timing accuracy, such as SCADA laboratory research, it is suggested that the PC be used

as the emulation platform.

Further development of the Gumstix emulator device is suggested to optimize timing

performance. With these enhancements to the emulation software, the Gumstix platform
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emulator device is speculated to show significant timing improvements, enabling use of the

Gumstix platform for all emulation applications including laboratory research.

6.4 Future Work

This section discusses various avenues for future research. Sections 6.4.1 through

6.4.7 discuss enhancements to this implementation of of a SCADA/ICS field device

emulator honeypot or design ideas that should be considered in the implementation of

a new implementation. Sections 6.4.8 through 6.4.10 discuss other areas and ideas

related to SCADA/ICS field device emulators and honeypots, but not necessarily this

implementation.

6.4.1 Enhance Timing Accuracy of Gumstix Emulator.

In the current implementation, timing for the Gumstix Emulator is significantly slower

than the target PLC. It is speculated that a significant amount of time is wasted when

packets are pulled out of the Linux kernel into the user-space queuing programs though

the iptables functionality. Preliminary results suggest that there are big gains to be

made if avoiding the use of NFQUEUE targets is possible. The means eliminating the

logging queue (logging.o), input filter queue (infilter.o), and output filter queue (outfilter.o).

Elimination of the logging queue is discussed in the Section 6.4.2, and elimination of the

filter queues is possible with the implementation of a user-space TCP/IP stack, discussed

in Section 6.4.3.

6.4.2 Timing Improvements through Efficient Logging.

In the current implementation, every packet that goes into or out of the emulator is

sent to the Syslog server. There are many thousands of packets that are sent to and from

the emulator during routine use, and as the results in Chapter 5 show, some packet loss

occurs during high packet workloads such as Nmap OS fingerprint scans. Furthermore, a

log file exceeds 30MB for a single scan. Not every packet from an OS scan has useful

information, but some might. Rather than recording every packet, a better approach would
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be to log only packets that are interesting. The C Syslog API that is currently used in

logging.o makes it trivial to send log entries from any C program, and a similar API exists

for Python. Therefore, it may be a better approach to selectively submit log entries based

on the logic within the processes. There is a potential double-impact to response times (1)

not all packets are logged, therefore processing time is diverted from the main processes to

send logs, and (2) every packet does not need to come out of the kernel to be logged. These

efficiencies could help increase the timing-level accuracy of the Gumstix in its current form.

There is a different approach to log every packet, if that functionality is desired. The

current logging mechanism uses an NFQUEUE target to pull every single packet from the

kernel into user-space to process, then sends it back into the kernel. This is very inefficient.

A different, better approach would be to use the Libpcap C API to sniff the wire and log

every packet. Every packet is still pulled out of the kernel, but it is never re-injected back

into the kernel, potentially saving time.

6.4.3 Enhance the Nmap Scan Handler.

Currently, the device is limited to handling default configurations of Nmap OS scans.

By adding additional logic to the infilter.o process, any number of configurations should

be able to be handled by the emulator to successfully fool Nmap. For example, probes are

sent to the first non-open port found by Nmap, which by default, is TCP port 1. Portions of

the emulator scanner may fail if the default configuration of Nmap is modified, degrading

scanning-level accuracy. Cases inside of infilter.o can be created to handle such non-default

situations.

As an alternative to modifying the infilter.o process, the Honeyd emulator should be

studied for its personality engine. Rather than using iptables and a Netfitler NFQUEUE

target to handle Nmap OS probes, Honeyd implements an entirely separate user-space

TCP/IP stack can be implemented to process the probes. In this way, every single feature

of the stack is completely controllable. The Honeyd emulator can even accept Nmap
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fingerprints to impersonate any device easily. However, there may be performance issues

with implementing a user-space TCP/IP stack. These features could be integrated into

the PLC emulator in place of the current infilter.o process and perform a performance

comparison.

Either of these methods would likely still result in values for the ISN that are not

statistically equivalent to the target PLC. Therefore, an automated method for capturing

and duplicating ISN’s should be implemented. This can be done in a number of ways,

even trivially by recording several thousand ISN’s from the target device and playing them

back. Because of the potential for transient variables this technique may still not yield a

distribution similar to the target PLC.

6.4.4 Enhanced Configurability.

Configuration can be thought of at two levels, device-level configuration and service

level-configuration. Configuration in this implementation is defined only at the service

level, meaning that each of the services offered by the emulator are configurable, but the

device is hard programmed as a Koyo DirectLogic PLC. Service level configuration occurs

via the config.txt, ccmdictionary.txt (see Chapter 3), and kseqdictionary.txt files to define

the ways the emulator responds, but the definitions only apply to the Koyo DirectLogic

PLC.

An emulator device such as this is defined by its scanning personality, and the services

it offers to users. Device- level configuration is difficult because it requires accuracy in both

the scanning definition and services definitions. Currently, both the scanning personality

(implemented in infilter.o) and services (implemented in ecom_emulator.o, webserver.py,

and modbus.py) are hardcoded.

Future work would be to implement an industrial control emulator that is configurable

at the device level. An emulator configurable at the device level would have the ability to

look like whatever make or model PLC that is desired. The current method of manually
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hard coding the personality and services makes this goal very time consuming. A process

for automating the creation of definitions for any arbitrary device would be a significant

step towards patenting and commercializing the industrial control emulator.

A potential way to accomplish this is to devise a method of recording queries and

responses from target PLCs under normal use, similar to the procedures used in this

research for CCM and K-Sequence protocols. Dictionaries would then be built for the

device that match queries to responses, and when queried the emulator would simply

respond with some variation of the dictionary response. With a sufficient number of

recordings of queries and responses, it may be possible to reproduce the most common

functionality of a device. An automated software tool could enumerate all possible entries

to a device’s website or manufacturers’ tools and record the responses. These recordings

would become potentially huge, but post recording analysis could be done to create

heuristics that define many-to-one and one-to-many query-response relations, potentially

reducing the size of the dictionary.

A variation of this technique would be to first implement base protocols, and use

recordings to adjust them according to the definitions of the specific device. Baseline

industrial protocols would be implemented in software, much like the HAP protocol is

implemented for this research effort, or the Modbus protocol for a previous research

effort [Bur12]. Once the baselines are established, a method for identifying and

implementing specific implementations of the protocol between different manufacturers

must be done. For example, there is a Modbus specification, but all manufacturers

implement its features differently. To design a device configurable PLC, these differences

in implementations must be defined. In this way, when the emulator is configured

to be a Siemens PLC, the emulator would use the Siemens Modbus implementation

for all of its Modbus communications. An automated method for identifying protocol

deviations or implementations, and incorporating them into the emulator definitions would
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be the alternative to hard coded process definitions. This could be done by creating a

software device that enumerates all possible protocol variations, records their results, and

incorporates the results into the emulator definitions for that device. This is very similar to

how Nmap accomplishes its OS Fingerprint scans.

This is not trivial because of CRCs in headers, wide ranges of valid input values (like

in web based configurations), and other protocol features specifically designed to prevent

replay attacks. Furthermore, diversity of control devices and their complex operation

suggests a fully automated system may not be possible; some features will still need to

be coded manually.

6.4.5 Automated Capture of Ladder Logic for Arbitrary Programs.

The current method used to emulate the ladder logic program uploads from

the emulator to DirectSOFT5 is to record the queries and responses for an upload

from the target PLC, and place those corresponding query and response values into

kseqdictionary.txt. This method is labor intensive and restricts the operation to a static

ladder logic program that cannot be modified by a user. Since the K-Sequence protocol is

proprietary, reversing the ladder logic functionality must be done in order to add support

for any arbitrary upload or download program.

Based on this thesis, reversing this portion of the protocol may be possible. It does not

appear that there is any sort of sequence number or timing component to the K-Sequence

functionality that prevents replaying of the data, since, that is the exact method used in the

current implementation. Therefore, by methodically altering ladder logic programs through

DirectSOFT5, and observing the K-Sequence queries and responses the protocol may be

reversed.

Considering that the K-Sequence protocol is used to modify memory values, it may

simply be the case that a simple record-store-replay done by the emulator is possible. That

is, the user modifies the ladder logic program and sends it to the emulator, which stores
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the new ladder logic values in kseqdictionary.txt. When queried for ladder logic programs

in the future, the new values would simply be read from kseqdictionary.txt and sent to

DirectSOFT5.

6.4.6 Evaluation of Other SCADA Honeypots.

Apply the techniques for measuring accuracy developed in this thesis, to any other ICS

honeypots, such as the SCADA honeypot and honeywall developed by Project Basecamp

[Dig12b]. This requires acquisition of a target PLC to create a baseline. If the studied

device is discovered as fingerprintable based on the results, an automated tool can be used

to determine if the device is real or an emulation. Enhancements can also be made to make

the selected device more accurate.

6.4.7 Implementation as Evidence Collection Tool.

As discussed in Section A.3, one application of an industrial control emulator is to

perform the same type of function as a fake bomb used by the FBI. In the same capacity,

the evidence collection device has potential to be deployed by law enforcement and when

activated or accessed by the suspected terrorist, they would be arrested. The device and

device log could then be used in court to convict the individual who thought he was

accessing an actual network on perhaps a water treatment plant or power company. To

prove that it was the suspect who tried to access the device, a complex (and un-guessable)

password could be implemented and passed to the suspect. The device would log this

password being attempted as well as actions performed on the fake PLC as evidence to

convict a suspect.

Rapid deployment and re-configurability are top considerations for this device

because it must be able to look like a device on any arbitrary SCADA or ICS network.

Enhancements must be made to automate the configuration at the device level to allow for

complete device flexibility. The implemented levels of accuracy must also be reconsidered.

Since this tool is only a small aspect of the FBI’s sting operation, in these applications, it is
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more likely that a potential attacker would exclusively use the web interface to perform their

actions, therefore extensive and accurate emulation of this portion is likely more important

than a high level of packet byte accuracy. Additional important design considerations for

this type of device are robustness and scalability, overshadowing cost. Therefore, emulation

on a dedicated Laptop PC might be the best approach for accurate emulation.

6.4.8 Other Areas.

There are also several less-developed, but potentially interesting research areas

involving this implementation of the ICS field device honeypot emulator. Future research

could included performance of human experiments to test the authenticity of the device to

establish if the emulator feels authentic compared to the target PLC. In addition, testing the

implementation of the device on other singled board or embedded platforms such as the

Raspberry Pi, Beagle Board, or newer and faster Gumstix module. Compare these results

to the results of this research. And finally, generalizing the parsing tools to be useful

for comparing arbitrary .pcap files. A graphical implementation would be very useful for

determining quickly the areas that are not exactly the same. Currently, the pcap parser is

very specific to this application and a slight deviation in the order of arrival of response

packets requires preprocessing to get packets in the proper order.

6.4.9 Hardware Emulation.

Though it has not been exhaustively studied, it may be possible based on open-source

knowledge to pick a popular PLC and create a scaled-down hardware emulation. This

type of emulation is superior to application or system based emulations because the device

will be easily configurable simply based on applying the correct firmware. As a starting

point, the hardware must be identified completely and reverse engineered. If hardware and

architectures cannot be identified, fingerprinting techniques might be used to determine if

the TCP/IP stack is an open-source embedded stack (Like µIP or lwIP [Dun13]) to then

determine the hardware. After the hardware is determined, a series of reverse engineering
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intensive projects could focus on designing the emulator. This technique is similar to those

used to reverse engineer and emulate video game consoles [Sal05].

6.4.10 Implementation of a Large-Scale Network Using the Emulator.

A final aspect of future work is to demonstrate the scalability of these devices for field-

device level research. One suggestion is to research how many emulations can currently run

on one PC without loss of accuracy. In addition, research can be conducted to determine

the best approach to scalability: a single virtual machine per emulation, like the Project

Basecamp SCADA honeypot, or many emulations in a single virtual machine. There is

also the Megatux approach [Mar09]: The Megatux project claims to implement 1 Million

computers from only 4480 Intel processors. This suggests that 223 copies of computers

are running on one Intel processor. Investigation would include the possibility of using this

technique to implement ICS field device emulators. Finally, an investigation into which

portions of an industrial control honeynet should be emulated, and which should be real

hardware is warranted. In studies done on Honeyd, emulated network components were

shown to have predictable link delays that made fingerprinting honeypots implemented

with Honeyd trivial [FYC06].
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Appendix A: Additional Applications for Industrial Control Emulators

A.1 Sensor in Industrial Networks

ICS cyber sensors can be compared to production-class honeypots, which directly

enhance the security of operational networks. Production-class honeypot systems primarily

function as security tools in conjunction with firewalls and Intrusion Detection and

Prevention Systems (IDS/IPS) managed by the same IT staff that operates the corporate

network. When activity is logged on a production honeypot system, the information is

used to quickly identify and respond to an active threat or newly identified vulnerability.

The IT staff responds relatively quickly in response to honeypot activity, the same way they

might respond to a barrage of malicious packets detected by the IDS.

Unlike SCADA honeypots for attack-landscape research, cyber sensor honeypots do

not warrant as much effort in maintenance and design. Because the honeypot emulator

devices themselves have no production value, any activity on them is considered suspicious

and is investigated.

Honeypots can also prevent attacks both directly and indirectly. Depending on the

intention of the honeypot, software might be used to detect and slow down or even stop

attacks being carried out by worms [Oud10]. Worms are automated viruses that seek to

spread and infect as many hosts as quickly and efficiently as possible. Honeyd is one such

honeypot implementation that takes active measures to slow down and stop worms from

spreading, giving IT administrators more time to react to the attack. Honeyd is an example

of what is known as a low-interaction honeypot which emulates limited functionality and

responds to a limited set of attacker commands. In this way the worm loses time on the

honeypot by attacking non-production computers [Oud10].
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A.2 Laboratory Research

Industrial control emulators in a laboratory environment have many of the same

advantages over simulations as using real hardware. Accurate emulators not only

implement the responses to user queries in the same manner as their real-hardware

counterparts, but also emulate the timing profile. When timing and protocol responses

have been accurately emulated, the devices can be used in the same way as real hardware

for research experiments with less cost, setup and maintenance effort.

Accurate emulators also have several advantages over real hardware devices. In

addition to reduced cost, emulators can be much more robust because error conditions

such as buffer overflows and bad firmware uploads can be recovered from easily. While

the real device might be permanently damaged by such vulnerabilities, an emulated device

is virtually impervious because the services have control over which vulnerabilities are

ignored or duplicated, depending on the purpose of the emulator and severity of the

vulnerability.

Uses for emulated research networks include the study of automated malware

propagation, network reactions to wide scale scanning, denial of service (DoS) techniques,

pivot attacks from human machine interfaces to devices or devices to devices, and more.

A.3 Evidence Collection Tool

Apart from cyber sensing, an industrial control field device or PLC emulator can be

used as an evidence collection device. This application is comparable to the way the Federal

Bureau of Investigation (FBI) uses fake bombs to catch terrorists in the act of executing acts

of terrorism [Dur13, MPH12]. Since this application has never been implemented before,

and is out of scope of this research, it is further developed as future work in Section 6.4.7.

A.3.0.1 Education.

In the classroom, an industrial control emulator can teach the basics of SCADA and

Industrial ICS with the goal of base-level knowledge. Currently, the only way to gain hands
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on experience with industrial control networks is to implement an actual system which, as

previously mentioned, can be prohibitively expensive. The same is true for features that are

particular to physical devices like uploading and downloading of ladder logic programs.

Though programming simulators are available through several manufacturers to learn and

test ladder logic programs, there is no known way to test network communications and

functionality without having an actual industrial control device to perform those operations

[Sie12, Roc12].

An industrial control emulator used for education would not necessarily need to be

a perfectly accurate emulation. Since the device is an acknowledged emulator, timing,

protocol deviations or simplifications, and incomplete implementations may be acceptable.

However, if the goal is to simulate an ICS network that communicates with arbitrary real

devices on universal protocols, timing and protocol deviations might not be tolerated.

Furthermore, the implementation of device failure conditions, or known vulnerabilities may

not be an important feature in educational emulators.

Educational emulators can be used to develop skills and understanding of tools and

techniques used to conduct attacks on industrial control networks. These emulators can

be used to extend the capabilities of tools like the Nmap [Lyo12] network scanner and

the Metasploit [Met12] remote exploitation tool from traditional IT networks to industrial

control networks.

In this way, an attack on an educational emulator demonstrates the parallels with

traditional IT attacks using the same toolset, but also illustrates the physical effects of

an attack on an ICS network. An emulator that responds to scans and attacks from

tools like Nmap and Metasploit in the same way as the target device, provides hands-on

ICS attack experience without putting an actual device at risk. The emulators could be

remotely configured by instructors to implement any number of device configurations and

vulnerabilities while recording the techniques and strategies the students use to exploit.
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To respond in the same way as the target device, industrial control emulators require

a high level of accuracy to fool fingerprinting and port scanning tools, as well ensure the

tools that work on the target device also work successfully on the emulator. However, even

a lower-accuracy emulator has value in a training environment. For example, the student

could be tasked with identifying a networked ICS device as a honeypot among several

real devices, employing techniques such as network scanning and protocol dissection to

investigate unfamiliar industrial protocols.
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Appendix B: Features of Related Research

Implementation Details Implementation Version

Year 2013 2012 2008 2004

Author/Group R. Jaromin (AFIT) D. Berman(AFIT) D. Peterson (Digital
Bond)

V. Pothamsetty, M. Franz
(CIAG)

Platform Gumstix Gumstix 2 Virtual Machines or
Real PLC

PC

Publically Known Vulnerability Yes No No No

Accuracy Data Yes Incomplete None None

Representative PLF Fingerprint Actual Koyo PLC Generic Device Actual Modicom PLC Generic PLC

Special Requirements iptables, queuing iptables 3 NICs, 2 VMs, Real
PLC

Honeyd, iptables

Target Device Koyo Directlogics
PLC Generic

Modbus TCP device Modicom Quantum
PLC

Generic PLC

Platform/Portability Gumstix Gumstix Requires 2 VMs or 1
VM and a Real PLC

Honeyd Based

Logging Out-Of-Band Out-Of-Band Out-of-Band Local

Configurable Device-level only Device-level only Device-level only Device-level only

Fails Like Target Device Some No No No

Protocols Supported HAP, Modbus, HTTP Modbus FTP, Telnet, HTTP,
SNMP, Modbus

FTP, Telnet, HTTP, Modbus
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Communications Meduim Ethernet Ethernet Ethernet Ethernet

Applied Research Planned future work None [Wad11] S. Wade
[FAA+09] G. Franceschinis,

et al.
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Appendix C: Iptables Rules in iptables_rules.sh

Rule 1:
Result

"For all incoming packets on eth0 that have not been marked with
0x02 send them to queue number 3"

Rule
iptables -t mangle -A INPUT -m mark ! --mark 0x2/2 -j NFQUEUE
--queue-num 3 -i eth0

Resource Queue number 3 user-space program is logging.o

Rule 2: Result
"for all incoming TCP packets on eth0, with TCP destination port
22 (SSH), accept"

Rule
iptables -A INPUT -p tcp --dport 22 -m tcp -j ACCEPT -i
$INTERFACE_LOGGING

Resource n/a

Rule 3: Result
"For all incoming TCP packets on eth0 with destination port 80, send
them to queue number 1"

Rule
iptables -A INPUT -p tcp --dport 80 -m tcp -j NFQUEUE --queue-
num 1 -i eth0

Resource Queue number 1 user-space program is infilter.o

Rule 4: Result
"For all incoming TCP packets on eth0 with destination port 1, send
them to queue number 1"

Rule
iptables -A INPUT -p tcp --dport 1 -m tcp -j NFQUEUE --queue-
num 1 -i eth0

Resource Queue number 1 user-space program is infilter.o

Rule 5: Result
"For all incoming TCP packets on eth1 with source port 502
(Modbus), accept"

Rule iptables -A INPUT -p tcp --sport 502 -m tcp -j ACCEPT

Resource n/a

Rule 6: Result
"For all incoming TCP packets on eth0 with destination port 502
(Modbus), accept"

Rule iptables -A INPUT -p tcp --dport 502 -m tcp -j ACCEPT

Resource n/a

Rule 7: Result
"For all incoming TCP packets on eth0 that do not match a previous
rule, reject with TCP reset"

Rule iptables -A INPUT -p tcp -j REJECT --reject-with tcp-reset -i eth0

Resource n/a
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Rule 8: Result
"For all incoming UDP packets on eth0 with destination port 28784
(HAP), accept"

Rule iptables -A INPUT -p udp --dport 28784 -m udp -j ACCEPT -i eth0

Resource n/a

Rule 9: Result
"For all incoming ICMP packets on eth0, send them to queue
number 1"

Rule
iptables -A INPUT -p icmp -m icmp -j NFQUEUE --queue-num 1 -i
eth0

Resource Queue number 1 user-space program is infilter.o

Rule 10: Result
"For all incoming UDP packets on eth0 with destination port 1, send
them to queue number 1"

Rule
iptables -A INPUT -p udp --dport 1 -m udp -j NFQUEUE --queue-
num 1 -i eth0

Resource Queue number 1 user-space program is infilter.o

Rule 11: Result
"For all incoming UDP packets that do not match a previous rule,
reject with ICMP port unreachable"

Rule
iptables -A INPUT -p udp -j REJECT --reject-with icmp-port-
unreachable -i eth0

Resource n/a

Rule 12: Result
"For all outgoing TCP packets on eth0 with destination port 80, that
have not been marked with 0x1, send them to queue number 2"

Rule
iptables -t mangle-A OUTPUT-p udp--sport 28784-m mark !--mark
0x1/1-m udp -j NFQUEUE --queue-num 2 -o eth0

Resource Queue number 2 user-space program is outfilter.o

Rule 13: Result
"For all outgoing TCP packets on eth0 with destination port 80, that
have been marked with 0x1, accept"

Rule
iptables -t mangle -A OUTPUT -p tcp --sport 80 -m mark --mark
0x1/1 -m tcp -j ACCEPT -o eth0

Resource n/a

Rule 14: Result
"For all outgoing UDP packets on eth0 with destination port 28784
(HAP), that have not been marked with 0x1, send them to queue
number 2"

Rule
iptables -t mangle -A OUTPUT -p udp --sport 28784 -m mark ! --
mark 0x1/1 -m udp -j NFQUEUE --queue-num 2 -o eth0

Resource Queue number 2 user-space program is outfilter.o
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Rule 15: Result
"For all outgoing UDP packets on eth0 with destination port 28784
(HAP), that have been marked with 0x1, accept"

Rule
iptables -t mangle -A OUTPUT -p udp --sport 28784 -m mark --
mark 0x1/1 -m udp -j ACCEPT -o eth0

Resource n/a

Rule 16: Result "For all outgoing packets on eth0, set the TTL to 255"

Rule iptables -t mangle -A POSTROUTING -j TTL --ttl-set 255 -o eth0

Resource n/a

Rule 17: Result
"For all outgoing TCP packets on eth0, send them to queue number
3"

Rule
iptables -t mangle -A POSTROUTING -m mark ! --mark 0x2/2 -j
NFQUEUE --queue-num 3 -o eth0

Resource Queue number 3 user-space program is logging.o
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Appendix D: Web and HAP Protocol Functions Implemented in the ICS field device

emulator

Function Accessible through

Download ladder logic DirectSOFT5

Disable Protection via Password DirectSOFT5

Read ladder logic dynamic status DirectSOFT5

Read CPU information NetEdit3, DirectSOFT5

Read Firmware Revision info NetEdit3, Web browser, DirectSOFT5

Read Booter Revision info NetEdit3, Web browser, DirectSOFT5

Read PWB Revision info NetEdit3, Web browser, DirectSOFT5

Read PLD Revision info NetEdit3, Web browser, DirectSOFT5

Read CPU Revision info NetEdit3, Web browser, DirectSOFT5

Read / Configure Module ID NetEdit3, Web browser, DirectSOFT5

Read / Configure Module Name NetEdit3, Web browser, DirectSOFT5

Read / Configure Module Description NetEdit3, Web browser, DirectSOFT5

Read / Configure Module IP Address (Manually) NetEdit3, Web browser, DirectSOFT5

Read / Configure Module Subnet Mask (Manually) NetEdit3, Web browser, DirectSOFT5

Read / Configure Module Subnet Gateway (Manually) NetEdit3, Web browser, DirectSOFT5

Read / Configure Module IP Address (DHCP) NetEdit3, Web browser, DirectSOFT5

Read / Configure Module Subnet Mask (DHCP) NetEdit3, Web browser, DirectSOFT5

Read / Configure Module Subnet Gateway (DHCP) NetEdit3, Web browser, DirectSOFT5

Read / Read Only Web Config NetEdit3, Web browser

Read / Enable Web Server NetEdit3

Test CPU Access NetEdit3, DirectSOFT5

Password protection DirectSOFT5

Bruteforce password cracking Metasploit

Nmap OS Fingerprint Scan Nmap

Device Polling NetEdit3, DirectSOFT5

Addressed Queries NetEdit3, DirectSOFT5
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Read Device info NetEdit3, DirectSOFT5

Read CCM Data (select operations) DirectSOFT5

Write CCM Data (select operations) DirectSOFT5

Read K-Sequence Data (select operations) DirectSOFT5

Read Version Info NetEdit3, DirectSOFT5

Read Ethernet Statistics NetEdit3, Web browser
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Appendix E: Non-deterministic Fields

E.1 Non-deterministic Fields

These are fields whose values change from query to query depending on the state of

the querying computer, not necessarily the device (PLC or Emulator), or that cannot be

predicted (such as the Initial Sequence Number).

E.1.1 Non-Deterministic Bytes in Web Response.
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E.2 Non-deterministic Bytes in HAP Response

Table E.5: Ethernet Header Fields

Offset(Hex) Description

0x0B Ethernet Address (MAC) 6th byte

Table E.6: IP Header Fields

Offset(Hex) Description

0x18 IP CRC 1st byte

0x19 IP CRC 2nd byte

0x1D IP Source byte 4

Table E.7: UDP Header Fields

Offset(Hex) Description

0x28 UDP CRC 1st byte

0x29 UDP CRC 2nd byte
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E.3 Non-deterministic Fields in Nmap OS Fingerprint

Table E.8: UDP Header Fields

Section Field Description

OS Guess MAC Address 6th Byte

Scan Details SP† Sequence Prediction Index

Scan Details ISR† TCP ISN Counter Rate

Scan Details UN‡ Unused ICMP port unreachable field nonzero

TCP Sequence
Prediction

TCP Sequence Prediction† Equal to base 10 version of SP

†These fields are based on the TCP initial sequence numbers in response packets. Although they are
non-deterministic, they are still considered relevant fields with regard to accuracy, and their matching
is considered important.
‡This field is non-deterministic, but is still considered relevant with regard to accuracy, and its
matching is considered important.
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Appendix F: Partial Factorial Design

Scenario Platform Request
Type

Request
Frequency

Service Workload
Gen

1 PC Std Web slow Web web-tool

2 PC Std Web PLC Break Web web-tool

2a PC Std Web PC Break Web web-tool

3 PC Non-std Web slow Web nmap

4 PC Non-std Web PLC Break Web nmap

5 PC Std HAP slow HAP hap-tool

6 PC Std HAP PLC Break HAP hap-tool

6a PC Std HAP PC Break HAP hap-tool

7 PC Non-std HAP slow HAP Metasploit

8 PC Non-std HAP PLC Break HAP Metasploit

8a PC Non-std HAP PC Break HAP Metasploit

9 Gum Std Web slow Web web-tool

10 Gum Std Web PLC Break Web web-tool

10a Gum Std Web Gum Break Web web-tool

11 Gum Non-std Web slow Web nmap

12 Gum Non-std Web PLC Break Web nmap

13 Gum Std HAP slow HAP hap-tool

14 Gum Std HAP PLC Break HAP hap-tool

14a Gum Std HAP Gum Break HAP hap-tool

15 Gum Non-std HAP slow HAP Metasploit

16 Gum Non-std HAP PLC Break HAP Metasploit

16a Gum Non-std HAP Gum Break HAP Metasploit

17 PLC Std Web slow Web web-tool

18 PLC Std Web PLC Break Web web-tool

19 PLC Non-std Web slow Web nmap

20 PLC Non-std Web PLC Break Web nmap

21 PLC Std HAP slow HAP hap-tool
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22 PLC Std HAP PLC Break HAP hap-tool

23 PLC Non-std HAP slow HAP Metasploit

24 PLC Non-std HAP PLC Break HAP Metasploit
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Appendix G: Custom Tool Description and Validation

G.1 Accuracy Parser: pcap_accuracy_parse.py

G.1.1 Description.

The accuracy parser compares two similar .pcap files to determine their byte

differences. The first .pcap file is the baseline file from the target PLC that captured the

packet conversation between the workload generator and the PLC, the second .pcap file

captures the conversation between the workload generator and the emulator for the same

experimental conditions.

This Python script works by separating the first .pcap file into streams, and measuring

byte differences between each stream (in the case of this experiment, 1000 streams).

Since these responses are all from the target PLC, the only differences should be non-

deterministic bytes indicated in Appendix C, a report of the deterministic (or non-changing)

bytes is generated. The .pcap from the emulator is processed the same way. Finally the two

reports for the target PLC and the emulator bytes are compared to each other to generate a

summary for all queries, which shows the differences at the byte level for every packet all

1000 responses.

G.1.2 Validation.

The program is run two ways to validate its functionality. The first ran the same file

for both input parameters. The results are that all bytes matched. Next, a two captures

for the same query are taken, and the bytes are compared manually to ensure the results

produced by the tool are accurate. The manual verification concluded that the bytes that

are dissimilar are in fact different between the two captures, and the deterministic bytes are

actually the same.
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G.2 Workload Generators: htmlget_mt and hap_mt

G.2.1 Description.

These files generate the standard web and HAP workloads at nominal timing rates for

a variable number of queries. Both generators are designed using raw Linux sockets, and

therefore, many aspects are definable, as a result, however, certain intricacies such as the

TCP handshake must be implemented manually. The number of successful connections,

response time, and moving average of response times are displayed real-time as the

programs execute.

G.2.2 Validation.

Both tools are validated using the packet capture accuracy parsing tool, pcap_accuracy_

parse.py, already validated. The procedure for each tool is the same and is shown in Figure

G.1.

A packet capture is taken for one web or HAP request using the predefined tool

(Internet Explorer 9.0.8112 for web, and NetEdit3 for HAP) to make one query to the target

PLC. A second capture is taken under exactly the same conditions at least one minute later

for a total of two captures from the baseline tool. The accuracy parser is run on both of

these packet captures to identify packet bytes that are non-deterministic for a single query.

A packet capture is then taken for a single query using the custom workload generator,

and this packet capture is compared to the first capture using the base program using the

accuracy parser. The non-deterministic bytes are then compared to those measured from

step 2. If all the bytes are the same, then the workload generator is validated.

Using this procedure 35 bytes are found to be non-deterministic for the web browser

query, all deterministic bytes matched when the web browser capture is compared to the

htmlget_mt capture. For the NetEdit3 query (after accounting for MAC and IP), 8 bytes

are non-deterministic and all deterministic bytes matched when the NetEdit3 capture is

compared to the hap_mt capture.
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Figure G.1: Validation of workload generators.

G.3 Timing parsers: web_time_parse.py and udp_time_parse.py

G.3.1 Description.

The two time parser files take .pcap files as inputs, and separate the files into individual

streams based on the to and from ports in the .pcap capture. This method is valid because

the custom workload generators are explicitly give a unique source port to use for each

query, and reusing the source ports is not allowed.

The difference between first packet per stream and the last packet is generated and

averaged together for all successful streams for a mean response time. This procedure

works with the standard web and HAP response captures and the HAP non-standard
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(Metasploit) workload. It does not work for the web non-standard (Nmap) workload

because the packets are sent using random source ports and sent to destination ports in

non-sequential order.

G.3.2 Validation.

To provide a preliminary validation, the response time values generated by the time

parsers are compared to the response time values generated by the workload generators.

The primary validation is completed by hand and compared the calculated values from the

timing parsers to those seen for the timestamp value for the packets in a graphical packet

capture program. A subset for both the web and HAP standard workload responses are

successfully validated.
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Appendix H: Additional Results for HAP standard Workload

162



163



164



Appendix I: Configuring the Gumstix Emulator

I.1 Loading Provided Images

The emulator can be placed onto a secure digital (SD) card via an image created of

the final working copy on of the Gumstix emulator following these steps. Most of the hard

work is done by shell scripts. This guide assumes a USB SD card reader is attached to the

Linux development computer.

1. Insert the target SD card into USB SD card reader.

2. Partition the target SD card with "boot" and "rootfs" partitions. (The mksdcard.sh

script is in the Images directory of the Resources Disc included that accompanies

this document).

#build partitions for the new SD card:

$sudo mksdcard.sh /dev/sdb overo minimal

#mount new partitions

$sudo mount -t vfat /dev/sdb1 /media/boot

$sudo mount -t ext3 /dev/sdb1 /media/rootfs

3. From a command shell, execute sudo nautilus to get super-user privileges for the file

navigator. Use this program to delete all current files in the boot and rootfs partitions

of the target SD. Or, from the command shell:

#delete everything in the /media/rootfs/

$cd /media/rootfs

$sudo rm -r ./*.*

$cd /media/boot

$sudo rm -r ./*.*

4. From a command shell, navigate to the Images directory of the Resources Disc

included that accompanies this document.
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5. Execute sudo ./load_image.sh emulator. It will take several minutes for the files to

be copied onto the target SD card.

6. To do this manually, the commands are:

#Copy boot files onto first partition:

$sudo cp MLO /media/boot/MLO

$sudo cp u-boot.bin /media/boot/u-boot.bin

$sudo cp uImage /media/boot/uImage

#Expand the root file system archive on to the second partition:

$sudo tar xaf roofs.tar.bz2 --strip-components 2 -C /media/rootfs

(Two other images are included:(1) Angstrom Linux image with both Ethernet ports

configured on Tobi-Duo (2) Angstrom Linux image with iptables already installed)

I.2 Building From Scratch

Berman’s previous effort developed a detailed set of instructions for building an

operational Gumstix device from scratch with most of the required components needed

for this follow-on effort [Ber12 (Appendix-A)].

I.3 Saving New Images

A script is developed to easily save Gumstix images for quick Gumstix development.

It is also located in the Images directory of the Resources Disc included that accompanies

this document.

1. Insert the target SD card into USB SD card reader.

2. From a command shell, navigate to the Images directory of the Resources Disc

included that accompanies this document.

3. Execute sudo ./make_image.sh <image_name>. It will take several minutes for the

files to be copied and compressed from the target SD card.
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4. To do this manually, the commands are:

#Copy boot files from first partition:

$sudo cp /media/boot/MLO ./MLO

$sudo cp /media/boot/u-boot.bin ./u-boot.bin

$sudo cp /media/boot/uImage ./uImage

#Compress the root file system archive from the second partition:

$sudo tar caf ./<image_name>.image.tar.bz2 /media/rootfs
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