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Abstract—We present a novel two-stage methodology for
locating a Chemical, Biological, Radiological, or Nuclear
(CBRN) source in an urban area using a network of
sensors. In contrast to earlier work, our approach does
not solve an inverse dispersion problem but relies on data
obtained from a simulation of the CBRN dispersion to
obtain probabilistic descriptors of sensor measurements
under a variety of CBRN release scenarios. At its first stage,
subsequent sensor observations under nominal, CBRN
event-free conditions are assumed to be independent and
identically distributed and we rely on the method of types
to detect a CBRN event. Conditional on such an event,
subsequent sensor observations are assumed to follow a
Markov process. Using composite hypothesis testing we
map sensor measurements to a source location chosen out
of a discrete set of possible locations. We leverage large
deviation techniques to obtain a bound on the localization
probability of error and propose several methodologies
for fusing sensor data to arrive at a localization decision,
including a distributed one. We also address the problem
of optimally placing sensors to minimize the localization
probability of error. Our techniques are validated numer-
ically using two different CBRN release simulators.

Index Terms—Source detection, source localization, com-
posite hypothesis testing, large deviations, optimization,
sensor placement.

I. I NTRODUCTION

CONCERN regardingChemical, Biological, Radio-
logical, or Nuclear (CBRN)terrorism is steadily

increasing. This is due to gains in the technological
capabilities of producing existing and potentially new,
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more lethal CBRN agents and delivery mechanisms.
Urban areas are of particular concern since these areas
tend to have large population densities and are centers
for large-scale commerce and politics [1].

In this context, it becomes critical to detect and locate
a CBRN source. Early detection and accurate localiza-
tion enable effective emergency response. Localization
is important even for weak CBRN sources as it can help
prevent a harmful release and facilitate investigating the
origins of the source (forensics).

Invariably, all existing approaches rely on a network of
sensors deployed in the urban area and able to measure
CBRN particulate concentrations. They differ however,
in how they process the sensor data. A related problem is
that of placing a given set of sensors so as to optimize a
performance metric related to detection and localization.

Earlier work (reviewed later in more detail) has mostly
concentrated on solving a difficult inverse dispersion
problem in order to locate the source. Such an approach
requires an explicit model of CBRN dispersion and,
typically, simple analytical models are being assumed
to render the inverse problem tractable. Yet, simple
dispersion models are not accurate in urban areas for
a variety of reasons. First, a typical city tends to be
characterized by irregular geometry, many different types
of structures and buildings (each with its own surface
texture), and highly dynamic population fluxes, thus,
giving rise to aninhomogeneousdispersion terrain. Sec-
ond, weather patterns, which drive CBRN dispersion,
are highly variable and interact with the various city
structures to create complex phenomena (micro-climate
effects, urban canyons, etc.). All this complexity can not
be captured analytically and, coupled with the inherent
uncertainty, suggests a stochastic approach.

In this paper we develop such an approach that uses
simulationof CBRN dispersion under a variety of source
locations and dispersion scenarios to develop probabilis-
tic descriptors of sensor measurements. Localization is
performed solely through consultation of the sensor mea-
surements, not through an explicit physical dispersion
model. Hence, we describe our approach asmodel-free.
Our approach consists of two stages:(a) detection, and
(b) localization. To detect a source we assume that subse-
quent measurements at any given sensor are independent
and identically distributed (iid). This is justified since,in
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the absence of a source, sensor measurements are driven
by noise. Using the method of types ([2], [3]) we com-
pare sequences of measurements with the probabilistic
descriptors derived from the simulation to determine the
presence of a source. We develop a rigorous detection
test and show asymptotic Neyman-Pearson optimality.

Positive source detection triggers the 2nd – localiza-
tion – stage of our approach. During that stage, and
conditional on the presence of particulates from a source,
subsequent measurements at a sensor are dependent.
We make a Markovian assumption and develop an ap-
proach to compare measurements from the sensors to the
probabilistic descriptors obtained from the simulation.
Localization is formulated as acomposite hypothesis
testing problem. We devise several versions of a local-
ization algorithm – a distributed, a centralized, and a
hybrid – using different forms of data fusion from the
multiple sensors. We derive a bound on the probability
of error by extending our earlier work from [4], which
also considered a localization problem but in a very
different application domain. Further, we use this bound
to formulate the problem of placing sensors so as to min-
imize the probability of error. As our numerical results
demonstrate such an optimization can lead to a dramatic
improvement in the error probability compared to ad-hoc
sensor placement. The end result of our approach is a
placement of the sensors and anasymptotic guarantee
on the corresponding probability of error.

One will notice some similarities between the theoret-
ical material presented in [4] and in this paper. We recast
theorems and definitions here in a new application both
for the sake of completeness as well as to provide back-
ground for our (Markovian) extensions to the previous
(iid) work.

We summarize our contributions below:

1) We propose a new paradigm for CBRN source de-
tection and localization that bypasses many of the
problems existing “inverse dispersion” approaches
face in an inhomogeneous and uncertain urban
setting.

2) We extend our earlier asymptotic performance
analysis of composite hypothesis testing in [4]
from the iid to a Markovian setting.

3) We demonstrate how to place sensors so as to
minimize the localization probability of error.

4) We validate our approach using two different,
and independently developed, dispersion simula-
tion engines: the Quick Urban & Industrial Com-
plex (QUIC) Dispersion Modeling System [5] and
a new simulator based on theLattice Boltzmann
method (LBM)that we develop for our purposes.
The latter simulator is of independent interest
as it is known to be a naturally parallelizable
algorithm [6]. This quality places large scenarios

computationally within reach. These simulators
simply simulate the physics of dispersion from
some point release under given weather conditions
and make none of the distributional assumptions
our approach posits. Although it is certainly true
that QUIC and LBM make certain assumptions
and approximations to simplify the physics of dis-
persion, our approach decouples these assumptions
from the process of release detection and source
localization by relying solely on measurements ob-
tained from sensors during particulate propagation.
As such, our approach naturally extends to any
simulator or even to measurements obtained from
physical experimentation. Different scenarios will
call for different dispersion simulators. If accuracy
is less of an issue, one could select a faster, less
accurate simulator. If the area under observation
contains heavy foliage, a simulator with satis-
factory deposition accuracy should be selected.
For situations in which particulate deposition is
important due to physicochemical properties of
the dispersed agent or sensor performance limi-
tations, say, the computationally efficient method
of estimating boundary properties presented in [7]
could be of use. A set of illustrative numerical
results demonstrate excellent performance of our
methods. The results show promise for a practical
CBRN urban detection and localization system
based on this work.

The remainder of the paper is organized as follows.
We discuss related work in Section II. We formulate
our problem in Section III where we also introduce
some of our notation. We deal with the detection stage
in Section IV and the localization stage in Section V.
The placement problem is discussed in Section VI.
The two dispersion simulators and a host of numerical
results are presented in Section VII. Final remarks are
in Section VIII. The Appendix contains technical proofs
of our results.

Notational Conventions: Throughout the paper all
vectors are assumed to be column vectors. We use lower
case boldface letters to denote vectors and for economy
of space we writex = (x1, . . . , xR) for the column
vector x. x′ denotes the transpose ofx and 0 the
vector of all zeroes. We use upper case boldface letters
to denote matrices. Finally, we use|A | to denote the
cardinality of a setA .

II. RELATED WORK

A sequential measurement based hypothesis testing
paradigm for CBRN release detection is presented in [8].
There, the authors make the assumption that concentra-
tion samples adhere to a zero-mean Gaussian error and
formulate a maximum likelihood test used for release
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detection. Our detection approach is similar in that it is
a hypothesis test. However, we make no assumptions
on the error a CBRN sensor makes, opting instead
to learn a probabilistic law of nominal, release-free
sensor observations. Whenever a sensor’s observations
sufficiently depart, according to a Hoeffding test, from
the known nominal behavior, we declare that a CBRN
release has occurred.

Existing CBRN source localization approaches ([9],
[10], [11]) observe CBRN agent concentrations and solve
the inverse problem of tracing dispersion backward in
time and space to the source of the release. As discussed,
limitations of this methodology stem from the irregular
and dynamic phenomena typically found in urban areas.
In [9] the presence of challenging geographies and wind
turbulence is accommodated by incorporating Monte
Carlo simulation of fluid dispersion. However, all of
these works suffer from the difficulty of determining,
without a detection process, the point in time in which
the event started. Barring this information, these inverse
problem approaches are vulnerable to erroneous local-
izations.

Simulation-aided localization of contaminant releases
on a continental scale is presented in [12]. In [13], the
inverse problem is replaced by computing the posterior
probabilities of a finite set of release locations and
selecting the release location with maximal likelihood.
The computed likelihoods are based on assumptions
on both the distribution of concentration observations
at sensor locations and a particular dispersion model.
Our approach is similar to these, in that localization is
based entirely on sensor observations and probabilistic
descriptors of CBRN releases obtained from simulation,
with the important difference, however, that the only
assumptions we make on concentration observations
under release conditions is that they adhere to a first-
order Markov chain.

While our approach does depend on numerical or
physical simulation of agent dispersion to build a sta-
tistical understanding of CBRN release evolution, once
this understanding is established the actual dispersion
model is no longer used. Hence, we refer to our lo-
calization approach as model-free. Additionally, while
we employ two specific dispersion simulators in the
numerical evaluation in Section VII, any dispersion
simulation, numerical or physical, can be used. We
suggest using the simulation scheme that provides the
most accurate depiction of particulate releases for the
particular application. This is even more important in
applications where turbulence plays a greater role in
particulate displacement.

Our localization approach is inspired by [4]. There,
a wireless sensor deployed in an indoor environment is
located through sequential hypothesis testing by using

signal strength measurements corresponding to packets
transmitted by the sensor and received by a set of station-
ary clusterheads. [4] also solves the problem of optimally
placing clusterheads to reduce erroneous localizations.
The key difference between that work and the work
presented here, aside from vastly different application
areas, is that subsequent observations made by the clus-
terheads in the wireless sensor localization problem can
be considered iid. Under a CBRN release scenario, if a
CBRN sensor observes large particle concentrations it is
likely to observe large particle concentrations in its next
sample. To that end, in this work we extend the theory
presented in [4] to allow for dependencies in subsequent
sensor observations.

Our optimal sensor placement approach also stems
from the work presented in [4], which poses clusterhead
placement as an optimization problem whose objective
is to minimize the probability of localization error.
This differs from the more traditional sensor placement
methodologies [14], [15], whose objectives are the facil-
itation and maintenance of general observability under
the possibility of sensor faults. To our knowledge there
are no other existing CBRN sensor placement techniques
that are motivated by analytically derived localization
error probabilities.

III. PROBLEM FORMULATION

Consider a CBRN sensor network deployed in an
urban setting. Due to the nature of plume dispersion
and existing CBRN attack response techniques, extreme
precision on the locations of releases and sensors is
not needed. Rather, general locations (e.g., corner of
X St. and Y Ave.) suffice for disaster avoidance and
response measures. It naturally follows that release and
potential sensor locations can be discretized to conform
to potentially irregular grids. In the following, we assume
N possible CBRN release scenarios represented by the
set L = {L1, . . . , LN} and M possible CBRN sensor
locations represented by the setB = {B1, . . . , BM}.
For applications in which greater precision is required,
the set of discrete locations can be extended to include
more locations. However, this accrues the cost of requir-
ing more simulations. The elements ofL correspond to
a release location and a set of release associated charac-
teristics potentially including wind direction, variability
in wind speed, and release mass, among others. Wind, in
particular, is a critical component of a release scenario
as it is the primary mode of particulate transport. For
a release scenarioLj , the corresponding set of release
characteristics will be denotedΩj = {θ1

j , . . . , θ
|Ωj |
j }.

Let yk denote the vector of sensor observations made
by a sensor at locationBk. Each sensor outputs a CBRN
agent concentration estimation and potentially local wind
observations. Since different concentrations result in
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different levels of casualties, counter measures, and
responses, observed concentrations can naturally be dis-
cretized to concentration levels (e.g.,[0, x], [x, yLCT50],
etc., whereyLCT50 represents a concentration that would
lead to an accumulated dosage that produces a 50%
chance of survival). Eachyk is mapped to a symbol
in a finite alphabet denoted byΣ = {σ1, . . . , σ|Σ|}.
A sequence ofn sensor observations at locationBk is
denotedyk,n = (yk

1 , . . . ,yk
n). It is assumed throughout

the sequel that an initial state ofyk
0 is known a priori.

While not under an attack scenario, a sensor’s agent
concentration approximation fluctuations are attributed
to measurement noise. Accordingly, when there is no
CBRN attack, the sensor’s readings can be assumed to
be iid.

Under a release scenario, however, the agent disperses
gradually, resulting in concentration observations that
change much slower than a sensor’s sampling rate. That
is, if a certain concentration level is observed by a
sensor at a certain time step, one can expect to see a
similar concentration observation in the next time step.
To capture this dependency, we model concentration
level at a sensor when there is an attack as a first-order
Markov chain.

The first problem we wish to solve is to detect a
CBRN event, given a set of observations{y1,n, . . . ,
yK,n} from K sensors placed at locationsB1, . . . , BK .
Once a CBRN event is identified, the next problem is to
determine where the event originated. We also wish to
solve the related problem of selecting the locations from
B where we can placeK sensors (withK < M ) such
that we minimize the probability of localization error.
The solution to this last problem is accomplished through
analysis of theoretical performance guarantees.

IV. RELEASE DETECTION

In this section we describe our approach to the prob-
lem of release detection. We first construct empirical
probability laws for the vectoryk under nominal con-
ditions and then compare these laws with empirical
probability measures based on in situ sensor observa-
tions. When a measure differs significantly from the
established probability laws, a release is declared and
the localization engine is triggered.

Allow M1(Σ) to denote the set of all probabil-
ity vectors with support defined by the state alphabet
Σ = {σ1, . . . , σ|Σ|}. Consider the empirical probability
measure of a sequenceyk,n = (yk

1 , . . . ,yk
n),

E
yk,n

(σr) =
1

n

n
∑

t=1

1{yk
t = σr}, r = 1, . . . , |Σ|, (1)

where1{·} denotes the indicator function. LetEEE yk,n

=

(E yk,n

(σ1), . . . ,E
yk,n

(σ|Σ|)). First we construct the em-
pirical probability law µ

k ∈ M1(Σ) for all sensor

locationsBk ∈ B from observed sequencesyk,N =
(yk

1 , . . . ,yk
N ) with sufficiently largeN by settingµ

k =

EEE yk,N

.
When the sensor network is operational, a sequence

yk,n = (yk
1 , . . . ,yk

n) is observed for somen ≪ N . An
empirical probability measureνk

n = EEE yk,n

is constructed
via (1). To determine if the observations inyk,n are
anomalous, we employ the so-calledmethod of types.
The following theorem from [3] is useful.

Theorem IV.1 For everyν ∈ M1(Σ) let

I1(ν) = H(ν|µk),

whereH(ν|µk) is the relative entropy of the probability
vectorν with respect toµk:

H(ν|µk) =

|Σ|
∑

r=1

ν(σr) log
ν(σr)

µk(σr)
.

Then, for any setΓ of probability vectors inM1(Σ)

− inf
ν∈Γ◦

I1(ν) ≤ lim inf
n→∞

1

n
log Pµk

[

EEE
yk,n

∈ Γ
]

≤

lim sup
n→∞

1

n
log Pµk

[

EEE
yk,n

∈ Γ
]

≤ − inf
ν∈Γ

I1(ν),

whereΓ◦ denotes the interior ofΓ.

Theorem IV.1 rigorously identifies a distance metric
that can be used in what is known as the Hoeffding’s
rule [3]:

S (yk,n) =

{

no attack, ifI1(EEE
yk,n

) < η,
attack, otherwise.

(2)

Here, η is a threshold that can be determined asη =
− log ǫ

n , whereǫ is a tolerable false alarm rate [4].
In order to assess the validity and optimality of tests of

the form (2), we need to define what notion of optimality
we hope to attain. One often adopted measure of any
decision test’s optimality is to consider the likelihood of
making an error. The two types of error the Hoeffding
test in (2) can make are: declaring an anomaly when in
fact the activity recorded inyk,n was nominal (Type-I
error), or not declaring an anomaly whenyk,n departs
from nominal behavior (Type-II error). We denote the
probabilities of these two errors byαk,n and βk,n,
respectively.

A particular challenge arises when trying to evaluate
βk,n. While the probability law depicting nominal behav-
ior µ

k can be used to evaluateαk,n = Pµk [I1(EEE
yk,n

) ≥
η], computation ofβk,n requires considering all proba-
bility vectors from the setM1(Σ) \ {µk}. With this in
mind, we introduce the following concept of asymptotic
optimality known as the Neyman-Pearson criterion.
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Definition 1
A test S is considered optimal for a givenη > 0 if,
among all tests that satisfy

lim sup
n→∞

1

n
αk,n ≤ −η

it maximizes− lim supn→∞
1
nβk,n uniformly over all

probability vectors inM1(Σ) \ {µk}.

The following theorem, thanks to Hoeffding [16] and
appearing in [3], establishes the optimality of (2).

Theorem IV.2 The anomaly detector presented in (2) is
optimal under Definition 1.

The effect of the first stage conclusion is two-fold.
First, it establishes a reasonable indication that a CBRN
event has actually happened and that release localization
analysis is within order. In addition, it provides an
estimation on the time of the CBRN release. In practice,
the time of attack is taken to be the time at which the first
high concentration observation withinyk,n is sampled.
This is an important contribution to the second stage
problem, as knowledge of the time of attack decreases
the amount of parametrizations inΩj that need to be
considered. For localization, the window of observations
beginning at the time of the release and of length
determined by an ideal response time is used.

V. SOURCE LOCALIZATION

Allow M2(Σ × Σ) to denote the set of all discrete
time Markov transition probability matrices on the state
alphabetΣ = {σ1, . . . , σ|Σ|}. For each sensor location
and release scenario pair(Bk, Lj), associate a series of
first-order Markov transition probability matricesΠΠΠk

θj
,

for all θj ∈ Ωj , defined as

ΠΠΠk
θj

=
{

πk
θj

(σv, σu)
}|Σ|

u,v=1
, (3)

whereπk
θj

(σv, σu) = Pk
θj

[yk
t+1 = σu|y

k
t = σv]. These

matrices depict the CBRN particulate concentration state
evolution over all considered parametrizations of release
scenarios and available sensor locations. Using (3), the
probability of observing a sequence of sensor observa-
tions yk,n can be expressed as

P k
θj

(yk,n) = pk
θj

(yk
0)

n
∏

t=1

πk
θj

(yk
t−1,y

k
t ), (4)

where pk
θj

(·) denotes the stationary probability distri-
bution on the observed concentration states at sensor
locationBk under release parametrizationθj of scenario
Lj .

Under the assumption of a Markov source, the em-
pirical measure of a sequenceyn = (y0,y1, . . . ,yn) of

sensor observations (note we now assume that there is a
known initial concentration statey0) takes the form

E
yn

2 (σv, σu) =
1

n

n
∑

i=1

1{yi−1 = σv,yi = σu}. (5)

For any release location and release scenario pair
(Bk, Lj) we can observeyk,N under release conditions
θj with sufficiently largeN and obtain a (Markovian)
empirical probability law as follows:

ΠΠΠk
θj

=
{

E
yk,N

2 (σu|σv)
}

σu,σv∈Σ
,

whereE
yn

2 (σu|σv) are the empirical transition probabil-
ities observed inyn, defined as

E
yn

2 (σu|σv) =
E

yn

2 (σv, σu)
∑|Σ|

r=1 E
yn

2 (σv, σr)
.

The empirical distributionEEE yn

2 is said to beshift invari-
ant if the empirical marginal probabilities of each state
are equal. That is,EEE yn

2 is shift invariant if

E
yn

2 (σv) =

|Σ|
∑

u=1

E
yn

2 (σv, σu) =

|Σ|
∑

u=1

E
yn

2 (σu, σv).

The next theorem, a version of Sanov’s Theorem for
Markov chains proven in [3], provides a convex relative
entropy measure for Markov chains.

Theorem V.1 For every shift invariantQ ∈ M2(Σ×Σ)
let

I2(Q|ΠΠΠ) =

|Σ|
∑

v=1

q(σv)H2(q(·|σv)|π(σv, ·)),

whereH2 is the relative entropy

H2(q(·|σv)|π(σv, ·)) =

|Σ|
∑

u=1

q(σu|σv) log
q(σu|σv)

π(σv, σu)
.

Then for any setΓ ⊂ M2(Σ × Σ) of shift invariant
Markov sources

− inf
Q∈Γ◦

I2(Q|ΠΠΠk
θj

) ≤ lim inf
n→∞

1

n
log Pk

θj

[

EEE
yk,n

2 ∈ Γ
]

≤

lim sup
n→∞

1

n
log Pk

θj

[

EEE
yk,n

2 ∈ Γ
]

≤ − inf
Q∈Γ

I2(Q|ΠΠΠk
θj

),

whereΓ◦ denotes the interior ofΓ and Pk
θj

is a proba-
bility evaluated assuming thatyk,n is drawn according
to ΠΠΠk

θj
.

Consider now the subproblem of using the sensor
readings from a sensor at locationBk to determine if
the CBRN release corresponds to scenarioLi or Lj . The
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Generalized Likelihood Ratio Test (GLRT)compares the
normalized generalized log-likelihood ratio

Xijk(yk,n) =
1

n
log

supθi∈Ωi
P k

θi
(yk,n)

supθj∈Ωj
P k

θj
(yk,n)

to a thresholdλ and declaresLi to be the release scenario
whenever

yk,n ∈ S
GLRT
ijk,n = {yn|Xijk(yn) ≥ λ}, (6)

and Lj otherwise. Selection of the value forλ in
(6) is performed through evaluation of decision error
probabilities and is discussed later in this section.

The GLRT described in (6) can make two types of
error. Namely, the decision test can declareLj to be the
release scenario when in actuality the release scenario
wasLi and vice versa. The probabilities of these errors
are represented as,

αGLRT
ijk,n (θj) = Pk

θj
[yk,n ∈ S

GLRT
ijk,n ],

βGLRT
ijk,n (θi) = Pk

θi
[yk,n /∈ S

GLRT
ijk,n ].

We will refer to the quantities

lim sup
n→∞

1

n
log αGLRT

ijk,n (θj),

lim sup
n→∞

1

n
log βGLRT

ijk,n (θi),

as the exponents of the Type-I and Type-II error proba-
bilities, respectively.

Certainly, some values ofλ in (6) are better than
others. To evaluate the GLRT’s performance, we will
use a generalized version of Definition 1, which we will
call the generalized Neyman-Pearson criterion.

Definition 2
The decision rule{Sijk,n} is optimal if it satisfies

lim sup
n→∞

1

n
log αS

ijk,n(θj) < −λ, ∀θj ∈ Ωj (7)

and maximizes − lim supn→∞
1
n log βS

ijk,n(θi) uni-
formly over allθi ∈ Ωi.

The following theorem, whose proof is in Appendix
A, establishes the optimality of the GLRT according to
Definition 2.

Theorem V.2 The GLRT with a thresholdλ is optimal
under Definition 2 if and only if

inf
Q∈Cijk

I2(Q|ΠΠΠk
θi

) ≥ inf
Q∈Aijk

I2(Q|ΠΠΠk
θi

), ∀θi ∈ Ωi,

(8)
where Aijk = {Q| infθj∈Ωj

I2(Q|ΠΠΠk
θj

) < λ} and
Cijk = {Q| infθj∈Ωj

I2(Q|ΠΠΠk
θj

)− infθi∈Ωi
I2(Q|ΠΠΠk

θi
) <

λ ≤ infθj∈Ωj
I2(Q|ΠΠΠk

θj
)}.

Furthermore, assuming (8) is satisfied

lim sup
n→∞

1

n
log αijk,n(θj)

GLRT ≤ −λ,

for all θj ∈ Ωj , and

lim sup
n→∞

1

n
log βGLRT

ijk,n (θi) ≤ − inf
Q∈Aijk

I2(Q|ΠΠΠk
θi

),

for all θi ∈ Ωi.

Now, in the event that the GLRT is not asymptotically
optimal (i.e., condition (8) does not hold) information on
the error probabilities can still be gleamed. Define the set
Dijk = {Q| infθj∈Ωj

I2(Q|ΠΠΠk
θj

)−infθi∈Ωi
I2(Q|ΠΠΠk

θi
) <

λ}. Note yk,n ∈ S GLRT
ijk,n if and only if EEE

yk,n

2 /∈ Dijk.
From Theorem V.1 it follows:

lim sup
n→∞

1

n
log αGLRT

ijk,n (θj) (9)

≤ − inf
Q/∈Dijk

I2(Q|ΠΠΠk
θj

), ∀θj ∈ Ωj

lim sup
n→∞

1

n
log βGLRT

ijk,n (θi) (10)

≤ − inf
Q∈Dijk

I2(Q|ΠΠΠk
θi

), ∀θi ∈ Ωi.

In addition, we have the following lemma, proven in
Appendix B.

Lemma V.3 If the GLRT is not optimal, the constraint

lim sup
n→∞

1

n
log αGLRT

ijk,n (θj) ≤ −λ, ∀θj ∈ Ωj

still holds.

We can therefore determine an asymptotic bound on
the exponent of the Type-II error probability by the
nonlinear program

Zijk(λ, θi) = minQ I2(Q|ΠΠΠk
θi

)
s.t. g(Q; Ωi,Ωj) ≤ λ,

Aq ≤ 0,
(11)

where g(Q; Ωi,Ωj) = minθj∈Ωj
I2(Q|ΠΠΠk

θj
) −

minθi∈Ωi
I2(Q|ΠΠΠk

θi
). The constraints enforcingQ

to be shift invariant and correspond to valid transition
probabilities for a Markov chain are linear and are
represented by the system of linear inequalitiesAq ≤ 0,
whereq is a “vectorization” ofQ.

Using (11),Zijk(λ) = minθi∈Ωi
Zijk(λ, θi) is the ex-

ponent of the worst case Type-II error probability of the
GLRT (i.e., declaring the release scenario isLj when the
actual release scenario isLi) when we use information
from sensork. Zijk(·) is a non-increasing, non-negative
function, with limλ→∞ Zijk(λ) = 0. Therefore, there
must existλ∗

ijk ≥ 0 such thatZijk(λ∗
ijk) = λ∗

ijk, which
represents the exponent of equal Type I and Type II error
probabilities in the GLRT. Since there is no guarantee
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that λ∗
ijk = λ∗

jik (i.e., information from a sensor at
locationBk does not provide symmetric decision making
via the GLRT), we define

dijk = max{λ∗
ijk, λ∗

jik}, (12)

and this represents a symmetric error probability expo-
nent. In particular, ifλ∗

ijk is the maximizer in (12) we let
(̄i, j̄) = (i, j), otherwise we let(̄i, j̄) = (j, i). In either
case, we use the GLRT test that comparesXīj̄k(yk,n)
to dijk. The above leads to the following proposition.

Proposition V.4 Suppose the sensor atBk uses the
GLRT and comparesXīj̄k(yk,n) to dijk. Then, the
maximum probability of error satisfies

lim sup
n→∞

1

n
log P

(e)
ijk,n ≤ −dijk,

whereP
(e)
ijk,n denotes the maximum probability of error

when deciding, via the GLRT, between release scenarios
Li and Lj using information from a sensor placed at
location Bk.

Thus, for every sensor location inB we have an upper
bound on the GLRT’s probability of error when deciding
between any two scenarios inL . This result will prove
useful when it comes to selecting locations to place a
limited number of sensors.

A. Fusing information from multiple sensors

So far all of the results presented for the source
localization problem considered the binary GLRT in (6)
when the real problem is to select a location that appears
within the scenarios inL . One approach is to make a
series of decisions of the form (6) until a single release
scenario has been chosen.

Assume, without loss of generality, that the sensors are
placed at locationsB1, . . . , BK . Using the observations
from sensorBk∗ , wherek∗ = argmaxkd12k, a decision
is made between scenariosL1 and L2 via the GLRT
with thresholdd12k∗ , as established in (6) and (12). This
scenario is then compared withL3 by the GLRT, and so
on, until N − 1 decisions have been made and only one
scenario fromL is accepted. The location associated
with this selected scenario is declared the CBRN source
location. We will refer to this localization paradigm as
the sequential GLRT approach.

Alternatively, localization can be performed using all
sensor information in unison by selecting the location
with greatest likelihood in a single decision. We will
refer to this decision paradigm as thecentralized max-
imum likelihood approach. Unfortunately, the amount
of information needed to fully fit a complete joint
probability mass function for all sensor observation
combinations makes it practically impossible. Instead,

joint log-likelihood values under scenarioLj can be
approximated via (4) and

P (Lj) =
K

∑

k=1

log sup
θj∈Ωj

P k
θj

(yk,n). (13)

Localization is then performed by selecting the location
associated withL∗ ∈ L which maximizes the value in
(13).

The sequential GLRT and centralized maximum like-
lihood localization techniques can be combined. In what
we will call the hybrid approach to localization, a
sequence of decisions is made, as in the sequential
GLRT approach, but each decision employs information
from more than one sensors. Assume, again, without
loss of generality, that sensors are placed at locations
B1, . . . , BK . Using observations fromm sensors at
locationsBk∗

1
, . . . , Bk∗

m
corresponding to them largest

values ofd12k, k = 1, . . . ,K, scenarioL1 is declared if

P (L1) =

m
∑

t=1

log sup
θ∈Ω1

P
k∗

t

θ (yk∗

t ,n)

>P (L2) =

m
∑

t=1

log sup
θ∈Ω2

P
k∗

t

θ (yk∗

t ,n),

andL2 is declared otherwise. The chosen scenario from
this decision is then compared to scenarioL3 in the same
manner. This process continues until only one release
scenario remains. In the extreme case in which only
one sensor is used in each test within the sequence, this
approach is equivalent to the sequential GLRT with every
threshold set to0. In the other extreme case, in which
every deployed sensor is used in each test within the
sequence, this approach is equivalent to the centralized
maximum likelihood approach.

VI. SENSOR PLACEMENT

Now that performance guarantees have been estab-
lished for each sensor location inB, the question of
where to placeK < M sensors can be addressed.
Using the bound in Proposition V.4, we can select the
K elements ofB such that the worst case error when
differentiating between any two release scenarios inL is
minimized. This is done, as in [4], via the mixed integer
linear program (MILP)

max ǫ

s.t.
∑M

k=1 xk = K,
∑M

k=1 yijk = 1, i, j = 1, . . . , N, i < j,
yijk ≤ xk, ∀i, j, i < j, k = 1, . . . ,M,

ǫ ≤
∑M

k=1 dijkyijk, ∀i, j, i < j,
yijk ≥ 0, ∀i, j, k, i < j,
xk ∈ {0, 1}, ∀k.

(14)

In (14), thexk are the indicator functions for place-
ment of a sensor at locationBk. Since onlyK sensors
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are available, the number of positive indicator variables
is limited in the constraint

∑K
k=1 xk = K. The constraint

ǫ ≤
∑K

k=1 dijkyijk, where dijk is defined in (12),
ensures that for every release scenario pair inL , there
exists adijk at least as large asǫ. Although shown to
be NP-hard, (14) can be solved efficiently for large sets
B andL using a special purpose algorithm [17].

Let Y be any subset ofB with cardinalityK. Further
let x(Y ) denote the vector of decision variables where
xk(Y ) denotes the presence ofBk in Y . Define

ǫ(Y ) = min
i<j

max
{k|xk(Y )=1}

dijk.

This term simply represents the worst case pair-wise
error probability exponent present in the placement solu-
tion Y . Allowing x∗, y∗, andǫ∗ to represent the optimal
decision variables in (14), we have the following result
from [17], but now with dijk ’s corresponding to the
Markovian rather than the iid case.

Proposition VI.1 For any sensor placementY we have

ǫ∗ ≥ ǫ(Y ).

Moreover,
ǫ∗ = min

i<j
max

{k|x∗

k
=1}

dijk (15)

and the optimal solution satisfies

y∗
ijk =

{

1, if k = argmax{k|x∗

k
=1}dijk,

0, otherwise,

for all i, j, i < j, and all k, where at most oney∗
ijk is

set to1 for a given(i, j) pair.

For the sequential GLRT decision making scheme, a
performance guarantee for sensor placement determined
via solution to (14) is found in the following proposition.
The proof is provided in Appendix C.

Proposition VI.2 Let x∗, y∗, and ǫ∗ be an optimal
solution to the MILP in (14). Place sensors at loca-
tions Bk such that x∗

k = 1 and for every(Li, Lj)
scenario pair, select one sensor with indexk∗

ij such that
yijk∗

ij
= 1. Then, the worst case probability of error for

the sequential GLRT decision rule,P
(e),opt
n , satisfies

lim sup
n→∞

1

n
P (e),opt

n ≤ −ǫ∗.

VII. N UMERICAL EXPERIMENTATION

To demonstrate the performance of the sensor place-
ment approach of Section VI and the two-stage CBRN
release detection and localization of Section III, we
simulated several release scenarios in two illustrative

environments. In the first environment – the toy environ-
ment – CBRN releases were simulated in theQuick Ur-
ban & Industrial Complex (QUIC)Dispersion Modeling
System [5] developed at the Los Alamos National Lab-
oratory. QUIC first solves the fluid dynamics problem
of determining local wind eddies throughout a modeled
three-dimensional, outdoor setting using the methods of
Röckle [18]. Using the fluid flow solution, QUIC simu-
lates the travel of CBRN particulates via a Lagrangian
random walk. Previously, the QUIC codes have been
tested and validated for real-world situations [5]. A three-
dimensional illustration of the toy environment some
time after a QUIC simulated point release is found in
Figure 1.

Additionally, CBRN releases were simulated using a
simulator we developed based on theLattice Boltzmann
Method (LBM). LBM evolved from the numerical fluid
modeling techniqueLattice Gas Automata (LGA), in
which parcels of air adhere to microscopic laws which
dictate their movement. Macroscopic values of flow ve-
locities and densities are then derived by the underlying
microscopic properties propagated by the algorithm [19].
Unfortunately, LGA often falls victim to instability in
the face of statistical noise [20]. LBM extends LGA
by considering air parcel movement more notionally by
modeling microscopic air parcel velocities as distribu-
tions in theLattice Boltzmann Equation (LBE). It has
been shown that under reasonable starting conditions
LBM provides accurate approximations to fluid flows.
Further, the macroscopic Navier-Stokes equations can be
recovered from the microscopic LBE [6].

Fig. 1. Toy environment QUIC representation. The dots represent
dispersed particulates some time after a point release. The release
location is between the cylinder and the top-most block in thefigure.

Wind is the main driver of particulate transportation.
As such, fluid flow accuracy should be of prime concern
when selecting a dispersion simulator. This becomes
even more important if the environment of interest con-
tains, as in the scenarios considered here, obstructions
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or irregular geometries. These characteristics produce
irregularities in the environment’s wind field. Both QUIC
and LBM accept nominal wind conditions which are
translated into varying wind eddies distributed through-
out the environment.

It should be noted that Markov chains have been
shown to be good approximations of Lagrangian ran-
dom walk based dispersion models [21], such as the
dispersion modeling used by QUIC. One should expect
to see our localization approach to perform well on
QUIC generated data. Our LBM model, however, is not
susceptible to the same ailment.

We stress that these two independently developed
simulators make none of the distributional assumptions
(Markovian particulate concentrations) our localization
methods postulate. They simply consider a point release
and simulate the physics of dispersion in the given
environment and under a given weather pattern. Hence,
the results we produce assess not only the performance
of the methods but also the validity of our assumptions.

In the second environment –the city grid environment–
CBRN releases were also simulated in QUIC and LBM.
This environment consists of geometries more typical
of dense urban areas. It was within this environment
that we compared the agent concentration profiles of
the two different dispersion simulators at a sampler
located down wind of the point release. This compar-
ison appears in Figure 2. These models have different
discretizations of the three-dimensional model and hence
produce concentration values that differ in scale. This
has been accommodated in Figure 2 by reporting the
percentage of all observed concentrations reported by
a single sensor downwind from a release. The LBM
simulator produces a much smoother agent concentration
evolution than the QUIC simulator. Thus, noise within
the evaluation of the proposed methodologies when the
LBM data are used is primarily due to our sensor false
alarm model rather than the dispersion model. Further
dissimilarities between the two concentration profiles
also stem from differences in the way surface conditions
are treated in the two simulated environments. QUIC
employs boundary conditions to reflect interaction with
a concrete surface. The LBM representation, on the other
hand, uses only the so-called “bounce back” boundary
conditions [6].

A. Toy Environment

To demonstrate the performance of the proposed
techniques, first a simple three-dimensional environment
with several large obstructions (i.e., buildings in an
urban setting) was modeled in QUIC and LBM. CBRN
point releases originating from three release locations
were simulated with wind originating from NNW, N, or
NNE. 225 potential sensor locations are considered on an
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Fig. 2. Evolution of concentration at a sensor downwind fromthe
source of the CBRN event.

evenly spaced grid near ground level. Figure 3 illustrates
a cross section of the environment with the locations of
the obstructions (larger shapes) and releases (denoted by
an “x”).
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Fig. 3. Toy environment with optimal sensor placement solution.

The probability laws were determined empirically via
Monte Carlo simulation (using (1) and (5)) for each
combination of wind direction, release location, and
sensor location. First, sensor concentration observations
are encoded into binary outputs indicating the presence
of non-nil concentration. Considering the binary nature
of the sensor readings, sensor measurement noise is
introduced via Bernoulli trials which result in flipping
sensor observations. The resulting noisy sensor readings
provide a wealth of observations from which probability
laws can be established, allowing for solution of (11)
and the determination of thedijk in (12). For evalu-
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ation of the release detection and source localization
methodologies, sensors were sampled once per second
for 50 seconds, resulting in an observation window of
50 binary indicators of the presence of a CBRN agent.
In the case of both the QUIC and LBM data, by the
time six sensors are placed within the environment there
is no further improvement in the asymptotic worst case
localization error. The solution depicted for the case in
which QUIC data were used is shown in Figure 3 as
the small circles. The small squares correspond to the
optimal sensor placement determined using LBM data.

A test set is constructed for each release location by
first selecting a wind direction according to a “wind
rose” which describes the likelihood of each wind di-
rection. Then, using the simulations from which the
probability laws were derived, test sensor observations
are generated.

1) Release detection evaluation:For each scenario
in the test set, a release was declared whenever at
least one sensor’s observations resulted in declaring a
CBRN attack according to the test in (2). To gain an
understanding on the CBRN detector’s performance, this
process was conducted for many different values ofη
to facilitate the construction of theReceiver Operating
Characteristic (ROC)curve. When a reasonable sensor
error rate of 1/8 was used in both the case in which
QUIC data were used in the evaluation and when LBM
data were used, the detector attained perfect detection
performance, with 100% probability of detection and
0% probability of false alarm. To better understand how
robust our detection methodology is to sensor noise, we
repeated the experiment with different sensor error rates.
Figure 4 shows the probability of detection achieved
when 0% probability of false alarm is demonstrated
as a function of sensor error rate. As shown, there is
a precipitous decline in detection performance by the
time roughly one third of the sensor measurements are
erroneous.

2) Source localization evaluation:The ability of all
three localization methodologies we outlined in Sec-
tion V was also evaluated on each test scenario. Table I
displays the accuracy of each approach.

TABLE I
ACCURACY OF LOCALIZATION METHODOLOGIES IN THE TOY

ENVIRONMENT

QUIC Data LBM Data

Sequential 99.7% 98.3%
Centralized 100% 99.7%

Hybrid 100% 99.7%

When the hybrid localization approach is used, gains
in localization accuracy begin to disappear after a certain
number of sensors are used in each decision within the
sequence of maximum likelihood tests. This accuracy
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Fig. 4. Probability of detection as the error rate for the twostate
CBRN sensor grows. Reported values correspond to zero observed
false alarms.

is equal to the accuracy attained by the centralized
maximum likelihood approach. When QUIC data were
used for evaluation, perfect performance was observed
when only one sensor was used in each decision in the
sequence. This actually corrected the one mistake found
when the sequential GLRT localization technique was
used. When LBM data were used for evaluation, it was
not until three sensors were employed for each decision
within the sequence of maximum likelihood tests that the
same performance as the maximum likelihood approach
was observed.

B. City Grid Environment

To further evaluate the proposed CBRN detector and
locator, a three-dimensional environment inspired by a
dense urban grid pattern was modeled in QUIC as well as
using LBM. The environment consists of a city grid, four
blocks-by-four blocks. Each block is 100 meters-by-100
meters with 10 meter-wide throughways. Each block’s
height is drawn randomly from the uniform distribution
ranging from 20 to 60 meters. Sensors are allowed to
be placed at any intersection and five intersections are
considered as potential release locations. The shape of
the grid, as well as the location of simulated releases, is
shown in Figure 5.

CBRN event scenarios considered are the 40 unique
combinations of five different release locations within the
grid with wind blowing at 1 m/s or 5 m/s and originating
from the four cardinal directions. The two selected wind
speeds represent nominal wind conditions, but do not
translate into a uniform wind field. As the simulation
proceeds, local wind eddies vary according to conditions
incited by the presence of buildings within the grid.
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Fig. 5. City environment with optimal sensor placement solution.

As in Subsection VII-A, the probability laws ac-
cording to (1) and (5) for each combination of CBRN
scenario and sensor location are determined by Monte
Carlo simulation using data generated from both QUIC
and LBM simulations. This time, however, not only is
the binary sensor model with Bernoulli false alarms
considered, but a real valued sensor model with additive
white noise is considered as well. These sensors are
modeled as

Ĉ = C + N(0, σǫ), (16)

whereC is the actual concentration of particulate present
at the sensor’s location,N(0, σǫ) denotes a normally
distributed random variable with mean0 and standard
deviationσǫ, and Ĉ denotes the sensor’s reported con-
centration observation. Values of̂C were then translated
into a discretized representation of five concentration
states. First a value ofσǫ which produces an equivalent
false alarm as the binary sensor model was used. To
illustrate the power of increasing the number of concen-
tration states used in the analysis, the normal random
variate in (16) was replaced withN(0, 10σǫ).

For the binary sensor case, if data generated via
LBM were used for analysis, little improvement in worst
case error probability is observed after six sensors are
deployed. However, when data generated via QUIC were
used for analysis, it is not until 16 sensors are deployed
that no further improvement is made in the bound on the
worst case error probability.

For the real-valued sensor case with mild noise, if
data generated via LBM were used for analysis, once
five sensors are placed in the environment no further
improvement in worst case error probability is observed.
These five sensor locations correspond to the five release
locations in the environment. When QUIC data were

employed for analysis, no further improvement in the
worst case error probability is observed after 13 sensors
have been deployed. The optimal placements of real-
valued sensors with mild noise are presented in Figure 5.

In the case of real valued sensor models with large
noise, analysis utilizing LBM data shows no further
improvement after eight sensors are deployed. When
QUIC data is used, no further performance is guaranteed
after the same 13 sensors are deployed. This solution is
the same as the one found in the mild noise case.

A test set for the city grid was constructed for each
of the release locations by first selecting a wind direc-
tion (all four cardinal directions are chosen with equal
likelihood) and then selecting a wind speed (both wind
speeds are selected with equal likelihood). The test set
sensor readings were generated in the same way as the
sensor readings used to determine the probability laws.

1) Release detection evaluation:Following the proce-
dure in Subsection VII-A1, for each scenario in the test
set, a release was considered detected whenever at least
one sensor’s observations lead to the decision of “attack”
via the test in (2). The resulting ROC curves are depicted
in Figure 6. Whether QUIC or LBM simulations were
used to generate scenario data, the detector attains nearly
perfect performance. This holds true regardless of which
sensor model is used.
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Fig. 6. ROC curve of CBRN detector in the city grid environment.

2) Source localization evaluation:The proposed
CBRN localization techniques performed well on both
the QUIC and LBM generated data sets, even when real
valued sensors with large additive noise are used. The
performances observed are listed in Table II.

While all three methodologies perform phenomenally
in both simulated environments, the hybrid and central-
ized maximum likelihood techniques are the apparent
champions, both consistently outperforming the sequen-
tial localization technique. Yet, the sequential technique
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has the advantage of being fully distributed which is
desirable in implementations involving a large number
of sensors.

In some instances, the hybrid approach outperformed
the centralized approach, as noted in the binary sensor
and large noise real valued sensor scenarios using LBM
data. In these cases, reducing the number of sensors used
in a maximum likelihood decision prevented a single
sensor’s observations skewing a computed probability
into an incorrect localization.

C. City Grid Environment with Sensor Constraints

In Subsection VII-B, the optimal solution to (14) was
evaluated whenK was determined by performance gain
analysis. However, it may be the case that a limited
number of sensors are available for deployment. To
assess the performance of the proposed CBRN detector
and source locators in a sensor constrained scenario, we
repeated the analysis in Subsection VII-B, this time with
K = 5, indicating that five sensors are available for
deployment. The optimal placements of binary sensors
under this constraint can be found in Figure 7 using
the QUIC and LBM generated data and binary sensor
models.
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Fig. 7. Optimal placement of 5 sensors in the city environment.

When the number of sensors deployed decreases, the
number of potentially invisible releases (i.e., a release
that is not detected by a single sensor) increases. An
intuitive approach to address this concern is to span the
deployed sensors out as much as possible. It appears, in
Figure 7, that the optimal placement solutions adhere to
this philosophy. Evaluations using the real valued sensor
models produced optimal sensor placements correspond-
ing to the five simulated release locations.

1) Release detection evaluation:There is a significant
decrease in performance due to the increased presence
of invisible releases in the test sets, as illustrated in
Figure 8. However, this degradation is confined solely to
analysis which uses a binary sensor model and CBRN
dispersion modeled using QUIC.
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Fig. 8. ROC curve of CBRN detector in the city grid environment
for the case of using only five sensors.

2) Source localization evaluation:Localization ac-
curacy for all three approaches is listed in Table III.
We actually see an increase in performance when the
number of sensors are limited in the LBM scenarios
with real valued sensors and large additive noise. This is
due to removing sensor information that previously led
to erroneous localizations, a phenomenon similar to the
reason we observed better performance from the hybrid
localization technique over the centralized approach.

An apparent follow up question to the localization
performance analysis is, how well does the optimal
solution to the sensor placement MILP compare to
other, non-optimal solutions? To answer this question,
placements in which the sensor locations are chosen
uniformly randomly were evaluated on the same test set
as the optimal placement solution. The percentage of test
cases that were correctly localized appear in Figure 9.
Clearly, the optimal placement solution outperforms any
of the randomly chosen sensor placements.

VIII. C ONCLUSIONS

We have presented a new two-stage methodology to
the related problems of detecting CBRN events and then
determining the location of their origin. Our approach
bypasses many of the problems “inverse dispersion”
approaches face in an inhomogeneous and uncertain
urban setting.
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TABLE II
ACCURACY OF LOCALIZATION METHODOLOGIES IN THE CITY GRID ENVIRONMENT

QUIC Data QUIC Data QUIC Data LBM Data LBM Data LBM Data
Binary sensors Real valued sensors Real valued sensors Binary Sensors Real valued sensors Real valued sensors

Mild noise Large noise Mild noise Large noise

Sequential 98.42% 93.50% 94.66% 98.98% 94.18% 83.90%
Centralized 99.98% 100% 99.98% 99.82% 100% 99.48%

Hybrid 99.98% 100% 99.32% 99.84% 100% 99.60%

TABLE III
ACCURACY OF LOCALIZATION METHODOLOGIES IN THE CITY GRID ENVIRONMENT WHEN ONLY FIVE SENSORS ARE AVAILABLE FOR

DEPLOYMENT

QUIC Data QUIC Data QUIC Data LBM Data LBM Data LBM Data
Binary sensors Real valued sensors Real valued sensors Binary Sensors Real valued sensors Real valued sensors

Mild noise Large noise Mild noise Large noise

Sequential 90.76% 93.40% 93.90% 98.72% 94.18% 86.48%
Centralized 90.02% 96.74% 96.62% 98.66% 100% 99.52%

Hybrid 90.02% 97.88% 99.32% 97.40% 100% 99.60%
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Fig. 9. Evaluation of 20 randomly chosen placements of 5 sensors.

To detect attacks, relative entropy is used to compare
current sensor observations to known nominal probabil-
ity laws derived from simulations. Once a CBRN event
is detected, a localization procedure is used to deter-
mine where the CBRN event started. Our localization
techniques include a sequence of GLRT decisions using
information from a single sensor, a maximum likelihood
selector in which information from all deployed sensors
are used, and a hybrid of these two approaches consisting
of a sequence of maximum likelihood decisions using
information from more than one sensor.

The proposed CBRN detection approach demonstrated
promise within a numerical evaluation with data gen-
erated in two different dispersion simulators. Our ap-
proaches for source localization performed well also.
The sequential GLRT localization methodology is vul-
nerable to committing a localization error early on in the

decision making process, yet it offers obvious implemen-
tation advantages in large deployments. The centralized
maximum likelihood localization approach remedies this
by employing all deployed sensor information in a single
decision, however, the hybrid approach committed, in to-
tal, slightly fewer localization errors in our experiments.

APPENDIX A
PROOF OFTHEOREM V.2

Our approach to show optimality of the GLRT will be
to show that it is a subset of decision rules which satisfy
the criterion of Definition 2. To that end we first present
a lemma similar to a result first produced by Hoeffding
[16].

Lemma A.1 The sequence of tests

S
∗
ijk,n = {yk,n| inf

θj∈Ωj

I2(EEE
yk,n

2 |ΠΠΠk
θj

) ≥ λ} (17)

is optimal under Definition 2.

Proof: Consider the sequence of tests

Ŝijk,n(θj) = {yk,n|I2(EEE
yk,n

2 |ΠΠΠk
θj

) ≥ λ}.

By Lemma 1 of [22], for allθj ∈ Ωj , the constraint

lim sup
n→∞

1

n
log α̂ijk,n(θj) < −λ

is satisfied and the value

− lim sup
n→∞

1

n
log β̂ijk,n(θi)

is maximized uniformly over allθi ∈ Ωi, where
α̂ijk,n(θj) and β̂ijk,n(θi) indicate the Type-I and Type-
II errors of testŜijk,n(θj). Thus, the constraint (7) is
satisfied for testS ∗

ijk,n, sinceyk,n ∈ S ∗
ijk,n if and only

if
yk,n ∈

⋃

θj∈Ωj

Ŝijk,n(θj).
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Further, by the same reasoning and using the
union bound, it must be the case that the quantity
− lim supn→∞

1
n log β∗

ijk,n(θi) is maximized uniformly
over all θi ∈ Ωi.

Now, allow yk,n ∈ S GLRT
ijk,n . Then we have,

λ ≤
1

n
log sup

θi∈Ωi

P k
θi

(yk,n) −
1

n
log sup

θj∈Ωj

P k
θj

(yk,n)

= − H(EEE yk,n

2 ) − inf
θi∈Ωi

I2(EEE
yk,n

2 |ΠΠΠk
θi

)

−
1

n
log sup

θj∈Ωj

P k
θj

(yk,n)

≤− H(EEE yk,n

2 ) −
1

n
log sup

θj∈Ωj

P k
θj

(yk,n)

= inf
θj∈Ωj

I2(EEE
yk,n

2 |ΠΠΠk
θj

),

whereH(·) is theempirical entropy, defined as

H(EEE yk,n

2 ) = −

|Σ|
∑

u=1

|Σ|
∑

v=1

E
yk,n

2 (σv, σu) log E
yk,n

2 (σu|σv).

The first and second equalities stem from the definitions
of H and I2. The second inequality is the result of
the non-negativity ofI2. Given (17), it follows that
S GLRT

ijk,n ⊆ S ∗
ijk,n and Lemma A.1 establishes that the

constraint (7) is satisfied for the GLRT.
For anyθi ∈ Ωi note

βGLRT
ijk,n (θi) =Pθi

[yk,n /∈ S
GLRT
ijk,n ]

=Pθi
[yk,n /∈ S

∗
ijk,n]

+ Pθi
[yk,n ∈ S

∗
ijk,n,yk,n /∈ S

GLRT
ijk,n ].

If yk,n /∈ S GLRT
ijk,n ,

λ >
1

n
log sup

θi∈Ωi

P k
θi

(yk,n) −
1

n
log sup

θj∈Ωj

P k
θj

(yk,n)

= − H(EEE yk,n

2 ) − inf
θi∈Ωi

I2(EEE
yk,n

2 |ΠΠΠk
θi

)

+ H(EEE yk,n

2 ) + inf
θj∈Ωj

I2(EEE
yk,n

2 |ΠΠΠθj
)

= inf
θj∈Ωj

I2(EEE
yk,n

2 |ΠΠΠθj
) − inf

θi∈Ωi

I2(EEE
yk,n

2 |ΠΠΠθi
).

Since yk,n ∈ S ∗
ijk,n implies λ ≤

infθj∈Ωj
I2(EEE

yk,n

2 |ΠΠΠk
θj

), when yk,n ∈ S ∗
ijk,n and

yk,n /∈ S GLRT
ijk,n we haveEEE

yk,n

2 ∈ Cijk. By Theorem
V.1, for all θi ∈ Ωi,

− lim sup
θi∈Ωi

1

n
log Pk

θi
[yk,n ∈ S

∗
ijk,n,yk,n /∈ S

GLRT
ijk,n ]

≥ inf
Q∈Cijk

I2(Q|ΠΠΠk
θi

).

Therefore,

− lim sup
n→∞

1

n
log βGLRT

ijk,n (θi)

= min

{

− lim sup
n→∞

1

n
log β∗

ijk,n(θi),

− lim sup
n→∞

1

n
log Pk

θi
[yk,n ∈ S

∗
ijk,n,yk,n /∈ S

GLRT
ijk,n ]

}

≥min{ inf
Q∈Aijk

I2(Q|ΠΠΠk
θi

), inf
Q∈Cijk

I2(Q|ΠΠΠk
θi

)}

= inf
Q∈Aijk

I2(Q|ΠΠΠk
θi

).

It follows that the Type-II error probability decreases
exponentially to zero faster than the Type-II error prob-
ability of test S ∗

ijk,n. Lemma A.1 has already estab-
lished thatS ∗

ijk,n is optimal under Definition 2. We
can therefore conclude that the GLRT is optimal under
Definition 2.

APPENDIX B
PROOF OFLEMMA V.3

If the GLRT is not optimal, for allQ /∈ Dijk,
infθj∈Ωj

I2(Q|ΠΠΠk
θj

) − infθi∈Ωi
I2(Q|ΠΠΠk

θi
) ≥ λ. Equiv-

alently,

inf
θj∈Ωj

I2(Q|ΠΠΠk
θj

) ≥ λ + inf
θi∈Ωi

I2(Q|ΠΠΠk
θi

) ≥ λ,

where the last inequality follows from the non-negativity
of I2. Therefore, using Lemma A.1, it follows that

lim sup
n→∞

1

n
log αGLRT

ijk (θj) ≤ −λ, ∀θj ∈ Ωj .

APPENDIX C
PROOF OFPROPOSITIONVI.2

The sensor with indexk∗
ij will use the GLRT and

achieve a maximum probability of error with exponent
no smaller thandijk∗

ij
. For every i and j 6= i define

En(i, j) as the event that the GLRT employed by the
sensor atBk∗

ij
will decide Lj when Li is true. For all

δn > 0 and large enoughn we have

Pθi
[error] ≤Pθi

[∪j 6=iEn(i, j)]

≤
∑

j 6=i

e
−n(dijk∗

ij
+δn)

≤ (N − 1)e−n(ǫ∗+δn).

The second inequality above is due to Proposition V.4
and the last inequality above is due to (15). Since the
bound above holds for alli we obtain the desired result.
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