IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, MONTH,¥AR 1

Model-Free Stochastic Localization of CBRN
Releases

R. Taylor Locké and loannis Ch. PaschalidisSenior Member, IEEE

Abstract—We present a novel two-stage methodology for more lethal CBRN agents and delivery mechanisms.
locating a Chemical, Biological, Radiological, or Nuclear Urban areas are of particular concern since these areas

(CBRN) source in an urban area using a network of anq to have large population densities and are centers
sensors. In contrast to earlier work, our approach does for | | d politi 1

not solve an inverse dispersion problem but relies on data or af@!e'scae Commerce an _p.0| ics [1].

obtained from a simulation of the CBRN dispersion to In this context, it becomes critical to detect and locate

obtain probabilistic descriptors of sensor measurements a CBRN source. Early detection and accurate localiza-
under a variety of CBRN release scenarios. At its first stage, tion enable effective emergency response. Localization
subsequent sensor observations under nominal, CBRN is important even for weak CBRN sources as it can help

event-free conditions are assumed to be independent and . - Lo
identically distributed and we rely on the method of types prevent a harmful release and facilitate investigating the

to detect a CBRN event. Conditional on such an event, 0rigins of the source (forensics).

subsequent sensor observations are assumed to follow a Invariably, all existing approaches rely on a network of
Markov process. Using composite hypothesis testing we sensors deployed in the urban area and able to measure
map sensor measurements to a source location chosen OUlCBRN particulate concentrations. They differ however,

of a discrete set of possible locations. We leverage large. how th th data. A related bl .
deviation techniques to obtain a bound on the localization In how they process the sensor data. A related problem IS

probability of error and propose several methodologies that of placing a given set of sensors so as to optimize a
for fusing sensor data to arrive at a localization decision, performance metric related to detection and localization.
including a distributed one. We also address the problem  Earlier work (reviewed later in more detail) has mostly
of optimally placing sensors to minimize the localization - ¢4ncentrated on solving a difficult inverse dispersion
probability of error. Our techniques are validated numer- .
ically using two different CBRN release simulators. prob!em in order _to_ locate the source. Sth an approach
requires an explicit model of CBRN dispersion and,
typically, simple analytical models are being assumed
to render the inverse problem tractable. Yet, simple
dispersion models are not accurate in urban areas for
a variety of reasons. First, a typical city tends to be
l. INTRODUCTION characterized by irregular geometry, many different types
ONCERN regardingChemical, Biological, Radio- of structures and buildings (each with its own surface
logical, or Nuclear (CBRN)terrorism is steadily texture), and highly dynamic population fluxes, thus,
increasing. This is due to gains in the technologicgliving rise to aninhomogeneoudispersion terrain. Sec-
capabilities of producing existing and potentially newpnd, weather patterns, which drive CBRN dispersion,
are highly variable and interact with the various city
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the absence of a source, sensor measurements are driven computationally within reach. These simulators
by noise. Using the method of types ([2], [3]) we com- simply simulate the physics of dispersion from
pare sequences of measurements with the probabilistic some point release under given weather conditions
descriptors derived from the simulation to determine the  and make none of the distributional assumptions
presence of a source. We develop a rigorous detection our approach posits. Although it is certainly true
test and show asymptotic Neyman-Pearson optimality. that QUIC and LBM make certain assumptions
Positive source detection triggers the 2nd — localiza-  and approximations to simplify the physics of dis-
tion — stage of our approach. During that stage, and  persion, our approach decouples these assumptions
conditional on the presence of particulates from a source, from the process of release detection and source
subsequent measurements at a sensor are dependent. localization by relying solely on measurements ob-
We make a Markovian assumption and develop an ap- tained from sensors during particulate propagation.
proach to compare measurements from the sensors to the As such, our approach naturally extends to any

probabilistic descriptors obtained from the simulation. simulator or even to measurements obtained from
Localization is formulated as aomposite hypothesis physical experimentation. Different scenarios will
testing problemWe devise several versions of a local- call for different dispersion simulators. If accuracy

ization algorithm — a distributed, a centralized, and a is less of an issue, one could select a faster, less
hybrid — using different forms of data fusion from the accurate simulator. If the area under observation
multiple sensors. We derive a bound on the probability = contains heavy foliage, a simulator with satis-
of error by extending our earlier work from [4], which factory deposition accuracy should be selected.
also considered a localization problem but in a very For situations in which particulate deposition is
different application domain. Further, we use this bound  important due to physicochemical properties of
to formulate the problem of placing sensors so asto min-  the dispersed agent or sensor performance limi-
imize the probability of error. As our numerical results tations, say, the computationally efficient method
demonstrate such an optimization can lead to a dramatic  of estimating boundary properties presented in [7]
improvement in the error probability compared to ad-hoc ~ could be of use. A set of illustrative numerical
sensor placement. The end result of our approach is a results demonstrate excellent performance of our
placement of the sensors and asymptotic guarantee methods. The results show promise for a practical
on the corresponding probability of error. CBRN urban detection and localization system
One will notice some similarities between the theoret- based on this work.
ical material presented in [4] and in this paper. We recastThe remainder of the paper is organized as follows.
theorems and definitions here in a new application botWe discuss related work in Section Il. We formulate
for the sake of completeness as well as to provide baakar problem in Section Il where we also introduce
ground for our (Markovian) extensions to the previousome of our notation. We deal with the detection stage

(iid) work. in Section IV and the localization stage in Section V.
We summarize our contributions below: The placement problem is discussed in Section VI.
1) We propose a new paradigm for CBRN source dd-he two dispersion simulators and a host of numerical

2)

3)

4)

tection and localization that bypasses many of thesults are presented in Section VII. Final remarks are
problems existing “inverse dispersion” approachegs Section VIIl. The Appendix contains technical proofs
face in an inhomogeneous and uncertain urbam our results.

setting. Notational Conventions: Throughout the paper all
We extend our earlier asymptotic performanceectors are assumed to be column vectors. We use lower
analysis of composite hypothesis testing in [4§ase boldface letters to denote vectors and for economy
from the iid to a Markovian setting. of space we writex = (z1,...,2g) for the column

We demonstrate how to place sensors so as \Mector x. x’ denotes the transpose of and 0 the
minimize the localization probability of error. vector of all zeroes. We use upper case boldface letters
We validate our approach using two differentto denote matrices. Finally, we use/| to denote the
and independently developed, dispersion simulgardinality of a sete/.

tion engines: the Quick Urban & Industrial Com-

plex (QUIC) Dispersion Modeling System [5] and Il. RELATED WORK

a new simulator based on theattice Boltzmann A sequential measurement based hypothesis testing
method (LBM)that we develop for our purposesparadigm for CBRN release detection is presented in [8].
The latter simulator is of independent interesthere, the authors make the assumption that concentra-
as it is known to be a naturally parallelizablgion samples adhere to a zero-mean Gaussian error and
algorithm [6]. This quality places large scenarioformulate a maximum likelihood test used for release
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detection. Our detection approach is similar in that it isignal strength measurements corresponding to packets
a hypothesis test. However, we make no assumptiomansmitted by the sensor and received by a set of station-
on the error a CBRN sensor makes, opting insteady clusterheads. [4] also solves the problem of optimally
to learn a probabilistic law of nominal, release-freplacing clusterheads to reduce erroneous localizations.
sensor observations. Whenever a sensor's observatidime key difference between that work and the work
sufficiently depart, according to a Hoeffding test, fronpresented here, aside from vastly different application
the known nominal behavior, we declare that a CBRHEIreas, is that subsequent observations made by the clus-
release has occurred. terheads in the wireless sensor localization problem can
Existing CBRN source localization approaches ([9he considered iid. Under a CBRN release scenario, if a
[10], [11]) observe CBRN agent concentrations and sol@BRN sensor observes large particle concentrations it is
the inverse problem of tracing dispersion backward iikely to observe large particle concentrations in its next
time and space to the source of the release. As discussginple. To that end, in this work we extend the theory
limitations of this methodology stem from the irregulapresented in [4] to allow for dependencies in subsequent
and dynamic phenomena typically found in urban areagensor observations.
In [9] the presence of challenging geographies and wind Our optimal sensor placement approach also stems
turbulence is accommodated by incorporating Mont#om the work presented in [4], which poses clusterhead
Carlo simulation of fluid dispersion. However, all ofplacement as an optimization problem whose objective
these works suffer from the difficulty of determiningjs to minimize the probability of localization error.
without a detection process, the point in time in whicfThis differs from the more traditional sensor placement
the event started. Barring this information, these invergeethodologies [14], [15], whose objectives are the facil-
problem approaches are vulnerable to erroneous locé&tion and maintenance of general observability under
izations. the possibility of sensor faults. To our knowledge there
Simulation-aided localization of contaminant releasede no other existing CBRN sensor placement techniques
on a continental scale is presented in [12]. In [13], that are motivated by analytically derived localization
inverse problem is replaced by computing the posteri€fror probabilities.
probabilities of a finite set of release locations and
selecting the release location with maximal likelihood. Il. PROBLEM FORMULATION
The computed likelihoods are based on assumptionsConsider a CBRN sensor network deployed in an
on both the distribution of concentration observationgrban setting. Due to the nature of plume dispersion
at sensor locations and a particular dispersion modahd existing CBRN attack response techniques, extreme
Our approach is similar to these, in that localization igrecision on the locations of releases and sensors is
based entirely on sensor observations and probabilistiot needed. Rather, general locations (e.g., corner of
descriptors of CBRN releases obtained from simulatio St. and Y Ave.) suffice for disaster avoidance and
with the important difference, however, that the onlyesponse measures. It naturally follows that release and
assumptions we make on concentration observatiopstential sensor locations can be discretized to conform
under release conditions is that they adhere to a firéo-potentially irregular grids. In the following, we assume
order Markov chain. N possible CBRN release scenarios represented by the
While our approach does depend on numerical 6etZ = {L1,...,Ly} and M possible CBRN sensor
physical simulation of agent dispersion to build a stdocations represented by the sét = {B,..., Bu}.
tistical understanding of CBRN release evolution, ondeor applications in which greater precision is required,
this understanding is established the actual dispersithte set of discrete locations can be extended to include
model is no longer used. Hence, we refer to our Ignore locations. However, this accrues the cost of requir-
calization approach as model-free. Additionally, whiléng more simulations. The elements.&f correspond to
we employ two specific dispersion simulators in thé release location and a set of release associated charac-
numerical evaluation in Section VII, any dispersioneristics potentially including wind direction, variaity
simulation, numerical or physical, can be used. W@ wind speed, and release mass, among others. Wind, in
suggest using the simulation scheme that provides tparticular, is a critical component of a release scenario
most accurate depiction of particulate releases for tlé it is the primary mode of particulate transport. For
particular application. This is even more important i release scenarib;, the corresponding set of release
applications where turbulence plays a greater role @haracteristics will be denoted; = {9;,...,0}QJ‘}.
particulate displacement. Let y* denote the vector of sensor observations made
Our localization approach is inspired by [4]. Thereby a sensor at locatioB;,. Each sensor outputs a CBRN
a wireless sensor deployed in an indoor environment égent concentration estimation and potentially local wind
located through sequential hypothesis testing by usimgpservations. Since different concentrations result in
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different levels of casualties, counter measures, atmtations B, € 2 from observed sequenced =
responses, observed concentrations can naturally be dig}, . .., y% ) with sufficiently largeN by settingu* =
cretized to concentration levels (e.§), z], [z, yrorso), &Y.

etc., wheregycrso represents a concentration that would When the sensor network is operational, a sequence
lead to an accumulated dosage that produces a 5@%m — (y*, ... y*) is observed for some < N. An
chance of survival). Eacly® is mapped to a symbol empirical probability measune* = &¥"" is constructed

in a finite alphabet denoted b = {o1,...,0%}. via (1). To determine if the observations " are

A sequence of. sensor observations at locati@), is anomalous, we employ the so-calletethod of types
denotedy®™ = (yf,...,yk). It is assumed throughout The following theorem from [3] is useful.

the sequel that an initial state gf is known a priori.

While nqt under an att:?\ck scenario, a sensor's agegﬁeorem V.1 For everyw € M, () let
concentration approximation fluctuations are attribute

to measurement noise. Accordingly, when there is no L (v) = H(v|p"),
CBRN attack, the sensor’s readings can be assumed to
be iid. where H (v|u¥) is the relative entropy of the probability

Under a release scenario, however, the agent dispergestor v with respect top*:
gradually, resulting in concentration observations that Bl
charge MUt soner i  sensors samng e TR () = 3 vl s 217

' N y a — K (o)
sensor at a certain time step, one can expect to see a
similar concentration observation in the next time steghen, for any sel’ of probability vectors ini (%)

To capture this dependency, we model concentration 1 .
level at a sensor when there is an attack as a first-order— info I(v) <liminf —log P ,» {g’y e F] <
Markov chain. ver L "

The first problem we wish to solve is to detect a  limsup —log P ,» {é"y "e F] < —inf I(v),
CBRN event, given a set of observatiofg!'™, ..., n—oo M ver
y¥m1 from K sensors placed at locatiod, ..., Bx. WwhereI'® denotes the interior of.

Once a CBRN event is identified, the next problem is to

determine where the event originated. We also wish to Theorem V.1 rigorously identifies a distance metric
solve the related problem of selecting the locations frofiat can be used in what is known as the Hoeffding's
% where we can plac&” sensors (withX < M) such rule [3]:

that we minimize the probability of localization error. {

no attack, ifI,(&Y"") < n,

. . . . k7n _
The solution to this last problem is accomplished through 7 (y™") attack. otherwise.

analysis of theoretical performance guarantees.

)

Here, n is a threshold that can be determinedras=
) ) i —log -, wheree is a tolerable false alarm rate [4].

In this section we describe our approach to the prob- | grder to assess the validity and optimality of tests of
lem of release detection. We first construct empiricghe form (2), we need to define what notion of optimality
probability laws for the vectoy® under nominal con- \ye hope to attain. One often adopted measure of any
ditions and then compare these laws with empiric@ecision test's optimality is to consider the likelihood of
probability measures based on in situ sensor obserYaaking an error. The two types of error the Hoeffding
tions. When a measure differs significantly from theast in (2) can make are: declaring an anomaly when in
established probability laws, a release is declared apg the activity recorded iry*” was nominal (Type-|
the localization engine is triggered. error), or not declaring an anomaly wheti'" departs

_Allow M, (X) to denote the set of all probabil-fom nominal behavior (Type-Il error). We denote the
ity vectors with support defined by the state alphab%?obabilities of these two errors by, and Gy .,

¥ = {o1,...,0yy}. Consider the empirical probability respectively. ' '
measure of a sequengé”™ = (y¥,...,y"),

IV. RELEASE DETECTION

A particular challenge arises when trying to evaluate
ko 1 — Bk, While the probability law depicting nominal behav-

¢v (o) = n Y Wyi=o} r=1..,[3, () ior 12* can be used to evaluate, , = P« [[,(€Y"") >
=1 7], computation ofg;, ,, requires considering all proba-

where1{-} denotes the indicator function. Lé®" " = bility vectors from the sef\/; () \ {x*}. With this in
(&Y (o), . .. ,é”‘yk’”’(a‘z)ﬂ)). First we construct the em- mind, we introduce the following concept of asymptotic

pirical probability law p* € M;(X) for all sensor optimality known as the Neyman-Pearson criterion.
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Definition 1
A test.” is considered optimal for a given > 0 if,
among all tests that satisfy

sensor observations (note we now assume that there is a
known initial concentration statg,) takes the form

n

1 n 1
hmsup — Qg < -1 602}’ (Uva Uu) = - Z 1{}’1‘71 =0v,Yi = Uu}' (5)
n—oo N ' n i=1
it maximizes— limsup,,_,, 23, uniformly over all  For any release location and release scenario pair
probability vectors inM; () \ {u*}. (B, L;) we can observg®" under release conditions

f; with sufficiently largeN and obtain a (Markovian)
dempirical probability law as follows:

m = {gg”(gu\gv)}

The following theorem, thanks to Hoeffding [16] an
appearing in [3], establishes the optimality of (2).
Theorem IV.2 The anomaly detector presented in (2) is ouou€T’

optimal under Definition 1. Where@yn (ou|ow) are the empirical transition probabil-

The effect of the first stage conclusion is two-fold!ti€S observed iny”, defined as

First, it establishes a reasonable indication that a CBRN y"

. . y" (5’2 (vaau)
event has actually happened and that release localization &Y (oulow) = = oyn .
analysis is within order. In addition, it provides an 221 63 (0w, 07)

estimation on the time of the CBRN release. In practicer,h

.. . - B yn . - . . ._
the time of attack is taken to be the time at which the firs{ . . empirical .dllstr|but|or<ff2 s said to beshift invari
. . . - . ant if the empirical marginal probabilities of each state
high concentration observation withi™ is sampled.

. yn . . . . .
This is an important contribution to the second stagaere equal. That isf", is shift invariant if

problem, as knowledge of the time of attack decreases = 1z
the amount of parametrizations ®; that need to be & (5,) = Zégyn (On,04) = Z@‘gy" (Ous 00)-
considered. For localization, the window of observations u=1 u=1
beginning at the time of the release and of length

. . . i The next theorem, a version of Sanov’'s Theorem for
determined by an ideal response time is used.

Markov chains proven in [3], provides a convex relative

entropy measure for Markov chains.
V. SOURCE LOCALIZATION

Allow M;(X x X) to denote the set of all discreteTheorem V.1 For every shift invarianQ € M, (X x ¥)
time Markov transition probability matrices on the statéest

alphabet: = {o1,...,0)5}. For each sensor location Bl

and release scenario pdiBy, L;), associate a series of

! L ;. . I II) = v b5l ‘10w vy} )y
first-order Markov transition probability matrlcdi"fj, 2(QI) ;q(o VHz(g(lov)lm (0, )

for all 0; € Q;, defined as . .
where H, is the relative entropy
H’gj = {ﬂ'gj(O'U,O'u)} (3) =]
Ha(q(lo) w(0) = 3 aloulo,) log L201%).
wherer} (0,,0u) = P§ [yf,, = ouly} = 0,]. These — (00, 0u)
matrices depict the CBRN particulate concentration sta%%a

=]

)
u,v=1

evolution over all considered parametrizations of relea eE for any sef’ C M(X x X) of shift invariant
scenarios and available sensor locations. Using (3), t rkov sources
g . - 1 ¢,
probab}:llty of observing a sequence of sensor observa- inf L(QIITE ) < liminf ~ log P% |:£32,k c F] <
tionsy®" can be expressed as Qere g n—oo N I
1 k,n
: n lim sup ~ log P [gg c r} < — inf L(QIIE),
Pfi (yk’ ) :plgj (yg) Hﬂ'gj (Yf—17Yf)7 (4) n—oo T ! Qer !
=t whereI™® denotes the interior of and P’gj is a proba-

where pj; (-) denotes the stationary probability distri+ility evaluated assuming that®™ is drawn according
bution on the observed concentration states at SengonIk .
location B, under release parametrizatiénof scenario !
L;. Consider now the subproblem of using the sensor
Under the assumption of a Markov source, the emmeadings from a sensor at locatid®y, to determine if

pirical measure of a sequengé& = (yo,y1,...,y») Of the CBRN release corresponds to scendrior L;. The
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Generalized Likelihood Ratio Test (GLRIQmpares the  Furthermore, assuming (8) is satisfied
normalized generalized log-likelihood ratio

1
lim sup — log aijkvn(ﬁj)cLRT < =,
Xy = L 1og P, PAGH™) it T
ik n o supg,cq, P (yF) for all 6; € Q;, and
. . 1 )
to a threshold\ and declareg,; to be the release scenario iy sup — log BOERT(0,) < — inf L(QIMS),
whenever n—oo N Qe

n n n for all 0; € Q.
yhr e SGEIT = {y" | Xie(y™) = A}, (6)

Now, in the event that the GLRT is not asymptotically
0?ptimal (i.e., condition (8) does not hold) information on
the error probabilities can still be gleamed. Define the set

and L; otherwise. Selection of the value fox in
(6) is performed through evaluation of decision err
probabilities and is discussed later in this section. o X N . &

The GLRT described in (6) can make two types of 7k = {Qlinfo,eq, I2(Q|_H€j)_mf9i€_9i 12k§9|H0i) <
error. Namely, the decision test can declareto be the A}. Notey™" € .7 GLET if and only if &5 ¢ Zijx.
release scenario when in actuality the release scendri®@m Theorem V.1 it follows:

was L; and vice versa. The probabilities of these errors . 1 GLRT
are represented as, lim sup-—log aji (6;) ©)
- k
aGET(0;) = Py lyh e #GET, S - Q). V6 €y
GLRT (p \ _ pk [k GLRT 1
ijk,n (02) P971 [y ¢ ‘Eﬁzgk’,n ] lim Sup; log 55£7§T(97) (10)
We will refer to the quantities nee _ .
S 7QII_1; IQ(Q‘HQ), V(‘)z € 01
1 €Pijk ‘
lim sup — log aGEET (9.,
el 08 ikn (6;) In addition, we have the following lemma, proven in
1 :
Jim sup = log 55£,§T(9i)» Appendix B.

n—oo N

as the exponents of the Type-l and Type-Il error probé‘-emma V.3 If the GLRT is not optimal, the constraint

bilities, respectively. Jim sup 1 log aCLET(0,) < —\, V0, €

Certainly, some values oA in (6) are better than n—oo M ijkin
others. To evaluate the GLRT's performance, we willi|| holds.
use a generalized version of Definition 1, which we will
call the generalized Neyman-Pearson criterion. We can therefore determine an asymptotic bound on
the exponent of the Type-ll error probability by the

Definition 2 nonlinear program
The decision rulg.7;.. .} is optimal if it satisfies .
& ihn 15 0P Zijk(X,0;) = ming I (QIII,

1 Q. Q,
1imsup;logafjﬂk,n(9j)<—)\, V0, €Q; (7) st g(Q:, Q) <A (11

and maximizes —limsup,,_., = log 37, ,(6;) uni- where ¢(Q;Q;,Q;) = mingeq, L(Q) —
formly over allg; € Q;. ming, cq, I>(QII},). The constraints enforcingQ

, o _to be shift invariant and correspond to valid transition
The following theorem, whose proof is in Appendlxprobabilities for a Markov chain are linear and are

A, e_s_tz?\blishes the optimality of the GLRT according t?epresented by the system of linear inequaliies < 0,
Definition 2. whereq is a “vectorization” ofQ.

) ) ) Using (11),Z;x(A\) = ming,cq, Zi;jrx(A, 0;) is the ex-
Theorem V.2 The GLRT with a threshold is optimal ,onent of the worst case Type-Il error probability of the

under Definition 2 if and only if GLRT (i.e., declaring the release scenarid.jswhen the
inf L(QIE)> inf L(QIE), Vo e, actual release scenario 1s) When we use informatiqn
QE%ijn ’ e ' from sensork. Z;;(-) is a non-increasing, non-negative

) . 8) function, with limy_,. Z;;x(A) = 0. Therefore, there
where ;i = {Q|infg,co; (QIg) < A} and  mygt existA};. > 0 such thatZ;;x(A7;,) = Aj;,, which
@i = {Qlinfy, 0, I2(QM},) —infp,c0, I2(QIIL;) <  represents the exponent of equal Type | and Type Il error

A <infy,eq, IQ(Q\H’gj)}. probabilities in the GLRT. Since there is no guarantee
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that A7;, = Aj;,, (i.e., information from a sensor atjoint log-likelihood values under scenarib; can be
location B, does not provide symmetric decision makin@pproximated via (4) and
via the GLRT), we define K

dlﬂf - maX{)‘z]ka ;ik}a (12) P Zlog ngg P9 ( ) (13)

k=1
and this represents a symmetric error probability exp@pcalization is then performed by selecting the location
nent. In particular, i\, is the maximizer in (12) we let 3ssociated withh* € . which maximizes the value in
(i,7) = (i,79), otherW|se we le(i, j) = (j,7). In either (13).
case, we use the GLRT test that compaPQ;’,k(y’“”) The sequential GLRT and centralized maximum like-
to d;;x. The above leads to the following proposition. |ihood localization techniques can be combined. In what
we will call the hybrid approachto localization, a
Proposition V.4 Suppose the sensor &, uses the sequence of decisions is made, as in the sequential
GLRT and comparesXj;,(y"") to dii. Then, the GLRT approach, but each decision employs information
maximum probab|I|ty of error satisfies from more than one sensors. Assume, again, without
loss of generality, that sensors are placed at locations
By,...,Bk. Using observations fromm sensors at

e) IocauonsBk* Bk* correspondmg to then Iargest

when deC|d|ng via the GLRT, between release scenarios
L; and L; using information from a sensor placed at Zlog sup p yFem)
location Bk. P 6eQ;

lim sup log p

ijk,n
n—oo

< _dzjkv

Thus, for every sensor location i# we have an upper ~P Zlog sup P vk iy,
bound on the GLRT’s probability of error when deciding 0€Q2

between any two scenarios i#f. This result will prove
useful when it comes to selecting locations to place
limited number of sensors.

and L, is declared otherW|se. The chosen scenario from
tfis decision is then compared to scendrioin the same
manner. This process continues until only one release
scenario remains. In the extreme case in which only
A. Fusing information from multiple sensors one sensor is used in each test within the sequence, this

So far all of the results presented for the sourcgpproach is equivalent to the sequential GLRT with every
localization problem considered the binary GLRT in (6jhreshold set td). In the other extreme case, in which
when the real problem is to select a location that apped¢ery deployed sensor is used in each test within the
within the scenarios inZ. One approach is to make asequence, this approach is equivalent to the centralized
series of decisions of the form (6) until a single releaggaximum likelihood approach.
scenario has been chosen.

Assume, without loss of generality, that the sensors are VI. SENSOR PLACEMENT
placed at location$3y, ..., Bx. Using the observations Now that performance guarantees have been estab-
from sensorBy-, wherek* = argmaxd; 2, a decision lished for each sensor location i, the question of
is made between scenarids and L, via the GLRT where to placeK < M sensors can be addressed.
with thresholdd;;+, as established in (6) and (12). ThidJsing the bound in Proposition V.4, we can select the
scenario is then compared wifly by the GLRT, and so K elements of# such that the worst case error when
on, until N — 1 decisions have been made and only ongifferentiating between any two release scenariof’irs
scenario from.Z is accepted. The location associatechinimized. This is done, as in [4], via the mixed integer
with this selected scenario is declared the CBRN sourtirear program (MILP)
location. We will refer to this localization paradigm as | .. .
the sequential GLRT approach

Alternatively, localization can be performed using all E’“ 10k =
sensor information in unison by selecting the location
with greatest likelihood in a single decision. We will

k1y7jk—llj—1 Nai<j7
yljkgxk7 VZJ;L<J7k*]-a"'7J\/[7 (14)

: . - : e <M dijryiges Vi gii < j
refer to this decision paradigm as thentralized max- S 2og=1%jkYijks V41,0 S ],
imum likelihood approachUnfortunately, the amount Yijk > 0, Vi, j,k,i < 7,
of information needed to fully fit a complete joint zx € {0,1}, V.

probability mass function for all sensor observation In (14), thex; are the indicator functions for place-
combinations makes it practically impossible. Insteadpent of a sensor at locatioBy. Since onlyK sensors
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are available, the number of positive indicator variablesnvironments. In the first environment — the toy environ-
is limited in the constrain} ., 2 = K. The constraint ment — CBRN releases were simulated in @ick Ur-
e < Z,le dijkYijk, Where d;j; is defined in (12), ban & Industrial Complex (QUICPispersion Modeling
ensures that for every release scenario paiinthere System [5] developed at the Los Alamos National Lab-
exists ad;;;, at least as large as Although shown to oratory. QUIC first solves the fluid dynamics problem
be NP-hard, (14) can be solved efficiently for large set¥ determining local wind eddies throughout a modeled
2% and.Z using a special purpose algorithm [17]. three-dimensional, outdoor setting using the methods of
Let # be any subset o8 with cardinality K. Further Rockle [18]. Using the fluid flow solution, QUIC simu-
let x(%') denote the vector of decision variables wherktes the travel of CBRN particulates via a Lagrangian

(%) denotes the presence B, in %/. Define random walk. Previously, the QUIC codes have been
) tested and validated for real-world situations [5]. A three
()= ?E?{kle%%:l}dijk- dimensional illustration of the toy environment some

) ) . _time after a QUIC simulated point release is found in
This term simply represents the worst case pair-wiggq re 1.

error probabi!ity exponent present in the placemeqt SOI“'AdditionaIIy, CBRN releases were simulated using a
tion &. Allowing x*, y*, ande" to represent the optimal gjmjator we developed based on thettice Boltzmann
decision variables in (,14)’ we have the follpwmg resulfiethod (LBM) LBM evolved from the numerical fluid
from [17], but now with d;;;’s corresponding to the p,,qeling techniqueLattice Gas Automata (LGA)in
Markovian rather than the iid case. which parcels of air adhere to microscopic laws which

- dictate their movement. Macroscopic values of flow ve-
Proposition VI.1 For any sensor placemest’ we have |qcities and densities are then derived by the underlying

&> ). microscopic properties propagated by the algorithm [19].
Unfortunately, LGA often falls victim to instability in
Moreover, the face of statistical noise [20]. LBM extends LGA
€ =min max d;jk (15) by considering air parcel movement more notionally by
1< {klep=1} modeling microscopic air parcel velocities as distribu-
and the optimal solution satisfies tions in thelattice Boltzmann Equation (LBE}t has

been shown that under reasonable starting conditions
LBM provides accurate approximations to fluid flows.
Further, the macroscopic Navier-Stokes equations can be
for all 4, j, i < j, and all k, where at most ong;;, is recovered from the microscopic LBE [6].

set tol for a given(i, j) pair.

* 1, if k= argma)ﬁk\w;:l}dijka
Yijk =\ 0, otherwise,

For the sequential GLRT decision making scheme,
performance guarantee for sensor placement determit
via solution to (14) is found in the following proposition.
The proof is provided in Appendix C.

Proposition VI.2 Let x*, y*, and ¢ be an optimal —~* - -
solution to the MILP in (14). Place sensors at loca
tions By such thatz; = 1 and for every(L;, L;)
scenario pair, select one sensor with indgx such that
Yijky, = 1. Then, the worst case probability of error for

the sequential GLRT decision rul&\”*", satisfies
: L oe),omt . . , _
lim sup *Pn ’ < —e€. Fig. 1. Toy environment QUIC representation. The dots repres
n—oo T dispersed particulates some time after a point release. Tasee

location is between the cylinder and the top-most block infitpere.

VII. N UMERICAL EXPERIMENTATION Wind is the main driver of particulate transportation.

To demonstrate the performance of the sensor pladss such, fluid flow accuracy should be of prime concern
ment approach of Section VI and the two-stage CBRINhen selecting a dispersion simulator. This becomes
release detection and localization of Section Ill, weven more important if the environment of interest con-
simulated several release scenarios in two illustratiteins, as in the scenarios considered here, obstructions
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or irregular geometries. These characteristics produ
irregularities in the environment'’s wind field. Both QUIC
and LBM accept nominal wind conditions which are
translated into varying wind eddies distributed througt
out the environment.

It should be noted that Markov chains have bee
shown to be good approximations of Lagrangian rai
dom walk based dispersion models [21], such as tl
dispersion modeling used by QUIC. One should expe
to see our localization approach to perform well o

Percent of Observed Concentration

o
@
T

o
>
T

=3
>

o
N
T

Sensor 12 Concentration Profile

Quic
LBM

QUIC generated data. Our LBM model, however, is nc

susceptible to the same ailment. , ‘ ‘ ‘ ‘ ‘ ‘ ‘
We stress that these two independently develop 0 s 10 e Step 2% 3 3

simulators make none of the distributional assumptiol.o

(Markovian particulate Conlcentrations) our Io?alizatioEig. 2. Evolution of concentration at a sensor downwind frtra

methods postulate. They simply consider a point releasgirce of the CBRN event.

and simulate the physics of dispersion in the given

environment and under a given weather pattern. Hence,

the results we produce assess not only the performangg.ny spaced grid near ground level. Figure 3 illustrates
of the methods but also the validity of our assumptions, ;455 section of the environment with the locations of

In the second environment —the city grid environmentg g ohgtrctions (larger shapes) and releases (denoted by
CBRN releases were also simulated in QUIC and LBN,, )

This environment consists of geometries more typical

of dense urban areas. It was within this environmer*

that we compared the agent concentration profiles
the two different dispersion simulators at a sample o
located down wind of the point release. This compa . « o
ison appears in Figure 2. These models have differe
discretizations of the three-dimensional model and hen
produce concentration values that differ in scale. Th
has been accommodated in Figure 2 by reporting tl
percentage of all observed concentrations reported o °
a single sensor downwind from a release. The LBI
simulator produces a much smoother agent concentrat =
evolution than the QUIC simulator. Thus, noise withir
the evaluation of the proposed methodologies when t
LBM data are used is primarily due to our sensor fals
alarm model rather than the dispersion model. Furth o : ok w = »
dissimilarities between the two concentration profile

also stem from differences in the way surface conditions

are treated in the two simulated environments. QUlEg' 3. Toy environment with optimal sensor placement solution
employs boundary conditions to reflect interaction with

a concrete surface. The LBM representation, on the otherrie propability laws were determined empirically via

hand_,_uses only the so-called “bounce back” boundagyonte carlo simulation (using (1) and (5)) for each
conditions [6]. combination of wind direction, release location, and
] sensor location. First, sensor concentration obsention

A. Toy Environment are encoded into binary outputs indicating the presence

To demonstrate the performance of the proposed non-nil concentration. Considering the binary nature
techniques, first a simple three-dimensional environmeoft the sensor readings, sensor measurement noise is
with several large obstructions (i.e., buildings in amtroduced via Bernoulli trials which result in flipping
urban setting) was modeled in QUIC and LBM. CBRNsensor observations. The resulting noisy sensor readings
point releases originating from three release locatiopsovide a wealth of observations from which probability
were simulated with wind originating from NNW, N, orlaws can be established, allowing for solution of (11)
NNE. 225 potential sensor locations are considered onand the determination of thé;;. in (12). For evalu-

Meters
o
o
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ation of the release detection and source localizatic Probability of Detection by Two State Sensor Error Rate
methodologies, sensors were sampled once per sec
for 50 seconds, resulting in an observation window ¢
50 binary indicators of the presence of a CBRN ager
In the case of both the QUIC and LBM data, by tht
time six sensors are placed within the environment the
is no further improvement in the asymptotic worst cas
localization error. The solution depicted for the case i
which QUIC data were used is shown in Figure 3 &
the small circles. The small squares correspond to t
optimal sensor placement determined using LBM date
A test set is constructed for each release location |
first selecting a wind direction according to a “winc o5 - - o v T o
rose” which describes the likelihood of each wind di Probabilty of Sensor Eror
rection. Then, using the simulations from which the
probability laws were derived, test sensor observatiofigy. 4. Probability of detection as the error rate for the tsiate
CBRN sensor grows. Reported values correspond to zero \auser
are generated. false alarms.
1) Release detection evaluatiorfor each scenario
in the test set, a release was declared whenever at
least one sensor’s observations resulted in declaring a
CBRN attack according to the test in (2). To gain af$ €qual to the accuracy attained by the centralized
understanding on the CBRN detector’s performance, tHig@ximum likelihood approach. When QUIC data were
process was conducted for many different values; of used for evaluation, perfect perfqrmance was .obs_erved
to facilitate the construction of thReceiver Operating When only one sensor was used in each decision in the
Characteristic (ROC)curve. When a reasonable sensotéguence. This actually corrected the one mistake found
error rate of 1/8 was used in both the case in whichen the sequential GLRT localization technique was
QUIC data were used in the evaluation and when LBMsed. When LBM data were used for evaluation, it was
data were used, the detector attained perfect detectfpf until three sensors were employed for each decision
performance, with 100% probability of detection andVithin the sequence of maximum I|kel|hoo.d tests that the
0% probability of false alarm. To better understand hog@me performance as the maximum likelihood approach
robust our detection methodology is to sensor noise, WS observed.
repeated the experiment with different sensor error rates.
Figure 4 shows the probability of detection achieved . , )
when 0% probability of false alarm is demonstratef: City Grid Environment
as a function of sensor error rate. As shown, there isTo further evaluate the proposed CBRN detector and
a precipitous decline in detection performance by thgcator, a three-dimensional environment inspired by a
time roughly one third of the sensor measurements ajénse urban grid pattern was modeled in QUIC as well as
erroneous. using LBM. The environment consists of a city grid, four
2) Source localization evaluationThe ability of all  plocks-by-four blocks. Each block is 100 meters-by-100
three localization methodologies we outlined in Segneters with 10 meter-wide throughways. Each block’s
tion V was also evaluated on each test scenario. Tabl@dight is drawn randomly from the uniform distribution
displays the accuracy of each approach. ranging from 20 to 60 meters. Sensors are allowed to
be placed at any intersection and five intersections are

Probability of Detection

TABLE | . . )
ACCURACY OF LOCALIZATION METHODOLOGIES IN THE TOY consujered as potential relefise |OC?-t|0nS- The Shape_Of
ENVIRONMENT the grid, as well as the location of simulated releases, is
|| QUIC Data | LBM Data | shown in Figure 5.
Sequential 99.7% 98.3% CBRN event scenarios considered are the 40 unique
Centralized 100% 99.7%

combinations of five different release locations within the
grid with wind blowing at 1 m/s or 5 m/s and originating
from the four cardinal directions. The two selected wind
When the hybrid localization approach is used, gairspeeds represent nominal wind conditions, but do not
in localization accuracy begin to disappear after a certdiranslate into a uniform wind field. As the simulation
number of sensors are used in each decision within theoceeds, local wind eddies vary according to conditions
sequence of maximum likelihood tests. This accuradgcited by the presence of buildings within the grid.

Hybrid 100% 99.7%




LOCKE AND PASCHALIDIS: MODEL-FREE STOCHASTIC LOCALIZATION OF CBR RELEASES 11

Sensor Location: QUIC data
400 Sensor Location: LBM data 22m 36m

Release location

350

250

Meters

200

150

100

employed for analysis, no further improvement in the

worst case error probability is observed after 13 sensors
have been deployed. The optimal placements of real-
valued sensors with mild noise are presented in Figure 5.

In the case of real valued sensor models with large
noise, analysis utilizing LBM data shows no further
improvement after eight sensors are deployed. When
QUIC data is used, no further performance is guaranteed
after the same 13 sensors are deployed. This solution is
the same as the one found in the mild noise case.

A test set for the city grid was constructed for each
of the release locations by first selecting a wind direc-
tion (all four cardinal directions are chosen with equal
likelihood) and then selecting a wind speed (both wind
speeds are selected with equal likelihood). The test set

sensor readings were generated in the same way as the
sensor readings used to determine the probability laws.
1) Release detection evaluatioRollowing the proce-
dure in Subsection VII-Al, for each scenario in the test
. . . set, a release was considered detected whenever at least
As in Subsection VII-A, the probability laws ac-_ "’

. s ne sensor’s observations lead to the decision of “attack”
cording to (1) and (5) for each combination of CBRI\\f/)iathe test in (2). The resulting ROC curves are depicted

scenario and sensor location are determined by Monte

Carlo simulation using data generated from both QUI&] Figure 6. Whether QQIC or LBM S|mulat|ons_ were
. Used to generate scenario data, the detector attains nearly

and LBM simulations. This time, however, not only is . .
: : : erfect performance. This holds true regardless of which
the binary sensor model with Bernoulli false alarmg

. . ...sensor model is used.
considered, but a real valued sensor model with additive

white noise is considered as well. These sensors ¢
modeled as

Fig. 5. City environment with optimal sensor placement sofutio

ROC: CBRN Release Detection
RN % O Ax C

C=C+N(0,0.), (16) 0.8

154

©

=
T

where( is the actual concentration of particulate presel
at the sensor’s locationV(0,0.) denotes a normally
distributed random variable with medanand standard
deviationo., and C' denotes the sensor's reported cor
centration observation. Values 6fwere then translated
into a discretized representation of five concentratic
states. First a value af. which produces an equivalent o e by a1 frae notse
false alarm as the binary sensor model was used. i T o e el vaed sensors g‘g“e":;:e
illustrate the power of increasing the number of concel
tration states used in the analysis, the normal randc % o 01 o3 02 02 03 03 o4
variate in (16) was replaced wit\ (0, 100, ). Provebily efFaise fam

For the binary sensor case, if data generated via
LBM were used for analysis, little improvement in worsf'9 &
case error probability is observed after six sensors are
deployed. However, when data generated via QUIC were2) Source localization evaluation:The proposed
used for analysis, it is not until 16 sensors are deploy€@BRN localization techniques performed well on both
that no further improvement is made in the bound on tithe QUIC and LBM generated data sets, even when real
worst case error probability. valued sensors with large additive noise are used. The

For the real-valued sensor case with mild noise, gerformances observed are listed in Table II.
data generated via LBM were used for analysis, once While all three methodologies perform phenomenally
five sensors are placed in the environment no furthar both simulated environments, the hybrid and central-
improvement in worst case error probability is observeized maximum likelihood techniques are the apparent
These five sensor locations correspond to the five releatemmpions, both consistently outperforming the sequen-
locations in the environment. When QUIC data wertal localization technique. Yet, the sequential techeiqu

154
©
1
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©
N
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Probability of Detection
o
©

QUIC data, binary sensors
O QUIC data, real valued sensors, mild noise

o
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o
®
=

o
©
N
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ROC curve of CBRN detector in the city grid environment
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has the advantage of being fully distributed which is 1) Release detection evaluatiomhere is a significant

desirable in implementations involving a large numbatecrease in performance due to the increased presence

of sensors. of invisible releases in the test sets, as illustrated in
In some instances, the hybrid approach outperformé&idgure 8. However, this degradation is confined solely to

the centralized approach, as noted in the binary senswralysis which uses a binary sensor model and CBRN

and large noise real valued sensor scenarios using LBNspersion modeled using QUIC.

data. In these cases, reducing the number of sensors used

in a maximum likelihood decision prevented a singl ROC: CBRN Release Detection

sensor’s observations skewing a computed probabili Yo S

into an incorrect localization.

o
©

C. City Grid Environment with Sensor Constraints

o
©
N
2

o o
g 8 B .
ForiefeTe iy

In Subsection VII-B, the optimal solution to (14) was
evaluated wher{ was determined by performance gair
analysis. However, it may be the case that a limite
number of sensors are available for deployment. 7
assess the performance of the proposed CBRN detec
and source locators in a sensor constrained scenatrio, ~ — — LBM data, real valued sensors, large noise
repeated the analysis in Subsection VII-B, this time wit %% 005 o1 o015 02 02 03 0% 04

. . . . . Probability of False Alarm
K = 5, indicating that five sensors are available fo
deployment. The optimal placements of binary sensors ) ] ] )
under this constraint can be found in Figure 7 usin@?'thse' Cazg%fcuusri‘:% %fnﬁsysierfsgﬁgr in the city grid environment
the QUIC and LBM generated data and binary sensor
models.

o
@
o

Probability of Detection
o
©

o
©
)

QUIC data, binary sensors

O QUIC data, real valued sensors, mild noise
QUIC data, real valued sensors, large noise

A LBM data, binary sensors

*  LBM data, real valued sensors, mild noise

2) Source localization evaluationLocalization ac-
curacy for all three approaches is listed in Table IlI.
We actually see an increase in performance when the
] e tocaton: Lo daa number of sensors are limited in the LBM scenarios
] with real valued sensors and large additive noise. This is
due to removing sensor information that previously led
aom an om am to erroneous localizations, a phenomenon similar to the
reason we observed better performance from the hybrid
localization technique over the centralized approach.

An apparent follow up question to the localization
performance analysis is, how well does the optimal
solution to the sensor placement MILP compare to
other, non-optimal solutions? To answer this question,
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ placements in which the sensor locations are chosen
o w0 S me e s uniformly randomly were evaluated on the same test set
as the optimal placement solution. The percentage of test
cases that were correctly localized appear in Figure 9.
Clearly, the optimal placement solution outperforms any
of the randomly chosen sensor placements.

450

Sensor Location: QUIC datal

300

250

Meters
1

200

@

8
3

@
®
3
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8
3
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Fig. 7. Optimal placement of 5 sensors in the city environment.

When the number of sensors deployed decreases, the
number of potentially invisible releases (i.e., a release VIIl. CONCLUSIONS
that is not detected by a single sensor) increases. An
intuitive approach to address this concern is to span theWe have presented a new two-stage methodology to
deployed sensors out as much as possible. It appearsthia related problems of detecting CBRN events and then
Figure 7, that the optimal placement solutions adhere ¢ietermining the location of their origin. Our approach
this philosophy. Evaluations using the real valued sensoypasses many of the problems “inverse dispersion”
models produced optimal sensor placements correspoagproaches face in an inhomogeneous and uncertain
ing to the five simulated release locations. urban setting.
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TABLE |l
ACCURACY OF LOCALIZATION METHODOLOGIES IN THE CITY GRID ENVRONMENT
QUIC Data QUIC Data QUIC Data LBM Data LBM Data LBM Data
Binary sensors| Real valued sensor$ Real valued sensor$ Binary Sensors| Real valued sensors Real valued sensors
Mild noise Large noise Mild noise Large noise
Sequential 98.42% 93.50% 94.66% 98.98% 94.18% 83.90%
Centralized 99.98% 100% 99.98% 99.82% 100% 99.48%
Hybrid 99.98% 100% 99.32% 99.84% 100% 99.60%
TABLE Il
ACCURACY OF LOCALIZATION METHODOLOGIES IN THE CITY GRID ENVRONMENT WHEN ONLY FIVE SENSORS ARE AVAILABLE FOR
DEPLOYMENT
QUIC Data QUIC Data QUIC Data LBM Data LBM Data LBM Data
Binary sensors| Real valued sensors Real valued sensor$ Binary Sensors| Real valued sensors Real valued sensors
Mild noise Large noise Mild noise Large noise
Sequential 90.76% 93.40% 93.90% 98.72% 94.18% 86.48%
Centralized 90.02% 96.74% 96.62% 98.66% 100% 99.52%
Hybrid 90.02% 97.88% 99.32% 97.40% 100% 99.60%
a decision making process, yet it offers obvious implemen-
tation advantages in large deployments. The centralized
op T maximum likelihood localization approach remedies this
oo o . by employing all deployed sensor information in a single
' decision, however, the hybrid approach committed, in to-
il Ty, tal, slightly fewer localization errors in our experiments
gos— 5 5 o
TR e APPENDIXA
o g . PROOF OFTHEOREM V.2
© 53 Our approach to show optimality of the GLRT will be
03| =~ QUIC daa, opmal pacement o einood \ to show that it is a subset of decision rules which satisfy
LBM data, optimal placement, sequential GLRT . . ] .
" Lo pmcanen, s o the criterion of Definition 2. To that end we first present
0.2 ! . . . .
D oM oo GLRT a lemma similar to a result first produced by Hoeffding

LBM data, maximum likelihood
01 ‘ ‘ ‘ ‘ ‘ [16]
0 2 4 6 8 10 12 14 16 18 20 .

Random Solution Number

Lemma A.1 The sequence of tests

Fig. 9. Evaluation of 20 randomly chosen placements of 5 sensor k, . kn g
ik = Y 9_11615[2(‘535 Mg,) > A (17)
J J

is optimal under Definition 2.

To detect attacks, relative entropy is used to compare Proof: Consider the sequence of tests
current sensor observations to known nominal probabil- R en g
ity laws derived from simulations. Once a CBRN event Fijkm(05) = {y"" | 12(€3 |H9_7) = A}
is detected, a localization procedure is used to deter-By Lemma 1 of [22], for allg; € ©;, the constraint
mine where the CBRN event started. Our localization 1
techniques include a sequence of GLRT decisions using lim sup — log &; k., (0;) < —A
information from a single sensor, a maximum likelihood n—oo T
selector in which information from all deployed sensort satisfied and the value
are used, and a hybrid of these two approaches consisting _ Tim sup 1 108 Bijin (6)
of a sequence of maximum likelihood decisions using noo T ko7
information from more than one sensor. is maximized uniform|y over a”el e Q, where
The proposed CBRN detection approach demonstrateg,, ,,(6;) and ﬁ}jk,n(ai) indicate the Type-l and Type-
promise within a numerical evaluation with data genH errors of test%jk,n(ﬁj). Thus, the constraint (7) is
erated in two different dispersion simulators. Our apsatisfied for test”}, .., sincey®™ € .,  if and only
proaches for source localization performed well alsgr.
The sequential GLRT localization methodology is vul- ykn e U ijm(ej).
nerable to committing a localization error early on in the 0;€9;
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Further, by the same reasoning and using th_emin{ — limsup — 10%@ o (03),
union bound, it must be the case that the quantity 7
—limsupn%ooilogﬁfjkm(&) is maximized uniformly

n— oo

hmsup logPG V" € L Y GLRT]}

over all§; € Q,. ] o igk.n
Now, allow yk e SGLT Then we have, >mm{ mf L(QI), 1nf I(Q|Iy, )}
1 nk “uk
A <=log sup PF(y*™) — 10 sup PF (y*m = f I II7 ).
108 sup 0. (y"") — 8 sup B, (y™") Qérin,-k 2(QMIf)
=— H(g%’k’”) — mf ]2(5’%"“ % ) It follows that the Type-ll error probability decreases
' exponentially to zero faster than the Type-II error prob-
- flog sup p9 (y*™) ability of test Sk LEMMa AL has already estab-

no e lished thaty* k. IS optimal under Definition 2. We
B yery 1 can therefore conclude that the GLRT is optimal under
H(& ) nIOgGSgg P9.( ") Definition 2.
. k,n
:0;23_12(6"3' IHﬁj), APPENDIXB
PROOF OFLEMMA V.3

If the GLRT is not optimal, for allQ ¢ %k,
ballbal infg e Ir(QIIE ) — infy,cq, I(QIIE ) > X. Equiv-
Zzg (00, 00 logéa " (ou]ow)- aIeﬁtIy,J I :
u=1v=1

The first and second equalities stem from the definitions 9,_125, 12(Q|H’5j) A+ 9.125 IQ(legi) = A

of H and I,. The second inequality is the result of
the non-negativity ofl;. Given (17), it follows that
SGERT C 7%, and Lemma A.1 establishes that th

ijk,n

constrarnt (7) is satisfied for the GLRT.

where H(+) is the empirical entropy defined as

where the last inequality follows from the non-negativity
eof I,. Therefore, using Lemma A.1, it follows that

lim sup — log af B(0;) < =X, V0, €Q;.

For anyf; € ; note n—oo
LT (0;) =Py, [y"" ¢ EkaT] APPENDIXC
=Py, [y k.n ¢ T, ] PROOF OFPROPOSITIONVI.2
+ Py, [y"" € y]kmykn ¢ ?kaT]- The sensor with index:;; v_viII use the _GLRT and
kn ¢ GLAT achieve a maximum probability of error with exponent
If y*n & .7, ijkn no smaller thand”k* For everyi and j # i define
E,(i,j) as the event that the GLRT employed by the
A>2log sup PE(y"™) — - log sup Py (y*") B, will decide L; when L; is true. For all
nCeen, O nC g e, sensor atBy: will decide L; when L; is true. For a

0, > 0 and Iarge enough we have
) . Po, errof <Py, [U;.i En (i, j)]
+HE )+ 9316%; L& ) = Z ¢ "(dang Hon) o (N — 1)~ +0n),
J#
The second inequality above is due to Proposition V.4
and the last inequality above is due to (15). Since the

k,n k,n
=—H(&Y ) — inf L(&y [}
€3 ) 9316191_ 2(€3  |g,)

= inf L&Y "|y)— inf L&Y |y,
0;€9; 2 7 gieq ? v

Since yFn € 2 implies X < , .
. Y ik P ~  bound above holds for allwe obtain the desired result.
infg, cq, L&y \I'Ik ), when y broe S, and
ybn ¢ SGEET we have#y " € ;.. By Theorem REFERENCES
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