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1. Introduction

Non-crystalline (amorphous) ceramics or ceramic glasses are used in a variety of vital Army

personnel, ground, and air vehicle applications that require transparent armor—it is ubiquitous in

tactical vehicular windshields and side windows. Ceramic glass is inexpensive and formable into

large, flat plate, and curved shapes. For many years it has been known that the properties of glass

can be modified and enhanced through compositional modification, chemical strengthening,

annealing, and process control of melt cooling. Glass ceramics, the controlled crystallization of

nanosized single crystals in a glass matrix, offer another avenue for designed and enhanced

property modifications for transparent and opaque materialapplications. In addition, certain

glass formulations have been shown to exhibit enhanced performance against shaped-charge jets

(SCJs) (figure 1) and other ballistic threats, but it is not understood why. This is in part due to

various short- and longer-range atomic structural characteristics including atomic free volumes,

cation coordinations, bridging and non-bridging oxygen (O) atoms, bonding energies, and

nanoscale order characteristics (short and longer range) that are difficult or impossible to quantify

experimentally for ceramic glass.

In contrast, crystalline ceramics like silicon carbide (SiC), aluminum oxynitride (AlON), and

others have easily characterizable microstructures/mesostructures, which consist of assemblies of

individual single-crystal grains. Ceramic glasses, on theother hand, do not have a conventional

micro- or mesostructure, as it is understood for crystalline ceramics. However, there are

microstructural-scale variations in ceramic glass that may include density variations from atomic

free volume variations or microporosity, size of local atomic order, defects (inclusions, large

pores, etc.), and others yet to be determined. The interaction of a stress/shock wave from a

dynamic impact involves many structural changes not easilycharacterized by conventional

equations of state and can involve reversible and irreversible densification and changes in bulk

short-range order structures comparable to phase changes in crystalline ceramics. For example,

in simple Hertzian indentation testing, a wide range of plastic or inelastic deformation

mechanisms have been observed in a variety of glasses. Multiscale computational design

methodologies (figure 2) for this class of materials will, nevertheless, require quantitative and

possibly statistically based descriptions of the mesoscale, although current efforts to develop such

models have fallen far short of this goal.

1



(a) (b)

Figure 1. Enhanced performance of SCJs into glass (a) test configuration for glass targets,
and (b) penetration vs. time for several targets, after Moran et al. (1).
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Figure 2. A multiscale model for non-crystalline ceramics (glass).
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Our specific long-term research goals are threefold:

1. Develop molecular dynamics (MD) process models for a series of chemically substituted

amorphous silica (a-SiO2 or fused silica) materials for the prediction of glass elastic

properties assuming completely uniform glass “mesostructures.” If successful, such models

will enable ab initio prediction of structure-property relations in glass that will be validated

with experimentally determined elastic properties.

2. Extend the MD models to study densification of chemically substituted a-SiO2 materials

under high pressures (∼60 GPa Materials in Extreme Dynamic Environments [MEDE])

relevant to ballistic events where reversible and irreversible density changes and structural

transformations have been observed. If successful, such models will enable ab initio

prediction of a-SiO2 compressibility, kinetics, and “glass” phase transformations that will be

used to develop equations of state for a-SiO2 materials, and thus form a direct link to the

continuum scale.

3. Develop a fully validated multiscale finite element computational model and code

incorporating the effects of reversible and irreversible densification, inelastic deformation, and

overlain by a spatiotemporally evolving population of growing defects, which coalesce and

ultimately lead to fracture and fragmentation. It is envisioned that at some time in the not too

distant future, fully concurrent multiscale computational finite element codes will be used by

analysts on a regular basis for optimal material design.

1.1 Organization of the Report

The remainder of the report is organized as follows. Generalprogram objectives are outlined in

section 2, and the approach for modeling the multiscale behavior of glass appears in section 3.

Experimental work on various glasses is described in section 4, which is highlighted by

indentation experiments, edge-on-impact ballistic experiments, ballistic impact and fragmentation

studies conducted at the Ernst-Mach Institute, and high pressure diamond anvil cell experiments

conducted at the U.S. Army Research Laboratory (ARL). Section 5 describes the development of

a new short-range pairwise potential for silica using ab initio molecular dynamics (AIMD)

methods; the discovery of anO − O soft repulsive shoulder in silica may explain multi-stability

behavior of glasses under pressure and anomalous densification behavior. The new potential is

used to simulate glass nanoindentation experiments, described earlier in section 4.2.1. Section 6

introduces similarity analysis for elastic media that exhibit fracture induced by indentation; a

universal scaling law is derived, which is invaluable for validating computational methods
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capable of simulating crack propagation. The mechanics of indentation is studied in section 7,

where fully three-dimensional stress and displacement fields are presented, which are also useful

for verification of computational simulation methods. First principles quantum mechanical

methods are used to model densification and bulk modulus variation with pressure in section 8.

Since inelastic deformation and a polyamorphic transformation occurs simultaneously in fused

silica, a model is developed to account for this coupled behavior in section 9 and compared to

plate impact experiments. A peridynamics computational code (section 10) has been developed

to enable modeling of quasistatic and dynamic fracture observed in glasses. Initial efforts to

model indentation experiments and validation with the universal scaling law are described in

section 6. Section 11 outlines a one-day short course on the “Fundamentals of Glass Science,”

that was taught by Professor Arun K. Varshneya, Alfred University, at ARL on October 29, 2010.

Course attendees received copies of Varshneya’sFundamentals of Inorganic Glasses(26). A

short-term conceptual project to determine an effective experimental and theoretical approach to

model and characterize the role of glassy materials in resisting ballistic impact was conducted by

Professor Richard Lehman, Rutgers University, detailed insection 12. Section 13 describes

ARL’s new glass processing facility and our initial effortsin processing borosilicate systems for

evaluation in the transition of this program to the Weapons and Materials Research Directorate’s

(WMRD) core mission in fiscal year 2013 and beyond. Section 14summarizes the conclusions

of this final report. Metrics including presentations, publications, hires, and transition of the DSI

program to a core mission program within WMRD are listed in section 15.

2. Program Objectives

The long-term research goal of the program is to develop a concurrent multiscale computational

finite element code for optimizing or enhancing the performance of various glasses against SCJs;

the initial work focuses on pure a-SiO2 and chemically varied a-SiO2 materials. As such, this

objective falls squarely within the purview of the WMRD, since multiscale models are

constitutive models (specific to a particular material) wherein time-evolving microstructural

changes, such as microcrack growth, are fully coupled to themacroscale, a phenomenon that

cannot be modeled or accounted for using classical homogenization methods. A more immediate

research objective is to understand why certain chemicallysubstituted a-SiO2 materials exhibit

enhanced performance in the defeat of SCJ and other ballistic threats.

Our program objectives are threefold:
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1. Develop MD process models for a series of chemically substituted a-SiO2 materials to predict

glass elastic properties. This glass plays an important role in many technological applications

and its structure has been inferred from neutron-diffraction, nuclear magnetic resonance, and

small-angle x-ray scattering (SAXS) analysis to reveal a three-dimensional network

consisting of tetrahedrally coordinated silicon (Si) whose structure is constant throughout the

glass and defines its short-range order (SRO). Long-range disorder in the structure is

manifested by a seemingly random variation in theSi-O-Si bond angle in adjacent tetrahedra.

Despite the intense study of a-SiO2 glass over the last several decades, much controversy still

exists on the best method to model (i.e., via density functional theory, MD, Monte Carlo

methods, or master equation techniques) this archetypal material to predict of elastic

properties, diffusivity, surface interactions, bond angle distribution, polyamorphism, and melt

solidification. Current models in the literature are often not fully validated and progress

towards this goal will be made when model predictions of elastic constants for a series of

chemically substituted a-SiO2 glasses agree with experimentally determined constants.

2. Extend the MD models to study densification of chemically substituted a-SiO2 materials

under high pressures. Since long-range order in glass is non-existent, variations in the SRO

and intermediate range order (IRO) must be responsible for the enhanced performance

observed in ballistic tests on certain a-SiO2 glasses. If this is the case, it may be possible to

use MD models to predict macroscopic ballistic performance. Since glass is subjected to

extreme pressure and temperature during an SCJ event, it will be necessary to study the

relationship between compressibility, kinetics, and phase transitions during high-pressure

densification of a-SiO2 glasses as manifested by changes in coordination number, ring size,

and free volume. Progress towards this goal will be made whenMD-derived equations of

state (EOSs) agree with those obtained experimentally via diamond anvil press and plate

impact experiments.

3. Develop a fully validated multiscale finite element computational model and code that

incorporates the effects of reversible and irreversible densification and inelastic deformation,

overlain with a spatiotemporally evolving population of defects that grow, coalesce, and

ultimately lead to fragmentation. This objective will develop a computational framework to

combine the objectives from (1) and (2), and incorporate theinfluence of fracture initiation,

growth, coalescence, and fragmentation of surface and volume defects in glass into a

comprehensive concurrent multiscale finite element model and code. Microcrack initiation,

growth, and coalescence (sometimes referred to as failure waves) is a multiscale phenomenon

that bridges all scales in a-SiO2 glasses despite the apparent absence of a structural mesoscale

for this class of materials (figure 2). Algorithms to developfully two-way coupled multiscale
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codes are in their infancy, and progress on this objective will be realized with the successful

development and implementation of a consistent scheme for coarse-graining localization

phenomena such as fracture failure observed in glass.

3. Planned Approach

The planned approach consists of three components, which are outlined in figure 3:

1. Validate the MD models for a series of chemically substituted a-SiO2 materials to predict

glass elastic properties.Although there is no effort within WMRD to predict a-SiO2 elastic

properties, a hierarchical multiscale modeling effort is currently underway, which is focused

on the study of polycrystalline (∼200µm grain size)AlON and validation of quantum and

MD predictions of anisotropic elastic constants using diamond anvil cell (DAC) and

focused-ion-beam (FIB)/scanning electron microscopy (SEM) compression tests on oriented

AlON single crystals (27). We plan to use MD methods (with possible MD coarse-graining)

to simulate glass process modeling during melt solidification by quenching a high-density,

high temperature, and pressure (with possible polyamorphic phases) melt for a series of

chemically substituted a-SiO2 materials. Next, the resulting room-temperature, chemically

modified structures will be reversibly deformed to predict the elastic properties that will be

validated with experimentally determined elastic properties.

2. Validate the MD models for densification of chemically substituted a-SiO2 materials under

high pressures.Although there is currently no effort within WMRD to predictthe EOS of

chemically substituted a-SiO2 materials, MD methods have been used to predict high-

pressure densification in these materials. MD simulations of pure a-SiO2 materials reveal a

Hugoniot elastic limit (HEL) of about 10 GPa, and an anomalous maximum in

compressibility at around 3 GPa. Experiments where sampleshave been compressed to

pressures lower than 10 GPa are indistinguishable from the original material, whereas above

10 GPa, materials can sustain an irreversible density increase from 10%–20% higher than the

starting material, although there is controversy as to whether the mechanism is due to

irreversible coordination defects or permanent ring size modification. In contrast to the

behavior of a-SiO2, crystalline quartz (α-SiO2) undergoes very well-known high pressure

polymorphic phase transitions into a Coesite phase and a Stishovite phase (figure 4), which

involve changes in coordination of theSi cation from four to sixO atoms. A combination of
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Figure 3. Five-year roadmap consistent with the WMRD brittle materials program.

diamond anvil press and plate impact experiments will be conducted on a series of chemically

substituted a-SiO2 materials and compared with MD densification simulations inglass in

order to understand the influence of glass modifiers on changes in the shock response of these

materials. EOSs for a subset of promising chemically substituted materials will be developed

and implemented into a continuum code to determine if any of the chemically substituted

materials exhibit enhanced ballistic performance.

3. Develop a fully validated multiscale finite element computational model and code that

incorporates the effects of reversible and irreversible densification and inelastic deformation

overlain with a spatiotemporally varying population of defects that grow, coalesce, and

ultimately lead to fragmentation.The ultimate research objective is to develop a

physics-based multiscale computational finite element code for studying densification and
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Figure 4. Crystal structures of quartz, after Frye (2).

dynamic fracture in non-crystalline ceramics (see figure 2). Atomistic behavior will be linked

to macroscopic elastic properties and densification behavior through development of an EOS

from first principles as outlined in components (1) and (2). At this stage, what remains to be

accomplished, is to successfully link, in a concurrent fashion, multiscale failure phenomena in

a-SiO2 materials by incorporating the important role that pre-existing surface and volume

defects have on the microcrack growth, coalescence, and fragmentation in this class of

materials. Over the past five years, the first author has also been directly involved in

development of a parallel, concurrent multiscale code for heterogeneous viscoelastic

composites (28) under the auspices of an ARL/University of Nebraska cooperative

agreement, which will be leveraged and used as the frameworkfor the development of a

concurrent multiscale model of a-SiO2 materials.

The chief challenge for brittle materials is to correctly account for the growth kinetics of

microcracks in a multiscale computational environment. The propagation of free internal

boundaries at lower scales will be “coarse-grained” to higher scales, where global fracture

failure and fragmentation is observed. As such, coarse-graining algorithms will need to be

validated through continuum-scale experiments on a-SiO2 materials that measure dynamic

crack propagation speeds, mixed-mode failure, and crack bifurcation phenomena using

coherent gradient sensing and high-speed imaging techniques; ARL possesses capabilities for
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conducting such dynamic fracture experiments in a-SiO2 materials through the recent

establishment of a coherent gradient sensing/imaging facility funded by the ongoing

multiscale modeling effort ofAlON . Models and validation of the initiation and propagation

of discrete fractures in a-SiO2 materials should transition naturally into models of

fragmentation and comminution for behind-armor-debris applications. Fragmentation

experiments have classically been conducted using dynamically expanding ring experiments

for defining fragment size versus strain rate and will be usedto validate computational models

of fragmentation. The development of consistent coarse-graining algorithms for fracture in

materials, which is associated with failure and loss of material stability, is largely unexplored

and is the primary high-risk goal of this section.

4. Experimental Work and Background

4.1 Background

4.1.1 Compositions

Silicate-based ceramic glasses are based on chemical substitutions into aSiO4 tetrahedral-based

polymeric-like structure; fused silica is an amorphous (non-crystalline) form of pureSiO2. Table

1 lists the compositions and properties of typical glasses.

Table 1. Glass compositions in% and selected properties.

Glass SiO2 Al2O3 CaO B2O3 Na2O K2O ρ (g/cm3) E (GPa) ν

Borofloat 80.5 2.5 0.02 12.7 3.55 .64 2.23 62.3 .207

Starphire 73.2 1.44 10.27 - 14.72 .01 2.51 72.3 .23

Fused Silica 100 - - - - - 2.2 73.0 .17

4.1.2 Structural Characteristics of Ceramic Glasses

Simplistically, the predominant macro-characteristics (micron and larger) can be a variety of

defects including inclusions, bubbles, large pores, and residual compressive or tensile stress. The

notion of an array of crystalline grains separated by grain boundaries (a microstructure) does not

exist in glass. Rather, there is a complete lack of long-range order, but short- and

intermediate-range order at the nanostructural scale:
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• Short-range order: Mostly atom to atom bond lengths, less than 0.5 nm and bond angles;

characterized by radial distribution functions (RDFs) andSAXS.

• Intermediate-range order: In silica-based glasses, this is the polymerization of the silica

atomic tetrahedra (one Si atom surrounded by four oxygen atoms) into various size ring

structures of joined tetrahedra, which can consist of 4, 5, 6, 7, 8, or so ring groups of

tetrahedra. Substitution of other cations (Na, K,Mg, Ca, etc.) andB into silica-based

glasses can have profound effects on the IRO. It is also important to note thatB bonds to three

oxygen atoms in flat triangles.

• Free-volume: In crystalline materials, using the theoretical density, it is straightforward to

calculate the atomically unoccupied free space. In glasses, this unoccupied atomic space is

referred to as “free volume,” but because of an unknown periodic structure, it is extremely

difficult to quantify in glasses. The free volume plays a critical role in glass densification

under stress/pressure.

• There can be significant complex spatial variations of defects, free volume, atomic structure,

and resulting properties at the nanoscale.

• It is the current wisdom of the glass community that the short- and intermediate-range order at

the nanoscale in glasses can have a significant influence on some properties.

4.1.3 Effect of Stress/Pressure

Deformation and failure in ceramic glasses begins with reversible to irreversible densification

and/or critical cracks nucleating at defects:

• High pressure can have significant effect on coordination ofSi changing from typical fourfold

to sixfold coordination of oxygen aroundSi - (quartz-like to coesite-like to stishovite-like

structures, as for crystalline quartz shown in figure 4).

• The degree of polymerization or distribution of the ring structures can also change as a

function of pressure.

• The common consensus is that the ring distribution is the primary control of some properties;

however, at very high pressures, the change from four to sixfold Si coordination will

significantly influence properties as well.
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• Some properties of fused silica (pureSiO2 glass) are anomalous, e.g., a negative change in

shear modulus as a function of pressure. Bando et al. (3) show that the radius of curvature of

a crack in glass (figure 5) can be about 1.5 nm, suggesting thatthe IRO can significantly

influence crack propagation.

Figure 5. The radius of curvature of a crack in glass after Bando (3).
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4.1.4 Plasticity in Glass

Ito (4) has presented fairly simple methods of determining the brittleness (figure 6) or, conversely,

the plasticity of glasses, which he uses to suggest that the brittleness is dependent of IRO or the

distribution of ring structures seen in figure 7. Table 2 lists values for the brittleness parameters.

Figure 6. Brittleness vs. density for glasses in theSiO2 andB2O3-based
glasses, after Ito (4).

(a) (b)

Figure 7. (a) Structure of soda lime glass by MD simulation where the
number shown is the ring size and (b) Number of network rings
in soda lime (SL) and less brittle (LB) glasses; LB glass are
more polymerized than SL glass after Ito (4).
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Table 2. Brittleness parameters.

Glass Brittleness Parameter (µm−1/2)

Fused Silica ∼10

B2O3 Based glass ∼1

Soda Lime ∼5 - 7

The brittleness, therefore, seems to be dependent on the deformation and fracture behavior, which

depends on flow and densification before crack initiation andon the bond strength of the network

and seems to decrease with a decrease in density—a free volume effect. This is addressed by

Ito (4) in the same paper.

Conclusions from this work are as follows:

• Both glasses are commercial SL based glasses:(Na,K)2O − (Mg,Ca)O - SiO2.

• The LB glass appears to have a higher polymerized network than the SL glass, i.e., a

significant difference in the ring structure distribution.

• IRO at the nanoscale seems to be controlling the brittlenessof these glasses.

4.2 Experimental Results

The absorption/dissipation of deposited energy in an extreme impact event depends on the various

deformation and failure/fracture mechanisms that are activated during the event. In addition, in a

multiscale modeling and simulation “Protection Materialsby Design” approach, it is absolutely

critical to experimentally determine the key properties atthe various scales to validate the

theoretical computational results. We have used various quasi-static indentation, edge-on-impact

(EOI), and ballistic impact tests for this purpose.

4.2.1 Indentation

Studies on the deformation and fracture of glasses and AlON using a spherical 500-µm-diameter

diamond indenter was recently carried out by Wilantewicz (5). Results for a SL (Starphire),

boron substituted glass (Borofloat), fused silica, and AlONare illustrated in figure 8 and tables 3

and 4. There are significant differences in the deformation and fracture behavior of these

materials.
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Figure 8. Elastic recovery vs. load for a variety of glasses after Wilantewicz (5).

Table 3. Elastic recovery in
indentation tests at 200 N.

Material % Elastic Recovery

AlON 71

Starphire 73

Borofloat 79

Fused silica 86

Table 4. Deformation and fracture loads after Wilantewicz (5).

Onset All Tests Onset Ring All Tests Onset Radial All Tests

Dimpling Dimpled Cracking Ring Cracked Cracking Radial Cracked

Material (N) (N) (N) (N) (N) (N)

Starphire (tin) 30 30 65 75 75 100

Starphire (air) 20 30 65 100 100 125

Borofloat (tin) 30 35 30 45 100 200

Silica Glass 75 100 20 30 65 75

AlON 35 45 45 65 40 75
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It is clear that these materials behave in significantly different ways. The onset of dimpling is the

result of a permanent plastic deformation. The normal expectation for these materials is that as a

function of increasing indentation load the material response would proceed through an elastic

regime, then through a plastic regime, and finally into a cracking/fracturing regime. Table 5

summarizes the observations. Silica glass (fused silica),however, behaves in a dramatically

different way, fracturing prior to a plastic mechanism.

Table 5. Onset of elastic, plastic, and
fracture responses after
Wilantewicz (5).

Material Response

Starphire: elastic→ plastic→ fracture

Borofloat: elastic→ plastic→ fracture

Silica Glass: elastic→ fracture→ plastic

AlON: elastic→ plastic→ fracture

4.2.2 Edge-on-impact Studies of Fused Silica

The experimental arrangement is illustrated in figure 9 and aseries of time-resolved photographs

are presented in figure 10.

Figure 9. EOI experimental arrangement after Strassburgeret al. (6).
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(a) (b)

Figure 10. (a) Illustration of a series of EOI tests in fused silica by a solid steel
cylinder at 350 m/s at various times; first and third rows illustrate
shadowgraph photographs in plane light showing damage; second and
fourth rows are photos in crossed polarized light, which show the
propagation of stress via a photoelastic effect; and (b) illustrates the
irregular nature of the damage front due to the presence of
macro-defects from the same test after Strassburger et al. (6).
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Table 6 lists the measured velocities of the longitudinal waves, transverse waves (shear waves),

and crack and damage front velocities in fused silica. Note that the longitudinal wave velocity

for fused silica is 5.93 km/s and the shear wave velocity is 3.77 km/s.

Table 6. Compilation of measured wave, crack, and damage velocities in
fused silica after Strassburger et al. (6).

Impact velocity (m/s) 150 260 350

Longitudinal wave speed (m/s) shadowgraphs 5975 6076 5823

Longitudinal wave speed (m/s)crossed polarizers 5814 5796 5491

Transverse wave speed (m/s) shadowgraphs - 3500 3670

Crack velocity (m/s) shadowgraphs 2234 2149 2120

Damage velocity (m/s) shadowgraphs 5641 5728 5121

4.2.3 Visualization and Analysis of Ballistic Impact Damage and Fragmentation in

Various Glass Plates

In this series of experiments Borofloat, Starphire, and fused silica were tested in a standard

ballistic configuration. The plates were impacted by a 7.62-mm armor-piercing (AP) round, and

a solid steel cylinder inside of a box to contain all of the resulting fragments. The fragments

were removed from the box with a vacuum and then sorted by sieves. Figure 11 illustrates the

experimental arrangement.

Table 7 lists the details of the various tests conducted on the three glass types. Note that the

dimensions of the Borofloat glass plate used in test,#17742, were significantly different than the

others, which has skewed the fragmentation results at the largest sieve size 2 mm. Figure 12

illustrates a series of very-high-speed photographs as a function of time for the four tests listed in

table 7.

Table 7. Test parameters with different types of glass.

EMI Test No. Type Dimensions (mm) Thickness (mm) Projectile Impact Velocity (m/s)

17742 Borofloat 149.4 x 149.7 12.94 cylinder 1089

17749 Fused silica 101.65 x 101.67 12.75 cylinder 1107

17750 Fused silica 101.62 x 101.62 12.75 7.62 AP 824

17751 Starphire 99.9 x 99.7 10.06 cylinder 1115
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(a) (b)

Figure 11. Schematic of (a) ballistic test configuration and(b) target after
Strassburger et al. (7).

Figure 12. Selection of high-speed photographs from impacton various glasses
after Strassburger et al. (7).
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The observed propagation velocities of the damage zone under impact of the steel cylinder are all

below the transverse wave velocities of the materials, as seen in table 8, which compiles the wave

and fracture velocity data determined from EOI tests along with data from the actual test series.

When fused silica was impacted by the 7.62-mm AP projectile,the formation of single radial

cracks were observed, which propagated at an average velocity of 2394 m/s, which is in very

good agreement with the crack velocity determined for fusedsilica from EOI tests.

Table 8. Compilation of wave and fracture velocity data after Strassburger et al. (7).

Glass Type Longitudinal Wave Transverse Wave Terminal Crack Damage

Velocity (m/s) Velocity (m/s) Velocity (m/s) Velocity (m/s)

Starphire 5890 3570 1580 3073⊕

Borosilicate 5543 - 2034 2857⊕

Fused Silica 6021 3858 2400 3007⊕, 2394†

⊕ steel cylinder,v = 1100 m/s
† AP projectile,v = 824 m/s

4.2.4 High-speed Photography

The three types of glass tested exhibited a very similar fracture pattern under impact of a steel

cylinder at 1100 m/s. A circular damage zone developed around the impact site, in which the

glass was strongly fragmented and no single cracks could be distinguished during the first 10µs

after impact. After this first damage propagation phase, single cracks became discernible at the

perimeter of the damage zone. In the following, a severely damaged inner zone and an outer

zone with a lower fracture density could be distinguished. Selections of 16 high-speed

photographs from each test with the cylindrical projectileare presented in figures 13, 15, and 17.

The analysis of damage propagation revealed different velocities with the three types of glass.

The corresponding path-time histories are depicted in figures 14, 16, and 18.

When fused silica was impacted by the 7.62-mm AP projectile the formation of single radial

cracks could be observed, which propagated at an average velocity of 2394 m/s. This is in very

good agreement with the crack velocity determined for fusedsilica from EOI tests (29). A

selection of 16 high-speed photographs from the AP projectile impact on fused silica at 824 m/s is

presented in figure 19. The corresponding path-time historyof fracture propagation shows the

diagram in figure 20.

19



Figure 13. Selection of high-speed photographs from impacton Borofloat glass at
1089 m/s; Test#17742 .

Figure 14. Position-time history of damage propagation in Borofloat glass at 1089
m/s; Test#17742 .
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Figure 15. Selection of high-speed photographs from impacton fused silica glass
at 1107 m/s; Test#17749 .

Figure 16. Position-time history of damage propagation in fused silica glass at
1107 m/s; Test#17749 .
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Figure 17. Selection of high-speed photographs from impacton SL glass at 1115
m/s; Test#17751 .

Figure 18. Position-time history of damage propagation in SL glass at 1115 m/s;
Test#17751 .
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Figure 19. Selection of high-speed photographs from impacton fused silica glass
at 824 m/s; Test#17750 .

Figure 20. Position-time history of damage propagation in fused silica glass at
824 m/s; Test#17750 .
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4.2.5 Fragmentation Analysis with Glass

The glass fragments from these experiments were collected and separated into size classes by a

chain of sieves in the same way as the ceramic fragments. The mesh sizes used were 2 mm, 1

mm, 0.5 mm, 200µm, 100µm, 63µm, and 25µm. The total mass of each size fraction was

determined. Figure 21 presents the values of the total fragment mass in the different size classes

with the four different configurations. The corresponding cumulative mass plot is shown in

figure 22.

A very high total mass of fragments of size > 2 mm can be recognized with the Borofloat glass.

This result can be attributed to the size of the sample (150 mmx 150 mm), and therefore, the

higher total mass (643 g) compared to the fused silica (290 g)and the SL glass samples (250 g).

The highest fragment mass was found with fused silica in the size classes from 63 m to 1 mm.

The cumulative mass plot also reflects the highest degree of fragmentation with fused silica in the

tests with the steel cylinder. The least degree of fragmentation was observed with fused silica

impacted by the AP projectile. In this case, the projectile also penetrated the aluminum backing

nearly complete and a lower amount of energy was dissipated in the interaction with the glass.

Figure 21. Fragment mass distribution from sieve analysis for tests with various
glasses after Strassburger et al. (7).
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Figure 22. Cumulative mass plot for tests in various glasses.
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4.2.6 Density Measurements with Glass Fragments

The compressibility of glass has been studied for several years and permanent densification up to

20% under high pressure has been reported (8, 30). Figure 23 shows the results of densification

measurements with silica glass at 25◦C from three different researchers.

Figure 23. Densification of silica glass at 25◦C as a function of pressure from
Mackenzie (8); curve A from Roy and Cohen (9), curve B from
Christiansen et al. (10), and curve C from Bridgman (11).

The elastic shock induced at the impact surface between a projectile and a target is determined by

the acoustic impedances of the projectilezP and target materialzT and is given as follows (31):

P =
zP zT
zP + zT

VP =
ρP cPρT cT
ρP cP + ρT cT

VP (1)

whereρP , ρT is the density, andcP andcT are the longitudinal sound wave velocity of the

projectile and target material, respectively.

If a steel projectile impacts a fused silica target, we haveρP = 7.85 g/cm3, ρT = 2.2 g/cm3, cP =

5100 m/s, andcT = 6021 m/s, then a shock pressure of∼11 GPa (∼110 Kbar) is generated during

impact of a steel projectile traveling at aboutVP = 1 km/s onto a fused silica target. As per the

data in figure 23 (curves A, B), a 4%–10% densification could possibly be expected.
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Therefore, floatation-sink tests were performed with fusedsilica fragments of size 1–2 mm and

0.1–0.2 mm from impact tests#17749 (steel cylinder, 1107 m/s) and#17750 (7.62-mm AP

projectile, 824 m/s). Aqueous sodium polytungstate (NaPW)was used as heavy liquid for the

float-sink analysis. The density of the heavy liquid was varied within the range 2.19–2.4 g/ml.

The density was measured by means of precision areometers. Table 9 summarizes the test data.

Table 9. Data from floatation-sink tests with fused silica fragments from impacted samples.

Test Impact Particle Mass Volume Addition Addition Density Observation:

Test No. Size sample NaPW-soln: dist. H2O NaPW NaPW-soln:

(mm) (g) (ml) (ml) (ml) (g/ml)

1. 17749 1.000 4.99 50 15 x 2.40 silica swims

1. 17749 1.000 5.08 300 25 x 2.35 silica swims

1. 17749 1.000 5.26 325 15 x 2.29 silica swims

1. 17749 1.000 5.01 335 15 x 2.24 silica swims

1. 17749 1.000 5.09 350 15 x 2.19 silica swims

2. 17750 1.000 5.06 350 15 x 2.19 silica sinks

3. 17749 0.100 5.35 350 15 x 2.19 silica sinks

4. 17750 0.100 3.24 350 15 x 2.19 silica sinks

5. 17749 0.100 2.25 255 x 20 2.25 silica swims

6. 17750 0.100 2.43 255 x 20 2.25 silica swims

With the analyzed fragments, a densification could not be measured. On one hand, the collected

fragments could not be allocated to their original positionin the fused silica sample. Therefore, it

was not possible to determine whether the analyzed fragments originated from the impact zone

and had been subject to high pressure. On the other hand, due to the small diameter of the

projectile, the duration of the pressure pulse could only have been short, because of the release

waves from the edge of the projectile.
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4.2.7 Micro/Nanocrystallinity in Glass

In discussions with Professor Adrian Wright from Reading University, UK, an expert in the

structure of glass, he has said that the theory of glass structure is still evolving. The IRO is

important, but poorly understood, and the current consensus is that there is chemical

nanoheterogeneity, which may lead to nanoislands of crystallinity. Thus, the nature of IRO in

glass is still evolving and controversial. Work by Saito et al. (32) using light scattering studies

on silica glass concluded that medium (intermediate)-range order structures, microcrystallites,

exist in silica glass. Using the polarization ratio, a measure of anisotropy, suggests that the

depolarized scattering is only attributed to the density fluctuations with microscopic anisotropic

scattering elements. Anisotropy of such scattering elements could be explained by the existence

of microcrystallites.

4.2.8 Thermal Shock Behavior of Glasses

Bradt and Martens (33) in a recent article have reviewed the thermal shock resistance of various

glasses, including borosilicate and SL glasses. They show that thermal stresses that develop

during temperature changes are the primary cause of fracture initiation and failure. Using a

simple formula for the generation of linear elastic thermalstressesσts,

σts = αE∆T , (2)

where,α is the coefficient of thermal expansion,E is Young’s modulus, and∆T is the local

temperature differential. Rewriting equation 2 gives the temperature difference required to cause

failure at a stressσf ,

∆T =
σf
αE

, (3)

hence, using this equation one can approximate the∆T for glass fracture. Assuming the

properties for a typical SL glass and a borosilicate glass (table 10), the∆T for fracture can be

approximated.

Other more complex equations can be used, but reflect very similar general trends. The general

conclusion, therefore, is that the linear thermal expansion of glasses is a major factor in initiating

crack formation and ultimate failure.
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Table 10.∆T required to fail SL and
borosilicate glasses.

Soda lime Borosilicate

σf 30 MPa 30 MPa

E 68 GPa 62 GPa

α 9 x 10−6oC−1 3 x 10−6oC−1

∆T for αf 55oC 183oC

4.2.9 Diamond Anvil Cell (DAC) Experiments to Study DensityChanges in Glass with

Pressure

The Army has a longstanding interest in understanding the properties of transparent protection

materials, which form the basis of windshields, optics, andviewports. The silicate glass family

of materials makes up the traditional choices for these applications. These materials fall into a

much broader category of materials called amorphous glasses. The silicate glasses have several

subcategories determined by the secondary component, namely, the Borofloat and SL varieties

studied in this project. The major interest from the Army perspective in these glasses has to do

with the differences in ballistic properties while being compositionally similar. The term

“amorphous materials” when applied to glass is slightly misleading. These systems are thought

to have several different arrangements from a rigid short-range silicon-oxygen bond length, to

intermediate-range ring structures, and finally, to an overall amorphous packing of these smaller

structures on the mesoscale. This structural hierarchy is still theoretical as the amorphous nature

makes study and analysis difficult with existing techniques. Furthermore as silicate glasses have

identical distances for the basic silicon-oxygen bond, it is apparent that the differences in the

glass performance are due to the intermediate-range packing and ring structures. Understanding

this difference is one of the goals of this research.

The current state of the art in understanding the IRO of silicate glasses is work involving

complementary techniques of modeling and experiments. Forthe purposes of understanding how

these materials change under ballistic impact, static dataallow for comparisons to shock

Hugoniot data. There has been previous work involving static pressure experiments on fused

silica (34, 35), and also more recently on the similar germanium glass (36). The techniques

employed in these studies were neutron diffraction and x-ray diffraction combined with structure

factor analysis on the experimental side combined with MD simulations on the theoretical side.

Even with these detailed studies, the mechanism for densification is still elusive, without adding

the additional complexity of the effects of the secondary components.
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The DAC provides a convenient method of studying glass samples under pressure. The

experimental technique involves compression of the sample, the hydrostatic pressure medium,

and the metal gasket between opposed diamond anvils. The hydrostatic pressure media use for

these experiments is argon gas and the gaskets were composedof either rhenium or steel. The

standard ruby fluorescence pressure scale was used (37). Samples were loaded in the DAC and

then monitored for changes in sample area with pressure. This area was then converted to

volume measurements using the method from previous work investigating the effect of helium on

compression ofSiO2 glass (12). The pressure media is assumed to be hydrostatic in this

technique. The equation used is reproduced below:

V

V0
=

A

A0

√

A/A0 , (4)

whereV andV0 refer to final and initial volumes, andA andA0 refer to final and initial areas.

The samples were initially prepared using a polishing technique to achieve the required thickness

of < 20 microns. The samples were then extracted yielding a glass chip that was approximately

30–50 microns in diameter. This was so that the sample could be loaded in a gasket with

100-micron hole. It was noted that the irregular surface of the chips made interpretation of the

edges for the area calculation difficult. In addition, it wasthought that the corners could provide

stress points in the sample and introduce unintended straininto the measurement. To correct this

issue, the samples were machined using a FIB technique to achieve a cylinder 40 microns in

diameter and 20 microns thick. The results for fused silica are shown in figure 24.

This change in volume can be converted into a change in density and plotted upon previous

measurements for fused silica (13). Figure 25 provides a compilation of previous studies on the

density changes with pressure for previous methods. The diamonds plots represent densified

glass; glass that has been pressurized to 10 GPa and then released to ambient pressure.
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Figure 24. DAC results for fused silica compared to previousDAC results
published in (12) (our results are in red). Phase lines for the different
quartz structures are shown. At approximately 27 GPa, the sample is
thought to be bridged by the diamonds. This accounts for the
deviation seen at 27–30 GPa.

Figure 25. Plot of density changes with pressure for fused silica. Original figure
from Wakabayashi et al. (13).
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Shown in figure 26 is an example of the comparison between the sample at 4 and 33 GPa for

fused silica. The gray circle on the 4 GPa side corresponds tothe sample diameter at 33 GPa and

is shown for comparison purposes. As the pressure is increased, the sample hole closes due to

the plastic flow of the gasket material.

In addition to the DAC experiments, neutron diffraction wasinvestigated on the

nanoscale-ordered materials diffractometer (NOMAD) beamline at the spallation neutron source

(SNS) at Oak Ridge National Laboratory. This technique results in a total scattering cross

section, which is integrated over the entire sample. The scattering can be converted into a

momentum transfer and provide a “first sharp diffraction peak” (FSDP), seen in figure 27. The

simplest way to interpret Q is to realize that the lower the Q the larger the interaction. If one

thinks about the network structure of glasses, the scattering can be broken up into several regions,

namely, the SRO, IRO, and long-range order. Glasses have rigid SRO in the form of a silicon

dioxide tetrahedron and disorder with regard to the random nature of the long-range order. IRO

can have order in the form of rings, cages, and chains. In order to extract the interaction

distances, it is important to use a high energy source; due tothe nature of the Fourier transform,

the higher the energy the better the resolution on the low Q region.

Figure 26. Comparison of sample upon compression in the DAC.The 3.9-GPa
sample has a gray sphere to indicate the area of the sample at 33.1 GPa
to assist the eye in comparison.
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Figure 27. Neutron diffraction spectra of fused silica, Borofloat, and SL glasses.
Intensities are not corrected for the boron neutron absorption cross
section. The location of the first sharp diffraction peak is indicated;
shifts to higher Q correspond to decreases in intermolecular interaction
distances.

To further study the effects of composition on pressure and ballistic response, samples of glass

were prepared with known concentrations of secondary molecules. These samples were

subjected to initial study with the laser Raman system to discern if there were noticeable

differences in the spectra shown in figure 28. The spectra were obtained using a 532-nm diode

laser (average power 300 mW) and a custom Raman spectrometer. Preliminary analysis of the

results seems to indicate a change in the 300–400 wavenumberregions with decreasing intensity

as the composition changes with each sample. The spectra were normalized to a higher

wavenumber region (< 2500 cm−1). The samples for use in the DAC are being prepared using

the FIB so similar density pressure analysis can be attempted.
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Figure 28. Raman comparison of four prepared glass samples by Dr. Parimal
Patel. Peak at zero is the laser line, partially blocked by a notch filter
that extends to approximately 150 cm−1.

4.2.10 Nanoindentation Studies of Fused Silica

Nanoindentation experiments were conducted at ARL on fusedsilica specimens using an MTS

Nanoindenter XP operated in continuous stiffness measurement (CSM) mode. A spherical

indenter with a radius of 3µm was used to indent to depths approaching 2µm at a constant strain

rate of 0.05/s. The hardness values,H, were calculated from the maximum loads,Pmax, and the

contact area,A, at the maximum indentation depth whereH = Pmax

A
. The elastic modulus values

were calculated using the Oliver and Pharr method (38) from the measured unloading stiffness,S

(which is equivalent to the slope of the initial unloading curve), as follows:

S =
2√
π
Eeff

√
A (5)

whereEeff is a function of the Poisson’s ratio and elastic modulus for the indenter (νi,Ei) and

material of interest (ν, E) defined as
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1

E eff
=

1− ν2

E
+

1− ν2i
Ei

(6)

Following the indentation experiments, the residual indents were examined with a NanoSEM 600

SEM operated in low-vacuum mode (which is used to accommodate non-conductive specimens.)

Figure 29 shows the typical load-displacement curves for maximum displacements ranging from

500 to 2000 nm. Figure 30a plots the measured hardness as a function of indentation depth and

indicates there is some indentation size effect over the range considered. The standard deviation

is largest for the smallest indentation depths (500 nm). Theelastic moduli decrease with

increasing maximum indentation depth (figure 30b); however, the error in measurement does not

follow a trend with depth. The SEM examination gives insightinto the indentation size effect.

We are unable to resolve a residual impression for the specimens indented to a depth limit of 500

nm, which indicates the response is mostly elastic at small depths. Figures 31–33 show SEM

micrographs for specimens indented to depths of 1000, 1500,and 2000 nm, respectively. There

is a noticeable residual indent in figure 31; however, there is evidence of fracture. At greater

indentation depths, radial cracks (figures 32a and 33) and classic cone cracks (figure 32b) are

visible. Further investigation is required, but the lower hardness and modulus values measured at

greater indentation depths could result from indentation cracks. In some brittle material systems,

“pop-ins” or discrete jumps in displacement during indentation are found in the load-displacement

curves. However, no pop-ins are observed in this series of nanoindentation tests.
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Figure 29. Load vs. displacement in fused silica.

(a) (b)

Figure 30. (a) Hardness and (b) modulus variations in fused silica.
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Figure 31. SEM micrographs of fused silica indented to 1000 nm.

(a) (b)

Figure 32. SEM micrographs of fused silica indented to 1500 nm (a) radial cracks
and (b) cone cracks.
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Figure 33. SEM micrographs of fused silica indented to 2000 nm.
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5. Pairwise Functional-free Silica Potential From First-principles

Molecular Dynamics Simulation

We have developed a new short-range pairwise numerical potential for silica, as described in

Izvekov and Rice (14). Here we present the key features of the model. The potential is derived

from a single AIMD simulation of molten silica using the force-matching (FM) method, with the

forces being represented numerically by piecewise functions (splines) (39). The AIMD

simulation is performed using the Born-Oppenheimer methodwith GGA (BLYP) and XC

functional. The new effective potential shown in figure 34 includes a soft repulsive shoulder to

describe the interactions of oxygen ions. The new potential, despite being short-ranged and

derived from single-phase data, exhibits a good transferability to silica crystalline polymorphs

and amorphous silica. The importance of theO −O soft repulsive shoulder interaction on glass

densification under cold and shock compressions is assessedfrom MD simulations of silica glass

under room and shock Hugoniot conditions, respectively, and shown in figure 35. Results from

these simulations indicate that the appearance of oxygen complexes (primarily pairs) occurs at

8–10 GPa, and under cold compression conditions becomes notable at 40 GPa, essentially

coinciding with the transition to aSi sixfold coordination state. An analysis of changes in system

structure in compressed and shocked states reveals that theO ions interacting through the soft

repulsive shoulder potential in denser states of silica glass may create a mechanical multi-stability

under elevated pressures, and thus contribute to the observed anomalous densification.

At pressuresP < 8–10 GPa, the densification by the FM model occurs predominantly due to

structure deformation and topological reorganization rather than a weakening of theO −O

repulsion due to the soft repulsive shoulder of the FM potential. The observed disagreement of

the FM cold and Hugoniot density-pressure curves at low (P = 0–10 GPa) pressures with the

experiment data (figure 35) can be explained by the deficiencyof the FM model, which is

pairwise and central, regarding angle-bending terms. The extension of the pairwise FM model

with angle-bending forces, which are three-body forces, isnecessary to improve performance of

the FM model at low pressures in which densification is drivenby mostly structural and

topological changes. This work is in progress.
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Figure 34. Effective atom-atom forces [panel (a)] and corresponding potentials
[panel (b)] in liquidSiO2 generated through the FM method as
functions of interatomic separation:O −O (black),Si−O (red), and
Si− Si (green). The dashed line corresponds to the model without
the soft repulsive shoulder (FM-ns model). In panel (b), thedotted
line corresponds to the FM model with a weaker repulsive shoulder
(FM-ws model) and the dot-dot-dashed lines indicate the variation of
theO −O repulsion in the FM procedure with a length of ab initio
reference trajectories as discussed in (14).
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Figure 35. Density vs. pressure atT = 298 K (solid lines) and along the
Hugoniot locus (dashed lines) from simulations of glass sample
structure using the FM (cyan), FM-ns (green) [panel (a)], Pedone
(blue) [panel (b)], and FM-ws (magenta) [panel (c)] models.
Experimental EOS obtained by cold compression (black squares) and
by shock compression (red circles) are from (15) and (16),
respectively. Insert to panel (c) compares the 298 K (solid)and
Hugoniot (dashed) EOS from simulations of the ambient density
(FM-l) and densified (FM-h) glass samples using the FM models.
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5.1 Molecular Dynamics Modeling of Glass Nanoindentation

MD methods have been used to study nanoindentation for a number of material systems, i.e.,

metals (40), ceramics (41), glasses (42), and energetic materials (43). Length scales for MD

simulations can be made comparable to those in the experiments of Nomura et al. (42), although

the time scales and strain rates differ significantly. The advantage of MD simulations over

nanoindentation experiments is the capability to provide atomistic detail of numerous properties,

including stress distribution and structural information.

We have previously reported on MD simulations of nanoindentation performed on a large-scale

fused silica system (44). Here we extend the analysis, including a calculation of the hardness,

and compare to experimental results. As described in Gazonas et al. (44), all the simulations

were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) (45), with the pairwise potential recently developed using FM techniques described

in section 5. The simulation cell is 29.9 x 29.9 x 17.8 nm, containing 1,160,952 atoms (386,984

a− SiO2 molecules). Once the system is equilibrated, following theannealing schedule

described in Pedone et al. (46), a spherical indenter with a radius of 9 nm is introduced in the

z-direction. The indenter interacts with atoms in the simulation cell via a force of magnitude,

F = −K(r −R)2 , (7)

whereK is a force constant,R is the radius of the indenter, andr is the distance from the atom to

the center of the indenter. Periodic boundary conditions are implemented in the x- and y-

directions; the indented surface remains free, and approximately 33,000 atoms on the opposite

surface are held fixed to ensure that the system remains stationary during indentation. The

simulation is performed in the microcanonical ensemble (NVE), with a timestep of 2.0 fs. It has

recently been determined that this timestep is too large forsimulations using the FM potential.

The dynamics of the system are not properly captured when using a large integration timestep,

and the differences between our results and those from experiment are due partly to this large

timestep, as is discussed.

Figure 36 shows the complete loading and unloading curve, aswell as the cross sections of the

corresponding atomic configurations at the maximum load (figure 36b), and after complete

unloading (figure 36c). The hardness,H, is defined as,
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Figure 36. (a) Force vs. indenter depth for a complete loading and unloading
cycle. Atomic configuration (b) at the point of maximum loading, and
(c) after complete unloading.

H =
Pmax

A
, (8)

wherePmax is the maximum applied load andA is the contact area. The maximum load is

determined from the loading curve in figure 36a by fitting the latter portion of the data to a line

and determining the load corresponding to the maximum depth. The value we calculate is 1.10µ

N. To calculate the contact area, we use a method similar to that described in Chen and Ke (47).

First, the atoms in contact with the indenter are identified by calculating the distance between

each atom and the center of the indenting sphere. Those atomsappear in red in figure 37, along

with their projection onto the xy-plane. The area of a circlein the xy-plane that contains all the

projections is defined as the contact area. We calculate an area of 14900 Å3, resulting in a

hardness value of 7.38 GPa. This differs from the value we previously reported (44) due to the

more refined method of calculating the contact area. Furthermore, it is not in agreement with the

experimental value of 10 GPa reported in Miyake et al. (48), nor with the depth-dependent

hardness values determined from our own nanoindentation experiments (see figure 30a). As

mentioned above, the disagreement could be attributable tothe too large timestep, but the effect of

sample size should also be explored to ensure the size of the sample is not adversely affecting the

hardness calculation.
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Figure 37. The atoms that are in contact with the indenter areshown in red, and
their projection onto the xy-plane is shown in black.

Nanoindentation experiments have shown that the unloadingcurve can be approximated by the

power law relation (38),

P = α(h− hf)
m , (9)

whereα andm are fitting constants, and the final depth,hf , is the permanent depth of penetration

after the indenter is fully unloaded (see figure 36). We have fit the unloading curve in figure 36a

to this equation, withhf included as a fitting parameter, resulting inα = 0.9720µN/nmm,m =

1.445, andhf = 2.889 nm. The value ofhf is in agreement with our data, and the value ofm for

a spherical indenter is expected to be 1.5 (49), close to the value we obtain.

The value ofα differs significantly from the experimental value of 50.0µN/nmm for fused

silica (38), although that was obtained with a Berkovich indenter. Thediscrepancy inα is not
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surprising as the loading depths reached in nanoindentation experiments are much larger than in

our simulation, and the strain rates are significantly lowerthan can be achieved in MD

simulations. However the shape of the curve, indicated by the value ofm, is consistent with

experimental values, despite the timestep being too large.In addition to repeating the above

simulation with a smaller timestep, we plan to perform nanoindentation on larger systems to study

size effects on the mechanical response of fused silica. We will also perform nanoindentation

simulations using a flat punch indenter (for whichm = 1 in equation 9) to directly compare with

the dimensional analysis results presented in section 6. Finally, the force match potential will be

extended to include three-body forces as well as additionalatom types in order to model

borosilicate glasses.

6. Dimensional Analysis of Hertzian Cone Crack Developmentin Brittle

Elastic Solids

In this section, we outline the methodology for the derivation of similarity relationships for elastic

solids exhibiting stable crack growth induced by rigid indenters; as will be shown in a subsequent

section, such relationships are invaluable for verification of computational models that involve

crack propagation. The application of dimensional analysis to the development of stable cone

cracks appears to have been first addressed by Roesler (17) and Benbow (18), and later more

fully analyzed by Barenblatt (50). The universal dimensionless relationship:

D =

(

P

K

)
2

3

, (10)

relates the widthD of the base of a cone crack induced by a flat punch (cylindricalindenter) to

the loadP , and cohesive modulusK of the medium (figure 38). Cone crack development in

glass (figure 39) confirms the universal scaling law (equation 10) illustrated in the log-log plot of

figure 40. In addition to the relevant physical parameter illustrated in figure 38, Poisson’s ratio,

ν, and the modulus of cohesionK play an important role in describing the mechanics of the

indentation problem. According to similarity methods described by Sedov (51) and others, since

there are five relevant physical variables, and three fundamental dimensions ofM,L, andT , this

results in two possible dimensionless products, which can be formed from the physical variables.
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P
D d o

Figure 38. Dimensional analysis for the axisymmetric Hertzian cone crack
problem .

Figure 39. Hertzian cone crack in SL glass induced by a flat punch (cylindrical
indenter) after (17) .
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Figure 40. Hertzian cone crack data for fused silica, and experimental
confirmation of scaling law from Benbow (18).

The two dimensionless groups can be derived for this problemby first writing the relevant

physical parameters in the following multiplicative form:

(D)k1(d0)
k2(P )k3(K)k4(ν)k5 = 1 , (11)

and the expressing equation 11 in terms of the fundamental dimensions:

(L)k1(L)k2(MLT−2)k3(ML−1/2T−2)k4(1)k5 = 1 . (12)

The fundamental dimension terms in equation 12 can be factored as follows:

(M)k3+k4(L)k1+k2+k3−k4/2(T )−2k3−2k4 = 1 , (13)

resulting in the following system of equations:
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k3 + k4 = 0 ,

k1 + k2 + k3 − k4/2 = 0 ,

−2k3 − 2k4 = 0 , (14)

that are solvable using the constants that appear in table 11.

Table 11. Constants appearing in
dimensional analysis .

k1 k2 k3 k4 k5

π1 1 0 −2/3 2/3 1

π2 0 1 −2/3 2/3 1

The dimensionless groups, also known asπ-groups from the Buckinghamπ theorem (52) can be

written as

π1 = DP−2/3K2/3ν ,

π2 = d0P
−2/3K2/3ν . (15)

Since theπ-groups in equation 15 are dimensionless, they can be equated and solved for the width

D of the base of the cone crack,

D =

(

P

K

)2/3

νf(d0(
K

P
)2/3, ν) . (16)

Thus, a log-log plot ofD versusP , forD >> d0, will have a slope of2/3, as it appears that the

contribution from the third function in equation 16 is negligible (see figure 40). The fracture

scaling law can also be used to validate finite element, peridynamic, material point, MD, and

other computational methods currently in use for simulating fracture resulting from indentation

experiments.

For fractures that develop under two-dimensional (2-D) states of stress such as the problem of the

symmetric wedging of a thick plate (19), the wedging force can be approximated by two equal

48



and opposite concentrated tractionsP per unit length of plate thickness as illustrated in figure 41.

Using the dimensional analysis methods outlined earlier inthis section, a dimensionless relation

can be derived, for 2-D stress and deformation fields, which only depends on crack lengthl, load

P , and cohesive modulusK (19):

l =

(

P

K

)2

. (17)

Figure 41. Idealized 2-D problem of wedge-induced crack propagation in a thick
plate after Barenblatt (19).

This result is used to validate our peridynamic code simulations of fracture in section 10.1.

7. The Mechanics of Indentation

In this section, we outline the exact solution to the axisymmetric indentation problem into an

elastic halfspace, otherwise known as the Boussinesq problem, that is relevant to the dimensional

analysis described in section 6. The exact elastic solutions provide a means to quantitatively

validate computational simulations, prior to the development of permanent densification and

fracture of the glasses under consideration in this research. Boussinesq (53) and Love (54) were

among the first to consider such a problem, but Sneddon solvedthe problem for the flat-ended

punch (55, 56) in cylindrical polar coordinates using Hankel transformsthat resulted in the
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solution of dual integral equations (57). The solutions to the field equations are listed below as

they appear in Sneddon’s (25) textbook,

ur = −
2µǫ

(

J1
0 − (λ+µ)

µ
ζJ1

1

)

π(λ+ 2µ)
,

uz =
2ǫ

(

(λ+µ)
λ+2µ

ζJ0
1 + J0

0

)

π
,

σz = −4µǫ (ζJ0
2 + J0

1 ) (λ+ µ)

πa(λ+ 2µ)
,

τrz = −4ζJ1
2µǫ(λ + µ)

πa(λ+ 2µ)
,

σθ = − 4ζJ0
1λµǫ

πa(λ + 2µ)
−

4µ2ǫ
(

J1
0 − (λ+µ)

µ
ζJ1

1

)

πaρ(λ+ 2µ)
,

σr + σθ = −4µǫ (J0
1 (2λ+ µ)− ζJ0

2 (λ+ µ))

πa(λ+ 2µ)
. (18)

In these equations, the dimensionless radial coordinateρ = r/a is the physical radial distancer

normalized by the indenter radiusa, and the dimensionless depth coordinateζ = z/a is the

physical depthz normalized by the indenter radiusa. ǫ is the indentation depth, and the Lamé

parameters are given byλ andµ. The radial stressσr is not given in Sneddon’s text but can be

derived readily by subtraction ofσθ from σr + σθ from equations 18 resulting in

σr =
4µǫ(J1

0µ− (λ+ µ)(ρ(J0
1 − ζJ0

2 ) + ζJ1
1 ))

πaρ(λ+ 2µ)
, (19)

where Bessel functionsJm
n are defined as

Jm
n =

∫ ∞

0

pn−1e−ζp sin(p)Jm(pρ) dp , (20)

or as the imaginary part of the integral
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Jm
n =

∫ ∞

0

pn−1e−p(ζ−i)Jm(pρ) dp . (21)

We derive an explicit representation for equation 21,

Jm
n = ℑ

(

2−mρm(ζ − i)−m−nΓ(m+ n) 2F̃1

(

m+ n

2
,
1

2
(m+ n+ 1);m+ 1;− ρ2

(ζ − i)2

))

, (22)

where(ρ, ζ) > 0,ℜ(m+ n) > 0, ℑ is the imaginary part of the term in brackets,m,n ∈ Z, and

2F̃1 is the regularized hypergeometric function2F1(a, b; c; z)/Γ(c).

All solutions listed in equation 18 are exact and expressible in closed-form except foruz, which

requires the evaluation ofJ0
0 . The solution foruz, which involvesJ0

0 is written in terms of

Γ(m+ n) = (m+ n− 1)!, which is an undefined quantity form = 0, n = 0 as this violates the

conditionℜ(m+ n) > 0 in equation 22 and probably explains why the full plane solution for uz
is not provided in any publications we are aware of (25), (55), (56), (58)∗. Sneddon’s solutions

can be rewritten more succinctly using the substitution,λ = 2µν
1−2ν

, and by normalizing the stress

components by the mean pressurepm = 8µǫ(λ+µ)
πa(λ+2µ)

, and the displacement components by the

indentation depthǫ, resulting in

ur
ǫ

= −(−ζJ1
1 + (1− 2ν)J1

0 )

π(1− ν)
,

uz
ǫ

=
(2(1− ν)J0

0 + ζJ0
1 )

π(1− ν)
,

τrz
pm

= −ζJ
1
2

2
,

σz
pm

= −1

2

(

ζJ0
2 + J0

1

)

,

σθ
pm

= − 1

2ρ
[ζ(2νρJ0

1 − J1
1 ) + (1− 2ν)J1

0 ] ,

σr
pm

= − 1

2ρ
[J0

1ρ− ζ(ρJ0
2 − J1

1 )− (1− 2ν)J1
0 ] . (23)

Note that the analytical solutions in equation 23 for elastic displacements and stresses in the

∗The first author became aware of an explicit expression forJ0

0
in appendix 2 of Barquins and Maugis (59) taken

from Dahan (60), prior to the completion of this final report.
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halfspace are functions of Poisson’s ratioν, which substantiates the choice ofν alone to describe

the elastic properties of the halfspace in the dimensional analysis described in section 6.

7.1 Principal Stresses in a Halfspace Under Axisymmetric Indentation

The principal stressesσ1 > σ2 > σ3 in a halfspace subjected to indentation by an axisymmetric

cylindrical indenter (figures 42– 44) can be determined by finding the eigenvalues of the

following matrix:







σr 0 τrz

0 σθ 0

τrz 0 σz






, (24)

which are

σ1 =
1

2

(

σr + σz +
√

σ2
r − 2σrσz + 4τ 2rz + σ2

z

)

, (25)

σ2 = σθ ,

σ3 =
1

2

(

σr + σz −
√

σ2
r − 2σrσz + 4τ 2rz + σ2

z

)

.

We also plot the normalized vertical displacementuz

ǫ
of the halfspace (figure 45) using both the

exact solution from Sneddon’s text (25) as well as an approximate solution derived by using both

a series expansion approximation of the Bessel functionJ0(pρ) near the origin and the asymptotic

expansion ofJ0(pρ) for largeρ that appears in equation 18 or equation 23 in the term involving

J0
0 =

∫ ∞

0

e−ζpsinc(p)J0(pρ) dp . (26)

We note that Sneddon’s text (25) and other references on this topic provide the solution only for

the halfspace surface displacement field, because of the difficulty in evaluation ofJ0
0 ; the topic of

determining the displacement fielduz

ǫ
throughout the entire halfspace will be the subject of an

upcoming publication. Finally, we use the exact indentation solution for the surface displacement

of a halfspace found in Sneddon’s text (25) (also plotted in figure 45) to validate our

axisymmetric peridynamic code in section 10.3.
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Figure 42. σ1

pm
contours in the halfspace forν = λ

2(λ+µ) = 0.1679, where
λ = 15.833 GPa,µ = 31.3 GPa using the Lamé parameters for fused
silica derived from Scheidler (20).
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pm
contours in the halfspace forν = λ

2(λ+µ) = 0.1679, where
λ = 15.833 GPa,µ = 31.3 GPa using the Lamé parameters for fused
silica derived from Scheidler (20) .
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8. Quantum Mechanics Modeling of Densification and Bulk Modulus of

Silica Versus Pressure

A detailed understanding of the densification process and structural changes in amorphous solids

under pressure is appealing for both experimental and simulation work. One of the interesting

questions is about the nature of the structural transformation between low and high density

amorphous phases. To model the structure under pressure from first principles, we used models

with different densities, number of atoms, and different ring statistics. We used two different

methods to generate the random connected networks (1) a Monte-Carlo bond switching model

(72- and 114-atom models) and (2) MD simulated annealing of melted silica. The ring statistics

could be described by plots of ring size distribution, as seen in figure 46. The faster the

quenching of the melt is, the wider is the distribution of thering sizes. Here is an example of

slow quenching with ring distributions from 4 to 8 member rings, which corresponds to the

quartz-like structure of the 114-atom model. Two other models with 72 and 192 atoms have

wider distribution of the ring sizes from 3 to 12 member rings; for reference, quartz has only 6

member rings. Three to four member rings have a low concentration, but play an important role

because they correspond to the most reactive sites. The angles between theSi− O − Si atom,

and theO − Si−O atom distributions also convey important information about structural

changes under certain pressure (figure 47).

Figure 46. Ring distribution for the 114-atom model.
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Figure 47. Two types of angle distribution in the 114-atom model.

By relaxing the internal coordinates under compressive or tensile pressures at normal conditions,

we found that theSi−O − Si angle ranges between 130◦ and 180◦, while the tetrahedral units

are preserved. This result is in good agreement with previous theoretical and experimental

results of Mauri et al. (61). Clear signs of structural transformations in silica under the pressure

may be seen from the calculated mass density (figure 48). We did the calculations of density

after optimizing the shape and volume of the unit cell without projections in real space. The

analysis used the Projector Augmented Wave (PAW) method implemented in the Vienna ab initio

simulation package (VASP) code described in Kresse and Hafner (62).

In all three models, one may see two slopes of density, which might be related with different types

of structural changes. One occurs up to 20–30 GPa, and another region is from 30–50 GPa.

Some signatures of the two phases may be seen from the x-ray absorption experiments of Sato

and Funamori (15) (figure 49).

To understand what is so special with these two stages of structural transformation in silica, we

did angle distribution analysis under pressures similar tothat depicted in figure 47. It turned out

that in the first region there is not much change inO − Si− O distribution, but discernible

changes inSi−O − Si distribution indicating that up to 20–30 GPa there is a squeezing of space

between tetrahedra and not much distortion of tetrahedrons. EachO atom has two nearest

neighbors; eachSi atom has four nearest neighbors. At pressures higher than 30GPa, silica

becomes very dense, and both theSi− O − Si andO − Si− O angles change, revealing

transformation in both the tetrahedra and the space betweenthem.
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Figure 48. Density of fused silica as a function of pressure for 72-atom (H),
114-atom (H), and 192-atom (�)models.

Figure 49. Experimental density of fused silica after Sato and Funamori (15).
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At 40–50 GPa, severe distortion of the tetrahedrons resulting in formation of sixfold-coordinated

Si atoms (figure 50). The density functional theory (DFT) observation of the sixfold-coordinated

atoms confirms the assumption suggested in Sato and Funamori(15).

A manifestation of the two phases of silica densification might exhibit the unusual behavior of the

elastic constants, particularly the bulk modulus. We calculated the bulk modulus from the

stress-strain relationship for 114-atom model. The bulk modulus of fused silica generally

increases with pressure, but unusual behavior of the pressure dependence up to 20 GPa may be

related to the densification of the space between the tetrahedra (figure 51). A second region after

20 GPa with significant increase of bulk modulus correspondsto the densely packed tetrahedra.

Figure 50. Fused silica structure under 50 GPa with sixfold-coordinatedSi atoms.

Figure 51. Bulk modulus of fused silica as a function of pressure.
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8.1 Force Matching Pair Potentials for Borosilicate Glasses

To generate pair potentials for borosilicate glasses, we used the FM method as applied by Izvekov

and Rice (14). The method is based on DFT calculations of trajectories inthe

Born-Oppenheimer approximation at 5000 K. The pair potentials forS −B andB −O generated

using the method are shown in the figure 52.

PairSi− Si, Si−O, andO −O potentials are similar to those used for pure silica MD

calculations. The numerical pair potentials include to a certain extent many body interactions

since they were generated based on force matching of DFT calculations.

(a) (b)

Figure 52. Pair potentials for (a)Si−B and (b)O −B.

8.2 Simulation of Vibration Spectra of AmorphousSiO2

Given the large variety of structural building blocks of amorphousSiO2, there is s need for a

fundamental description of the random lattice vibrations,particularly those that are IR and Raman

active. In this section, IR and Raman spectra were computed using DFT for both crystalline and

amorphousSiO2. In an insulating crystal, the frequency and the intensity of the Raman peaks

are determined by the zone-center phonon frequencies and the Raman tensor. The phonon

frequencies are determined by the dynamical matrix, dielectric constant, and Born effective

charges. The Born effective charge tensor of an ion is the partial derivative of the macroscopic

polarization with respect to a periodic displacement of allthe periodic images of that ion at zero

macroscopic electric field. Calculations are done with the CASTEP code (63) using
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norm-conserving pseudopotentials and plane waves with 600eV cutoff. The calculated IR

spectrum reproduces the main peaks observed inα-quartz as shown in figures 53 and 54.

Figure 53. Calculated IR spectrum.

Figure 54. IR spectrum was registered on Nicolet 6700 FT-IR spectrometer.

The atomistic and charge relaxed model and scaled arrows indicating the main vibration modes

are shown figure 55.
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Figure 55. (a) Relaxed atomic structure and charge total distribution isosurface at
value 0.36 together with arrows indicating vibration modes, and (b)
distribution of local self consistent potential.

The Raman spectrum calculated in linear response approximation is shown in figure 56. The

calculated spectrum reproduces two experimental frequencies at 466 and 205 cm−1. The

calculation of vibration spectra of amorphousSiO2 depends on the atomic and topological model

of silica, ring size, and density. The 72-atom model obtained using the bond switching

algorithm (64) with random angles and no broken bonds was used for computing the vibration

spectra. The structure has a distribution of 4–8 rings (figure 57) and mass density of 2.145 g/cm3.

The calculated IR spectrum of the silica model is shown in figure 58. The main vibration modes

corresponding to the peaks of the intensity are shown by scaled arrows in figure 59a.

It is evident that there is more charge within random rings than in quartz and the main vibration

modes are associated with atoms located in larger rings. Peaks around 474 and 1188 cm−1 are

seen in simulated curve of figure 53. The IR band at 800 cm−1 can be assigned toSi− O − Si

symmetric stretching vibrations, whereas the IR band at 474cm−1 is due toO − Si−O bending

vibrations. The calculated Raman spectrum of silica is shown in figure 60.

In the experimental Raman spectra of silica shown in figure 61, three regions are typically

specified (65). The broadband around 490 cm−1 (D1 band), peak around 600 cm−1 (D2 band)

(attributed to symmetric breathing mode of 3–4 member rings), and peak around 800 cm−1

(assigned to theSi− O stretching).

The calculated Raman spectra from figure 60 reproduce the three main regions of the spectrum in

figure 61 and the methodology of calculation will be used for identifying signatures of

non-standard coordination of silica atoms at high pressures.
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Figure 56. Raman intensity of quartz (a) calculated and (b) experimental (21).

Figure 57. Distribution of rings in 72-atom model. The six member rings have
the highest concentration in the model.
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Figure 58. IR spectrum of the 72-atom silica model.

Figure 59. (a) The main vibration modes in silica are shown byscaled arrows.
The semi-transparent clouds represent isosurface of totalcharge
distribution at a value of 0.35 and (b) experimental Fouriertransform
infrared (FTIR) spectrum of precipitated amorphousSiO2 (22).
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Figure 60. Raman spectra of 72-atom model of silica using 10 cm−1 smearing, 10
K temperature, and Ar laser wavelength.

Figure 61. Experimental Raman spectra of silica at ambient conditions (lowest
curve).
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9. Continuum Equation-of-state Model Development

Established processes to develop constitutive models for use in large-scale analysis and design

simulations are heavily influenced by the vast body of work onmetals. Typically, a model is split

into an EOS, relating pressure, density, energy, and temperature, and a strength model, which

relates the deviatoric part of the stress tensor to the time history of the strain rate, temperature,

and state variables. This is the context of the glass EOS in Gazonas et al. (66), where a

polyamorphic model was used, in conjunction with high and low pressure EOS models, to

represent the permanent volume change in glass at high pressures (in excess of 10 GPa).

The model assumptions are evaluated by comparing simulation results with velocity profiles

obtained from gas gun experiments by Alexander et al. (23). The experimental results are shown

for three different impact velocities in figure 62a. The initial velocity ramp from 0 to 0.2 km/s

results from the decreasing modulus with pressure, which isnot captured by the current model.

At velocities of approximately 0.6 km/s, there is a kink associated with the polyamorphic

transformation. The high velocity curve (208 m/s impact velocity) rises abruptly after the

transformation point, and caps at a velocity consistent with the initial velocity and shock

impedance of the flyer. The transformation is nearly over driven at this high velocity, in that there

is very little shift between the two vertical sections of thecurve. The lower curve (137 m/s)

shows a gradual rise associated with the kinetics of the transformation. It reaches the peak

velocity by the end of the plot. The profile from the intermediate velocity experiment retains

some curvature due to the transformation kinetics, but the steady velocity is attained quickly.

Results from using the initial model, with separate elastic-plastic and polyamorphic

transformations, in gas gun simulations yields velocity profiles displaying a three-wave structure

(figure 62b) rather than the two waves seen in the experiments. The model kinetics were

assumed to be fast in these simulations to accentuate the steps. The first rise in the profile ends

with the HEL associated with the elastic-plastic transition. The second rise ends with the volume

change from the polyamorphic transformation, and the thirdrise terminates with the maximum

particle velocity. From this comparison, it is evident thatthe elastic-plastic and polyamorphic

transformations must occur concurrently, or an extra step will appear in the velocity profile.

Physically, this implies that the atoms move to accommodateshear strain as they are rearranging

to accommodate the volume change.
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(a) (b)

Figure 62. Velocity profiles from: (a) gas gun experiments onborosilicate glass
from Alexander et al. (23) and (b) simulations using independent
functions for the elastic-plastic transition and the polyamorphic
transformation.

The modeling goal is to couple inelastic deviatoric deformation and volume change. There is no

experimental data to guide the functional form for the coupling, so a simple quadratic flow

potential model is assumed:

φ= 0 =
√

ασ2
e + p2 − p̄(λ). (27)

Here,σe is the effective stress,p is the pressure, and̄p is a function of the volume fraction of the

low pressure polyamorph,λ. α is a parameter regulating the relative influence of the deviatoric

stress compared to the pressure.

Following concepts used in metal plasticity, the directionof inelastic flow is assumed to be

normal to the flow potential:

dinelas = Λ
∂φ

∂σ
, (28)

wheredinelas is the inelastic part of the rate of deformation tensor,d, which is decomposed,
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additively, into elastic and inelastic partsd = delas + dinelas. The elastic part is also a function of

the stress tensor through the elastic moduli. Together these provide a coupled set of equations for

Λ in equation 28, which is determined by an iterative procedure.

The volume fraction of the low density polyamorph is assumedto evolve through a kinetic

relation

λ̇ = β(λ− λ∞)3e
(ν

T−Tref

Tref
)

(29)

whereβ andν are parameters andλ∞ represents the equilibrium fraction of the low density

polyamorph. The equilibrium phase fraction

λ∞ =

(

p̄f − p̄

p̄f − p̄t

)2

(30)

is a function of the applied loading,̄p, the threshold pressure at which the transformation begins,

p̄t , and the pressure at which the glass is fully transformed to the high density polyamorph,̄pf .

These equations were implemented into a finite element code and the gas gun simulations run.

Figure 63a shows the results with the kinetic parameter set high (β = 100) to give the equilibrium

response. From these calculations it is evident that a two-wave structure is produced, indicating

that the inelastic deformation and polyamorph transformation are occurring simultaneously.

Figure 63b shows the results with a kinetic parameter (β = 3) set to reproduce the basic features

observed in the experimental data plotted in figure 62a.

The simulation results demonstrate some general model features necessary to reproduce

experimental observations from high-pressure gas gun experiments. The model must couple the

deviatoric stress and the pressure for the polyamorphic transformation, and a kinetic model is

necessary to introduce time-dependent rises in the response. Other features may also be

necessary, but these two have a major impact and provide a well-defined starting point for model

improvement. The particular functional relations assumedfor this model are conjecture guided

by experience in modeling metals. Hence, appropriate data are needed to guide model

development. While it will be possible to tune a kinetic parameter based on data from current

experimental methods, existing experimental techniques will provide little information on the
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Figure 63. Gas gun simulation results for a model with concurrent elastic-plastic
transition and polyamorphic transformation and with (a) a high kinetic
parameter for rapid transformation and (b) the kinetic parameter
adjusted to resemble experiments.

functional form for the kinetic relation or the flow functiondependence on deviatoric stress and

pressure. The alternative, and the approach pursued in the program, is to determine the

functional relationships and parameters through multiscale modeling approaches.

9.1 Summary of Continuum Equation-of-state Model Development

The EOS development included the non-monotonic change in bulk modulus with pressure and a

polyamorphic transformation from a lower density amorphous state to a higher density

configuration. The EOS form near the reference density was guided by previously published

pressure-density data. Figure 64 depicts the model dependence of the pressure and bulk modulus

on density along with the data of Zha et al. (24). The agreement is reasonable up to 10 GPa,

which is near the pressure where the polyamorphic transformation begins. The EOS for the high

density polyamorph was assumed to follow a Murnaghan form and the model constants were

determined by fitting Hugoniot data from Sugiura et al. (67) and Alexander (23). This fit is

complicated by a lack of data. In particular, the reference density for the high density phase is

not easily obtained, since it must be measured after releasefrom high pressures.

The remaining component of the EOS model is the temperature-dependent kinetic relation

connecting the low and high density polyamorphs. Here, it isassumed that the transformation

rate is proportional to the cube of the difference between the current phase fraction and the

equilibrium phase fraction. The model is assessed by comparing interface velocity predictions
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Figure 64. Model fit of pressure and bulk modulus with data from Zha et al. (24).

from gas gun simulations with available data in figure 62a. The curvature of the velocity data is

due entirely to the kinetic relation, and it is capturing much of the inflection and curvature. The

timing of the rises in the curves is off, which suggests that the underlying response may be too

stiff in the elastic range and that the volume change associated with the transformation may be too

large. These can be adjusted when more data are available.

10. A Perfectly Matched Layer for Peridynamics in Two Dimensions

In this section, we develop a peridynamic method for modeling nanoindentation experiments in

fused silica and other chemically substituted glasses. Originally introduced in Silling (68),

peridynamics is a non-local formulation of elastodynamics, which can more easily incorporate

discontinuities such as cracks and damage. Derivatives of field variables in the classical

continuum model are replaced by integrals over a small neighborhood of microelastic kernels,

which replaces the standard constitutive relation. In its discretized form, an elastic solid is

treated as a collection of particles or nodes, each connected to its neighbors by breakable bonds.

Bond breakage can be defined to occur when a bond is stretched past some predetermined limit.
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The end result is a method capable of predicting crack growthin brittle elastic materials (69–74).

The original formulation was limited to materials with a fixed Poisson’s ratio of 0.25; however,

state-based peridynamics was introduced allowing for moreflexible constitutive relations (75).

As becomes clear later, state-based peridynamics allows for an auxiliary field formulation, which

is necessary to implement a perfectly matched layer (PML). While most peridynamics work has

focused on simulating problems with free or fixed boundary conditions, there are applications in

which the simulation of an infinite medium may be useful, suchas crack propagation in a

halfspace or nanoindentation problems. Absorbing boundary conditions are one way of

simulating an infinite medium as any impinging waves are suppressed so they do not reflect back

into the simulation. A PML is such an absorbing boundary, andwas originally introduced for

electromagnetic simulations (76, 77). PMLs differ from traditional absorbing boundary

conditions in that they are an absorbing layer with a finite width, placed between the computation

region of interest and the truncation of the grid or mesh. They can also be thought of as an

anisotropic absorbing material, which is why the flexibility of a state-based peridynamics is

necessary. A PML was applied to one-dimensional (1-D) peridynamics (78), which used the

results of Du et al. (79) to formulate an auxiliary field equation. This approach required a matrix

representation of the auxiliary field, which may be memory prohibitive in higher dimensions.

10.1 Two-dimensional (2-D), State-based Peridynamics

The continuum equation of motion in an elastic solid can be stated as

ρ
∂2

∂t2
u = ∇ · σ + b = ∇ · (c : ǫ) + b, (31)

whereρ(x) is the density;u(x, t) is the displacement;σ(x, t) is the stress tensor;ǫ(x, t) is the

strain tensor;c is the stiffness matrix for plane strain, defined by Young’s modulusE, Poisson’s

ratioν, or Lamé parametersλ andµ; andb(x) is a body force (80). (Throughout, boldface type

denotes a vector and a boldface variable with an overbar denotes a tensor.) Equation 31 is a local

formulation because the divergence of the stress (and gradient of the displacement implied in its

definition) represents a local operation on a variable. In other words, the action of∇ · σ only

depends onσ at a single spatial point. In problems involving discontinuities, such as cracks, the

divergence at such discontinuities is not well defined, leading to numerical implementation

problems. Peridynamics proposes replacing∇ · σ with a nonlocal operation that nonetheless

also represents a force. Here, we use the state-based peridynamics (75), rather than the original

bond-based version (68). A PML application requires an auxiliary field formulation, as it is

essentially an anisotropic absorbing material, if a non-physical one. Consequently, a state-based

peridynamic formulation is necessary to implement the required constitutive relations in the
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absorber. The state-based peridynamics uses a family of bonds to determine a given force rather

than a single bond independently. This more general approach allows for inelastic behavior and

more general elastic behavior, and is governed by

ρ
∂2

∂t2
u =

∫

Hx

(

T[x, t]〈x′ − x〉 − T[x′, t]〈x − x′〉
)

dV ′ + b, (32)

whereHx is the horizon region, defined as a circle centered atx with radiusδ, andT[x, t]〈x′ − x〉
is a peridynamic vector state, with parameters in the squarebrackets indicating variables that act

as arguments to any functions that define the vector state andvariables in the angle brackets

acting as arguments to the vector state itself. In the state-based formulation, the deformation

gradient, given by

F = I + u∇, (33)

can be approximated as a vector state as

F[x, t] =
[
∫

Hx

C(|ξ|) (Y[x, t]〈ξ〉 ⊗ ξ) dVx′

]

K
−1
, (34)

whereC(|ξ|) = exp(− |ξ|2 /δ2) is a shape function, taken as a Gaussian distribution here and

with the horizonHx extended so that the shape function decays to an arbitrary, small value, taken

here as10−6, K is a shape tensor given by

K [x, t] =
∫

Hx

C(|ξ|) (ξ ⊗ ξ) dVx′,K
−1

=

[

kinv
xx kinv

xy

kinv
yx kinv

yy

]

, (35)

andY is a deformation vector state given by

Y[x, t]〈ξ〉 = η + ξ, (36)

with η = u[x′, t]− u[x, t] andξ = x′ − x (81).

The deformation gradient can now be substituted into Hooke’s law and strain-displacement

relations, giving a stress termσ in terms ofu in plane strain

ρ
∂2

∂t2
u = ∇ · σ = ∇ · (c : ǫ) , (37)
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where

ǫ[x, t] =
1

2
(∇u + u∇) ≈ 1

2

(

F[x, t] + F[x, t]T − 2I
)

. (38)

Ultimately, the peridynamic vector stateT for plane strain elasticity is given by

T[x, t]〈ξ〉 = C(|ξ|)σ[x, t]K−1
ξ. (39)

10.2 Auxiliary Field Formulation and PML Application

The first step in formulating a PML is to construct an analyticcontinuation to the complex plane,

such aŝx = x+ ig(x), whereg(x) is a given function describing the deformation (82). This

mapping has the effect of transforming traveling waves of the formeikx, wherek = ω/c is the

wave number, into evanescent waves of the formeikxe−kg(x), thus attenuating such waves in the

PML region. Applying a PML involves substituting for spatial derivatives using

∂

∂x
→ 1

1 + iφ(x)
ω

∂

∂x
. (40)

The functionφ(x) defines the extent of the PML region, i.e., whenφ(x) = 0 the original wave

equation is obtained, and whenφ(x) > 0, traveling waves decay exponentially. Typically,φ(x)

transitions from 0 to a constant value using a smooth function to prevent numerical reflections at

the boundary between the absorbing and computational regions. Before applying a PML directly

to the peridynamic equation, equation 31 is treated so that the PML application to peridynamics is

clear. It is convenient to convert equation 31 to the Laplacedomain, assuminge−st time

dependence, and express the wave equation as two coupled first-order partial differential

equations, the first iñu and the second insψ̃ = σ̃

ρsũ = ∇ · ψ̃

sψ̃ = c : ǫ̃,
(41)

where the Laplace transform of a variable is indicated byL{f} = f̃ . Expanding equation 41 into

components gives five coupled equations
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ρsũx =
∂

∂x
ψ̃x +

∂

∂y
ψ̃τ

ρsũy =
∂

∂x
ψ̃τ +

∂

∂y
ψ̃y

sψ̃x = (λ+ 2µ)
∂

∂x
ũx + λ

∂

∂y
ũy

sψ̃y = λ
∂

∂x
ũx + (λ+ 2µ)

∂

∂y
ũy

sψ̃τ = µ

(

∂

∂y
ũx +

∂

∂x
ũy

)

.

(42)

We can expand the state-based formulation into components and match terms to equation 42.

Following this approach yields a viable method for performing PML substitutions. First, the

state-based peridynamic equations listed above in equations 32–39 can be written explicitly as

ρsũx[x, s] =
∫

Hx

C(|ξ|)
[(

ψ̃x[x, s]kinv
xx + ψ̃τ [x, s]kinv

yx

)

ξx +
(

ψ̃x[x′, s]kinv
xx

′
+ ψ̃τ [x′, s]kinv

yx

′
)

ξx

]

dVx′

+

∫

Hx

C(|ξ|)
[(

ψ̃x[x, s]kinv
xy + ψ̃τ [x, s]kinv

yy

)

ξy +
(

ψ̃x[x′, s]kinv
xy

′
+ ψ̃τ [x′, s]kinv

yy

′
)

ξy

]

dVx′ ,

ρsũy[x, s] =
∫

Hx

C(|ξ|)
[(

ψ̃τ [x, s]kinv
xx + ψ̃y[x, s]kinv

yx

)

ξx +
(

ψ̃τ [x′, s]kinv
xx

′
+ ψ̃y[x′, s]kinv

yx

′
)

ξx

]

dVx′

+

∫

Hx

C(|ξ|)
[(

ψ̃τ [x, s]kinv
xy + ψ̃y[x, s]kinv

yy

)

ξy +
(

ψ̃τ [x′, s]kinv
xy

′
+ ψ̃y[x′, s]kinv

yy

′
)

ξy

]

dVx′ ,

sψ̃x[x, s] = (λ+ 2µ)

[
∫

Hx

C(|ξ|)
(

Ỹx[x, s]ξxkinv
xx + Ỹx[x, s]ξykinv

yx

)

dVx′ − 1

]

+ λ

[
∫

Hx

C(|ξ|)
(

Ỹy[x, s]ξxkinv
xy + Ỹy[x, s]ξykinv

yy

)

dVx′ − 1

]

,

sψ̃y[x, s] = λ

[
∫

Hx

C(|ξ|)
(

Ỹx[x, s]ξxkinv
xx + Ỹx[x, s]ξykinv

yx

)

dVx′ − 1

]

+ (λ+ 2µ)

[
∫

Hx

C(|ξ|)
(

Ỹy[x, s]ξxkinv
xy + Ỹy[x, s]ξykinv

yy

)

dVx′ − 1

]

,

sψ̃τ [x, s] = µ

∫

Hx

C(|ξ|)
(

Ỹx[x, s]ξxkinv
xy + Ỹx[x, s]ξykinv

yy

)

dVx′

+ µ

∫

Hx

C(|ξ|)
(

Ỹy[x, s]ξxkinv
xx + Ỹy[x, s]ξykinv

yx

)

dVx′ ,

(43)

etc. Though no derivatives appear in equations 43, the correspondence of each term to those in

equation 42 is apparent and the PML substitutions can be made. For example, the first equation

75



in 43 can be rewritten as

ρ (s+ φx) (s+ φy) ũx = (s+ φy)

∫

Hx

C(|ξ|)
(

ψ̃x[x, s]kinv
xx + ψ̃xy[x, s]kinv

yx

)

ξxdVx′

+ (s+ φy)

∫

Hx

C(|ξ|)
(

ψ̃x[x′, s]kinv
xx

′
+ ψ̃xy[x′, s]kinv

yx

′
)

ξxdVx′

+ (s+ φx)

∫

Hx

C(|ξ|)
(

ψ̃x[x, s]kinv
xy + ψ̃τ [x, s]kinv

yy

)

ξydVx′

+ (s+ φx)

∫

Hx

C(|ξ|)
(

ψ̃x[x′, s]kinv
xy

′
+ ψ̃τ [x′, s]kinv

yy

′
)

ξydVx′ ,

(44)

with the remaining equations following similarly. The finalstep involves simply converting back

to the time domain and implementing a forward Euler discretization scheme in time, and the

standard one-point integration method (74) in space.

10.3 Results

The previous method was numerically implemented using a forward Euler method for the

temporal discretization, and standard one-point integration with point-matching in space. The

PML was tested on three types of problems: a wave propagationproblem to demonstrate the

effectiveness of the PML, two crack propagation problems (one state-based and one bond-based),

and an axisymmetric indentation problem.

10.3.1 Wave Propagation

The PML was first tested on a wave propagation problem with PMLboundary layers and a

Gaussian distribution as an initial condition. Specifically, thex-directed displacement was set to

ux(x, t = 0) = e−200|x−pmid|
2

, (45)

wherepmid is the mid-point of the region, which in this example was defined as0 ≤ x, y ≤ 1 and

discretized with∆x = ∆y = 0.01 m. Young’s modulus for the region was set to 1 Pa, Poisson’s

ratio was1/4, and the density was 1 kg/m3. The PML region was defined as the 0.3-m border

around the 1 m-by-1 m region and used a Gaussian ramp with a width of 0.2 m, finally reaching a

maximum of 50 s−1 for the remaining 0.1 m. For the Gaussian kernel, a horizon size of

δ = 1.1∆x was used, and for the Heaviside kernel, a horizon ofδ = 3.1∆x was used.

The simulation was run with both the Heaviside and Gaussian kernels, with the total strain energy

shown in figure 65. The Gaussian kernel (dotted line) shows the largest drop in energy, reaching

a minimum of5.6× 10−7, and the Heaviside kernel (dashed line) decreases to1.× 10−4.
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Figure 65. Total strain energy in a simulation terminated bya PML.

A bounded simulation is shown for reference as the solid line, which used a fixed displacement

boundary condition and the Gaussian kernel. Figure 66 showsa waterfall plot of thex-directed

displacement along they = 0.5 line for the Gaussian kernel with the PML functionφx shown in

gray on the far end of the plot (corresponding tot = 1 s). Figure 67 shows the absolute value of

thex-directed displacement at the edge of the PML region, in simulations terminated by a PML

and with a fixed boundary condition. The wave is absorbed at the boundary with minimal

reflections: as can be seen, the plots align for a time, and where they deviate (indicating a

reflection from the hard boundary), the PML simulation remains in decay.

For verification, the method was compared with an exact analytical solution. Consider a

cylindrically symmetric wave propagating in an infinite elastic medium with the same constitutive

parameters as the above example, and with an initial condition given by

u0(r) = b
(r

a

)

[

1 +
(r

a

)2
]− 3

2

(46)
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Figure 66.x-directed displacement aty = 0.5 m, terminated by a PML.
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Figure 67.x-directed displacement atx = 0.3, y = 0.5 m. The solid line shows
results terminated by a PML, and the dashed line used a fixed
boundary condition.
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where here we takeb = 1 anda = 0.1. The exact solution is given by Eringen and Suhubi (83)

u(r, t) =
br√
2aR6

√
R2 + α

(

2α− R2
)

,

α = 1 +
r2 − c2t2

a2
,

R2 =

√

α2 +
4c2t2

a2
,

(47)

wherec is the longitudinal wave speed. This problem was simulated in a 2-D region, 2 m-by-2 m

and∆x = ∆y = 0.01 m, terminated by a PML with the same dimensions and magnitudeas the

above problem. The Gaussian kernel was used with a horizon size ofδ = 0.75∆x, with an actual

cutoff of 0.028 m. The results are shown in figure 68, with the exact solution shown as the solid

line and the peridynamic solution shown as the dashed line. The peridynamic solution shows

good agreement with the exact solution and minimal reflections from the PML boundary.
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Figure 68.x-directed displacement atx = 0.5, y = 0 m. The solid line shows
the exact solution and the dashed line results terminated bya PML.

10.3.2 Crack Propagation

Crack propagation in a half-space can be useful for modelingphysical phenomenon such as

indentation experiments. As an example, we model such a problem as a body force applied to a

finite region with small pre-cracks in a region terminated onthree sides with PMLs. One addition

to the algorithm for this problem was a drag term, used to reduce noise. For crack problems with
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a sudden force application, noise and oscillations can cause hot spots and undesirable cracking.

To remedy this, a drag term can be added to smooth oscillations, by adjusting the nodal velocity as

v∗[xi, l] = (1−D) v[xi, l] +
D

Nb

Nb
∑

j=1

v[xj , l], (48)

whereD is the drag coefficient andNb is the remaining number of bonds in the family of noden

(84).

An absorbing boundary ensures that no reflections from the boundaries interfere with the crack

propagation, possibly causing it to deviate. Figure 69 gives a schematic of the problem, the extent

of the computation region is designated by the solid line, the PML ramp begins at the dashed line

and the PML plateaus at the dotted line. The computational region was 70 mm wide and 35.25

mm high, the PML region began at 15 mm from each edge (except the top) and peaked at 5 mm to

a value of5× 106 s−1. The node spacing was 0.496 mm and the time step size was 1 ns. For

material values, the density was 2235 kg/m3, Young’s modulus was 65 GPa, Poisson’s ratio was

0.2, and the fracture criteria used a fracture energy of 204 J/m2. The failure criteria used in this

simulation was bond-based, i.e., a bond failed if it was stretched past a given limit, determined by

the fracture energy (71). The maximum relative bond stretch was then 2.971×10−3. The load

was applied across a 10-mm region, centered at the top surface, with pre-cracks on each edge with

a length of two nodes or 0.993 mm. The simulation was run for a total of 10µs, and the cracks

were measured manually from the edge of the pre-cracks to theextent of the damaged area.

P M L ∞∞∞∞
∞

P 0E , υ , ρ
Figure 69. Schematic diagram of the problem for crack propagation in a

half-space.
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Figure 70 shows a result that had an applied load of250× 109 N, yielding a 2.11-mm crack.

Figure 71 shows a close up of the damaged area from figure 70. Ascan be seen, the crack

extends three nodes down and three nodes across. Finally, the applied load was varied between

140× 109 N and500× 109 N, with the crack length versus applied load shown in figure 72as the

dots. A curve, shown as the solid line in figure 72, was fit usingthe form motivated by the

universal scaling law presented in section 6:

ℓ = Aps, (49)

whereℓ is the crack length in meters andp is the applied load in newtons. A linear fit was

computed in log-log space using least squares giving a powerlaw of s = 1.96 and

A = 4.3× 10−8 m/Ns. This fit matches well with the predicted, dimensional analysis law shown

in equation 17. Though the loading is different here, because the problem is 2-D the dimensional

analysis still applies giving the correct power law form. Inother words, for all 2-D problems

with stable crack growth in infinite regions, we should expect a load-crack length relation similar

to that of equation 49 with a power ofs = 2, while in 3-D, we expect a power ofs = 2/3.
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Figure 70. Damage map resulting from a250 × 109 N applied load after 10µs.
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Figure 71. Close up of damage map from figure 70.
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Figure 72. Crack length versus applied force for indentation into an elastic
half-space using state-based peridynamics. Blue dots represent data
points from the peridynamic simulation and the solid line isa curve fit.
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10.3.3 Bond-based Verification of a Center Crack

A center crack opening problem was simulated with a bond-based, non-PML terminated

peridynamics method. The problem, illustrated schematically in figure 41, involves applying

equal but oppositely directed point loads in an infinite region. The stable crack length is related

to the applied load as shown in equation 17. Here, rather thanapplying the load at a single node

(which may cause instability or large oscillations), the load was spread over three nodes on each

side at the center of a square region. Bond-based peridynamics was used with a node spacing of

0.5 mm, a time step size of 1 ns, Young’s modulus of 65 GPa, density 2235 kg/m3, and horizon

size of 1.5 mm with a Heaviside shape function. The load was applied slowly with a Gaussian

ramp, spread over 500 time steps. The region was not terminated with a PML, though the region

size (100 mm-by-100 mm) was large enough to avoid issues associated with crack-boundary

interactions. The criterion for bond damage was a critical relative stretch of 0.00185. A small

pre-crack was added between the two point loads and the bondssurrounding the loads were set to

a no-fail condition. This setup was run for varying loads, between4× 1011 and9× 1011 N and

the crack half length was measured between the center of the region and the crack tip, with a

crack tip being a region with a broken bond ratio of more than 30%. The results are shown in

figure 73 on a log-log scale. As in the above example (see equation 49), a linear curve fit in

log-log space (shown in figure 73 as the solid red line) was computed using least squares to

determine the exponent of the power law, and found to be 1.94,very near 2, the value determined

by dimensional analysis in equation 41.
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Figure 73. Crack half length versus load for a center crack problem using
bond-based peridynamics.
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10.3.4 Verification of an Axisymmetric Indentation Problem

Finally, the state-based, PML formulation of peridynamicswas implemented in an axisymmetric

setting, the details of which will be published in the future. Sneddon (25) derives an exact

analytical solution for a flat, rigid, cylindrical indentorbeing pressed into an infinite elastic

halfspace. Given the elastic properties of the medium, the depth of indentation, and the indentor

radius, the displacement and stress can be computed for the entire region. To simulate this

problem, an infinite region was represented using a PML in a finite region with a radius of 50 mm

and a depth of 50 mm. The flat extent of the PML was 5 mm and the ramp region was 15 mm.

The remaining parameters were identical to those in the above examples, though no bond

breaking was used in this example. The indentor had a radius of 5 mm, and was pressed to a

depth of 10µm. Sneddon’s exact solution (25) for thez-directed displacement at the surface of

the halfspace is given by

uz (r, z = 0) =

{

2ǫ
π
sin−1

(

a
r

)

, r > a

ǫ, r ≤ a
, (50)

whereǫ is the indentation depth anda is the radius of the indentor. The results of the simulation

are plotted in figure 74 with the peridynamic solution shown in blue and the exact solution in red.

In addition, the magnitude of the PML is indicated as the graded gray region on the right of the

figure, labeled as “PML.” As can be seen, the peridynamic solution is forced to zero in this

region, and is not expected to match the exact solution. The main discrepancy is due to the

discontinuous load applied, which leads to ringing in the peridynamic solution. Remedies for

this issue will be researched in the future.
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Figure 74. Peridynamic solution (blue) of an indentation problem compared with
Sneddon’s exact solution (25) (equation 50) (red).

11. Glass Technology Short Course

A one-day short course on the “Fundamentals of Glass Science,” was taught by Professor Arun K.

Varshneya, Alfred University, at ARL on October 29, 2010. Course attendees received copies of

Varshneya’sFundamentals of Inorganic Glasses(26). The course covered topics on (1) basic

compositions and families of commercial glasses that include vitreous silicates, SL silicates,

borosilicates, lead silicates, and aluminosilicates; (2)fundamentals of the glassy state; (3) phase

separation and liquid-liquid immiscibility; (4) glass structures (oxide and non-oxide glasses); (5)

review of some glass properties (e.g., elastic properties,hardness, viscosity, thermal expansion,

durability); and (6) annealing and strengthening.

The course was well received, and a question-and-answer period ensued with questions like,

“What is the difference between a glass and an amorphous material?” Answer: “Amorphous

materials make a continuous or discontinuous volume transition to a crystal or vapor on heating,

whereas, glasses continuously change to a liquid on heating.” See also, p. 17 and 18 in

Varshneya (26), and figure 75.
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Figure 75. The volume-temperature diagram for a glass-forming liquid, after
Varshneya (26).

12. A Short-term Conceptual Project

A short-term conceptual project to determine an effective experimental and theoretical approach

to model and characterize the role of glassy materials in resisting ballistic impact was conducted

by Richard Lehman, Professor and Chair of the Department of Materials Science and

Engineering, Rutgers University, Piscataway, NJ. A short synopsis of the report was briefed at

ARL on November 17, 2011, and appears below.

A number of features of the glassy state are thought to participate in the ballistic response of glass:

• Structural relaxation/viscoelasticity/strain energy equivalence theory (SEET)

• Short- and longer-range atomic structural characteristics

• Free volume (compaction, bulking)

• Cation and anion coordination

• Bond energies
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• Other nanoscale order characteristics that are difficult todetermine experimentally for silicate

glasses.

A number of expert personnel were contacted with the following panel discussion outcomes:

• Structural relaxation: The ability of glass to convert to a liquid with little structural

adjustment compared to crystalline materials may enable glass to respond more favorably to

shaped-charge assault within the microsecond time periodsof the impact. Viscoelastic issues

will be addressed.

• Modeling: Structural models based on statistical thermodynamics, ring structures, molecular

dynamics, and, anisotropic finite element methods (FEMs) will be considered. Experimental

pair distribution functions based on x-ray data will be discussed.

• Molecular defects: Glass is rich in molecular defects such as oxygen hole centers, E,

bridging oxygen, non-bridging oxygen, and various ring defect structure. These defects may

play an important role in the shaped-charge behavior.

• Heterogeneous structure: Most glasses are not the uniform isotropic material at the

mesoscale that many scientists assume. Phase separation, cation clustering, and small-scale

density fluctuations (as evidenced by various types of optical scattering) may be important in

allowing glass to accommodate high strain rates.

• Free-volume: Glasses contain a large amount of free volume compared to their crystalline

counterparts.

Summary and conclusions of the study include the following:

• MDs can be expanded into the mesoscale region:

– Large atom arrays (>109) and non-cubic shapes, e.g., high aspect ratio cylinders.

– Use surrogates to boost scale.

– Time scale (microseconds) cannot be collapsed and is a major limit on modeling time.

• FEMs can be down-scaled to the mesoscale size region:

– Requires specialized nonlinear methods.

– Structural elements modeled as nonlinear elements.

– Xi Chen at Columbia Univ. has relevant experience.
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• Medium-ranged structural data obtained with scanning tunneling electron microscopy

(STEM):

– Initial material characterization.

– Input to modeling effort.

– Aid in interpretation of stress wave work.

• Stress wave characterization:

– Coherent acoustic phonon spectroscopy is a promising dynamic approach.

– The time scale is very short.

– Experiments can be adjusted to span a range of experimentaltime periods.

13. Effect of Glass Composition on the Performance of Glass:Understand

the Role of Boron Concentration on the Dynamic Properties inthe

Borosilicate System

Glass is currently used for transparent armor systems and ofinterest for opaque armor

applications. The glasses that have been studied in previous investigations have been commercial

glasses such as SL silica glass, borosilicate glass, and fused silica. Attempts to procure new glass

composition have been limited to bulk glasses for compositions that have a commercial market.

This is primarily due to the large capacity nature of glass production. Typical melts range from

small volume of less than 1 ton a day to very large at greater than 100 tons a day. These are all

greater than the needs required for small-scale evaluations for ballistic and dynamic properties.

Thus, a facility at ARL-WMRD to produce small boules of glassto conduct

composition-structure-property relationship studies was installed in fiscal year 2013.

Figure 76 is a photograph of a bottom loading furnace locatedat ARL-WMRD. It has been used

for producing SL silica glass boules as shown on figure 77. These glasses were produced to

understand the temperature profile and capability of the furnace. The fiscal year 2013 effort will

investigate the role of boron concentration on the properties of glass. The approach is using glass

frits to cast round disks of borosilicate glasses. The target compositions are the commercial

Borofloat composition, the Borofloat composition with an additional 5 wt.% and the Borofloat

composition with a reduced 5 wt.% of boron. Chemical analysis, quasi-static property

characterization, dynamic properties characterization,and ballistic performance will be measured

and reported.
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Figure 76. Bottom loading furnace installed at ARL.

Figure 77. Typical glass boule produced in a silica crucible.
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14. Conclusions

This third-year final report on multiscale modeling of noncrystalline ceramics (glass) has focused

on establishing the framework for development of a multiscale computational methodology for

optimizing or enhancing the performance of silicate-basedglass materials not yet synthesized. A

more immediate research objective is to understand why certain chemically substituted

silica-based materials exhibit enhanced performance in the defeat of SCJs and other ballistic

threats. Conclusions consistent with the milestones shownin the five-year roadmap shown in

figure 3 are as follows:

1. Fused silica and various chemically substituted silicate-based specimens were delivered to

ARL under the auspices of an ongoing cooperative agreement;these specimens have been

ballistically tested, and serve to validate future computational models of fused silica.

2. The structural characteristics of silicate-based glasses include SRO consisting of atom to atom

bond lengths that are less than 0.5 nm and bond angles characterized by RDFs and SAXS

measurements. IRO in silica-based glasses consists of the polymerization of the silica atomic

tetrahedra (oneSi atom surrounded by fourO atoms into ring structures of joined tetrahedra

of a variety of sizes ranging from four to eight groups of tetrahedra). Chemical substitution

of Na,K,Mg, Ca,B, and other atoms can have a profound effect on IRO and ballistic

performance. Initial free volume and its variation with pressure control densification

behavior, but this is difficult to measure or quantify, especially at elevated pressure. A glass

brittleness parameter discussed by Ito (4) appears dependent on the deformation and fracture

behavior, which depends on flow and densification before crack initiation and on the bond

strength of the network and seems to decrease with a decreasein density.

3. A series of experiments on Borofloat, Starphire, and fusedsilica were conducted at the

Ernst-Mach Institute in Germany, which showed that fracture and fragmentation (figure 21) of

these glasses have profoundly different macroscopic response (figure 12) and fracture kinetics

(table 8) useful for computational model validation. Solidcylinder impact onto fused silica

targets results in a greater mass of finer fragments than the AP round, whereas the AP round

results in a larger mass of greater than 2-mm-size fragments(figure 21).

4. A series of nanoindentation experiments (indenter radius = 3µm) into fused silica were

conducted at ARL, which showed that both hardness and modulus decreased with increasing
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indentation depth (figure 30). Also, both radial and cone cracks were observed in indents,

which exceeded 1500 nm (figures 32 and 33). The nanoindentation experiments will be used

to validate MD and peridynamics models of fused silica and other chemically substituted

glasses.

5. High-pressure DAC experiments were conducted at ARL to pressures of∼33 GPa and

provide a means to measure density changes with pressure in glasses. Our DAC results on

fused silica compared well with prior published results (12) and provide a means for

validation of AIMD-based predictions of Hugoniots for morecomplex chemically substituted

glasses. Preliminary measurements of neutron diffractionspectra of fused silica, Borofloat,

and SL glasses provide an independent means to assess changes in glass network structure

with pressure. Preliminary analysis of Raman spectroscopic measurements on several glasses

with various (known) concentrations of secondary molecules reveal changes in the 300–400

wavenumber region with decreasing intensity as the composition changes within each sample

(figure 28).

6. MD simulations of nanoindentation (indenter radius = 9 nm) into fused silica were conducted

using LAMMPS (85) using a pairwise interatomic potential developed using novel FM

techniques described in Izvekov and Rice (14) and Izvekov et al. (86). However, computed

hardness values of 7.38 GPa underestimated experimental values determined from our own

indentation experiments, using albeit larger indenters (indenter radius = 3µm) (see figure 30).

7. The pairwise interatomic potential that was developed using a FM technique was also used to

determine a shock Hugoniot for fused silica to 60 GPa; it was initially shown to be in

excellent agreement with experimental values (see figure 19on page 26 or our prior year’s

memorandum report (44). Closer examination of the structure of our silica computational

model indicated that it contained regions of microcrystallinity that apparently had contributed

to our excellent prediction of the shock Hugoniot for fused silica (44). Recomputation of the

shock Hugoniot with a model free of microcrystallites resulted in a Hugoniot which

overestimated the silica density relative to experimentalvalues in the 0–20 GPa pressure

range (figure 35). The extension of the pairwise FM model to include angle bending forces,

which are three-body forces, is underway to improve the performance of the model at low

pressures where silica densification is driven by structural and topological changes. At this

time, however, we cannot rule out entirely the importance ofmicro/nanocrystallinity in our

modeling of glass, since work by Saito et al. (32) using light scattering studies concluded that

IRO structures, i.e., micro/nanocrystallites, exist in silica glass (see also our discussion in

section 4.2.7).
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8. First-principles quantum mechanical methods using VASP(62) are used to model

densification and bulk modulus variations with pressure in fused silica. Ring size

distributions (figure 46) and angle distributions forSi− O − Si andO − Si− O (figure 47)

are calculated, and future work will consider the pressure variation of these distributions and

whether they can be validated with experimental measurements conducted on fused silica

under extreme pressure using diamond anvil cells. FM potentials were also determined for a

borosilicate glass system (figure 52) in preparation for thefiscal year 2013 investigation of the

role of boron concentration on the properties of glass usingour new glass processing facility

(see section 13).

9. The CASTEP code (63) was used to compute initial IR and Raman spectra for both

crystalline and amorphousSiO2. It was found that the calculated IR spectrum (figure 53)

reproduce the main peaks observed in experiments onα-quartz (figure 54). In addition,

calculated Raman spectra (figure 60) reproduced the three main regions observed in

experiments on amorphous silica (figure 61).

10. Since inelastic deformation and a polyamorphic transformation apparently occurs

simultaneously in some glasses, a model was developed to account for this coupled behavior,

which captures the kinetics of the polyamorphic transformation that occur in plate impact

experiments on borosilicate (compare for example the plateimpact experiments of Alexander

et al. (23) in figure 62a with simulation results in figure 63b.

11. We have conducted a dimensional analysis for stable crack growth in brittle elastic solids

subjected to both indentation and wedge loadings and found that for Hertzian cone cracks

D = (P/K)2/3, whereD is the width of the base of the cone crack,P is the indentation load,

andK is the cohesive modulus; this relation is modified for 2-D stress and deformation fields

l = (P/K)2, wherel is the crack length. This last similarity relation was used to successfully

validate indentation and wedge-induced crack problems using the peridynamics

computational code that was developed under this program. Fully 3-D deformation and stress

fields for a rigid cylindrical indenter on an elastic halfspace were presented, which are useful

for validating similar elastic field predictions by computational means prior to densification

and failure of the medium.

12. A 2-D peridynamic model was developed to model nanoindentation and dynamic crack

propagation in fused silica as an extension of the recent 1-Dmodel of Wildman and

Gazonas (78); a PML was added to permit infinite computational domains that are

encountered in solution to certain boundary value problems(87). Peridynamic simulations of

2-D cracking induced by indentation and wedge loadings werevalidated using the universal
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similarity relationl = (P/K)2 derived in section 6. A 3-D axisymmetric peridynamics

computational code was developed and verified against a closed-form solution (25) for

vertical displacements in an elastic halfspace induced by aflat, cylindrical indenter illustrated

in figure 74.

13. Preliminary material characteristic and property metrics: At this point, it is worthwhile to try

articulating a set of material characteristics and properties that may have significant influence

on performance of silicate-based glasses in various ballistic events and that may be controlled

by systematic chemical substitutions. Among these are the following: linear thermal

expansion, flash thermal conductivity, inelastic deformation (plasticity), actual density and

calculated free volume, macro-defects (inclusions) and pores (bubbles), percentage of

micro/nanocrystalinity and nanochemical inhomogeneities, elastic recovery, and controlled

Hertzian indentation. The quasi-static and dynamic stress-strain measurements are so

susceptible to almost unavoidable surface flaws that there use is still problematic.

14. The current glass DSI program has successfully transitioned into a core mission program

within WMRD for fiscal year 2013 and beyond. An important focus of the mission program

concerns in-house production of small samples of glass to conduct controlled

composition-structure-property relationship studies (see section 13). Chemical analysis,

quasi-static property characterization, dynamic properties characterization, and ballistic

performance will be measured and reported on a variety of chemically substituted glasses;

data and measurements from this effort will provide a means to validate a parallel

computational effort using DFT and MD methods for the “design” of ballistically enhanced

glass formulations, which have not yet been synthesized!
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‡Grujicic, M.; Pandurangan, B.; Zhang, Z.; Bell, W.C.; Gazonas, G. A.; Patel, P.; Cheeseman,

B. A. Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations

for fused silica. J. Mater. Eng. 2011, Perf., DOI: 10.1007/s11665-011-0005-2.

‡Grujicic, M.; Pandurangan, B.; Bell, W. C.; Cheeseman, B. A.; Patel, P.; Gazonas, G. A.

Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for

soda-lime glass.J. of Mater. Sci. 2011, 46 (22), 7298-7312.

Gazonas, G. A.; McCauley, J. W.; Batyrev, I. G.; Becker, R. C.; Izvekov, S.; Jenkins, T. A.;

Patel, P.; Rice, B. M.; Schuster, B. E.; Weingarten, N. S.; Wildman, R. A.Multiscale modeling

of non-crystalline ceramics (glass) (final report); ARL-TR-6353; U.S. Army Research

Laboratory: Aberdeen Proving Ground, MD, February 2013.

Gazonas, G. A.; McCauley, J. W.; Batyrev, I. G.; Becker, R. C.; Izvekov, S.; Patel, P.; Rice, B.

M.; Schuster, B. E.; Weingarten, N. S.; Wildman, R. A.Multiscale modeling of

non-crystalline ceramics (glass) (FY11); ARL-MR-0802; U.S. Army Research Laboratory:

Aberdeen Proving Ground, MD, January 2012.

‡Funded in part by the Glass DSI program.
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Gazonas, G. A.; McCauley, J. W.; Batyrev, I. G.; Becker, R. C.; Patel, P.; Rice, B. M.;

Weingarten, N.S.Multiscale modeling of non-crystalline ceramics (glass); ARL-MR-0765;

U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, February 2011.

Strassburger, E.; Bauer, S.; Hunzinger, M.;Analysis of the fragmentation of AlON and

bi-modal grain sized Spinel, Final Report Report E 36/12; Research period:

10/2010-10/2011; Contract No. W911NF-10-2-0100 Contractor: Fraunhofer-Gesellschaft

zur Förderung der angewandten Forschung e.V.

‡Becker, R.Formulation of a glass model to capture observations from high-rate ballistic

penetration; ARL-TR-6086; U.S. Army Research Laboratory: Aberdeen Proving Ground,

MD, August, 2012.

15.3 Personnel Hires

An Oak Ridge Institute of Science and Education (ORISE) post-doctoral fellow was hired in

FY12 and offered a full-time government position in FY13. AnORISE summer student was

hired in FY11.

15.4 Transition to Core

The DSI program has been transitioned to a core mission program in WMRD for fiscal year

2013 and beyond. In addition, a glass processing facility (infrastructure enhancement) has

been established in WMRD to produce small samples of glass toconduct

composition-structure-property relationship studies aspart of the new core mission program.

15.5 Computational Code Development

The 1-, 2-, and 3-D axisymmetric peridynamics codes with PMLs capable of modeling wave

propagation and fracture in brittle materials have been developed and verified under this DSI

program.

15.6 Other

A one-day short course on the “Fundamentals of Glass Science,” which was taught by

Professor Arun K. Varshneya, Alfred University, at ARL on October 29, 2010. Course

attendees received copies of Varshneya’sFundamentals of Inorganic Glasses(26).
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A short-term conceptual project to determine an effective experimental and theoretical

approach to model and characterize the role of glassy materials in resisting ballistic impact

was conducted by Professor Richard Lehman, Rutgers University. A short synopsis of this

project was briefed at ARL on 17 November, 2011 (section 12).

Seminars: “Atomistic Simulations of Vitreous Silica,” Cormack, A. N., and Inamori, K.,

School of Engineering, NY State College of Ceramics, AlfredUniversity, 9 January 2012.
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List of Symbols, Abbreviations, and Acronyms

1-D one-dimensional

2-D two-dimensional

α-SiO2 crystalline quartz

Al aluminum

AlON aluminum oxynitride

ARL U.S. Army Research Laboratory

AIMD ab initio molecular dynamics

a-SiO2 fused silica or amorphous quartz

B boron

Ca calcium

CSM continuous stiffness measurement

DAC diamond anvil cell

DSI Director’s Strategic Initiative

EOI edge-on-impact

EOS equation of state

FEM finite element method

FIB focused-ion-beam

HEL Hugoniot elastic limit

IRO intermediate-range order

LAMMPS large-scale atomic/molecular massively parallel simulator

LB less brittle

MD molecular dynamics

Na sodium

MEDE materials in extreme dynamic environments

O oxygen

PAW projector augmented wave

PML perfectly matched layer

RDF radial distribution function

SAXS small-angle x-ray scattering

SCJ shaped-charge jet

SEET strain energy equivalence theory

SEM scanning electron microscopy
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Si silicon

SiC silicon carbide

SL soda lime

SRO short-range order

STEM scanning tunneling electron microscopy

VASP Vienna ab initio simulation package

WMRD Weapons and Materials Research Directorate
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