Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RQ-WP-TM-2013-0072 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

JAMES J. JOO, Program Manager
Design and Analysis Branch
Aerospace Vehicles Division

José Camberos, Acting Branch Chief
Design and Analysis Branch
Aerospace Vehicles Division

David M. Pratt
Technical Advisor
Aerospace Vehicles Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “/Signature/” stamped or typed above the signature blocks.
REPORT DOCUMENTATION PAGE

Title: ENERGY-BASED DESIGN OF RECONFIGURABLE MICRO AERIAL VEHICLE (MAV) FLIGHT STRUCTURES

Authors:
- James Joo and Gregory Reich (AFRL/RQVC)
- James Elgersma (AFIT)
- Kristopher Aber (University of Dayton Research Institute)

Performing Organizations:
- Design and Analysis Branch (AFRL/RQVC)
- Aerospace Vehicles Division
- Air Force Research Laboratory
- Aerospace Systems Directorate
- Wright-Patterson Air Force Base, OH 45433-7542
- Air Force Materiel Command
- United States Air Force
- Air Force Institute of Technology (AFIT)
- Wright-Patterson Air Force Base, OH 45433-7542
- University of Dayton Research Institute (UDRI)
- 300 College Park Avenue
- Dayton, OH 45469

Sponsoring/Monitoring Agencies:
- Air Force Research Laboratory
- Aerospace Systems Directorate
- Wright-Patterson Air Force Base, OH 45433-7542
- Air Force Materiel Command
- United States Air Force

Distribution/Availability Statement:
Approved for public release; distribution unlimited.

Supplementary Notes:
PA Case Number: 88ABW-2012-4065; Clearance Date: 23 Jul 2012. This report contains color.

Abstract:
The objective of the project is to understand how to mechanize multi-jointed MAV wings for perching and/or flapping applications and develop an energy-based design framework for the solution of combined multi-physics, multi-objective problems.

Subject Terms:
- micro air vehicle
- perching
- topology optimization

Security Classification:
- Report: Unclassified
- ABSTRACT: Unclassified
- THIS PAGE: Unclassified

Limitation of Abstract:
- SAR

Number of Pages:
40

Name of Responsible Person:
James Joo

Telephone Number:
N/A
Energy-Based Design of Reconfigurable MAV Flight Structures

Dr. James Joo, AFRL/RQSE
Dr. Gregory Reich, AFRL/RQSE

Research Associates:
James Elgersma, AFIT
Kristopher Aber, U of Dayton

Approved for public release; distribution unlimited.
RQ Tech Division Consolidation

Aerospace Vehicles

High Speed Systems

Power and Control

Turbine Engine

Rocket Propulsion

Approved for public release; distribution unlimited.
Motivation

- Biological systems not necessarily designed for optimal flight
- Engineered systems don’t have requirements related to feeding, care for young, etc.
- Should we be attempting to mimic natural systems, knowing that they are not optimized for flight?
- What would a biological system look like if optimized only for flight?
- Can we use engineering design and optimization to create a “flight-only estimate” of the biological system?
Objective

- Understand how to mechanize multi-jointed MAV wings for perching and/or flapping applications
- Develop an energy-based design framework for the solution of combined multi-physics, multi-objective problems
Technical Challenges

• Design tool for multi-physics analysis and optimization under unsteady aerodynamic load is not well established
• Identification of wing morphology requirements is not well understood
• Performance measures such as energy and efficiency measures for unsteady aerodynamic flight are not well defined
• Passive shape control to maximize energy efficiency is not well exploited
Approach

• Student 1 (AFIT) will focus on the distribution of skin material to meet performance objectives after selecting four snapshots of a bird wing configuration during perch

• Student 2 (UD) will extend the scope of the research to include active shape control (mechanism synthesis) in addition to skin material distribution
Wing Skin Structure Design

• Configuration Selection

Eagle Owl in Loiter, Dash, and Flare Configurations

Typical Perching Trajectory and Perching Wing Configurations
Wing Skin Structure Design

• Configuration Selection

Forward Swept Configuration

Zero Sweep Configuration

Back Swept Configuration

Dive Configuration

Approved for public release; distribution unlimited.
Wing Skin Structure Design

- **Force Estimation**
 - Forces were calculated in MATLAB Vortex Lattice code called *Tornado*
 - *Zero-lift, flat-plate drag coefficient* estimated by Tornado
 - Drag coefficient related to angle of attack
 - Force on each panel split into four components and applied to the nodes

Viscous Drag Estimation Curve

Example of Tornado Vortex Panels Output

Approved for public release; distribution unlimited.
Wing Skin Structure Design

- **Perching Data**

Wing Configuration:

Point 1: Back Swept

Point 2: Dive

Point 3: Zero Sweep

Point 4: Forward Swept
Wing Skin Structure Design

Force Estimation

- Induced drag is highest for Point 3, not Point 4, and lowest at Point 2
- Side forces have minimal influence on resulting topologies
- Lift highest for Point 3
- Axial body force pushes wing forward
- Most bending loads about 10 times the membrane loads
- Viscous drag is lowest at Point 4, even though the Point 4 is at a high angle of attack

Aerodynamic Data for Birdwing Along Perching Trajectory

<table>
<thead>
<tr>
<th></th>
<th>Point 1</th>
<th>Point 2</th>
<th>Point 3</th>
<th>Point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{el} [m/s]</td>
<td></td>
<td>10</td>
<td>10.41</td>
<td>10.11</td>
</tr>
<tr>
<td>AOA [°]</td>
<td></td>
<td>6</td>
<td>3.75</td>
<td>10</td>
</tr>
<tr>
<td>D_{drag} [N]</td>
<td>0.0176</td>
<td>0.0033</td>
<td>0.0796</td>
<td>0.0456</td>
</tr>
<tr>
<td>S_{ide} [N]</td>
<td>0.0061</td>
<td>0.0075</td>
<td>-0.0007</td>
<td>-0.0087</td>
</tr>
<tr>
<td>L_{ift} [N]</td>
<td>0.459</td>
<td>0.112</td>
<td>1.241</td>
<td>0.196</td>
</tr>
<tr>
<td>F_{x} [N]</td>
<td>-0.0304</td>
<td>-0.0040</td>
<td>-0.1371</td>
<td>-0.1208</td>
</tr>
<tr>
<td>F_{y} [N]</td>
<td>0.00610</td>
<td>0.00749</td>
<td>-0.0066</td>
<td>-0.00871</td>
</tr>
<tr>
<td>F_{z} [N]</td>
<td>0.458</td>
<td>0.112</td>
<td>1.236</td>
<td>0.161</td>
</tr>
<tr>
<td>C_{L}</td>
<td>-0.220</td>
<td>0.076</td>
<td>0.512</td>
<td>1.701</td>
</tr>
<tr>
<td>C_{D}</td>
<td>-0.0085</td>
<td>0.0022</td>
<td>0.0328</td>
<td>0.3958</td>
</tr>
<tr>
<td>C_{Y}</td>
<td>-0.0029</td>
<td>0.0051</td>
<td>-0.0003</td>
<td>-0.0757</td>
</tr>
<tr>
<td>R_{e}</td>
<td>-90054</td>
<td>137712</td>
<td>91412</td>
<td>19987</td>
</tr>
<tr>
<td>$C_{D_{0}}$</td>
<td>-0.0101</td>
<td>0.0082</td>
<td>0.0101</td>
<td>0.0113</td>
</tr>
<tr>
<td>S_{weft} [m²]</td>
<td>0.0681</td>
<td>0.0444</td>
<td>0.0775</td>
<td>0.0785</td>
</tr>
<tr>
<td>D_{vis} [N]</td>
<td>0.2368</td>
<td>0.1077</td>
<td>0.4410</td>
<td>0.0885</td>
</tr>
<tr>
<td>Normal [N]</td>
<td>0.248</td>
<td>0.0070</td>
<td>0.0766</td>
<td>0.0678</td>
</tr>
<tr>
<td>Axial [N]</td>
<td>0.2355</td>
<td>0.1075</td>
<td>0.4343</td>
<td>0.0569</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.
Wing Skin Structure Design

• Results – Point 1

Membrane

Bending

Combined

Approved for public release; distribution unlimited.
Wing Skin Structure Design

• Results – Point 2

Membrane

Bending

Combined

(c) \(V_{ol_f} = 0.1 \)

(b) \(V_{ol_f} = 0.5 \)

Approved for public release; distribution unlimited.
Wing Skin Structure Design

• Results – Point 3

Membrane

(a) $V_{ol_f} = 0.2$
(b) $V_{ol_f} = 0.3$
(c) $V_{ol_f} = 0.4$

Bending

(a) $V_{ol_f} = 0.2$
(b) $V_{ol_f} = 0.3$
(c) $V_{ol_f} = 0.4$
(d) $V_{ol_f} = 0.5$

Combined

Approved for public release; distribution unlimited.
Wing Skin Structure Design

• Results – Point 4

Membrane

(a) Vol_f = 0.2
(b) Vol_f = 0.3
(c) Vol_f = 0.4
(d) Vol_f

Bending

(a) Vol_f = 0.2
(b) Vol_f = 0.3
(c) Vol_f = 0.4
(d) Vol_f = 0.5

Combined

Approved for public release; distribution unlimited.
Wing Skin Structure Design

• Summary
 – In general, structural members support the leading edge
 – Membrane solutions resemble truss-like structures, and bending solutions resemble beam-like structures
 – Membrane solutions clearly dominate the combined loading
 – When the viscous drag distributed over the surface of the wing is not considered, hybrid solutions occur
 – Secondary features include straight battens in membrane structures, and branches in bending structures
 – Membrane solution must support out-of-plane loading, so discrete “truss” members must function like spars
 – The topology constantly changes at different points along perching trajectory so we need an active mechanism to reconfigure at different loading conditions → Wing mechanism design

Approved for public release; distribution unlimited.
Previous Research
(Multiple Configurations)

- Generic Surveillance UAV with three configurations
 - Loiter (configuration 0 = reference)
 - High lift (configuration 1)
 - Climb (configuration 2)
Wing Mechanism Design

• Developing design tool for energy-based optimization of structure topology

• Currently includes…
 – Geometry Generator
 – Pre-Processor
 – Structural Analysis
 – Optimization Routine
 – Aerodynamic Analysis (in progress)
 – Post-Processor (in progress)
Wing Mechanism Design

• **Geometry Generator/Preprocessor**
 - Includes a GUI for ease of use
 - Creates a parametrically defined wing geometry

• Facilitates future optimization routines that could update body geometry

Approved for public release; distribution unlimited.
Wing Mechanism Design

- Box Substructure Description

16 Nodes

4 Nodes
Wing Mechanism Design

• Structural Analysis
 – Implements Standard finite element approach
 – Uses a condensed frame element with rotational springs on each end
 – Reduces DoFs thereby decreasing computational time and simplifies programming
Wing Mechanism Design

• Optimization Routine
 – Globally Convergent Method of Moving Asymptotes
 • Developed by Svanberg
 • One of the most used methods for structural optimization
 – Problem Formulation
 • Minimize:
 – Shape Error and Actuator Usage
 • Subject to:
 – Static Equilibrium
 – Stroke Limit
 – Attachment Stiffness
 – +/- Volume Fraction

Minimize:

\[f_0 = W_1 \sum_{i \in T} (U_{i}^{\text{target}} - U_{i})^2 + W_2 \sum_{i \in A} \rho_j^2 \]

Subject to:

\[f_{\text{eq}} = KU - F = 0 \]
\[f_m = E_m^2 - E_{\text{max}}^2 \leq 0 \]
\[f_F = \sum_{i \in B} \rho_i - N_F \leq 0 \]
\[f_{+V} = \sum_{i \in L_1} \rho_i + \sum_{i \in L_2} \rho - V_{\text{max}} \leq 0 \]
\[f_{-V} = - \sum_{i \in L_1} \rho_i - \sum_{i \in L_2} \rho + V_{\text{min}} \leq 0 \]
Wing Mechanism Design

• Aerodynamic Analysis (in progress)
 – Extracting Aerodynamic Influence Coefficient (AIC) matrix from Tornado for use in a static aeroelastic analysis
 – Coupling aerodynamic loads and structural deformation
 – Leveraging the aeroelastic deformation, it is assumed a reduced use in energy design may be found

• Post-Processor
 – Clearly displays the results from the design tool
Research Plans for Next FY

- Key energy metrics and efficiency measures for optimal multi-physics designs
- Design methodology to determine passive and active shape control for efficient vehicle flight performance
- Comparison of engineering and evolutionary optimal solutions for similar systems
Backup
Approach

• Utilize design optimization techniques for efficient design of aeroelastic reconfigurable systems incorporating distributed actuation and compliance

• Develop flight energy and efficiency measures for topology optimization

• Provide understanding of a systematic design process for a bio-mimetic vehicle design problem

• Select “snapshots” of vehicle in perching maneuver at different times

• Optimize based on multiple load conditions

• Identify suitable objective functions to produce “good” designs
Approach

- Student 2 (UD) will extend the scope of the research to include mechanism design scheme in addition to skin material distribution
Wing Skin Structure Design

• **Optimality Criteria Method**

 – OC method is a bisection method based on the fact that the material volume is a monotonically decreasing function of the Lagrange multiplier

 – Stationarity point is achieved when volume constraint is satisfied

 – Update scheme given by:

 $\rho_{e}^{k+1} = \min \left\{ \max \left[\rho_{e}^{k} \left(\frac{q_{e}(g_{e})^{-1}(d_{e}^{k})^{T}k_{e}^{T}d_{e}^{k})^{\eta}}{\lambda a_{e}} \right), \rho_{\min} \right], \rho_{\max} \right\}$

 such that the volume constraint satisfies

 $\sum_{e=1}^{N} a_{e}\rho_{e}^{k+1}(\lambda) - V = 0$

 – OC method closely related to fully stressed design, where all elements have same strain energy; not exactly the case, because of SIMP model
Previous Research
(Flexible Skin Design)

- Two-step topology optimization process
 - Step 1: distribution of bulk material properties
 - Step 2: distribution of multi-phase material

Example Target Shapes

Notional Substructure

Two Phase Material Solution

\[
p_E \Rightarrow E_{ijkl}^e (p_E) = p_E^{\beta} E_{ijkl}^1 + \left(1 - p_E^{\beta}\right) E_{ijkl}^2
\]

Target Reduced Stiffness Matrix

\[
Q^* = \begin{bmatrix}
1.6979 & 0.6230 & 0 \\
0.6230 & 1.8880 & 0 \\
0 & 0 & 0.5066
\end{bmatrix} \times 10^3
\]

Reduced Stiffness Matrix from Homogenization Routine

\[
Q'' = \begin{bmatrix}
1.7179 & 0.6076 & 0 \\
0.6076 & 1.9021 & 0 \\
0 & 0 & 0.5184
\end{bmatrix} \times 10^3
\]

Turning Theory Into Application
Reducing Design Time

Ad Hoc Solution

Approved for public release; distribution unlimited.
Wing Skin Structure Design

• Finite Element Derivation
 – Membrane Element
 – Bending Element
 – Combined Membrane/Bending Element

Superimposed membrane and bending plate models to form 6-dof model

\[
\begin{bmatrix}
\{ f_m \} \\
\{ f_b \} \\
\{ f_{\theta z} \}
\end{bmatrix}
=
\begin{bmatrix}
[k_m] & [0] & [0] \\
[0] & [k_b] & [0] \\
[0] & [0] & [k_{\theta z}]
\end{bmatrix}
\begin{bmatrix}
\{ d_m \} \\
\{ d_b \} \\
\{ d_{\theta z} \}
\end{bmatrix}
\]

Fictitious stiffness matrix added for “drilling” degrees of freedom to avoid singularities

\[
\begin{bmatrix}
M_{z1} \\
M_{z2} \\
M_{z3} \\
M_{z4}
\end{bmatrix}
= \alpha EV
\begin{bmatrix}
1.0 & -0.5 & -0.5 & -0.5 \\
-0.5 & 1.0 & -0.5 & -0.5 \\
-0.5 & -0.5 & 1.0 & -0.5 \\
-0.5 & -0.5 & -0.5 & 1.0
\end{bmatrix}
\begin{bmatrix}
\theta_{z1} \\
\theta_{z2} \\
\theta_{z3} \\
\theta_{z4}
\end{bmatrix}
\]
• **Topology Optimization**

 – Minimizing compliance equivalent to maximizing stiffness

 – Compliance is equivalent to the strain energy of a deformed structure

 – Volume constraint is added to avoid infinite stiffness

 – Nested compliance minimization optimization statement:

\[
\min_{\rho} \ c(\rho) \\
\text{s.t. } \{\rho\}^T\{a\} - V = 0, \quad 0 < \rho_{\text{min}} \leq \rho_e \leq \rho_{\text{max}}, \quad e = 1, \ldots, N
\]

where the compliance \(c \) is defined by

\[
c(\rho) = \{F\}^T\{d\}, \quad \text{where } \{d\} \text{ solves: } \left(\sum_{e=1}^{N} [k_e] \right) \{d\} = \{F\}
\]
Wing Mechanism Design

- **Geometry Generator/Preprocessor**
 - Generates varying degrees of mesh connectivity for the initial ground structure topology

![Degree of Connectivity = 1](image1)

![Degree of Connectivity = 2](image2)
Wing Skin Structure Design

- **Solid Isotropic Material with Penalization (SIMP)**
 - Penalizes intermediate thickness values, driving thicknesses towards a discrete solution
 - Thicknesses are penalized by raising the element thickness to a power greater than 1 in the constitutive matrix:

\[
[D] = \frac{\rho^q E t}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}
\]

SIMP Penalization of Element Thickness

(a) After 5 Iterations (b) After 10 Iterations (c) After 15 Iterations
(d) After 20 Iterations (e) After 50 Iterations (f) After 298 Iterations