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Preface 

Equipment renewal is currently an Army imperative due to several causes: 
aging legacy fleets, recent high operational tempos (OPTEMPOs) and 
operating conditions in Southwest Asia (SWA), and anticipated deployment 
needs. The renewal program includes equipment reset (return to combat-ready 
condition), overhaul, and recapitalization (overhaul and upgrade). While 
anecdotal reports suggest that renewal programs have been valuable, 
quantitative analyses are needed to measure their impact and inform decisions 
about when and how often a vehicle should be renewed. The Army recently 
sponsored a RAND Arroyo Center study to address this need. This 
documented briefing describes that study, which assessed the impact of age, 
usage, deployment, and reset on the readiness and maintenance costs of ground 
fleets. Our findings have implications for equipment reset planning and 
funding decisions and are likely to be of interest to resource planners, 
logisticians, and weapon system managers and analysts. 

This research was sponsored by the Office of the Deputy Chief of Staff, 
G-4, Headquarters, Department of the Army. The research was conducted in 
RAND Arroyo Center’s Military Logistics Program. RAND Arroyo Center, 
part of the RAND Corporation, is the United States Army’s federally funded 
research and development center for policy studies and analyses.  

The Project Unique Identification Code (PUIC) for this study is 
DAL0C10455. 
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For more information on RAND Arroyo Center, contact the Director of 
Operations (telephone 310-393-0411, extension 6419; fax 310-451-6952; 
email Marcy_Agmon@rand.org), or visit Arroyo’s web site at 
http://www.rand.org/ard.html. 
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Summary 

Background and Purpose of Study 

Faced with a complex and rapidly changing security environment, the 
Army has been pursuing multiple initiatives to increase preparedness for a wide 
range of contingencies. One such initiative is the renewal of ground systems. 
Renewal refers to equipment reset (return to combat-ready or “10/20” 
condition),1 overhaul, or recapitalization (overhaul and upgrade to return 
vehicle to “zero hours/zero miles condition” (Boucher, 2007)). Anecdotal 
reports (e.g., Lorge, 2008) suggest that the renewal program has been valuable; 
however, there is a need for quantitative analyses measuring its impact and, 
more generally, whether the effects of age, usage, and deployed operating 
environments on a vehicle justify renewal. 

Two prior RAND studies (Peltz et al., 2004; Pint et al., 2008) conducted 
multivariate analyses of the effects of age (years since manufacture date), annual 
usage (miles traveled during a year or portion of a year), and location (site of 
usage) on readiness and maintenance costs. However, both studies were based 
on one to three years of peacetime data per vehicle, as the policy of archiving 
usage and mission-critical failure records was fairly new when data were 
gathered for those studies.2 Also, maintenance costs were based on mission-
critical failures that had part orders; they did not include the costs of repairs 
                       

1 The term “reset” can also be used more broadly, to refer to renewal in general. For 
example, the 2010 Army Posture Statement describes reset as the “repair, recapitalization, or 
replacement of equipment to a desired level of combat capability commensurate with a unit’s 
future mission” (HQDA, 2010 Army Posture Statement). However, consistent with the repair 
facilities that provided data for this study and with other Army sources, this study treated 
reset as work performed to technical manual (TM) 10/20 standards (Bacchus, 2010; Dwyer, 
2009).  

2 Data gathering for the Pint et al. (2008) study began in 2004, and analyses were 
completed in 2005.  
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without part replacements or repairs that were non-mission-critical. 
Additionally, the studies did not assess renewal effects, as the Army’s renewal 
program had not yet begun. (Overhauls had occurred but were not routinely 
tracked.) Other studies of age and/or usage effects on Army equipment 
(Simberg, 2001; Congressional Budget Office, 2007) used similar data and 
methods and were based on maintenance actions before the current 
comprehensive renewal initiative.  

Thus, there was a need to build on prior studies by using data from 
deployed operating environments, incorporating more observations (vehicles 
and years of data), expanding the set of maintenance costs in analyses, and 
assessing renewal effects. The present study aimed at meeting that need, 
assessing the impact of vehicle age, usage, Southwest Asia (SWA) deployment, 
and specifically the reset level of renewal on mission-critical failures and 
unscheduled field maintenance costs.  

Method 

We prepared two datasets, each integrating serial number–level data from 
multiple sources. The first dataset (hereafter called the “SDC dataset”) included 
vehicle usage, location, and field maintenance records from the Army Materiel 
Systems Analysis Activity (AMSAA) Sample Data Collection (SDC) program; 
vehicle manufacture dates from both SDC and the Logistics Integrated 
Database (LIDB); and reset dates and costs from Tank-automotive and 
Armaments Life Cycle Management Command (TACOM) and the Defense 
Logistics Agency (DLA). The second dataset (hereafter called the “EDA 
dataset”) included mission-critical failure records from the Equipment 
Downtime Analyzer (EDA); vehicle manufacture dates, usage (odometer 
readings), and locations from LIDB serial number usage reports;3 and reset 

                       
3 Unit Identification Codes (UICs) identified the location at which a vehicle was 

operated each month. We needed to use LIDB UICs (locations) rather than locations in 
EDA maintenance records because our predictor variable was the location of operation 

 



- xi - 

 

dates and costs from TACOM and DLA. We analyzed both the SDC and EDA 
datasets to assess effects on system mission-critical failures, and we analyzed the 
SDC dataset alone to assess effects on maintenance costs and subsystem failures. 

Our analyses focused on three fleets: (1) M2 and M3 series Bradley 
Fighting Vehicles; (2) M1 Abrams tanks; and (3) Family of Medium Tactical 
Vehicles (FMTV) M1078 series trucks. The Bradley sample included the 
M2A2, M2A2 Operation Desert Storm (ODS), M3A2, and M3A2 ODS 
variants. The Abrams sample included M1A1, M1A1 AIM, M1A2, and M1A2 
SEP tanks. The FMTV sample included M1078, M1078 with winch (W/W), 
M1078A1, and M1078A1W/W trucks. The bases for selecting these fleets were 
that they had large SDC sample sizes relative to other fleets; had multiple years 
of EDA data; were used in SWA and in CONUS; and had reset data available.4  

Our analyses called for multiple variables at the vehicle serial-number 
level. Key predictor variables were vehicle usage (miles driven), age, the location 

                                                                                                                                  
(usage) of a vehicle. Many times a vehicle was used in a particular year but had no mission-
critical failures during that year. There was no EDA record—and thus, no EDA location 
information—for the vehicle in such cases. Also, consistent with prior studies (Peltz et al., 
2004; Pint et al., 2008), the intent was to see the effect of operating a vehicle under different 
conditions. The UIC translation file (UIC_history), which we obtained from the Integrated 
Logistics Analysis Program (ILAP), had some inaccurate translations, and an alternative 
source of translations was not available.  

4 Standard Army Management Information Systems (STAMIS) generally do not 
contain vehicle reset and recapitalization dates and costs by serial number. The Logistics 
Support Activity (LOGSA) stores any renewal data it receives (via form 2408-9) in a Recap-
Rebuild-Overhaul table, but most of the data in the table are overhauls that occurred prior to 
1998. PM Bradley and the Abrams Mobility Group at TACOM Integrated Logistics 
Support Center (ILSC) maintain detailed reset (10/20 repair) and recapitalization records by 
serial number for Bradley Fighting Vehicles and M1 Abrams tanks, however. The Bradley 
renewal data spanned FY 2005 to FY 2009, and the Abrams renewal data spanned FY 2003 
to FY 2010. Also, a contact at HQDA G-48 provided 10 years of DLA data on vehicles that 
went through Red River Army Depot (RRAD). These included “dates received” for FMTVs 
arriving from Kuwait, the port at Beaumont, Texas, and the port at Charleston, South 
Carolina. Given that FMTVs are reset at RRAD, we treat the year of the date received as the 
year of reset. 
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at which a vehicle was driven, reset, and national stock number (the variant of a 
particular vehicle). The primary outcome variables in the study were vehicle 
mission-critical failures and field maintenance costs.  

To assess the impact of predictor variables on mission-critical failures of 
systems and subsystems, we used Poisson and negative binomial regressions. To 
assess the impact of predictor variables on vehicle maintenance costs, we used a 
technique called two-part or “hurdle” regression. The final regression models 
served as the basis for plots showing the predicted effects of vehicle age, usage, 
location, and reset on failures and costs. Based on the cost of reset versus the 
maintenance savings due to reset, we calculated, via net present value, when 
reset becomes cost-effective—or, the cost-effective number of years between 
resets of a vehicle.  

Findings 

Analyses for the three systems in this study revealed a set of noteworthy 
patterns. First, age increased mission-critical failures very mildly, and only up to 
a point. Plots corresponding to SDC as well as EDA data consistently showed a 
downturn in the tail region of failure-versus-age curves. This downturn may 
reflect the limitations of measuring age based on manufacture date. That is, the 
age measure did not capture the age of vehicle components—(the component 
replacement history). Some older vehicles may have had newer components, 
and therefore fewer failures, than some younger vehicles.  

Second, for the heavy combat vehicles (Bradley and Abrams), usage had 
stronger effects than age, and power train and electrical systems were among the 
key drivers of those usage effects. The magnitude and form of usage effects 
differed in the SDC and EDA analyses, however.  

Several factors may account for discrepancies in the SDC and EDA usage 
findings, including the tendency for SDC curves to show larger usage effects 
but, in some cases, to have unexpected dips. The usage data in SDC are much 
higher quality than the LIDB usage data used in the EDA analysis. Thus, even 
though the LIDB/EDA dataset has the advantage of a large sample size, the 
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LIDB/EDA usage effect may be underestimated. However, since the SDC 
dataset is cross-sectional while the EDA dataset is longitudinal, the shape of the 
SDC curve is potentially more susceptible to confounding factors; additionally, 
the smaller SDC sample size may make the shape of the curve more susceptible 
to influence from outliers. 

In addition to usage effects, there were sizable location effects in this 
study. Heavy combat vehicle location clearly affected failures and costs; 
however, after controlling for usage, some CONUS locations were associated 
with higher expected failure counts and costs than Iraq. 

Another key finding was the effect of reset. Both Bradley and Abrams 
reset reduced predicted annual mission-critical failures and maintenance costs 
by as much as 50 percent. The net present value of maintenance savings versus 
reset cost indicated that, for vehicles driven 1,000 miles per year, both Bradley 
and Abrams reset became cost-effective four years after reset. However, more 
frequent reset could be appropriate if justified by readiness gains; if the vehicle 
reset cost decreases; or if vehicles have higher usage.5 In general, reset decisions 
should be based not only on time since reset, but also on usage and location.  

Implications  

The small age effects found in this study suggest that while a vehicle’s 
original manufacture date merits some consideration when developing reset 
plans for ground systems, it should not be the sole criterion—or even a key 
criterion—for inducting vehicles into the program. By the same token, being 
located in SWA is not a sufficient criterion for reset induction; vehicles driven 
few miles in SWA may not need reset immediately after redeployment. Rather, 
a combination of vehicle attributes may help identify suitable candidates for 
reset. The relatively strong impact of usage and location (not necessarily 

                       
5 At higher usage levels, predicted maintenance savings from reset are greater. 
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deployment) in this study support including those attributes among key reset 
selection criteria. 

This study also provides statistical evidence that national reset (returning 
vehicles to 10/20 condition) yields substantial readiness benefits and 
maintenance cost savings for heavy combat vehicles. By demonstrating that 
current reset programs are bearing fruit, the study suggests that funding of such 
programs is a sound investment.  

Additionally, the finding that reset becomes cost-effective after four years 
(for Bradley and Abrams) may inform Army decisions about when and how 
often vehicles should be renewed. However, most of the vehicles in our analyses 
had been reset once. Over time, once the reset program has a longer history, it 
would be worthwhile to assess the effects of multiple resets on the same vehicle. 

Other follow-up steps may also be valuable extensions of the analyses 
completed to date. First, it is important to further investigate the reasons that 
some of the SDC findings were not identical to the EDA findings; this may 
help identify additional steps needed to resolve inconsistencies (where possible) 
and assess the validity of findings that emerged with one dataset but not 
another. Second, a regression of downtime on predictor variables may provide a 
fuller picture of how age, usage, deployment, and reset affect vehicle readiness. 
Third, further examination of subsystem effects may shed more light on the 
factors behind the relatively strong usage effects in this study. Finally, the 
effects of other types of renewal, especially recapitalization, need to be assessed. 
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1. Background and Purpose 

 

Faced with a complex and rapidly changing security environment, the 
Army has been pursuing multiple initiatives to increase preparedness for a wide 
range of contingencies.  One such initiative is the renewal of ground systems. In 
this context, renewal refers to three levels of repair and refurbishment. In order 
of increasing scope and expense, the levels are reset (return to combat-ready or 
“10/20” condition),6 overhaul, or recapitalization (overhaul and upgrade to 

                       
6 The term “reset” can also be used more broadly, to refer to renewal in general. For 

example, the 2010 Army Posture Statement describes reset as the “repair, recapitalization, or 
replacement of equipment to a desired level of combat capability commensurate with a unit’s 
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return vehicle to “zero hours/zero miles condition” (Boucher, 2007)). 
Equipment renewal is currently an Army imperative because legacy fleets are 
aging; vehicles have been subjected to harsh conditions and high operational 
usage in Southwest Asia (SWA) operations; and combat-ready equipment, as 
well as new capabilities, are needed for current and future deployments.  

The scope of the renewal program is vast. For example, between 2002 and 
2009 the Army reset over 470,000 pieces of equipment, including (but not 
limited to) 2,702 aircraft; 4,622 tracked vehicles; 33,721 High-Mobility 
Multipurpose Wheeled Vehicles (HMMWVs) (includes reset and 
recapitalization); 6,550 trucks; 3,819 trailers; 214,484 small arms; and 20,170 
generators (Chiarelli, 2009). Although the program, which has cost on the 
order of $10 billion per year for the past few years, is currently funded through 
the Overseas Contingency Operations (OCO) request, renewal is widely 
recognized as an enduring Army mission (Magnuson, 2009). 

Anecdotal reports suggest that the reset component of the Army’s renewal 
program is valuable and effective. According to Lorge (2008), a Headquarters, 
Department of the Army (HQDA) G-8 general observed that “The reset 
program has been a tremendous success . . . The proof is that when our units 
deploy, commanders have what they need to do their jobs.” Other officials have 
reported that reset creates financial efficiencies that save taxpayer dollars 
(Buckley, 2008; Cole, 2010) and “takes away the effects of the high usage and 
operations in a harsh environment” (AMC official quoted by Cole, 2010). 

However, there is a need for quantitative analyses measuring the impact of 
reset—and, more generally, whether the effects of age, usage, and deployed 
operating environments on a vehicle justify renewal. As reported by Magnuson 
(2009), a tactical vehicle product manager noted that 

                                                                                                                                  
future mission” (HQDA, 2010 Army Posture Statement). However, consistent with the repair 
facilities that provided data for this study and with other Army sources, this study treated 
reset as work performed to technical manual (TM) 10/20 standards (Bacchus, 2010; Dwyer, 
2009).  
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he can no longer go to senior Army leadership and ask for more 
truck capabilities without a cost-versus-benefit analysis in hand. 
“There are those who question the utility of our reset strategy and 
the need to spend the amounts of money we’re spending,” he said.  

Thus, the cost-effectiveness and readiness benefits of reset need to be evaluated. 
In addition, assessing age, usage, and deployment effects may help determine 
appropriate criteria for inducting vehicles into renewal programs.7  

                       
7 A current method used to select vehicles for restoration is the maintenance 

expenditure limit (MEL). Technicians inspect a vehicle, estimate its repair costs, and 
compare the estimate to the MEL. If the estimate exceeds the MEL, then the Army may 
decide to send the vehicle to the Defense Reutilization and Marketing Office (DRMO), 
rather than repairing it (Tandoi, 2010). If vehicle age, usage, and location can help identify 
likely reset candidates, then fewer vehicle inspections may be needed. 
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Several prior RAND studies conducted multivariate analyses of the effects 
of age (years since manufacture date), annual usage (miles traveled during a year 
or portion of a year), and location (site of usage) on readiness and maintenance 
costs. Peltz et al. (2004) found that age had a log-linear relationship and usage 
had a log-quadratic relationship with predicted mean failures of M1 Abrams 
tanks. Also, the geographic region of the tanks’ owning unit was a significant 
predictor of mission-critical failures. Pint et al. (2008) found that age and usage 
had curvilinear effects on downtime and maintenance costs; they also found a 
significant effect of vehicle location. However, both studies were based on one 
to three years of peacetime data per vehicle, as the policy of archiving usage and 
mission-critical failure records was fairly new when data were gathered for those 



- 5 - 

 

studies.8 Also, maintenance costs were based on mission-critical failures that 
had part orders; they did not include the costs of repairs without part 
replacements or repairs that were non-mission-critical. Additionally, the studies 
did not assess renewal effects, as the Army’s reset program had not yet begun. 
(Overhauls had occurred but were not routinely tracked.)  

An Army Materiel Systems Analysis Activity (AMSAA) study (Simberg, 
2001) assessed the effect of age (both in years and in lifetime miles 
accumulated) on part replacement costs and reliability. The study primarily 
used Field Exercise Data Collection (FEDC) data, with Sample Data 
Collection (SDC) data used for several of the newer systems. Although an 
aggregate analysis found no evidence of an aging effect on most systems, a serial 
number–level statistical analysis found that part replacement costs per mile and 
unscheduled maintenance visits per mile generally increased between the first 
and second halves of a system’s life at the National Training Center (NTC). 
While the findings suggested an aging effect, they were based on small samples 
at training sites (e.g., 200 M88A1 vehicles) and did not reveal the form of the 
aging effects.  

In a study examining whether Army equipment can sustain high usage, 
the Congressional Budget Office (CBO, 2007) made several strong 
assumptions—e.g., a 50,000-mile lifetime limit per Bradley and “that the 
Army’s systems are being properly maintained while operating at their current 
high rates and that unexpected conditions are not degrading their performance” 
(p. 15). Although the CBO research team inferred that usage in SWA would 
not stress equipment beyond its capacity, they did not directly assess usage and 
location effects on vehicles.   

Thus, there was a need to build on prior studies by using data from 
deployed operating environments, incorporating more observations (vehicles 

                       
8 Data gathering for the Pint et al. (2008) study began in 2004, and analyses were 

completed in 2005.  
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and years of data), expanding the set of maintenance costs in analyses, and 
assessing reset effects. This study aimed at meeting that need.  

The overall purpose of the study was to conduct analyses that would help 
assess the value of vehicle renewal and facilitate renewal planning. Specific tasks 
consisted of (1) integrating data from multiple sources to build datasets for 
analyses of selected fleets; and (2) using those datasets to assess the impact of 
vehicle age, usage, SWA deployment, and reset on mission-critical failures and 
unscheduled field maintenance costs. (Note: The goal of our analysis is to see 
what the effect is on mission-critical failures (MC failures) of usage, age, 
deployment, and reset, controlling for other variables. Our data consists of 
records of non-mission-capable repairs (NMC repairs), for which actions are 
taken in response to MC failures. We therefore use both terms depending on 
whether we are discussing the goal or the data analysis.) 
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2. Method 

 

Data Sources 

We prepared two datasets, each integrating serial number–level data from 
multiple sources. The left-hand side of the above chart describes the first 
dataset. The major portion of the first dataset (hereafter called the “SDC 
dataset”) consisted of vehicle usage, location, and field maintenance records 
from the AMSAA SDC program. In the SDC program, data collectors visit 
selected units (identified through a cluster sampling technique) in garrison 
environments and combat areas and gather equipment usage and maintenance 
data at the serial number level (AMSAA, 2008; HQDA Pamphlet 700-24, 
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2007). Because equipment usage and maintenance data are the focus of SDC 
data collectors, those data tend to be of very high quality.   

Although SDC data also include manufacture dates (age data), these data 
tend to be moderate in quality. We found that a portion of the manufacture 
dates were missing, and others did not correspond to the serial number 
sequence or variant. Manufacture dates from another source, the Logistics 
Integrated Database (LIDB), also had such quality problems. We took steps 
(described later, in the “Study Variables” section) to improve the accuracy of 
manufacture dates and then used cleaned-up manufacture dates from LIDB to 
fill in and correct the manufacture dates in SDC, as needed. Vehicle reset dates 
came from program manager, TACOM Integrated Logistics Support Center 
(ILSC), and Defense Logistics Agency (DLA) records.  

The right-hand side of the above chart shows the second dataset in the 
study. A portion of the second dataset (hereafter called the “EDA dataset”) 
consisted of mission-critical failure records from the Equipment Downtime 
Analyzer (EDA). Another portion of the dataset—vehicle manufacture dates, 
usage (odometer readings), and locations—came from LIDB. Just as we took 
steps to improve the accuracy of manufacture dates, we used statistical 
imputation to improve the quality of LIDB usage data (again, see “Study 
Variables” for a description of this process). The remaining portion of our EDA 
dataset consisted of vehicle reset dates and costs from the program manager 
(PM), TACOM, and DLA.9  

We used both the EDA and SDC datasets because each has unique 
features needed in our analyses. The EDA dataset is longitudinal, often with 
five or more years of usage and maintenance data per vehicle. This feature helps 
assess causal relationships—e.g., whether usage is causing failures. Additionally, 

                       
9 PM Bradley and PM Tactical Vehicles provided Bradley and FMTV national reset 

costs as of 2009. The Abrams reset cost was based on an article stating that General 
Dynamics Land Systems received a $20 million delivery order as part of a $37 million 
contract to reset 36 M1A1 AIM tanks (Defense File, 2007).   
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the larger sample size in the EDA dataset increases the likelihood of detecting 
meaningful effects. As Lenth (2001:2) states, a sample “must be ‘big enough’ 
that an effect of such magnitude as to be of scientific significance will also be 
statistically significant.”  

The SDC dataset is cross-sectional (not longitudinal) and has smaller 
sample sizes than the EDA dataset; however, it has a different set of strengths. 
As mentioned earlier, SDC usage and location data are higher quality than 
those in LIDB (the source of usage and locations in the EDA dataset). Also, 
SDC data include parts costs and labor hours associated with unscheduled field 
maintenance—both NMC and non-NMC. The EDA data, in contrast, only 
have parts costs (not labor hours) associated with mission-critical failures (i.e., 
NMC repairs only). Thus, the SDC data are more conducive to assessing effects 
of predictor variables on maintenance costs. We analyzed both the SDC and 
EDA datasets to assess effects on system mission-critical failures, and we 
analyzed the SDC dataset alone to assess effects on maintenance costs and 
subsystem failures.  

The approach of conducting similar analyses with the EDA and SDC 
datasets constituted method triangulation. Method triangulation entails assessing 
the consistency of findings generated by different data-collection methods (see, 
e.g., Burns and Grove, 2005)—e.g., sample data collectors versus unit reporting 
via the Unit Level Logistics System (ULLS). Triangulation can increase 
confidence in results if two independent analyses and datasets yield consistent 
findings. If findings from one dataset do not corroborate findings from 
another, then further studies may be warranted to draw more definitive 
conclusions.   



- 10 - 

 

 

Samples 

Our analyses focused on three fleets: M2 and M3 series Bradley Fighting 
Vehicles, M1 Abrams tanks, and Family of Medium Tactical Vehicles (FMTV) 
M1078 series trucks. The bases for selecting these fleets were that they had large 
SDC sample sizes relative to other fleets; had multiple years of EDA data; were 
used in SWA and in CONUS; and had renewal data available.10  

                       
10 Standard Army Management Information Systems (STAMIS) generally do not 

contain vehicle reset and recapitalization dates and costs by serial number. Logistics Support 
Activity (LOGSA) stores any renewal data it receives (via form 2408-9) in a Recap-Rebuild-
Overhaul table, but most of the data in the table are overhauls that occurred prior to 1998. 
PM Bradley and the Abrams Mobility Group at TACOM ILSC maintain detailed reset 
(10/20 repair) and recapitalization records by serial number for Bradley Fighting Vehicles 
and M1 Abrams tanks, however. The Bradley renewal data spanned FY 2005 to FY 2009, 
and the Abrams renewal data spanned FY 2003 to FY 2010. Also, a contact at HQDA G-48 
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The Bradley sample included M2A2, M2A2 Operation Desert Storm 
(ODS), M3A2, and M3A2 ODS variants. We limited analyses to these variants 
in order to focus on Bradleys that were not remanufactured vehicles. That is, 
we excluded the M2A3, M3A3, and M3A3 BFIST variants, which PM Bradley 
(Fader, 2010) indicated are remanufactured M2A2 and M3A2 vehicles, as a 
comparison of remanufactured and non-remanufactured Bradleys is likely to be 
a follow-up to the analyses described in this report. 

The Abrams sample included M1A1, M1A1 AIM, M1A2, and M1A2 SEP 
tanks. In this case, we included Abrams Integrated Management (AIM) and 
System Enhancement Package (SEP) tanks in the analysis, even though they 
were recapitalized versions of M1A1 and M1A2 tanks; this decision was based 
on the age ranges of the tanks. Specifically, the M1A1 vehicles in the sample 
were manufactured between 1986 and 1993, while M1A1 AIM vehicles were 
produced from 2000 to 2008. The M1A2 vehicles were manufactured largely 
between 1994 and 1999, while the M1A2 SEP vehicles were produced from 
1999 to 2008. Thus, excluding recapitalized vehicles would have limited the 
sample to vehicles manufactured before 1999. We chose to include recapitalized 
vehicles to ensure that the dataset encompassed newer as well as older tanks.11  

The FMTV sample included M1078, M1078 with winch (W/W), 
M1078A1, and M1078A1W/W trucks. The FMTV does not yet have a 
recapitalization program. 

As mentioned earlier, SDC data are essentially cross-sectional. Each 
vehicle has, on average, about 300 days of SDC usage and maintenance data, 
and those 300 days typically span two years (e.g., 150 days in 2005 and 150 
                                                                                                                                  
provided 10 years of DLA data on vehicles that went through Red River Army Depot 
(RRAD). These included “dates received” for FMTVs arriving from Kuwait, the port at 
Beaumont, Texas, and the port at Charleston, South Carolina. Given that FMTVs are reset 
at RRAD, we treated the year of the date received as the year of reset. 

11 In the Bradley sample, recapitalization was less confounded with age, so we were 
able to include vehicles with manufacture dates ranging from 1986 to 2008 without having 
recapitalized vehicles in that sample. 
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days in 2006). Because a vehicle’s age changes from one year of usage to the 
next (e.g., age 10 in 2005 and age 11 in 2006), it was important to take the 
year of usage into account when structuring the dataset. Also, a small number 
of vehicles had SDC data from more than one location during the same year. 
Thus, we structured the SDC dataset so that each observation was a vehicle-
location-year (e.g., serial 2ADR0077F–Iraq-2005). The third column in the 
above slide lists the SDC sample sizes (number of vehicle-location-years) for the 
Bradleys, Abrams tanks, and FMTVs in this study. 

In the EDA dataset, each observation was a vehicle-year, rather than a 
vehicle-location-year. If a vehicle was used at more than one location during a 
year, the location selected was the one at which the vehicle spent the most 
months during that year. The reason for this less fine-grained treatment of 
location was that the LIDB location data used in the EDA dataset were lower 
quality—i.e., not sufficiently precise to warrant a lower level of analysis.12 The 
fourth column in the above slide lists the EDA sample sizes (number of vehicle-
years) for the Bradleys, Abrams tanks, and FMTVs in this study. The Appendix 
provides additional detail about each of the samples analyzed. As we discuss in 
the results section, the annual usage for all vehicle fleets is, as expected, skewed 
toward lower annual mileages. This leads to greater uncertainty in our analyses 
at higher mileages. Charts in the Appendix show the annual mileage 
distributions for the various fleets in this study. 

                       
12 Unit Identification Codes (UICs) identified the location at which a vehicle was 

operated each month. We needed to use LIDB UICs (locations) rather than locations in 
EDA maintenance records because our predictor variable was the location of operation 
(usage) of a vehicle. Many times a vehicle was used in a particular year but had no mission-
critical failures during that year. There was no EDA record—and thus, no EDA location 
information—for the vehicle in such cases. The UIC translation file (UIC_history), which 
we obtained from ILAP, had some inaccurate translations, and an alternative source of 
translations was not available.  
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Study Variables 

Our analyses called for multiple variables at the vehicle serial-number 
level. Predictor variables included vehicle usage, age, location, reset, national 
stock number, and updays. The primary outcome variables (dependent 
variables) in the study were vehicle mission-critical failures, a maintenance 
event indicator, and field maintenance costs. Below are the variable 
descriptions. 

Predictor Variables 

Usage. Usage was measured as the miles traveled by a vehicle during a 
given calendar year or portion thereof. When we received SDC usage data from 
AMSAA, the file contained miles traveled per month by serial number. We 
summed those values to obtain usage by vehicle-year. For example, suppose a 
vehicle had 10 months of SDC data, including five months in 2005 and five 
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months in 2006. The vehicle would then have two observations in the SDC 
dataset, one for each of those two years. Its usage during 2005 would be the 
sum of the miles it traveled during the first five months, and its usage during 
2006 would be the sum of miles traveled during the second five months. 

In the EDA dataset, our primary source of usage data consisted of LIDB 
odometer readings. Due to the quality problems with those readings, obtaining 
usage values for the EDA analyses called for more steps. First, if a vehicle in 
LIDB had a monthly usage reading in SDC, we used the SDC usage reading 
for that month. If not, we made corrections to improve usage calculations based 
on LIDB. For example, obvious decimal point errors in odometer readings were 
corrected. Also, we treated a monthly odometer reading as missing if it was (1) 
lower than the reading a month earlier; or (2) more than 2,000 miles greater 
than the reading a month earlier. Monthly usage was then calculated as the 
difference between two consecutive monthly odometer readings.  

If the calculated usage for a vehicle was a missing value in a particular 
month, we set the vehicle’s usage equal to the company mean for that month—
i.e., the average usage of other vehicles in the same company. This statistical 
imputation technique, known as “mean substitution,” was also applied to 
address usage data gaps in a prior study (Peltz et al., 2004). After we completed 
this process and had cleaner monthly usage values, we summed those values by 
vehicle-year, obtaining the miles covered by a vehicle during a given calendar 
year.13  

Age. Age was computed as the difference between the year of usage and 
the year of manufacture. For example, recall that if a vehicle had usage during 
2005 and 2006, then it had two observations (vehicle-years) in a dataset. If it 
was manufactured in 1995, then its age was 10 (i.e., 2005–1995) in the first 
vehicle-year and 11 (i.e., 2006–1995) in the second vehicle-year.  

                       
13 A reviewer noted two additional potential problems with M1A2 usage data: a 

potential confusion during data entry of kilometers versus miles driven (due to odometer 
readout selections) and a possible odometer reset when software is upgraded. 
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As mentioned earlier, manufacture dates had quality issues in both the 
SDC dataset and the EDA dataset, for which LIDB was the source of the year 
of manufacture. Through deductive imputation and vehicle data plate readings 
provided by some Army units, we “cleaned” LIDB manufacture dates—then, 
where possible, used the LIDB dates to correct and fill in SDC dates.14 

Location. Location was the CONUS installation or OCONUS 
geographic region in which a vehicle was operated during the study period. In 
the SDC dataset, a vehicle’s location was where the data collector gathered 
usage and maintenance data from the vehicle; thus, it was likely to be highly 
accurate. In the EDA dataset, the location was based on the UIC reported by 
the unit when the unit provided a monthly usage report to LOGSA. We 
translated monthly UICs into vehicle locations using an Integrated Logistics 
Analysis Program (ILAP) table called UIC_history. 

Reset. Reset was a dichotomous variable equal to 1 if the vehicle had 
been reset by a given vehicle-year and equal to 0 if the vehicle had not yet been 
reset. For example, a vehicle that was reset in 2004 and had usage data in 2005, 
2006, and 2007 would have reset equal to 1 for all three vehicle-years. If the 
vehicle was not reset until 2006, then reset would equal 0 in 2005 but 1 in 
2006 and 2007.  

National Stock Number (NSN). NSN was a categorical variable 
indicating the type or variant of a vehicle. For example, each of the four 
variants of the Bradley Fighting Vehicle in our datasets (M2A2, M2A2 ODS, 

                       
14 Deductive imputation is the process of deducing the value of a variable based on the 

value of another variable. Because serial numbers were assigned in order of production, we 
were able to deduce the manufacture dates of some vehicles from their serial numbers. 
LIDB—more specifically, the portion of LIDB called the TAMMS Equipment Database 
(TEDB)—contains more vehicle serial numbers and manufacture dates than SDC. A longer 
sequence of serial numbers and manufacture dates is more conducive to deductive 
imputation; it is more feasible to determine how serial number patterns are associated with 
manufacture dates. We therefore began by imputing manufacture dates in LIDB and then 
used those to fill in gaps or correct errors in SDC dates. 
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M3A2, M3A2 ODS) had an NSN. When a vehicle had n NSNs, there were  
n – 1 dummy variables in the regression equation. The coefficients of those 
variables indicated the magnitude of the effect of a particular variant, relative to 
the “referent” variant in the regression equation. 

Updays. This variable measured a vehicle’s “exposure”—that is, the total 
number of days it had an opportunity to fail during each vehicle-year. For the 
EDA data, which covered all vehicles in the fleets we analyzed, updays was the 
total number of days in the calendar year minus the number of downdays (days 
a vehicle was undergoing NMC repairs). For the SDC data, where a particular 
vehicle might not be in SDC for an entire year, updays equaled the number of 
days in the SDC during that year minus the downdays recorded in the SDC for 
that vehicle in that year.  

Outcome Variables 

Mission-critical failures. The readiness measure in this study was the 
number of mission-critical failures a vehicle had during a given vehicle-year. In 
the SDC dataset, this variable was a count of maintenance events identified by 
“date in” and NMC_Flag. Specifically, we treated a mission-critical failure as 
any maintenance on a vehicle that had the same “date in” and was flagged by 
AMSAA data collectors as an NMC repair (i.e., had “NMC_Flag” equal to 
“Y”). If several NMC maintenance actions had the same date in, we counted 
them as a single maintenance event.  

In the EDA dataset, a mission-critical failure included all of a vehicle’s 
maintenance actions with the same job order number (JON). (The SDC data 
did not contain JONs.)   

Based on the parts ordered for SDC repairs, we counted subsystem 
failures associated with vehicle MC failures. For example, if a vehicle NMC 
repair called for 3 electrical parts and 2 chassis parts (but no other parts), then 
we counted that repair as 1 overall vehicle failure, 1 electrical subsystem failure, 
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and 1 chassis failure.15 This approach to counting subsystem failures was also 
used in subsystem analyses by Peltz et al. (2004). 

Maintenance event indicator. For the purposes of our cost analyses (to be 
described later), we also had a dichotomous (0/1) variable that indicated 
whether the vehicle had at least one field maintenance event during a given 
vehicle-year. (The variable, which was based on SDC data, allowed us to assess 
the probability of a vehicle having field maintenance during a year.) In this case 
we did not restrict the NMC_Flag variable; that is, for the purpose of assessing 
costs, a maintenance event could be either an NMC or a non-NMC repair.  

Field maintenance costs. The second outcome variable used in our cost 
analyses was maintenance cost, defined as the parts and labor cost associated 
with a field maintenance event in the SDC data. Parts costs were those listed 
with the SDC maintenance records, and AMSAA indicated that the parts costs 
were the FEDLOG prices minus credits as of December 2009 (Simberg, 2010a, 
2010b). Per AMSAA guidance (Simberg, 2010b), the unit part costs were 
multiplied by the quantity ordered, but the labor hours did not need to be 
adjusted for quantity.  

To convert labor hours to labor costs, we used 2010 Military Composite 
Standard Labor Rates obtained from the Force and Organization Cost 
Estimating System (FORCES) database. For an earlier study (Pint et al., 2008), 
TACOM had provided approximate percentages of FMTV maintenance labor 
performed by grades E-3 to E-8 as of 2004. Those percentages were about 
23.3% E-3, 32.0% E-4, 20.0% E-5, 13.7% E-6, 8.5% E-7, and 2.5% E-8. As 
of 2010, the hourly salaries for those grades were $28.65 E-3, $33.00 E-4, 

                       
15 Parts were classified into subsystems based on Federal Supply Class (FSC). For 

example, FSC 3010 (torque converter) was in the Power Train subsystem; FSC 1240 (optical 
sighting) was in the Fire Control subsystem; and FSC 4720 (flexible hose/tubing) was in the 
Hydraulic subsystem. We based our FSC-to-subsystem mapping on that of Peltz et al. 
(2004), who had the mapping reviewed by Army maintenance personnel. Multiple FSCs 
corresponded to each subsystem. The primary subsystems included weapon, fire control, 
chassis, power train, hardware, hydraulic, and electrical.  
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$40.11 E-5, $48.23 E-6, $56.77 E-7, and $63.47 E-8. A weighted average of 
the E-3 to E-8 labor rates came to $38.27 per hour. We assumed that overhead 
increased this figure by 10 percent, so we multiplied labor hours by 
$42.10/hour to obtain labor costs in the present study.  
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Analytical Techniques  

Assessing Effects on Readiness 

Our primary analytical technique was regression analysis. To assess the 
effects of predictor variables on mission-critical failures of systems and 
subsystems, we used Poisson and negative binomial regressions. Typically, 
count data—e.g., number of failures—tend to have a Poisson distribution, in 
which the variance across all observations equals the mean of those 
observations. In some cases, however, count data have a negative binomial 
distribution, with the variance greater than the mean. For each system and 
subsystem in the study, we began with a Poisson regression that had the 
following full model:  
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ln (mean vehicle failures during study period) = 

  

!0 + ln(updays)+ !i (locationi )+
i=1
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k=1
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where c = number of locations in the sample and w = number of NSNs in the 
sample. 

We then used backward elimination to arrive at the final, reduced model 
for the system. Backward elimination is a process in which one removes 
nonsignificant terms from the model, one by one, based on the Likelihood 
Ratio Test Statistic.  

Several features of the regression model should be noted: First, the 
variable ln(updays) was an offset variable to control for the “exposure time” or 
opportunity for a vehicle to have a mission-critical failure. Without an offset in 
the model, the relationship of the other variables with the failure rates would be 
confounded with the time a vehicle was in operation, e.g., a doubling in 
exposure time would lead to a doubling in failures observed, even if the values 
of none of the other independent variables changed. An offset variable always 
has a coefficient of 1. Second, since the EDA dataset was longitudinal, we ran 
the model two ways in the EDA analysis: (1) with lagged usage (assessing the 
impact of the previous year’s usage—the impact of usage in year n – 1 on 
failures in year n); and (2) with usage in the same year as failures. Third, 
because the EDA dataset had, on average, about five years of data per vehicle, 
we used a random effects model in our EDA analyses. That is, we used a 
random intercept for each vehicle to account for the possibility that multiple 
observations (vehicle-years) corresponding to the same vehicle were correlated. 

When the deviance ratio (the model deviance/degrees of freedom) of the 
model was close to 1, we concluded that the Poisson regression model had a 
good fit. When the deviance ratio was greater than 2 or less than 0.5, we 
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followed the same procedure described above but used a negative binomial 
regression instead, provided the deviance ratio improved.16  

Also, to determine how age, usage, deployment, and reset affect each 
vehicle subsystem, we used the same Poisson and negative binomial regression 
approach. However, the outcome variable was then the number of subsystem 
(e.g., chassis) MC failures, rather than the number of vehicle MC failures. 

Assessing Effects on Maintenance Costs 

To assess the effects of predictor variables on vehicle maintenance costs, 
we used a technique called two-part or “hurdle” regression, which was used in a 
prior study of maintenance costs versus age, usage, and location (Pint et al., 
2008) and has also been used in studies of individual health care expenditures 
(e.g., Liu, Long, and Dowling, 2003; Diehr, Ash, and Hornbrook, 1999). 
Specifically, we first used logistic regression to assess the impact of predictors on 
the likelihood of a vehicle having at least one maintenance event in a year. We 
began with the following full model and then reduced it via backward 
elimination: 

maintenance action indicator = 

  

!0 + ln(updays)+ !i (locationi )+
i=1
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3
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16 An indicator of the goodness of fit of a Poisson model is the deviance for the model 

divided by the degrees of freedom. The deviance is “two times the difference of the log 
likelihood of the maximum achievable model . . . and the log likelihood under the fitted 
model.” If the model fits the data well, then the ratio of the deviance to degrees of freedom 
in the model (deviance/DF) should be close to 1 (UCLA: Academic Technology Services, 
Statistical Consulting Group, no date).  
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where c = number of locations in the sample and w = number of NSNs in the 
sample. The maintenance action indicator was a binary indicator of whether or 
not a vehicle had a maintenance action—i.e., incurred a maintenance cost—
recorded in SDC during the period that usage and maintenance data were 
collected for the vehicle.  

Next, we used ordinary least squares (OLS) regression to assess the impact 
of predictors on a vehicle’s expected maintenance cost per year, given that the 
vehicle had at least one maintenance event. For this OLS regression, we began 
with the following full model and then reduced it via backward elimination: 

ln(maintenance cost/year, given a maintenance action occurs) = 

  

!0 + !i (locationi )+
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c
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+ !c+6+t (NSNt )+
t=1

w
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where c = number of locations in the sample and w = number of NSNs in the 
sample. We used cost per year and usage per year in this OLS regression 
because we did not control for updays; OLS regressions do not have offset 
variables. The reason for transforming cost per year into ln(cost per year) was to 
change the distribution from skewed to approximately normal.   

We then multiplied the predicted value in the first regression by the 
retransformed predicted value in the second equation (as well as a Duan 
smearing correction factor) to obtain the overall predicted maintenance cost per 
year for the vehicle.17  

                       
17 Because we transformed costs per year into ln(costs per year) before entering it into 

the regression equation, we needed to take an additional step after retransforming the 
predictions in the OLS regression: We multiplied the predictions by Duan’s (1983) smearing 
estimate to correct for retransformation bias.  
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Plotting Predicted Values  

To illustrate the effects detected with these analyses, we began by 
generating plots of expected mission-critical failures (i.e., the predicted mean 
failures for a vehicle) versus age and usage. For the predicted failures versus age 
curve, we let updays equal 365, annual usage equal 1,000 miles, and reset equal 
0, and we selected a single location and NSN value to use. After entering these 
updays, usage, reset, location, and NSN values into the regression equation and 
holding them constant, we varied the value of age that we entered into the 
regression equation. In this manner, we obtained predicted failures versus age, 
controlling for other variables. Because the predictions in the Poisson and 
negative binomial regression equations are logarithmic values—i.e., ln(mean 
failures), we transformed the values via the exponent function before plotting 
them. 

For the predicted failures versus usage curve, we took the same approach, 
except that, instead of holding usage constant, we held age constant at 10 years 
and varied the value of usage in the regression equation. By doing so, we 
obtained predicted failures versus usage, controlling for other variables. 

To see the effect of location, we plot the failure versus age curve for all of 
the locations, in each case setting one location dummy variable equal to 1 and 
the others equal to 0. Similarly, to see the effect of reset, we plot the failure 
versus age and/or failure versus usage curves with the reset variable equal to 1 
and with the reset variable equal to 0.  

For the cost versus age and cost versus usage curves, we used almost the 
same approach that we used for the failure curves, except that we took each part 
of a two-part regression into account when generating a cost curve. For 
example, to generate a cost versus age curve, we varied age in the logistic and 
OLS regression equations, holding other variables constant. We then multiplied 
the two predicted values (including the Duan smearing factor) to obtain 
predicted values for the final cost versus age curve.  

The next section of this documented briefing presents and discusses plots 
corresponding to the Bradley, Abrams, and FMTV regression models. It is 
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important to keep in mind that the plots are predicted values based on the full 
samples described earlier. We did not partition samples by location, variant, or 
other variables, as doing so would have reduced the statistical power of the 
models. For example, the SDC regression model and corresponding plots for 
the Bradley were based on the full SDC dataset for the Bradley, including all 
locations and variants. The partial correlation coefficients in the regression 
equations allowed us to distinguish the effect of one location and variant from 
another.  
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3. Findings 

The M2 and M3 Bradley Fighting Vehicle 

Table 3.1 shows results of the Poisson regression of mission-critical 
failures on predictor variables in the SDC analysis. 

Table 3.1 
Poisson Regression of Bradley Failures on Predictors 

 Bradley Mission-Critical Failures 
Parameter Estimate 

Intercept –0.7656*** 
Reset –0.2176* 
(Age)squared –0.0073*** 
Age  0.1426*** 
(Usage)cubic  0.0167*** 
(Usage)squared –0.2685*** 
Usage 1.2181*** 
Location A –0.6842*** 
Location B –1.3329*** 
Location C 0.7809*** 
Location D 1.1790*** 
Location E 1.5138*** 
Iraq 0.0000  
 [other location coefficients show effects relative to 

effect of Iraq] 
Type: M2A2 0.0951 
Type: M3A2 0.8263*** 
Type: M2A2 ODS 0.0170 
Type M3A2 ODS 0.0000 
 [other type coefficients show effects relative to effect 

of M3A2 ODS] 

Deviance: Value/DF = 4691/3052 = 1.5 
Ln(updays) was an offset variable in the regression; this is equivalent to 
being a parameter with estimate = 1. 

*p < .05; **p < .01; ***p < .001 

 



- 26 - 

 

The final model had a quadratic age effect, cubic usage effect, and 
significant effects of location and variant.18 The deviance value/DF of 1.5 
indicated a good fit of the Poisson regression model. Subsequent plots illustrate 
the effects listed in this table as well as those from the separate analysis of EDA 
data for Bradleys. 

                       
18 In Poisson and negative binomial regressions with log links, linear, quadratic, and 

cubic effects are actually log-linear, log-quadratic, and log-cubic effects, as the regression 
coefficients specify the impact of predictors on the natural log of mean failures. 
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Our statistical analysis of the Bradley SDC dataset yielded a regression 
model in which age had a quadratic association with mission-critical failures, 
such that failures increased mildly with age up to a point (age 10) and then 
began to decrease. The solid blue curve in the above chart shows the age effect 
found with the SDC dataset for the Bradley, controlling for usage, location, 
NSN (type of vehicle), reset, and updays. The downturn in the tail region of 
the curve may be a result of component replacements that occurred in older 
vehicles. New components may effectively make such vehicles younger than 
their original manufacture dates suggest. We did not have data on the age of 
vehicle components or the component replacement history of vehicles before 
they were tracked in SDC and EDA.  

The dashed blue curve in the above chart shows the age effect found 
with the EDA dataset for the Bradley, controlling for usage, location, NSN, 
reset, and updays. (Using lagged usage did not alter this finding.) In this second 
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analysis, age once again had a mild quadratic effect on mission-critical failures. 
Both results suggest that age has a statistically significant but mild effect on 
mission-critical failures and therefore should not be a key criterion for 
inducting vehicles into renewal programs.  
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The location dummy variables had significant effects in both the SDC 
and EDA analyses. However, our plots of location effects focus on those found 
with SDC analyses, given that the locations recorded in SDC are not subject to 
the translation errors and quality issues that affect LIDB location data.19 As the 
above curves illustrate, the predicted failure versus age curve was higher for 
some locations than for others. The different intercepts of the curves reflect 
location differences. It is particularly noteworthy that vehicles in some CONUS 
locations had more failures than vehicles in Iraq, after controlling for usage and 
other factors. That is, if one separates the effect of location from usage, vehicles 

                       
19 It is important to keep in mind that although we refer to the second dataset as the 

“EDA dataset,” the sample was determined by the vehicle-years in LIDB. A vehicle could still 
have usage without having a mission-critical failure. Thus, the location of usage came from 
LIDB, rather than from EDA.  
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located in Iraq do not necessarily need renewal more urgently than vehicles 
located in CONUS.  

As noted by Peltz et al. (2004), different locations may have different 
environmental conditions, training schedules, maintenance practices, and 
command policies. Further investigation is needed to determine what accounts 
for the location effects found in this study. However, based on the observed 
patterns, a reasonable inference is that deployment alone is not a sufficient 
criterion for induction into reset.   
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The solid curve in the above chart illustrates the cubic usage effect found 
in the SDC analysis of Bradley data. Mission-critical failures increased sharply 
with vehicle usage until vehicle usage was about 3,000 miles per year. At that 
point a downturn occurred, followed by a second inflection point in which 
failures begin increasing again. In contrast, in the EDA analysis Bradley usage 
had a slightly quadratic (almost linear) effect on mission-critical failures.  

While both the SDC and EDA analyses suggest an overall upward 
trend—i.e., that failures tend to increase with usage—there are considerable 
differences in the magnitudes and shapes of the curves. Several factors may 
account for these differences. In particular, the usage data in SDC are much 
higher quality than the LIDB usage data used in the EDA analysis. The 
magnitude (gradient) of the LIDB/EDA usage effect may therefore be an 
underestimate.  
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However, the smaller SDC sample size may make the shape of the SDC 
curve more susceptible to outlier effects. Also, since the SDC dataset is cross-
sectional while the EDA dataset is longitudinal, the shape of the SDC curve is 
potentially more susceptible to other confounding factors. As Pierret (2005:4) 
has noted, 

A classic econometric problem is the existence of unobserved 
personal characteristics that may be correlated with both the 
dependent variable of interest and an independent variable that is 
hypothesized to cause the dependent variable . . . Longitudinal data 
give us the ability to control for individual effects by using multiple 
observations of the same individual.  

By the same token, because the LIDB/EDA dataset had multiple observations 
on the same vehicle and allowed a random effect analysis, we were able to 
control for the confounding effect of unmeasured individual vehicle 
characteristics. This was not possible with the SDC data.  

It is also important to keep in mind that, due to fewer data points, the 
shapes of the usage curves are less certain in the high-usage region. The dotted 
curves, which show the 95 percent confidence bands for the SDC curve, 
become increasingly far apart after about 2,000 miles per year of usage.  
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Regressions of Bradley subsystem mission-critical failures on predictors 
also revealed curvilinear usage effects. The relative heights of the curves suggest 
that power train, electrical, and fire control failures were the primary drivers of 
the association between Bradley usage and mission-critical failures. Consistent 
with the power train finding, during early Operation Iraqi Freedom Boyd 
(2005:21) noted that “the high usage in the area of operations are causing 
frequent failures of [Bradley] transmissions.” When Boyd made this 
observation, in the 2005 timeframe, Bradley usage was reportedly about 5,000–
6,000 miles per year—near where peak MC failures occur in the above curve 
(Korb, Thompson, and Wadhams, 2006; Office of the Secretary of Defense, 
2005). 
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In both the EDA and SDC analyses, Bradley vehicles had significantly 
fewer mission-critical failures after reset than before reset. The blue solid and 
dashed curves show, respectively, SDC- and EDA-based predicted MC failures 
versus usage without reset. The green solid and dashed curves show, 
respectively, SDC- and EDA-based predicted MC failures versus usage with 
reset. Predicted MC failures were 20 percent lower for reset vehicles in the SDC 
dataset and 50 percent lower for reset vehicles in the EDA dataset. 
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The above plots were generated from the two-part cost regression for the 
Bradley. Although the logistic regression (first part of the two-part regression) 
indicated that age had a slight quadratic effect on the probability of 
unscheduled field maintenance in a given year, the OLS regression (second part 
of the two-part regression) indicated that age did not have a significant effect 
on the magnitude of costs once a maintenance event occurred.  As the left-hand 
plot indicates, the two parts in combination suggested that expected 
unscheduled field maintenance costs changed little with Bradley age.  

However, as the right-hand plot indicates, such costs did increase steadily 
with usage. Usage had significant quadratic effects on both the probability of 
maintenance and the costs given that maintenance occurs. As indicated by the 
95 percent confidence bands, predictions for higher usage were less certain.  
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The two-part regression also revealed that reset was a significant 
predictor of unscheduled field maintenance costs. The plot on the left-hand 
side of the above chart shows that without reset, a Bradley vehicle’s expected 
annual unscheduled field maintenance costs were approximately $89,000 and 
changed little with age. With reset, however, expected annual unscheduled field 
maintenance costs were approximately $33,000. This suggests that when 
annual usage is 1,000 miles, reset yields an annual maintenance savings of 
about $56,000 per Bradley ODS vehicle. (We used the more precise figure of 
$56,300 in subsequent calculations.) 
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Based on the estimated field maintenance savings of $56,300 per Bradley 
per year, we were able to calculate roughly when Bradley reset becomes cost-
effective. We began by scaling up the $56,300 figure to account for 
maintenance costs other than those SDC captures. OSMIS has average overall 
parts costs per system by year. The FY 2008 OSMIS FORSCOM and 
USAREUR parts costs (from SSF O&S Class IX Summary) per M2A2 ODS 
were $78,766. This figure was about four times higher than 2008 SDC parts 
costs (not parts + labor) for the same vehicle.20 Thus, we multiplied the savings 

                       
20 The SDC data primarily captured costs associated with organization-level repairs. 

The OSMIS data we used captured all parts demands for vehicles at similar locations. To 
ensure that parts demands associated with reset were not part of this OSMIS figure, we 
excluded vehicles owned by AMC from the calculation of OSMIS average parts costs per 
vehicle for the Bradley.  
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of $56,300 by 4 to estimate the overall annual parts and labor savings per 
vehicle due to reset: $225,200 per year. Given that M2A2 ODS reset cost is 
about $740,000 per vehicle, a net present value (NPV) calculation suggests that 
maintenance savings compensate for reset costs after about four years, as shown 
in the above slide. This figure is based on a discount factor of 3 percent and the 
assumption that annual reset benefits (maintenance savings) do not diminish 
during those four years.  

Also, while Bradley reset may be cost-effective if it occurs every four 
years, this calculation does not consider readiness benefits. That is, readiness 
improvement may justify more frequent reset, even if the cost-versus-savings 
benefits do not. 
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Above is a summary of our analysis results for the Bradley Fighting 
Vehicle. Age was associated with modest increases in MC failures—and only up 
to a point; a downturn in the predicted MC failure versus age curve occurred 
after age 10. Also, vehicle age had a very weak—almost negligible—effect on 
field maintenance costs.  

Usage, however, was associated with greater increases in MC failures and 
maintenance costs. The power train, electrical, and fire control subsystems were 
the primary drivers of the Bradley usage effect on MC failures.   

Although some Bradley locations had significantly more MC failures and 
higher maintenance costs than others, the SWA location was not consistently 
associated with more failures than CONUS locations. That is, when we 
“partialled out” the effect of high usage and looked strictly at location, vehicles 
deployed in SWA had fewer MC failures and costs than those in some CONUS 
locations.   
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Of particular note is the strong effect of reset. Predicted MC failures 
were 20–50 percent lower for reset Bradleys than for those that had not been 
reset. The SDC analysis suggested 20 percent, while the EDA analysis suggested 
50 percent. The different magnitudes may stem from having a greater number 
of reset vehicles, and more post-reset data, in the EDA dataset. As more resets 
occur over time, subsequent studies may shed further light on such reset effects.  
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The M1 Abrams Tank 

Table 3.2 shows results of the Poisson regression of mission-critical 
failures on predictor variables in the M1 Abrams SDC analysis. 

Table 3.2 
Poisson Regression of M1 Abrams Failures on Predictors 

 M1 Abrams Mission-Critical Failures 

Parameter Estimate 

Intercept 0.7171*** 

Reset –0.4855*** 

(Age)squared –0.0036** 
Age 0.0422* 

(Usage)cubic 0.0441*** 

(Usage)squared –0.3472*** 

Usage 1.0817*** 
Location A –0.3947*** 

Location B –0.7502*** 

Location C 1.2139*** 

Location D 0.6576*** 
Location E 0.8376*** 

Iraq 0.0000  
 [other location coefficients show effects relative to 

effect of Iraq] 

Type: M1A1 –0.4114*** 
Type: M1A2 0.0000 
 [other type coefficients show effects relative to effect 

of M3A2 ODS] 

Deviance: Value/DF = 6445/6421 = 1.0 

Ln(updays) was an offset variable in the regression; this is equivalent to 
being a parameter with estimate = 1. 

*p < .05;  **p < .01;  ***p < .001 
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The final model had a quadratic age effect, cubic usage effect, and 
significant effects of location and variant.21 The deviance value/DF of 1.0 
indicated a good fit of the Poisson regression model. Subsequent plots illustrate 
the effects listed in this table, as well as those from the separate analysis of EDA 
data for tanks. 

 

                       
21 In Poisson and negative binomial regressions with log links, linear, quadratic, and 

cubic effects are actually log-linear, log-quadratic, and log-cubic effects, as the regression 
coefficients specify the impact of predictors on the natural log of mean failures. 
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As with the Bradley, SDC analyses revealed that age had a modest 
curvilinear effect on expected M1 Abrams tank MC failures; however, the age 
effect was even milder than it was for the Bradley. Also, in the EDA analysis, 
the age effect on tanks was not statistically significant. This EDA finding differs 
from an earlier finding with EDA data (Peltz et al., 2004). It should be noted, 
however, that the current study has a different M1 fleet composition and more 
longitudinal EDA data than the earlier Abrams study.  

While there were few M1A1 AIM and M1A2 SEP tanks when data were 
gathered for the earlier study (1999–2000), currently they have a significant 
presence in the fleet. Of 4,470 tanks (22,271 vehicle-years) in the EDA sample 
for the present study, approximately 623 of the vehicles (3,573 vehicle-years) 
were M1A2 SEP tanks, and 285 of the vehicles (1,478 vehicle-years) were 
M1A2 AIM tanks. The newer tanks in the present study, those manufactured 
from 2000 to the present, were almost exclusively AIM and SEP tanks, which 
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were upgraded versions of earlier tanks. Separate analyses of older tanks 
(manufactured before 2000) and newer tanks (manufactured after 2000) may 
reveal aging effects within those subsamples; such subsample analyses may be a 
worthwhile avenue to pursue in follow-up work.    

As reflected in the different intercepts of the curves in this plot, location 
had a significant impact on tank MC failures. However, as with the Bradley, 
SWA was not consistently associated with more failures than CONUS 
locations. 
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The blue curve in the above plot shows that in the SDC analysis, M1 
Abrams usage significantly increased expected MC failures. The slope of the 
curve becomes steeper when usage is 3,000+ miles per year—and steeper yet 
after 4,000 miles per year, suggesting that this effect of usage on failures 
becomes stronger at high usage; however, the 95 percent confidence bands 
indicate that predictions are less certain in that range.  

In the EDA analysis, the effect of usage on expected MC failures was 
statistically significant but, practically speaking, negligible.22 Recall that for the 

                       
22 The effect was hardly visible in a failure versus usage plot, even when the y-axis scale 

was 0 to 1 failures. In the Peltz et al. (2004) study using LIDB and EDA data, the Abrams 
usage effect was stronger (e.g., with predicted MC failures increasing from 0.8 per 180 days 
to 1.7 per 180 days when usage increased from 0 to 1,000 kilometers). As with the age 
effects, it is important to keep in mind that the composition of the Abrams fleet has changed 
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Bradley, the EDA analysis also suggested a milder usage effect than the SDC 
analysis. For both the Abrams and the Bradley, higher-quality SDC usage data 
may, in part, be responsible for discrepancies in the usage effects found with the 
SDC and EDA datasets.    

The green curve shows that in the SDC analysis, reset reduced the 
predicted MC failures of Abrams tanks by about 38 percent. In the EDA 
analysis, the effect of reset on Abrams tanks was also significant, but the benefit 
was milder and delayed. That is, reset reduced predicted failures by about  
13 percent, but not until two years after the vehicle was reset.   

                                                                                                                                  
since 2001, when data were gathered for the Peltz et al. study. Also, the time horizon and set 
of locations in the Abrams LIDB and EDA data have changed.  
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Analyses of Abrams subsystem MC failures in the SDC dataset revealed 
that the usage-failure curve for most subsystems (except the weapon subsystem) 
was similar in form to the overall M1 usage-failure curve. The relative heights 
of the curves, however, suggest that the hydraulic, power train, and electrical 
failures were the primary drivers of the association between tank usage and 
mission-critical failures. The weapon (main gun) subsystem had a considerable 
role in the M1 usage-failure relationship at lower usage.   
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The two-part cost regressions for the Abrams indicated that tank age had 
a relatively strong effect on expected unscheduled field maintenance costs per 
vehicle per year, as the left-hand plot above indicates. That is, even though 
NMC repairs (MC failures) changed very little with vehicle age, the costs of 
unscheduled field maintenance in general—both NMC and non-NMC—
steadily increased with age.  

As the right-hand plot indicates, predicted maintenance costs also 
increased with usage but reached a plateau after approximately 2,000 miles per 
year of usage. At this plateau, the predicted costs for 10-year-old M1A1 tanks at 
a CONUS location were about $1.2 million per vehicle per year. (High tank 
maintenance costs were often associated with replacement of the power pack 
with container, having a part cost of greater than $500,000.) Although the 
regression model predicted a dramatic tank maintenance cost increase after 
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5,000 miles per year of usage, the 95 percent confidence bands became too far 
apart for predictions to be meaningful at that point.  
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The two-part regression also revealed that reset was a significant 
predictor of M1 Abrams unscheduled field maintenance costs. In the plot on 
the left-hand side of the above chart, the average difference between the blue 
curve (maintenance costs without reset) and green curve (maintenance costs 
with reset) across age groups was approximately $288,000. This suggests that 
when annual usage is 1,000 miles, reset yields an annual maintenance savings of 
about $288,000 per M1 Abrams tank. (We used the more precise figure of 
$288,083 in subsequent calculations.) 
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Based on the estimated field maintenance savings of $288,083 per tank 
per year, we were able to calculate roughly when Abrams reset becomes cost-
effective. We began by scaling up the $288,083 figure to account for 
maintenance costs other than those SDC captures. OSMIS has average overall 
parts costs per system by year. The FY 2008 OSMIS FORSCOM and 
USAREUR parts costs (from SSF O&S Class IX Summary) per M1A1 Abrams 
were $182,934. This figure was about 1.215 times higher than 2008 SDC parts 
costs (not parts + labor) for the same vehicle. Thus, we multiplied the savings of 
$288,083 by 1.215 to estimate the overall annual parts and labor savings per 
vehicle due to reset: $350,068 per year. Given that M1A1 AIM reset cost is 
about $1,028,000 per vehicle, an NPV calculation suggests that maintenance 
savings compensate for reset costs after about four years, as shown in the above 
slide. This figure is based on a discount factor of 3 percent and the assumption 
that annual reset benefits (maintenance savings) do not diminish in that time. 
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Also, the cost-effectiveness calculation does not consider readiness benefits. As 
mentioned earlier, readiness gains may justify more frequent reset, even if the 
cost-versus-savings benefits do not. 
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In general, findings for the M1 Abrams tank were similar to those for the 
Bradley. Above is a summary of our Abrams analysis results. Age had a minimal 
effect on the expected annual MC failure (NMC repair) count per tank, 
increasing failures very mildly up to a point; however, age steadily increased 
field maintenance costs associated with NMC and non-NMC repairs.  

Usage was associated with greater increases in Abrams MC failures and 
maintenance costs. The hydraulic, power train, and electrical subsystems were 
the primary drivers of the Abrams usage effect on MC failures.   

Although some Abrams locations had significantly more MC failures and 
higher maintenance costs than others, the SWA location was not consistently 
associated with more failures than CONUS locations. As with the Bradley, 
when we “partialled out” the effect of high usage and looked strictly at location 
effects on the Abrams, vehicles deployed in SWA had fewer MC failures and 
costs than those in some CONUS locations.   
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Like Bradley reset, Abrams reset reduced predicted MC failures and field 
maintenance costs, becoming cost-effective after four years. However, unlike 
Bradley reset, Abrams reset had a stronger impact in the SDC analyses than in 
the EDA analyses. Again, as more resets occur over time, subsequent studies 
may provide more definitive information about the magnitude of reset benefits. 
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The FMTV M1078 Series Truck 

Table 3.3 shows results of the Poisson regression of mission-critical 
failures on predictor variables in the FMTV SDC analysis. 

Table 3.3 
Poisson Regression of FMTV Failures on Predictors 

 FMTV M1078 Series Mission-Critical Failures 

Parameter Estimate 

Intercept 2.8958*** 

(Age)cubic 0.0014** 

(Age)squared –0.0036** 
Age –0.0445** 

Usage 0.0822* 

Location A –0.2953 

Location C 0.7118 
Location E 0.1477 

Location F 0.6717 

Location G –0.3427 

Location H 0.3556 
Location I 0.0388 

Iraq 0.6957 

Misc low-density sites 0.0000  

Type: M1078 1.0458*** 
Type: M1078W/W 1.4654 

Type: M1078A1W/W –0.0129 

Type: M1078A1 0.0000 
 [other type coefficients show effects relative to 

effect of M3A2 ODS] 

Deviance: Value/DF = 2001/2992 = 0.67 
Ln(updays) was an offset variable in the regression; this is equivalent to 
being a parameter with estimate = 1. 

*p < .05;  **p < .01;  ***p < .001 
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The final model had a small cubic age effect and linear usage effect.23 
FMTV variant had significant effect, but location did not. The deviance 
value/DF was 0.67 for the Poisson regression model and 0.45 when we ran a 
negative binomial regression; thus, the Poisson model had a better fit. 
Subsequent plots illustrate the effects listed in this table, as well as those from 
the separate analysis of EDA data for tanks. 

                       
23 In Poisson and negative binomial regressions with log links, linear, quadratic, and 

cubic effects are actually log-linear, log-quadratic, and log-cubic effects, as the regression 
coefficients specify the impact of predictors on the natural log of mean failures. 
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The above failure versus age and failure versus usage plots showed that 
both age and usage had very little impact on FMTV MC failures. The solid 
blue curves are the predictions based on SDC analyses, and the dotted blue 
curves are the 95 percent confidence bands surrounding those predictions. The 
dashed blue curves are the predictions based on EDA analyses. The SDC and 
EDA findings for FMTV were similar: modest age and usage effects and no 
significant reset effect. The small gradient of the failure versus usage curve 
suggests that the FMTV has a much higher tolerance for high usage than do 
heavy combat vehicles (Bradley and Abrams).  
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The two-part cost regressions for the FMTV M1078 series indicated that 
vehicle age increased expected annual unscheduled field maintenance costs—an 
effect that was roughly linear, as the left-hand plot above indicates. However, 
costs remained below $5,000 per year, even at the high end of the age range.  

As the right-hand plot indicates, predicted annual maintenance costs 
increased slightly with FMTV usage and then decreased. The curvature in the 
plot reflects the first part (the reliability piece) of the two-part regression: usage 
had a quadratic effect on the probability of at least one maintenance action in a 
given year. (In the second part of the two-part cost regression, usage did not 
have a significant effect on expected costs given that maintenance occurred.) As 
mentioned earlier, the SDC data were cross-sectional, so the downturn in the 
tail region may indicate that unmeasured individual vehicle characteristics had a 
confounding effect. 
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Above is a summary of our analysis results for FMTV M1078 series 
trucks. Both the age and usage effects on MC failures were very small. Age had 
a more substantial effect on field maintenance costs, but the costs were low 
(under $5,000 per year) even in the oldest vehicles. No significant location or 
reset effects were detected.   

The low maintenance costs, minimal effects of age and usage, and lack of 
a significant reset effect may raise questions about the value of FMTV M1078 
series reset. As of October 2008, the cost of CONUS FMTV reset by 
RRAD/BAE Systems was $91,825 per vehicle (PM, Heavy Tactical Vehicles, 
2009).  
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When we compared findings for the three systems in this study, a 
noteworthy set of patterns emerged. First, age only increased mission-critical 
failures mildly, and only up to a point. (Recall that the downturn in the tail 
region may reflect the limitations of measuring age based on manufacture date. 
This age measure did not capture the age of vehicle components—i.e., the 
component replacement history. Some older vehicles may have had newer 
components, and therefore fewer failures, than some younger vehicles.) Second, 
for the heavy combat vehicles (Bradley and Abrams), usage had stronger effects 
than age, and the power train and electrical systems were among the key drivers 
of those usage effects. Third, for vehicles driven 1,000 miles per year, both 
Bradley and Abrams reset became cost-effective four years after reset. Fourth, 
heavy combat vehicle location clearly affected failures and costs, but after 
controlling for usage, some CONUS locations were associated with higher 
expected failure counts and maintenance costs than Iraq. 
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4. Discussion and Implications 

 

The small age effects found in this study suggest that while a vehicle’s 
original manufacture date merits some consideration when developing reset 
plans for ground systems, it should not be the sole criterion—or even a key 
criterion—for inducting vehicles into the program. Recent AMSAA analyses of 
tactical wheeled vehicles similarly found that age was not a universal predictor 
of reliability and maintainability (RAM) and costs per mile (Fox et al., 2010a).   

By the same token, being located in SWA is not a sufficient criterion for 
reset induction; vehicles driven few miles in SWA may not need reset 
immediately after deployment. At a recent AMSAA, LIA, HQDA G-4, and 
RAND meeting (Fox et al., 2010b) discussing the organizations’ respective fleet 
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management studies, participants concluded that promising vehicle selection 
criteria for reset may include a combination of usage, cumulative usage (total 
vehicle mileage), location, and past maintenance history. The relatively strong 
impact of usage and location (not necessarily deployment) in this study support 
including those attributes among key reset selection criteria. 

This study also provides statistical evidence that national reset (returning 
vehicles to 10/20 condition) yields substantial readiness benefits and 
maintenance cost savings for heavy combat vehicles. By demonstrating that 
current reset programs are bearing fruit, the study suggests that funding of such 
programs is a sound investment at current usage. 

Additionally, the finding that reset becomes cost-effective after four years 
(for Bradley and Abrams) may inform Army decisions about when and how 
often vehicles should be reset.  
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A series of follow-up steps may be valuable extensions of the analyses 
completed to date. First, it is important to further investigate the reasons that 
some of the SDC findings were not identical to the EDA findings. Several 
reasons—the higher-quality usage data in SDC and longitudinal structure of 
the EDA dataset—were discussed earlier. However, other possible factors—
specifically, the degree of overlap in SDC and EDA maintenance data and the 
role of AIM and SEP vehicles in the two datasets—merit investigation. Second, 
a regression of downtime on predictor variables may provide a fuller picture of 
how those predictors affect vehicle readiness. Third, further examination of 
subsystem effects may shed more light on the factors behind the relatively 
strong usage effects in this study. Finally, the effects of other types of renewal, 
especially recapitalization, need to be assessed. Such efforts are likely to expand 
the contributions of this study to Army fleet management. 
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Appendix: 
 Sample Profiles 

This Appendix provides additional information about the SDC and EDA 
datasets used in the Bradley, Abrams, and FMTV analyses. 
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In this slide, the left-hand bar chart shows the Bradley locations in the 
SDC and LIDB-EDA datasets and the date range for each location. Both 
datasets had observation dates ranging from 2002 to 2009. However, each 
vehicle in the SDC dataset typically had only 365 days of usage data spanning 
two of those years. In contrast, each vehicle in the LIDB-EDA dataset had 
about five years of data.   

The right-hand bar chart shows the number of observations (vehicle-
years) by location in the SDC and LIDB-EDA datasets. Most of the Bradley 
(M2A2, M2A2 ODS, M3A2, M3A2 ODS) observations in SDC were at Iraq, 
Fort Stewart, and Fort Benning; none were at other deployed locations or U.S. 
Army National Guard (ARNG) sites. In contrast, the LIDB-EDA data 
included many Bradleys at CONUS ARNG sites and deployed locations other 
than Iraq. It is important to keep in mind, though, that the locations recorded 
in LIDB were less accurate than those in the SDC dataset. 
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For the M1 Abrams analyses, the SDC date ranges varied by location, 
with a wide range of dates (2000–2009) at Fort Hood and narrower ranges at 
other sites. The LIDB-EDA data that we used spanned the years 2001 to 2009 
at each location.  

In the SDC dataset, most of the Abrams observations (tank-years) were in 
Fort Hood and Iraq. In the LIDB-EDA dataset, the primary locations were 
CONUS ARNG sites and deployment sites other than Iraq; however, many of 
the remaining Abrams observations were in Fort Hood, Iraq, and Fort Knox.  
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For the FMTV analyses, the SDC date ranges at Fort Hood, Fort Bragg, 
and Fort Lewis were 2001 to 2009, but the date ranges were narrower at other 
locations. The LIDB-EDA data that we used spanned 2001–2009 at each 
location. 

In the SDC dataset, most of the FMTV M1078 series observations were 
in Fort Hood, Iraq, and Fort Bragg. In the LIDB-EDA dataset, the primary 
locations were CONUS ARNG sites and deployment sites other than Iraq; 
however, many of the remaining FMTV observations were in Fort Hood, Iraq, 
and Fort Bragg.   

 



- 69 - 

 

 

This chart shows the annual usages for the FMTVs in the study. Each 
vehicle contributes a variable number of observations: one mileage number for 
each year in the study. As noted above in the text, the skewness toward the low 
end of the usage scale means that regression models and predictions are more 
accurate at lower usages. 

The following two slides show analogous histograms for the M1 and M2 
fleets.  
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