
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Computational investigationof structured shocksin 

Al/SiC-particulate metal-matrix composites

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

Propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time-invariant) structured 

shock waves within metal matrix composites (MMCs) is studied computationally. Waves of this type are typically 

generated during blast-wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads 

are introduced in, and applied to, a target structure. Hence, the knowledge of the basic physics of propagation of 

these waves is critical for designing structures with superior blast and impact protection capabilities. To derive the 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Aluminium, Composite materials,Wave propagation, Mechanical shock, Metal matrix composites, Structured shocks, Dynamic 

mixture model

M. Grujicic,  W.C. Bell,  B. Pandurangan, C.-F. Yen , B.A. Cheeseman

Clemson University

Office of Sponsored Programs

300 Brackett Hall

Clemson, SC 29634 -5702

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

New Reprint

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-09-1-0513

622105

Form Approved OMB NO. 0704-0188

56526-EG.11

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Mica Grujicic

864-656-5639

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



Computational investigationof structured shocksin Al/SiC-particulate metal-matrix composites

Report Title

ABSTRACT

Propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time-invariant) structured 

shock waves within metal matrix composites (MMCs) is studied computationally. Waves of this type are typically 

generated during blast-wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads are 

introduced in, and applied to, a target structure. Hence, the knowledge of the basic physics of propagation of these 

waves is critical for designing structures with superior blast and impact protection capabilities. To derive the overall 

response of the composite material to shock type loading, a dynamic-mixture model is employed. Within this model, 

the known constitutive responses of the constituent materials are combined using the appropriate mixture rules. These 

mixture rules are of a dynamic character since they depend on the current state of the composite material and cannot be 

applied prior to the beginning of the analysis. 

The approach is applied to a prototypical MMC consisting of an aluminum matrix and SiC particulates. Both the 

intermediate-to-strong shock regime (in which the contribution of stress deviators to the stress field can be ignored) and 

the weak shock regime (in which stress deviators provide a significant contribution to the stress field) are investigated. 

Finally, the computational results are compared with their experimental counterparts available in the open literature in 

order to validate the computational procedure employed.



Propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time-invariant) structured 

shock waves within metal matrix composites (MMCs) is studied computationally. Waves of this type are typically 

generated during blast-wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads are 

introduced in, and applied to, a target structure. Hence, the knowledge of the basic physics of propagation of these 

waves is critical for designing structures with superior blast and impact protection capabilities. To derive the overall 

response of the composite material to shock type loading, a dynamic-mixture model is employed. Within this model, 

the known constitutive responses of the constituent materials are combined using the appropriate mixture rules. These 

mixture rules are of a dynamic character since they depend on the current state of the composite material and cannot be 

applied prior to the beginning of the analysis. 

The approach is applied to a prototypical MMC consisting of an aluminum matrix and SiC particulates. Both the 

intermediate-to-strong shock regime (in which the contribution of stress deviators to the stress field can be ignored) and 

the weak shock regime (in which stress deviators provide a significant contribution to the stress field) are investigated. 

Finally, the computational results are compared with their experimental counterparts available in the open literature in 

order to validate the computational procedure employed.



REPORT DOCUMENTATION PAGE (SF298)

(Continuation Sheet)

Continuation for Block 13

ARO Report Number 

Computational investigationof structured shocks

Block 13:  Supplementary Note

© 2011 . Published in Multidiscipline Modeling in Materials and Structures, Vol. Ed. 0 7, (4) (2011), (, (4).  DoD Components 

reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, 

and to authroize others to do so (DODGARS §32.36).  The views, opinions and/or findings contained in this report are those of 

the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so 

designated by other documentation.

Approved for public release; distribution is unlimited.

...

56526.11-EG



Computational investigation
of structured shocks
in Al/SiC-particulate

metal-matrix composites
M. Grujicic, W.C. Bell and B. Pandurangan

Department of Mechanical Engineering, Clemson University,
Clemson, South Carolina, USA, and

C.-F. Yen and B.A. Cheeseman
Survivability Materials Branch, Army Research Laboratory,

Aberdeen, Maryland, USA

Abstract

Purpose – Propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady
(i.e. time-invariant) structured shock waves within metal matrix composites (MMCs) is studied
computationally. Waves of this type are typically generated during blast-wave loading or ballistic
impact and play a major role in the way blast/ballistic impact loads are introduced in, and applied to,
a target structure. Hence, the knowledge of the basic physics of propagation of these waves is critical
for designing structures with superior blast and impact protection capabilities. The purpose of this
paper is to help advance the use of computational engineering analyses and simulations in the areas of
design and application of the MMC protective structures.

Design/methodology/approach – To derive the overall response of the composite material to
shock type loading, a dynamic-mixture model is employed. Within this model, the known constitutive
responses of the constituent materials are combined using the appropriate mixture rules. These
mixture rules are of a dynamic character since they depend on the current state of the composite
material and cannot be applied prior to the beginning of the analysis.

Findings – The approach is applied to a prototypical MMC consisting of an aluminum matrix and
SiC particulates. Both the intermediate-to-strong shock regime (in which the contribution of stress
deviators to the stress field can be ignored) and the weak shock regime (in which stress deviators
provide a significant contribution to the stress field) are investigated. Finally, the computational
results are compared with their experimental counterparts available in the open literature in order to
validate the computational procedure employed.

Originality/value – Prediction of the spallation-type failure in a metal-matrix composite material
(modeled using the dynamic-mixture model) has not been done previously.
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1. Introduction
Owing to their ability to simultaneously satisfy a variety of manufacturing/processing
constraints and functional/performance requirements (via material property tailoring),
advanced metal-matrix composites (MMCs) are increasingly being used in a variety
of applications. Among these applications are the ones in automotive-engineering
(e.g. crash-worthy structures), aerospace industry (e.g. space debris impact shields) and
defense industry (e.g. light-weight, high-performance blast and ballistic protection
systems) (Pandey et al., 2001). In these applications, full advantage is taken of the
superior performance of MMCs under high loading-rate conditions. It is generally
recognized that in order to further increase the performance of MMCs in the high
loading-rate applications, improved knowledge of the basic physics related to
shock-wave generation and propagation (addressed in the present work) and the
associated micro-structure evolution and material deformation/degradation processes
(to be addressed in our future work) is required.

It is generally recognized that any analysis of the shock-wave generation and
propagation phenomena within MMCs and the associated micro-structure evolution
and material deformation/degradation processes must include the consideration of the
following specific aspects of this class of materials:

. These materials are heterogeneous and consist of at least two phases: a metallic
matrix and (typically ceramic) reinforcements. In addition, these materials often
contain (undesirable) voids (and perhaps other defects/flaws). The MMCs
analyzed in the present work are assumed to be free of voids and other flaws.

. These materials may be associated with different levels of (micro-structure and
processing-induced) elastic and/or inelastic anisotropies. The class of MMCs
selected for analysis in the present manuscript is typically considered to be
elastically and inelastically isotropic.

. Properties of the MMCs are not only controlled by the relative amounts,
micro-structure/morphology and properties of the constituent materials but also
by the constitutive properties of the matrix/reinforcement interphases. Owing to
the fact that strong matrix/reinforcement bonding can be achieved through proper
sizing treatment of the reinforcement in the class of MMCs analyzed and that
only the response of these materials to compressive shocks was investigated,
perfect bonding is assumed to exist at the matrix/reinforcement interfaces.

The development of advanced MMC-based protective (i.e. blast-survivable and
ballistic-resistant) structures with superior performance typically involves extensive
application of the experimental test procedures/programs. Such experimental test
programs are critical for ensuring the utility and effectiveness of the composite-material
protective structures. However, this approach is often associated with a prohibitively
high cost and involves destructive (one-shot) testing. While the role of experimental test
programs remains critical, they are increasingly being complemented by the
corresponding computation-based engineering analyses and simulations. The
knowledge of composite-material response under various in-service loading
conditions, as described by the corresponding material model(s), is one of the key
components in such analyses greatly affecting their utility and fidelity. The main
objective of the present work is to help advance the use of these computational
engineering analyses and simulations in the areas of design and application of the MMC
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protective structures. Towards that end, high loading-rate constitutive models for a class
of MMCs is developed and implemented (via a user-material subroutine) into a
commercial finite-element program.

Examination of the public-domain literature carried out here in revealed a large
number of (mainly static) material models for the MMCs. These models can be
classified in a variety of ways. For example, the micro-structure length scale which is
being emphasized in the model can be used for the MMC-material model classification.
This classification typically yields the following classes of MMC-material models:
continuum length-scale (Lee et al., 2009), grain-size length-scale (Abu Al-Rub, 2009) and
atomistic length-scale (Dang and Grujicic, 1997). Alternatively, MMC-material models
can be classified according to the morphology (and size) of the reinforcements as
whiskers-reinforced MMCs (Davis, 1993), particulate-reinforced MMCs (Hunt et al.,
1990), dispersion-reinforced MMCs (Davis, 1997), etc.

The classification of the MMC-material models employed in the present work is
based on the loading-rate range at which the model is applicable. Consequently, and for
simplicity, the MMC-material models are classified into two groups as:

(1) those applicable under quasi-static and/or sub-sonic dynamic deformation rate
conditions (Li et al., 2007); and

(2) those applicable under super-sonic (i.e. shock-wave) loading conditions (Vecchio
and Gray, 1994).

While there are material models in the literature which retain the discrete nature of the two
MMC-material components (i.e. of the metallic matrix and the discrete reinforcements), the
ones considered in the present work treat the MMC as a homogenized/smeared-out
mixture of the two components. The main reason for this is that the interest of the present
work was into MMC-material models which are suitable for large-scale computational
investigations of the blast/ballistic survivability of MMC protective structures (e.g. vehicle
underbody armor). In these investigations, due to a prohibitively high computational cost,
one cannot afford to treat the MMC material as a heterogeneous two-component medium,
but is forced to consider the same as a homogenized/smeared-out “single-component”
material. However, as will be discussed later the two-phase nature of the MMC is not
completely discounted since the effective response of the smeared-out composite material
is obtained dynamically from the responses of the individual constituents.

Careful examination of the material models falling into the two classes adopted in the
present work revealed that the models differ generally in the way the two components
are mixed/homogenized. In other words, different assumptions are involved regarding
partitioning of stresses and strains between the matrix and the reinforcements.
In majority of the material models, the volume fractions of the MMC-material
components are assumed to remain unchanged during loading/deformation. While this
assumption appears justifiable in the case of quasi-static and sub-sonic dynamic loading
conditions (which are associated with relatively small volumetric strains), the same
cannot be stated in the case of shock-wave loading (a type of loading which is dominated
by the spherical/hydrodynamic component of the stress tensor and may result in large
volumetric strains). Consequently, as will be discussed in greater detail in next section,
under dynamic loading, the volume fractions of the MMC components have to be treated
as material-state variables whose values depend on the state of loading of the MMC as
well as on the constitutive response of the constituents at a given material point.
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In the present work, an attempt is made to further advance the MMC-material model
derived in our previous work (Grujicic et al., 2011a). This model is based on the so-called
“dynamic-mixture” material model originally proposed by Drumheller (1987) and
Anderson et al. (1990). The model was aimed at capturing the effective response of
MMCs when subjected to shock-wave loading in the intermediate to strong shock regime
(within which the material stress field is dominated by its spherical/hydrodynamic
component). The model is of a homogenization-type, i.e. each material point is assumed
to contain both of the MMC components. The model also assumed that there is no
relative motion between the two constituents residing at a given material point resulting
in constancy of the constituent (local) mass fractions. On the other hand, as mentioned
above, the constituent volume fractions are treated as (evolving) material – state
variables. As will be shown later, the evolution of the constituent volume fractions
during loading are obtained by solving simultaneously, at each time step, a set of
equations consisting of the governing (mass, linear momentum and energy)
conservation/balance equations, constituent constitutive relations and the appropriate
mixture-rule relations.

In the present work, an attempt is made to extend our recently developed MMC
dynamic-mixture-based material model in two ways (Grujicic et al., 2011a):

(1) In the intermediate to strong shock regime, in addition to the adiabatic limit
(analyzed in Grujicic et al., 2011a), the isothermal limit is also investigated. The
adiabatic and isothermal limits correspond to the cases of total absence and
complete thermal-energy exchange between the MMC constituents residing at
the same material point during high-rate loading.

(2) The shock propagation is also analyzed in the weak-shock regime (in which the
contribution of the stress deviators and inelastic deformation processes to the
material state must be accounted for).

The organization of the paper is as follows: a critical review of the dynamic-mixture
model and the application of this model to a prototypical isotropic two-constituent MMC
(a silicon carbide particulate-reinforced aluminium-matrix composite) is provided in
Section 2. The main results obtained are presented and discussed in Section 3 while the
conclusions resulting from the present study are summarized in Section 4.

2. Overview of the dynamic-mixture theory
2.1 A critical overview
In this section, a brief critical overview is provided of the dynamic-mixture
composite-material model originally developed by Drumheller (1987) and
Anderson et al. (1990). As mentioned earlier, this is an example of a homogenization
composite-material model, within which each material point is assumed to contain all the
constituent phases of the material and the properties/responses of the composite
materials are derived through proper mixing of the constituent properties/responses.
However, constituent mixing is carried out dynamically, i.e. using rule of mixtures
which depend on the current state of the material. In other words, the constituent volume
fractions are not considered as constant but rather treated as dynamic,
solution-dependent variables. It should be noted that while the dynamic-mixture
theory is applicable to a general non-reactive, multi-constituent system, only a binary
(two constituent) rendition of this theory is analyzed henceforth.
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The transient non-linear dynamic response of composite materials (or materials, in
general) is governed by the mass, momentum and energy conservation equations. The
dynamic-mixture theory has been developed with the recognition that within standard
commercial transient non-linear dynamics codes, user modifications to the mass and
momentum conservation equations are typically not permitted. Instead, the user is
allowed to provide/implement the appropriate material constitutive relations as well as
to assess various components of the internal-energy density.

Mass conservation equation. In acknowledging the aforementioned limitations of
the commercial codes and recognizing that within the extremely short time associated
with shock-wave loading relative motion between the constituents associated with a
single material point can be neglected (i.e. particle velocities for the constituents
associated with the same material point are assumed to be equal), the dynamic-mixture
theory preserves the original (single-constituent) form of the mass and the linear
momentum conservation equations as:

_rþ r
›_xa

›xa
¼ 0 ð1Þ

r€xa ¼ 2
›

›xa
ðP þ QÞ þ rf a þ

›Sba

›xb
ð2Þ

where r is the material mass-density, f is the mass-based body-force, xa the a-th spatial
coordinate, _xa a-th component of the particle velocity (defined as a time derivative of
the particle spatial coordinates) and Sba are the components of the stress deviator. The
summation convention is implied by the repeated subscripts a, b ¼ 1, 2, 3. The raised
dot denotes a material derivative (¼ ›=›t þ ›=›xa _xa). P is the (equilibrium/physical)
pressure and Q is the dissipative-pressure. It should be noted that all the quantities
appearing in equations (1) and (2) pertain to the composite material and are obtained
(as will be shown below) through proper mixing of the respective constituent
properties. Among the constituent properties (state variables) which define the
constitution/make-up of the composite material are:

. intrinsic mass density of each component, �r1; 1 ¼ 1; 2;

. volume fraction of each component, f1, 1 ¼ 1, 2;

. partial density of each component, r1, 1 ¼ 1, 2; and

. (constant) mass fraction of each component, M1, 1 ¼ 1, 2.

These state variables are not all independent but rather are related through the
following set of equations:

1

X
f1 ¼ 1;

1

X
M1 ¼ 1 ð3Þ

r1 ¼ f1 �r1 ð4Þ

r ¼
1

X
r1 ð5Þ

M1 ¼
r1

r
ð6Þ
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Combining equations (4) and (6) yields:

�r1 ¼
M 1r

f1
ð7Þ

�r2 ¼
M 2r

f2
¼

ð1 2M 1Þr

1 2 f1
ð8Þ

It should be noted that equations (3)-(8) relate the composite-material mass-density
(used in the mass and momentum conservation equations, equations (1) and (2)) to the
constituent volume-fractions and mass-densities. Alternatively, if the composite
density is known, the knowledge of one of the constituent volume fractions or densities
is required to obtain the remaining constituent volume fractions and densities. It should
be also recognized that the constant mass-fraction condition is a direct consequence of
the assumed absence of relative motion between the constituents.

Momentum conservation equation. To relate the composite-material total pressure
(used in the momentum conservation equation, equation (2)) with the constituents’ total
pressure, the following pressure-mixing relation is used:

P þ Q ¼ P1 þ Q1; ð1 ¼ 1; 2Þ ð9Þ

where the quantities without subscripts pertain to the composite material, while the
quantities with subscripts pertain to the individual constituents.

One can next use a simple thought experiment to demonstrate that the
pressure-equality condition defined by equation (9) makes the constituent volume
fractions f1 non-constant. One should be begin by considering a single cube-shaped
computational-cell which contains the two constituents at equal (0.5) volume fractions.
Next, it is postulated that each of the two constituents resides within their respective
computational sub-cell with constituent interface being parallel with one of the faces of
the cube. The cube is next subjected to uniaxial-strain loading in a direction parallel
with the inter-component boundary. To satisfy the equal-pressure condition, the stiffer
constituent must undergo a smaller volume change than the more compliant one.
However, since both constituents are subjected to the same uniaxial-strain, this could
be accomplished only if the components experience an additional normal strain in a
direction normal to the constituent interface. The latter strain would then give rise to a
change in the volume fractions of the components. It should be recalled that while
the volume fractions of the two components may change under dynamic loading, the
corresponding mass-fractions remain constant.

According to equation (9), the total pressure for the composite material (used in the
momentum conservation equation (2)) can be evaluated by computing the corresponding
quantity for one of the constituents. The constituent equilibrium pressure is typically
defined in terms of an equation of state (EOS) in the form:

P1 ¼ P̂1ð �r1; �E1Þ ð10Þ

while the constituent dissipative pressure is typically defined using a viscous-damping
relation in the form:

Q1 ¼ Q̂1ð �r1; _�r1Þ ð11Þ
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where �E1 is the intrinsic mass-based energy density of the 1-th constituent (i.e. the
internal energy associated with constituent 1 per unit mass of the same constituent).

As far as the stress deviator Sab is concerned, it is assumed, as will be discussed in
Appendix 1, to be controlled by the composite-material effective shear modulus and the
composite-material deviatoric strain. Owing to the absence of relative motion of the
constituents residing within the same material point, the composite-material effective
shear modulus is assumed to be defined by an equal-strain rule of mixture.

Energy conservation equation. Within the dynamic-mixture model, the
composite-material energy conservation equation is handled in the following way:

. First the corresponding energy conservation equations are defined/evaluated for
the two constituents as:

r1
_�E1 ¼ f1ðP1 þ Q1Þ

_r1

r1
þ r1r1 þ r1

_�E
d

1; ð1 ¼ 1; 2Þ ð12Þ

where r1 is the constituent intrinsic mass-based internal-power density

source/sink term and _�E
d

1 is the constituent mass-based distortional power
density (discussed in greater detail in Appendix 1).

. The composite-material energy-density is next defined using the following
energy-mixing relation as:

rE ¼
X

r1 �E1; ð1 ¼ 1; 2Þ ð13Þ

In regard to computation of the constituent energy-density as defined by equation (12),
Drumheller (1987) and Anderson et al. (1990) considered two limiting cases:

(1) an adiabatic case; and

(2) an isothermal case.

In the adiabatic case, the two composite-material constituents residing at the same
material point are not allowed to exchange their thermal/internal energies.
Consequently, for each constituent the mass-based internal-power density source/sink
term r1 in equation (12) is set to zero.

In the isothermal case, on the other hand, the two composite-material constituents
residing at the same material point are allowed to fully exchange their thermal/internal
energies until the thermal equilibrium (equal temperature,T1 ¼ T2) condition, in the form:

�E1

ðCpÞ1
¼

�E2

ðCpÞ2

; ð14Þ

is met, where Cp denotes the mass-based, constant-pressure specific heat. In this case,
equation (12) contains non-zero r1 terms but r1 ¼ 2r2 (to account for the fact that the
energy-density sink/source term is associated with a thermal-energy exchange between the
constituents residing at the same material point). The sink/source term appearing
in equation (12) can be evaluated through the use of the equal-temperature condition
(equation (14)).

As far as the constituent distortional power/energy terms are concerned, as will be
discussed in greater detail in Appendix 1, these quantities are evaluated by
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partitioning the composite-material distortional power/energy (evaluated from the
known composite-material deformation gradient) in accordance with the total
internal-energy density partitioning (equation (13)).

Dependent variables and governing equations. To help identify the dependent
variables and the associated governing equations, the case of uniaxial motion in the x1

direction is first considered here. In this case, the composite-material deviatoric-strain
component can be directly related to the current (known) density and the deviatoric
stress S11 can be directly calculated. Hence, in this case, there are nine dependent
variables: P1, Q1, �r1, �E1, P2, Q2, �r2, �E2 and one of the composite-material constitution
variables (e.g. f1). The associated nine equations are as follows:

(1) P1 and P2 are defined by the respective two EOS relations in accordance with
equation (10).

(2) Q1 and Q2 are defined by the respective two viscous dissipation relations in
accordance with equation (11).

(3) �r1 and �r2 are defined by equations (7) and (8).

(4) �E1 and �E2 are defined by the respective two energy conservation equations in
accordance with equation (12) (and equation (14), in the case of isothermal
energy-mixing rule).

(5) f1 is calculated using the total pressure-equality relation, equation (9). It should
be noted that, the distortional-energy terms DEd

1 are not counted as independent
variables. This is done so because, as will be shown in Appendix 1, these
constituent distortional energies are directly obtained by partitioning the
composite-material distortional energy. The latter quantity is known, i.e. it is
computed from the (known) composite-material deformation gradient and the
effective shear modulus.

It should be also noted that in a general three-dimensional case the number of
independent variables does not increase. However, the computational complexity
increases since the stress deviator and the distortional energy of the composite material
cannot be any longer related to the current density but rather have to be computed
using the deformation gradient and the effective shear modulus.

Numerical solution procedure. In this section, a brief description is provided of the
numerical procedure used to solve the set of nine equations identified in the previous
section in order to determine the values of the nine associated composite-material and
constituent state variables.

Among the nine equations identified in the previous section, seven are of an algebraic
type while the remaining two (the two-constituent specific energy conservation
equations (equation (12)) are of a (ordinary) differential character. Using a
finite-differencing scheme, the latter two equations can be transformed into their
incremental algebraic counterparts yielding a set of nine (non-linear) algebraic equations.
These equations can be solved iteratively using a Newton-Raphson type numerical
procedure. Anderson et al. (1990) has shown that this procedure can be greatly simplified
by expressing the remaining dependent variables and their increments in terms of one of
the constituents’ volume fraction, e.g.f1 and its increment. Since the procedure proposed
by Anderson et al. (1990) was used in the present work and it is fully described in
Anderson et al. (1990), no further discussion of this procedure will be provided here.
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Implementation into a FEM code user-material subroutine. As discussed earlier,
within the commercial finite-element code environment, the user is allowed to
implement a new material model (like the dynamic-mixture model, in the present case)
through the use of a user-material subroutine. This was done in the present work in
which, all the calculations were carried out using ABAQUS/Explicit finite-element
package (ABAQUS, 2010). In the remainder of this section, a brief description is
provided of the procedure used to implement the dynamic-mixture model into the
VUMAT user-material subroutine of ABAQUS/Explicit.

Owing to the attendant large strains and rotations, the finite strain deformation
formulation is adopted. Within this formulation, the basic quantity which relates/maps
the original (homogenized) composite-material configuration into the current
configuration is the deformation gradient, F. When material models like the one
discussed here are implemented in user-material subroutines of the commercial
finite-element codes, the (previous time and current time) deformation gradient and
mass-densities are passed to the subroutine by the finite-element solver and the
subroutine is tasked with computing and returning the corresponding
composite-material stress state (as well as the values of all the material-state defining
variables). The following quantities have been selected as the material-state variables:
f1, P1, P2, �E1 and �E2. The provided composite-material density is used in conjunction
withf1 andf2 ¼ 1 2 f1 to compute the corresponding constituent mass-densities. The
latter are used in the EOS relations to obtain the constituent pressures via equation (10).
One must also update the constituent energy densities via equation (12). The
computation of the associated increments in the constituent energy densities requires the
knowledge of the corresponding increments in distortional energy which, in turn, entails
the calculation of the constituent deviatoric-strain increments. This is accomplished by
first calculating the corresponding composite-material deviatoric-strain increment
through the use of the previous and the current time deformation gradients and the
standard definition of the logarithmic strain. Then the procedure outlined Appendix 1 is
employed to first compute the associated composite-material deviatoric stress and the
distortional-energy increment and then partition the latter quantity between the two
constituents. At this point, the procedure proposed by Anderson et al. (1990) is employed
to both update the composite-material stress state and energy as well as to update the
aforementioned state variables. Most of the steps outlined above closely follow the ones
used in our recent work (Grujicic et al., 2011b).

2.2 Application to isotropic MMCs
The dynamic-mixture model overviewed in the previous section is applied in this
section to a class of MMCs reinforced with micron-size ceramic particulates. The class
of MMCs in question is typically fabricated using a pressure-less infiltration process
(Rao and Jayaram, 2001) and, hence, is not expected to contain significant extents of
elastic or plastic anisotropies. Consequently, the material will be treated as being
isotropic and, due to a small size of the particulates, the homogenization assumption
utilized within the dynamic-mixture method appears justified. In our previous work
(Grujicic et al., 2011a), the response of this class of MMCs was analyzed only in the
intermediate-to-high strength shock regime in which the material response can be
assumed to be dominated by its hydrodynamic (e.g. pressure, density, etc.) quantities.
Clearly when the hydrodynamic approximation is used, the contribution of the stress
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deviator and its energy-conjugate strain (rate) is minimal and can be neglected. In sharp
contrast, in the weak-shock regime which is analyzed in the present work, both the
hydrodynamic/volumetric and deviatoric/distortional effects contribute to the overall
response of the composite material.

Also in Grujicic et al., 2011a, only the adiabatic thermal-energy exchange regime is
analyzed. In the present work, the analysis is extended to the isothermal regime within
which the two constituents residing at the same material point are allowed to exchange
the thermal energy until thermal equilibrium is reached. The specific MMC grade
analyzed in the present work consists of an aluminium-matrix (60 vol.%) and
micron-size SiC particulates (the remainder). The functional forms of the constituent (as
well as for the composite-material) EOS relations used in the present work are
overviewed in Appendix 2. The corresponding relations for the dissipative-pressure, Q,
used in the present work are presented in Appendix 3. The associated constituent and
composite-material model parameters are summarized in Table I.

3. Results and discussion
3.1 Composite-material (shock) Hugoniot relations
In this section, the main shock-Hugoniot relations for planar, uniaxial-motion
(longitudinal) shock waves in an Al-matrix, SiC-particulate reinforced MMC are
determined and briefly discussed. Since the behavior of shock waves is governed by the
corresponding jump equations, the energy conservation equation was replaced with the
corresponding form of the Rankine-Hugoniot ( jump) equation, in the present
shock-wave analysis. Both the adiabatic and the isothermal-energy exchange limits
are considered.

Adiabatic limit. Pressure (P) vs ratio of the composite-material specific volume and
the composite-material initial specific volume, v/v0, shock-Hugoniot relation under
adiabatic conditions is shown in Figure 1(a). The corresponding negative axial stress
(2 t11) vs v/v0 shock-Hugoniot relation is shown in Figure 1(b). For comparison,
the corresponding P vs v/v0 and 2 t11 vs v/v0 relations are displayed for the two MMC
constituents. In this case, v/v0 values pertain to the actual values of v/v0 in the
composite-material and its constituents when the composite-material and its
constituents are subjected to a constant-pressure level P. In other words, Figure 1(a)

Parameter Units Aluminum SiC MMC

rR kg/m3 2,785 3,215 2,805
GR – 2.0 1.56 1.89
C0 m/s 5,328 N/A N/A
S – 1.338 N/A N/A
A1 GPa N/A 220 88
A2 GPa N/A 361 171
A3 GPa N/A 0 120
k1 – 1.2 1.2 1.2
k2 – 0.06 0.06 0.06
Cp J/kg K 870 800 –

Note: See Appendix 1 for details

Table I.
A summary of the
material parameters for
aluminum, SiC
reinforcements and Al þ
SiC MMC
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Figure 1.
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shows that at any pressure level, the more volumetrically compliant aluminium-matrix
undergoes significantly higher compression than the volumetrically stiffer SiC.
Examination of the results shown in Figure 1(a) and (b) reveals that:

. As pointed above, compression is unequally distributed between the two
constituents.

. A comparison of the constituent P vs v/v0 curves for the constituents with their
respective shock-Hugoniot plots established that these two sets of curves are
identical. This is not a surprise since in the adiabatic limit the composite-material
P vs v/v0 curve is essentially obtained by application of dynamic rule of mixtures
to the constituent P vs v/v0 Hugoniot relations.

. The deviatoric axial stress makes a contribution to the total axial stress in the
aluminium-matrix which increases up to the point of yielding (under the
condition 2 t11,Al ¼ t11,HEL,Al ¼ 437 MPa) and remains constant afterwards.

It should be noted that a very rudimentary (no strain hardening/no temperature
dependence) model for plasticity was used. In the case of SiC, no plastic deformation
takes place and, hence, the contribution of the deviatoric stress to the total stress in SiC
continuously increases with compression.

As mentioned above, the Hugoniot curves like the 2 t11 vs v/v0 curve in Figure 1(b)
represent the locus of final (shock-strength dependent)/shock states but they do not
represent the loading path/trajectory of the material points swept by the shock.
Instead, it is the straight line (the Rayleigh line) in the 2 t11 vs v/v0 plot, which connects
the initial/pre-shocked (v/v0 ¼ 1 and 2 t11 ¼ 0) state and the final/post-shocked
material state, that describes the loading path of the material particle as they are swept
by the advancing shock-wave. The slope of the Rayleigh line is linearly related to the
shock speed and will be used in this section to obtain a relationship between the shock
speed and the particle velocity change brought about by the shock loading.

Variations in the volume fraction of the two constituents and their temperature with
the shock strength, as quantified by the v/v0, are shown in Figure 2(a) and (b),
respectively. As expected, the volumetrically more compliant aluminum undergoes a
reduction in its volume fraction (the opposite is true for the volumetrically stiffer SiC)
(Figure 2(a)). This plot reveals the dynamic nature of the composite material when
subjected to shock loading. Figure 2(b) shows that, as expected, the constituent which
undergoes more compression and, thus, dissipates more energy during shock loading
sustains a greater temperature increase. Since the two constituents residing at the same
material point do not exchange thermal energy, a single temperature for the composite
material cannot be defined in this case. The results shown in Figure 2(b) further suggest
that the aluminium-matrix would undergo melting when subjected to strong shock
loading. Since this type of phase transformation would modify the Al-matrix Hugoniot
relations and, in turn, the MMC Hugoniot relations, the results shown in Figures 1 and 2
are not applicable at temperatures exceeding the melting point of aluminum.

Isothermal limit. Pressure (P) vs v/v0 and 2 t11 vs v/v0 shock-Hugoniot relations for
the composite material under isothermal conditions are shown, respectively, in
Figure 3(a) and (b). For comparison, the corresponding P vs v/v0 and 2 t11 vs v/v0

relations are displayed for the two MMC constituents. Examination of the results
shown in Figure 3(a) and (b) reveals that:
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. At any pressure level, the more volumetrically compliant Al-matrix undergoes
significantly higher compression than the volumetrically stiffer SiC.

. A comparison of the P vs v/v0 curves for the constituents with their respective
shock-Hugoniot plots established that these two sets of curves are not any longer
identical. This finding might be explained in the following way: Hugoniot

Figure 2.
Variations of (a)
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Figure 3.
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relations are generally derived by combining the EOS with the
Rankine-Hugoniot jump equation while assuming that no deposition of
external energy or thermal-energy transport takes place. This condition is
clearly not met in the isothermal limit where in order for the two constituents to
attain thermal equilibrium, they must exchange (thermal) energy. In other words,
in the present case, the Rankine-Hugoniot equation for the constituents contains
an additional thermal-energy exchange term. The magnitude of this term is equal
while the sign is opposite in the two constituents. Thus, the P vs v/v0 curves for
the constituents shown in Figure 3(a) are the result of combining the appropriate
EOS with the modified Rankine-Hugoniot equation.

. A comparison of the composite-materialP vs v/v0 results shown in Figure 3(a) with
those in Figure 1(a) shows that the pressure, at a constant-level of
composite-material density, is slightly smaller in the isothermal than in the
adiabatic case. This finding can be attributed to the higher value of GRrR in
aluminum ( ¼ 5,709 kg/m3) than in SiC ( ¼ 5,015 kg/m3). Since GRrR represents
the rate of change of pressure with a change in the internal energy, any transfer of
energy from the higher-temperature aluminum to the lower temperature SiC will
cause a larger drop of pressure in aluminum than the increase of pressure in SiC.

. As in the adiabatic case, the deviatoric axial stress makes a contribution to the
total axial stress in the aluminium-matrix, but increases only to the point of
yielding and remains constant thereafter. In sharp contrast, due to the absence of
plasticity in SiC, this contribution continues to increase with compression.

Variations in the volume fraction of the two constituents and the composite-material
temperature (the constituent temperatures and the composite-material temperature are
now equal) with the shock strength, as quantified by the v/v0, are shown in Figure 4(a)
and (b), respectively. As expected, the volumetrically more compliant aluminum
undergoes a reduction in its volume fraction while the volume fraction of the
volumetrically stiffer SiC increases (Figure 4(a)). These results are very similar to their
adiabatic counterparts shown in Figure 2(a). This finding is reasonable since, as shown
above, GRrR values are not significantly different in the two composite-material
constituents.

Figure 4(b) shows that the temperature of the composite material increases during
loading (since shock loading is an energy-dissipative process) and that the magnitude
of this increase scales with the shock strength (as quantified by deviation of the v/v0

parameter from unity). A comparison of the results shown in Figures 2(b) and 4(b)
shows that the composite-material temperature, in the isothermal case, is roughly
half-way between the constituent temperatures, in the adiabatic case. This finding is
consistent with the fact that the aluminum-matrix and SiC-particulate reinforcement
share comparable constant-pressure specific heats (Table I).

3.2 Analysis of the isentropic-decompression relations
In the previous section, the key shock-loading Hugoniot relations were presented and
discussed for the subject Al-matrix, 40 vol.% SiC-particulate reinforced MMC and its
constituents. As will be discussed in greater detail in the next section, decompression
(centered simple) waves which form during reflection of the compression shocks from
the free surface may pose a substantial threat to the target structure (and lead to
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fracture mode commonly referred to as “spallation”). This is the reason that
decompression relations of the subject MMC are investigated in present work. In all the
analyses presented in this section, it will be assumed that the MMC was first shock
compressed to a density which is 12.5 percent higher than its initial density. This is
approximately the maximum compression to which the MMC can be subjected during
shock loading before aluminum-matrix incipient melting takes place. Also, it will be
assumed that subsequent unloading is of an isentropic character (i.e. free of energy

Figure 4.
Variations of (a)
constituent volume
fraction; and (b)
composite-material
temperature as a function
of the composite-material
normalized specific
volume during
compressive shock-based
loading in the isothermal
thermal-energy exchange
limit for an Al-40 vol.%
SiC-particulate reinforced
MMC
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dissipative processes). As in the previous section, both thermal-energy exchange limits
will be analyzed.

Adiabatic limit. The negative axial stress vs composite-material normalized specific
volume isentropic-decompression relation under the adiabatic thermal-energy
exchange condition for the subject MMC is shown in Figure 5(a). For comparison,
the normalized specific volumes for the two constituents at the same level of pressure
are also depicted in this figure. The corresponding constituent temperature vs

Figure 5.
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composite-material normalized, specific-volume, isentropic-decompression relation for
the subject MMC is shown in Figure 5(b). Examination of the results shown in
Figure 5(a) and (b) reveals:

. Upon complete unloading (2 t11 ¼ 0), the composite-material volume is greater
than the initial volume (Figure 5(a)). This is simply the result of the fact that the
residual composite-material temperature is higher than the initial temperature
due to the fact that shock loading was associated with pronounced energy
dissipation (temperature increase). In other words, shock-compression induced
heating could not be fully reversed by isentropic-decompression induced cooling.
This temperature increase leads to a positive (thermal) volumetric strain.

. Figure 5(a) also shows that the residual thermal-expansion effects are more
pronounced in the aluminium-matrix than in SiC-particulates. This finding is
consistent with the fact that volumetrically more compliant aluminum was
substantially more compressed (and dissipated more energy) during shock
loading than SiC.

. The local slope of the pressure vs v/v0 isentropic-decompression curve can be
used to calculate the associated wave speed. This information, as will be
discussed in greater detail in the next section, is a critical input into the analysis
of propagation, reflection and interaction of decompression centered simple
waves (CSWs) (Davison, 2008).

. In accordance with the previously observed larger thermal-expansion effects in
Al, Figure 5(b) shows that the residual temperature in aluminum-matrix
(ca. 370 K) is substantially higher than that in SiC-particulate reinforcements
(ca. 310 K). It should be recalled that, as discussed earlier, in the adiabatic limit
the temperature of the constituents may be determined, but the
composite-material temperature is not defined.

Careful examination of the negative axial stress vs normalized specific volume plot for
the aluminium-matrix, Figure 5(a), shows that this material initially decompresses
elastically until the condition for reverse plastic yielding is attained. Beyond this point,
further decompression of the aluminium-matrix involves distortional reverse plastic
yielding and elastic volumetric unloading.

Isothermal limit. Negative axial stress vs composite-material normalized,
specific-volume, isentropic-decompression relation under the isothermal thermal-energy
exchange condition for the subject MMC is shown in Figure 6(a). For comparison, the
normalized specific volumes for the two constituents at the same level of pressure are also
depicted in this figure. The corresponding composite-material temperature vs
composite-material normalized, specific-volume, isentropic-decompression relation is
shown in Figure 6(b). In this case, the constituent temperatures are equal to the
composite-material temperature at a given level of composite-material normalized specific
volume. Examination of the results shown in Figure 6(a) and (b) reveals:

. As in the adiabatic case, the composite-material residual volume is larger than the
initial volume (Figure 6(a)). This is again the result of the accompanying
thermal-expansion effects. A comparison of the results shown in Figures 5(a)
and 6(a) shows that under the isothermal condition, the thermal-expansion
effects in the composite-material are somewhat less pronounced. This finding is
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consistent with the fact that the room-temperature thermal-expansion coefficient
of aluminum (ca. 22 £ 1026/K) is roughly four times larger than its counterpart in
SiC (ca. 5 £ 1026/K) and that the thermal-energy exchange under isothermal
condition gives rise to quite comparable magnitudes (but opposite signs) of the
Al-matrix and SiC-particulate reinforcement temperature changes. Thus, the
resulting residual thermal expansion in the Al-matrix in the isothermal case

Figure 6.
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(relative to the adiabatic case) cannot be compensated by the associated increased
thermal expansion in SiC-particulate reinforcements.

. As in the adiabatic case and for the same reason, the residual thermal-expansion
effects are more pronounced in the aluminium-matrix than in SiC-reinforcements
(Figure 6(a)).

. The local slope of the pressure vs v/v0 isentropic-decompression curve can be
used to calculate the associated wave speed and then input into the analysis of
propagation, reflection and interaction of simple waves.

. Figure 6(b) shows that upon complete decompression there is a residual
temperature of ca. 316 K in the composite-material which is, as expected, between
the Al-matrix and the SiC-particulate temperatures in the adiabatic case.

3.3 Analysis of intersecting isentropic-decompression smooth-waves
In the previous two sections, the dynamic-mixture theory was used to derive
shock-loading Hugoniot and isentropic-unloading relations for a prototypical MMC.
In the present section, it is demonstrated how these relations can be employed in the
analysis of shock generation and propagation, and decompression/release wave
generation, propagation and their interactions which may lead to the fracture mode
commonly referred to as “spallation”.

A schematic of the problem analyzed here is shown in Figure 7. The problem analyzed
is normally referred to as a flyer-plate impact problem. In this problem, a plate-like
projectile moving at a constant velocity (referred to here as the projectile velocity) is
allowed to impact a plate-like target. When the projectile and the target are made of
the same material, the problem is referred to as a symmetric flyer-plate impact problem.

Figure 7.
Characteristics-based
Lagrangian-framework
analysis of a symmetric
flyer-plate impact problem
in an Al-40 vol.%
SiC-particulate reinforced
MMC; the projectile initial
velocity is 800 m/s; the
required Hugoniot and
isentropic relations used
were those from the
adiabatic thermal-energy
exchange regime
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This is the type of the flyer-plate impact problem analyzed in the present section.
In addition, in the problem analyzed here, the thickness of the projectile is assumed
to be smaller than the thickness of the target. Consequently, as will be shown below,
spallation fracture may occur in the target plate.

The outcome of the flyer-plate impact problem analyzed here is shown in Figure 7,
in which, time (t) is cross-plotted against the spatial coordinate (X) within the
Lagrangian (material based) framework. As seen in Figure 7, upon impact, two shock
waves are generated at the projectile/target interface. While one of the shock waves
propagates to the left within the projectile, the other advances to the right within the
target. Upon the reflection of the two shock waves from their respective (projectile or
target back faces/free surfaces), two converging CSWs form. The right propagating
CSW forms at the back face of the projectile, while a left propagating CSW forms at the
target back face. As will be shown later, the intersection of these two waves results in
the formation of a region within the target which is subjected to tensile stresses. If these
tensile stresses are of sufficient magnitude, they may lead to spallation fracture.

Based on this description, the analysis presented in the remainder of this section is
divided into three parts:

(1) the analysis of formation and propagation of the shock waves;

(2) the analysis of formation and propagation of the CSWs; and

(3) the intersection of the two CSWs and the formation of the tensile regions within
the target.

It should be also noted that a more detailed treatment of this problem will be addressed
in our future work. Hence, the discussion presented in the remainder of this section is
focused on the physics/conceptual aspects of the problem.

Initial state of the projectile/target materials. The material within the target is
assumed to be initially quiescent (_x2T ¼ 0, deformation-free D 2 ¼ 0 and stress-free
t211 ¼ 0). The state of the material within the projectile is assumed to be the same as that
within the target except that the initial particle velocity is equal to the projectile velocity
(_x2P ¼ 800 m=s). It should be noted that in order to treat deformation of the projectile and
the target in a consistent manner, Lagrangian compression (D ¼ 1 2 rR/r) is used as a
measure of the material deformation. The initial thicknesses of the projectile and the
target are selected as Lp ¼ 5 mm and LT ¼ 10 mm, respectively.

Formation and propagation of incident shocks. Owing to the symmetric nature of the
flyer-plate impact problem, both the right and the left-propagating shocks produce a
change in the particle velocity equal to one half of the projectile initial velocity. This
change in the particle velocity is a measure of the shock strength. According to the
standard physics-based analysis of planner longitudinal shocks (Davison, 2008), the
changes in the remaining material states (e.g. axial stress/pressure, density, entropy
density, etc.) can be computed provided one of the material shock-Hugoniot relations is
known. In the present work, the axial stress vs normalized specific volume relations
derived through the use of the dynamic-mixture theory, Figure 1(b), for the adiabatic case
and, Figure 3(b), for the isothermal case, are used as the required shock-Hugoniot
material relations. Thus, the dynamic mixture-based 2 t11 vs v/v0 relations enable
complete determination of the material state behind the diverging shocks in the target
and in the plate. It should be also noted that, in the shock regime, continuity in the particle
velocity and in the axial stress is maintained across the projectile/target interface.
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The procedure outlined above for the shock of a given strength (as controlled by the
flyer-plate impact velocity) yields the associated values of the shock speed and the
particle velocity. When this procedure is repeated for a range of flyer-plate impact
velocity, a relationship between the shock speed and particle velocity can be obtained.
The results of this procedure are shown in Figure 8 for the adiabatic and isothermal
thermal-energy exchange regimes. A close examination of the results displayed in this
figure reveals that, in each thermal-energy exchange case, there are two distinct
branches (and a transition between the two) in the shock speed vs particle-velocity
relation. The low particle-velocity branch is associated with elastic loading while the
high particle-velocity branch is associated with elastic-plastic loading. Depending on the
magnitude of particle velocity, the following three shock-wave regimes can be identified:

(1) When the particle velocity falls in the range of the first branch, a single
elastic-precursor shock is formed.

(2) When the particle velocity falls in the transition region or on the second branch
but the shock speed is lower than the maximum shock speed attainable in the
first regime, two (a leading elastic-precursor and a trailing plastic) shock waves
are formed.

(3) When the particle velocity is high enough that the shock speed is higher than
the maximum shock speed attainable in the first regime, a single elastic/plastic
shock is formed. To simplify the analysis, only the case of a single
elastic/plastic shock wave is considered here.

Formation and propagation of CSWs. Since the composite material under investigation
is a so-called “normal” material, it supports the formation of shocks during
compressive loading. Materials of this type, however, do not support the formation of
shocks during unloading and, instead, smooth decompression CSWs are formed.
Unlike shocks which bring about an abrupt/discontinuous change in the material

Figure 8.
Shock speed vs particle
velocity Hugoniot relation
for an Al-40 vol.%
SiC-particulate reinforced
MMC in the adiabatic and
isothermal thermal-energy
exchange conditions
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states, CSWs give rise to a gradual/continuous change of these states between their
levels ahead of the wave to their levels behind the wave. The head of the CSW is
represented by a so-called “eading characteristic/wavelet”, while its tail is represented
by the “trailing characteristic/wavelet”. The remaining interior portion of the CSW is
defined in terms of the intermediate characteristics/wavelets. Each of these wavelets
propagates through the material at a (compression-dependent) wave speed. In normal
materials, the wave speed increases with the extent of material compression. This is
the reason that, in normal materials, the leading characteristic which borders the fully
compressed material advances at higher speeds than the trailing characteristic
(borders the fully decompressed material) and that a shock wave cannot be formed
during decompression.

According to the basic theory of CSWs (Davison, 2008), the CSW characteristics
(before the two CSWs intersect) are each associated with the constant level of the wave
speed and, hence, they appear as straight lines in the t vs X plot (Figure 7). The slope of
each of these lines is equal to the reciprocal of the respective wave speed. Hence, to
construct these lines a functional relation is needed between the sound speed and the
extent of material compression. This relation was obtained in the present work using
the 2 t11 vs v/v0 isentropic-decompression data shown in Figure 5(a), for the adiabatic
case, and in Figure 6(a), for the isothermal case and the standard definition of the
Lagrangian sound speed as:

CL ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rR

dt11

dD

� �s
:

The results of this procedure are shown in Figure 9. Also, the leading and the trailing
(as well as the remaining intermediate “receding”) characteristics of the two

Figure 9.
Wave speed vs particle
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isentropic decompression

of an Al-40 vol.%
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converging CSWs before, during and after their interaction, as shown in Figure 7,
are constructed using these results (for the adiabatic case only).

Examination of the results shown in Figure 9 shows that the wave speed versus
compression relations for both the adiabatic and the isothermal thermal-energy
exchange conditions contains two distinct branches. The top brunch is associated with
the highest sound speed and corresponds to the initial elastic decompression of the
aluminum-matrix and, in turn, to the elastic decompression of the entire composite
material. This decompression ultimately produces a shear stress of sufficient
magnitude and of a sign that is opposite to the shear stress accompanying loading.
This results in the onset of reverse yielding. Thus, for the most part, unloading of the
aluminum-matrix is the result of plastic decompression under a constant-level of the
deviatoric/shear stresses and elastic unloading of the volumetric/hydrodynamic stress.

Intersection of CSWs. Examination of Figure 7 shows that ultimately the two CSWs
will intersect within the target plate. The intersection/interaction region is denoted by
four characteristic-intersection points:

(1) the point A where the two leading characteristics intersect;

(2) the points B and C where the leading characteristic of one wave intersects with
the trailing characteristic of the other; and

(3) the point D where the two trailing characteristics intersect.

It should be noted that the characteristics become curved (i.e. parabolic lines) within the
interaction zone and subsequently become straight again once they have passed through
the interaction region. To determine the shape of the CSW characteristics throughout the
interaction region, the points of their intersection and the state of the material at these
points, a method based on the concept of Riemann invariants (Davison, 2008), can
be used. Details of this method are beyond the scope of the present work and will be
presented in a future communication. An example of the results obtained through
the application of this procedure is shown in Figure 10 in which temporal evolution of the
negative axial stress at the spatial locations within the target corresponding to points A,
C and D are depicted. Discontinuous/non-monotonic changes of 2 t11, seen in Figure 10,
are associated with either discrete events (e.g. arrival of a shock or a CSW) or with the
transition of the material associated with the given point between different regimes of
decompression, e.g. a transition of a material point from the single CSW regime to the
interaction region and, in turn, into the post-interaction region. The results shown in
Figure 10 show that, as a result of the intersection of the two CSWs, tensile stresses
ultimately develop in the target. The location (or more precisely the plane) at which the
tensile stress first attains a sufficiently high value (in combination with a probability of
finding a potent material flaw or microstructural heterogeneity) will be the plane where
the spallation initiates. In the present case, it is seen that points A, C and D are each
associated with the largest tensile stress at different post-impact times. Hence, the
magnitude of the failure strength and the stochastic nature of the flaws will dictate at
which of these three locations (or a different location within the CSW interaction region)
spallation cracking is more likely to occur. Once the initial spallation crack is formed,
its subsequent growth in the lateral directions may result in incomplete separation of a
layer of the target material at the target back face. As mentioned earlier, details of this
process as well as those resulting from the formation of shocks at the spallation/crack
faces will be presented in our future communication.
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4. Summary and conclusions
Based on the results obtained in the present work, the following summary remarks and
main conclusions can be drawn:

. In the present work, a critical assessment is carried out of the dynamic-mixture
theory which is used to predict the behavior of natural and man-made mixtures
under high-rate loading and unloading conditions.

. The theory is subsequently applied to a prototypical MMC material consisting of
an aluminum-matrix and 40 vol.% SiC-particulate reinforcements. The
application of the dynamic-mixture theory to the MMC material in question
resulted in the generation of the appropriate loading Hugoniot and
unloading-isentropic functional relations between various material-state
variables. These were subsequently used to derive the corresponding shock
speed vs particle velocity and smooth wave (characteristics) speed vs compression
relations.

. In the last portion of the present work, the derived relations mentioned above are
used to investigate the shock/wave phenomena resulting from the normal
collision between a plate-like impactor and a plate-like target both made of the
same MMC material. The analysis showed that the collision results in the
formation of two diverging compression shock waves which, upon reflection
from the projectile and the target free surfaces, become two converging
decompression CSWs. The intersection of the two CSWs creates a region within
the target plate which is subjected to tensile stresses. The combination of the
tensile stress magnitude and the probability of finding a potent defect at a given
location facilitates the formation of the so-called “spallation cracks”. Propagation
of these cracks in the lateral directions produces a plate-like detachment/spall
from the backside of the target-plate.

Figure 10.
Temporal evolution of the
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Appendix 1. Calculation of distortional power/energy
The energy conservation equation for the composite-material constituents, equation (12), contains

a distortional power/energy term r1
_�E
d

1 which represents the rate at which the work is done by the
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stress deviator while producing distortions within the composite-material constituent 1.
The corresponding increase in the constituent distortional energy within a time increment Dt is
denoted as r1D �E

d

1 . Within the dynamic mixture theory, the latter term is first evaluated for the
composite material as a whole (rDE d) and then partitioned between the constituents. This
approach is justified by the fact that no relative motion is permitted between the constituents
residing in the same material point. The rDE d term is evaluated as:

rDE d ¼ ðDtÞSab _1ab ðA1Þ

where _1ab is the composite-material deviatoric strain rate and Sab _1ab is the volume-based,
distortional power density. The composite-material deviatoric strain rate is evaluated from the
known velocity gradient using standard kinematic relations. The corresponding stress deviator is
then obtained using the appropriate version of the Hooke’s law in the case of an elastic response or
through the combined use of a yield criterion and a flow rule (in the case of an elastic-plastic
response). In either case, the composite-material distortional-energy increment can be evaluated.

The composite-material distortional power/energy, rE d, is then assumed to be partitioned
between the constituents in the same way as the total internal energy, i.e. in
accordance with equation (13). This yields the following form for the constituent distortional
power/energy:

r1DE
d
1 ¼ g1rDE

d ðA2Þ

Appendix 2. Equation of state
As mentioned in the main body of the manuscript, an EOS defines pressure dependence on
density (i.e. degree of compression) and mass-based internal-energy density. In the present work,
two forms of the EOS are used:

(1) the so-called “shock” EOS for the aluminium-matrix (ANSYS/Autodyn-2D and 3D, 2007);
and

(2) the so-called “polynomial” EOS for the silicon carbide reinforcements
(ANSYS/Autodyn-2D and 3D, 2007).

In addition, the MMCs are often modeled using the so-called “puff” EOS (ANSYS/Autodyn-2D
and 3D, 2007).

It should be noted that subscript “epsilon” is omitted in this section to simplify notation.
However, it will be clearly stated which relations apply to the constituents and which to the
composite material as a whole. These three types of EOS can be generalized using the so-called
“Mie-Gruneisen” EOS (Davison, 2008), which can be written as:

PðmÞ ¼ PRðmÞ þ GRrRðEðmÞ2 ERðmÞÞ ðA3Þ

where the compression is defined as m ¼ 1 2 r0=r and the subscript “R” is used to define the
reference curves/quantities.

Shock EOS
In this case, the PR(m) and ER(m) are replaced with the corresponding Hugoniot curves, P H(m)
and E H(m), which are in turn defined using a linear Us ¼ C0 þ s_x relation (C0 and s are material
constants) as:

P H ðmÞ ¼
rRC

2
0mð1 þ mÞ

ð1 2 ðs2 1ÞmÞ2
ðA4Þ
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E H ðmÞ ¼
1

2

P H

rR

m

1 þ m

� �
ðA5Þ

Puff EOS
In this case, the reference curves are again replaced with their respective Hugoniot curves.
However, the latter are defined as:

P H ðmÞ ¼ A1mþ A2m
2 þ A3m

3 ðA6Þ

E H ðmÞ ¼
P H

rR

m

2

� �
ðA7Þ

where A1, A2 and A3 are material constants and equation (A7) is obtained from equation (A6)
using the Rankine-Hugoniot relation and assuming that the initial pressure and energy in the
material have zero-values.

Polynomial EOS
In this case, hR ¼ PRðmÞ2 GRrRERðmÞ appearing in equation (A3) is replaced with a third-order
polynomial as:

hR ¼ A1mþ A2m
2 þ A3m

3 ðA8Þ

Despite the fact that the Mie-Gruneisen EOS in the form of equation (A3) is often used, its
physical-basis is generally overlooked. Equation (A3) simply states that, if a reference curve
defined by functions PR(m) and ER(m) and lieing on the P-r-E EOS surface is known, the EOS
surface can be reconstructed in the neighborhood of the reference curve by expanding each point
of the curve, at a given of m into a constant-m line segment, so that the slope of this line segment
is equal to GR (the Gruneisen Gamma) material parameter.

A summary of the EOS material model parameters for the aluminium-matrix, SiC
reinforcements and the Al þ SiC MMC is given in Table I.

Appendix 3. Dissipative pressure constitutive relation
In accordance with the work of Anderson et al. (1990), the following constitutive relation is used
for the constituent dissipative pressure, Q (subscript “epsilon” is again omitted), in the present
work:

Q ¼ rk2
1

_r

r

� �2

þrk2C0
_r

r

����
���� ¼ rðqq þ qlÞ ðA9Þ

where k1 and k2 are material constants.
Clearly, since Q scales with _r=r, it can take significant values only in the shock front region

where the rate of change of material density is significant.
A summary of the dissipative pressure material model parameters for the aluminium-matrix,

SiC reinforcements and the Al þ SiC MMC is given in Table I.
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