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Introduction 

Metastatic breast cancers in bone are very difficult to treat and result in significant morbidity 

and mortality. Current therapeutic options for breast cancer induced bone-metastases are usually 

palliative, and planning an individual therapeutic strategy as early as possible to delay skeletal 

complications is the key to manage patients with bone metastases. Hence, more specific imaging 

technologies to early detect and accurately diagnose whether and what cancerous bone metastasis 

is greatly needed in clinical practice. Currently skeletal scintigraphy represents the first line of 

diagnostic tools in the detection of osseous metastases. However, it suffers from poor sensitivity 

to lytic bone tumors, which is the case for breast cancer metastases. It also cannot provide 

structural details of lesions in bone. As a result, MRI is emerging as an alternative imaging 

modality for bone metastases diagnosis. Contrast enhanced MRI (CE-MRI) assisted with 

imaging probes can significantly improve early detection of tumor. However, MRI used for the 

diagnosis of bone metastases in the current clinical setting, has not yet involved the use of 

contrast agents. Thus, the development of appropriate bone-specific MRI probes for bone 

metastases is of importance. This proposal addresses this important public health need. 

The central hypothesis of this project is that Gd complex in conjugation with a peptide which 

contains Asp8 moiety and a cathepsin K (CTSK) substrate will achieve a novel bone-targeted, 

biodegradable and enzymatic-cleavable MRI contrast agent (Figure 1). Glycine terminal 

provides an amine group to attach the Gd chelator of DOTA. Asp8 has a high affinity for bone 

mineral and has been used as bone-targeting moiety in molecular therapeutics.(1-6) The use of 

Asp8 allows active accumulation of contrast agents in bone, thus leading to enhanced MR 

imaging in skeletal tissues. More importantly, by utilization of a CTSK-sensitive peptide linkage, 

Gd complex will be released following enzymatic cleavage. This not only reduces potential 

toxicity, but also leads to dynamic contrast enhancement at bone resorption sites to better detect 

CTSK activity. As CTSK is suggested as an indicator of bone metastasis from breast cancer,(4, 

7-14) probing CTSK activity at bone turnover sites may suggest the pathogenesis of bone 

metastasis. In summary, the research proposes a new bone specific contrast agent which might be 

useful for early detection of bone metastatic breast cancer. 

 

Figure 1: The concept of new bone-targeted, enzyme-degradable MRI imaging probe 



Body 

The first step for the project is to synthesize and purify peptide-based imaging agents. 

Proteolysis has been developed as a powerful tool for advanced drug delivery/imaging systems. 

Cathepsin K (CTSK), a protease primarily responsible for bone resorption, has been identified as 

a valuable therapeutic target for osteoclast-mediated osteolytic disease.(10, 13, 14) Hence, CTSK 

cleavable peptides have been explored in the development of molecular imaging probes and drug 

delivery systems in order to facilitate imaging agents/drugs release in osteolytic 

microenvironments.(5, 7, 10, 11, 15, 16) Oligo-peptides, e.g. RPGG (7, 17), NPGG (5) and 

HPGGPQ (15), have been demonstrated as CTSK-specific substrates. However, it is unclear 

which peptide sequence is more sensitive regarding to CTSK cleavage. To address this issue and 

identify best possible CTSK-cleavable linker for our project, we have initially synthesized 

CTSK-activatable imaging agents based on fluorescence resonance energy transfer (FRET) 

mechanism. We found that upon CTSK treatment, fluorescence intensity increased up to 8.2, 2.5, 

and 7.6- fold in the case of using RPGG, NPGG and HPGGPQ as substrate, respectively. This 

study confirmed literatures’ results that all of above mentioned peptides are more or less 

sensitive to CTSK treatment (5, 7, 15-19), making all of them suitable as CTSK-sensitive 

peptides for drug delivery or molecular imaging applications. Originally we proposed to use 

NPGG as CTSK substrate. Both NPGG (5) and RPGG (17) were reported to be a CTSK-

cleavable peptide sequence, based on our own practice, however, we made appropriate 

adjustment to switch NPGG to RPGG to obtain imaging agents. Accordingly, we have prepared 

3 peptides (Figure 2) which were synthesized by solid phase peptide synthesis (SPPS) strategy, 

and purified by preparative HPLC. The chemical structures of peptides were shown in Figure 2. 

The molecular weights of these peptides were characterized and confirmed by mass spectroscopy 

(Figure 2). 



 

 

Figure 2: Mass spectra characterization of peptides which were synthesized based on SPPS 

strategy. 



The most remarkable feature of skeletal tissue is its mineralized extracellular matrix. In the 

body, 99% of the calcium is located in bone as a component of mineral composition (apatite, 

Ca10(PO4)6). To this end, a number of agents with high apatite binding affinity, including 

bisphosphonates (BPs) and oligopeptides (Asp6, Asp8 and Glu8), have been identified to 

selectively bind to skeletal tissues in the development of water soluble bone-targeted drug 

delivery systems.(20-25) Based on these findings, we have proposed to use Asp8 as bone-

targeting moiety for imaging agents and tested the binding affinity of these imaging agents to 

hydroxyl apatite (HA). Mineral content (mainly apatite) accounts for nearly ~70% of the weight 

of fresh bone, so the binding affinity of nanotherapeutics to hydroxyapatite can mimic the 

binding affinity of nanotherapeutics to the bone.(4) To facilitate the evaluation of HA binding 

affinity of imaging agents, we conjugated FITC into peptides and then measured their HA 

binding affinity according to a method reported in the literature.(1) As shown in Figure 3, after 

30-min incubation of imaging agents with HA, the percent of imaging agents bound to hydroxyl 

apatite were estimated at 3.9 ± 1.8, 66.2 ± 2.1, 15.5 ± 1.5, and 54.7 ± 2.7  for free FITC, 

Asp8CRPGGG-FITC, Ser8CRPGGG-FITC, and Asp8CrpGGG-FITC, respectively. The data 

suggested that imaging agents with Asp8 residue (bone targeting moiety) indeed possess high 

affinity to HA. In contrast, free FITC or the control peptide with Ser8 residue only showed 

minimal and non-specific binding onto HA.  

 
Figure 3: In vitro HA binding ability of imaging agents. 

Next we performed experiments to investigate catepsin K-induced degradbility of imaging 

agents according to a similar method in the literature.(5) For this, FITC was conjugated to 

peptides as a model imaging moiety and its release from peptide backbone was monitored by 

HPLC. The imaging agents of Asp8CRPGGG-FITC, Ser8CRPGGG-FITC and Asp8CrpGGG-

FITC, which either contains CTSK-cleavable linker (RPGG) or CTSK-insensitive linker (rpGG), 

were incubated with cathepsin K (100 nM) at 37
o
C in acetate buffer (0.1 M, pH 5.5). Cathepsin 

K was pre-incubated at 37
o
C for 5 min to activate the enzyme in the active site, followed by 

addition of the imaging agents of Asp8CRPGGG-FITC, Ser8CRPGGG-FITC and Asp8CrpGGG-

FITC. HPLC analyses were performed on the Agilent 1200 series. HPLC apparatus equipped 

with a reverse-phase column (ZORBAX 300SB-C18,  5 µm, 4.6 × 150mm) and a Variable 

Wavelength Detector (VWD). The FITC moiety was detected at 490 nm. Cathepsin K catalyzed 

release of FITC fragments occured in the cases of RPGG-containing peptides, i.e. 

Asp8CRPGGG-FITC and Ser8CRPGGG-FITC, but not in the case of Asp8CrpGGG-FITC. After 

8-h post cathepsin-K treatment, it was calculated that approximately 56.5 ± 1.6, 62.8 ± 1.4, and 



1.7 ± 0.5 % of FITC fragments were released from peptides of Asp8CRPGGG-FITC, 

Ser8CRPGGG-FITC and Asp8CrpGGG-FITC, respectively. These results demonstrated that 

peptides with a sequence of RPGG are biodegradable in the presence of cathepsin K, which is 

consistent with the findings in literature.(4, 7, 17) 

To obtain imaging agents for MRI studies, the above mentioned peptides were allowed to 

react with DOTA-NHS followed by complexing with Gd(OAc)3 to afford proposed peptide-

based MRI contrast agents (Figure 4). The mixtures were purified by dialyis (MWCO = 1000) 

against de-ionized water for 96 hrs. The final products were obtained after lyophilization. The 

gadolinium contents in the conjugates were measured by inductively coupled plasma optical 

emission spectroscopy (ICP-OES). The Gd contents of imaging agents were 1.33 ± 0.15, 0.51 ± 

0.12 and 1.36 ± 0.16 mmol Gd/g, for Asp8CRPGGG[DOTA-Gd], Ser8CRPGGG[DOTA-Gd], 

and Asp8CrpGGG[DOTA-Gd], respectively. The results were a bit to our suprise since the 

therotical maximum Gd loading capacity for the corresponding imaging agents are 0.50, 0.56 and 

0.50 mmol Gd/g of compound. The data indicated that Gd conjugation degree for 

Asp8CRPGGG[DOTA-Gd], Ser8CRPGGG[DOTA-Gd], Asp8CrpGGG[DOTA-Gd] were 267.1%, 

91.1% and 273.1%, respectively, as compared to therotical Gd loading capacities which can be 

calculated based on chemical structures of imaging agents shown in Figure 4. The results 

suggested that peptide of Asp8, but not Ser8, maybe also involved in Gd cleation process. 

Therefore, a contruct of Asp8[Gd]xRPGGG[DOTA-Gd] or Asp8[Gd]xrpGGG[DOTA-Gd], which 

a certain degree of Gd was undersibely bound to Asp8 moiety, may be obtained. 

  

Figure 4: Chemical structures of peptide-based MR imaging agents. 



The in vitro cytotoxicity of imaging agents before and after Gd loading were evaluated in a 

breast cancer cell line of MDA-MB-231-Luc cells by a PrestoBlue™ (Invitrogen) cell 

proliferation assay. As shown in Figure 5, all imaging agents before Gd loading exhibited 

minimal cytotoxicity to cells at concentration up to 1000 μg/mL. However, after Gd was loaded 

into these imaging agents, mild cytotoxicities were observed at hight concentration (1000 

μg/mL) in the case of Asp8-containing imaging agents, in particularly for Asp8CRPGGG-

[DOTA-Gd] (Figure 5). 

 

Figure 5: Cytotoxicity of peptide-based imaging agents in MDA-MB-231-Luc cells. 

The above results, especially excessive and undesirable bound Gd onto Asp8-containing 

peptides, have raised a safety concern for the use of these imaging agents in animals, since free 

gadolinium is very toxic in the body.(26-29) Therefore, we have performed a tolerated dose 

study to investigate if these imaging agents would cause acute toxicity to animals at a clinical 

meaningful MRI testing dose (0.1 mmol Gd/Kg). Imaging agents of Asp8CRPGGG[DOTA-Gd] 

and Ser8CRPGGG[DOTA-Gd] in 100 µL of PBS were injected into mice through tail vein at a 

dose of 0.1 mmol Gd/kg (3 mice per group). Equivalent amount of Asp8CRPGGG-DOTA 

without Gd loading was used as a control (3 mice). Unfortunately, all the mice that were 

administrated with Asp8CRPGGG[DOTA-Gd] died within 2 to 24 hours after injection. In 

contrast, no obvious toxicity was observed for those mice received either Ser8CRPGGG[DOTA-

Gd] or Gd-free peptide of Asp8CRPGGG-DOTA. It appears that acute toxicity of 

Asp8CRPGGG[DOTA-Gd] likely resulted from excessive bound Gd ions onto Asp8CRPGGG-

DOTA. We have originally proposed to use Asp8 as bone targeting ligand (Figure 1). 

Unexpectedly, Asp8 not only possesses HA binding affinity (Figure 3), but also appears to be 

able to chelate with Gd ions, leading to a construct of Asp8[Gd]xRPGGG[DOTA-Gd] (Figure 6). 

However, Asp8 is unlikely to be a Gd chelator as strong as DOTA. Such imaging agents may 

release free Gd ions in vivo in the presence of competing ions such as Ca
2+

, Fe
2+

, Fe
3+

, and others 

(Figure 6). Such a drawback raises a significant safety issue for the use of Asp8-containing MR 

imaging agents in animals. Therefore, although Asp8[Gd]xRPGGG[DOTA-Gd] indeed possesses 

high bone-targeting ability and Cathepsin K-induced degradability, it is not suitable as a safe 

agent for MRI applications.  



 
Figure 6: Possible mechanism of action of Asp8[Gd]xRPGGG[DOTA-Gd] induced toxicity 

Key Research Accomplishments 

 Peptide-based imaging agents were successfully obtained. 

 Asp8-containing peptides were confirmed to have high HA binding affinity. 

 HPLC studies revealed that RPGG is a valid substrate for cathepsin K. 

 Asp8[Gd]xRPGGG[DOTA-Gd], although it possesses high bone-targeting ability and 

Cathepsin K-induced degradability, may not be a good candidate for MRI applications 

because of a safety issue. 

 

Reportable Outcomes 

None 

 

Conclusion 

This concept award project proposes to design and test a novel peptide-based MRI contrast 

agent. We have successfully obtained peptides by using a solid phase peptide synthesis (SPPS) 

strategy. Non-targeting and CTSK-insensitive controls were similarly prepared. The obtained 

contrast agents were characterized in terms of bone specificity, enzymatic degradability and 

biocompatibility. The proposed MRI imaging agent, i.e. Asp8[Gd]xRPGGG[DOTA-Gd], 

although it possesses high bone-targeting ability and Cathepsin K-induced degradability, may not 

be a good candidate for MRI applications because of a safety issue.  
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