
 
 
 

 

 
AFRL-OSR-VA-TR-2013-0005 

 
 

 
(DCT-FY08) Target Detection Using Multiple Modality Airborne and 
Ground Based Sensors  
 

Avideh Zakhor   
Regents of the University of California  
 

March 2013 
Final Report 
  

 
 

DISTRIBUTION A:  Approved for public release. 
  

 

AIR FORCE RESEARCH LABORATORY 
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR) 

ARLINGTON, VIRGINIA 22203 
AIR FORCE MATERIEL COMMAND 

 



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware 
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

17-08-2012 FINAL 4-1-2008 to 11-30-2011

 
(DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground 
Based Sensors

FA9550-08-1-0168

 
Avideh Zakhor

Regents of the University of California, The University of California Berkeley 
2150 Shattuck Avenue, Room 313 
Berkeley, CA  94704-5940

AFOSR 
875 N Randolph St 
Arlington, VA  22203

AFRL-OSR-VA-TR-2013-0005 

Distribution A: Approved for public release

Automated 3D modeling of building interiors is useful in applications such as virtual reality. We have developed architecture and 
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0.1%. Once the backpack is localized, a 3D point cloud can be generated and 3D meshing or plane fitting algorithms are applied to 
generate texture mapped 3D models. We have generated 3D models for multiple floors of 8 buildings over the past few years. Using 
100 surveyed control points, we have found the accuracy of our system to be on average 15 cm for a 750 meter data acquisition path 
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FINAL REPORT FOR FA9550-08-1-0168 
U.C. Berkeley 

Avideh Zakhor 
 
I. MOTIVATION 

 

There is increased demand for 3D models of objects and sites for virtual environment (VE) applications, 

such as virtual museums, historical sites documentation, mapping of hazardous sites and underground 

tunnels, mine automation, and modeling of industrial and power plants for design verification and 

modification. In addition, rapid, automated 3D models of building exteriors and interiors can be 

extremely useful in urban military operations.   

 

Applications requiring reality-based, accurate, photo-realistic 3D models vary significantly in their 

requirements. Industrial design and documentation, training, and operations in hazardous environments 

usually require higher geometric accuracy than marketing or visualization applications. Given the 

application requirements, selecting and implementing the most efficient method for data collection and 

modeling is not obvious. Several methods and a variety of sensors exist. They vary significantly in the 

ability to capture details, cost, accuracy, speed, and ease of use. Selecting the most suitable and efficient 

method, along with its configuration is challenging because for some of the paradigms, the effects of the 

many possible configuration parameters remain unknown. 

 

Over the past five years, we have designed, analyzed and developed the architecture together with 

associated algorithms, for a human operated, portable, 3D indoor modeling system, capable of generating 

photo-realistic rendering of internal structure of multi-story buildings.  Our motivation to focus on a 

human operated, portable system rather than an autonomous robot stems from speed, robustness, and 

scalability considerations, as well as the limitations of robots in complex environments such as stairways 

inside a building, uneven terrain, and dynamic environments. In addition, a human operator can ensure a 

much more thorough data acquisition for all objects, surfaces, details, and furniture inside a building, than 

a robot can ever do. In the context of military applications, one can envision a group of soldiers capturing 

the necessary data to build interior or exterior 3D models while inspecting a multi-story building, or 

patrolling around a campus filled with buildings.   
 
While at first glance, a human operated system might seem to be easier to develop than a robotic one, the 
former faces unique and important challenges. First and foremost, a human operated system in which a 
person carries a backpack full of sensors and equipments, is severely weight and size constrained. Second, 
unlike a wheeled robotics system which exhibits only three degrees of freedom, namely x, y, and yaw, a 
human operator exhibits six degrees of freedom: x, y, z, yaw, pitch and roll. Even though it can be argued 
that pitch, roll and z are small for typical human gait, they cannot be ignored during the localization and 
model construction process. In addition, since we are interested in modeling complex environments such 
as staircases, wheel odometry measurements typically used in robotics systems, cannot be applied to our 
system. Last, but not least, lack of GPS inside buildings, makes it particularly difficult to localize the 
acquisition system for indoor modeling applications.  
 
The major challenges for an indoor modeling system can be summarized as follows:  
 

 System architecture: What sensor components should be used? What is the spatial, or geometric 
configuration of the sensors? How many sensors are sufficient to fully capture geometry and 
texture? 

 Localization algorithms: How should the data from heterogeneous sensors be combined to 
accurately localize the backpack? By localization, we mean recovery of pose, i.e. x,y,z, yaw, 
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pitch and roll. Without localization, it is not possible to generate a 3D point cloud made of the 
laser scan returns.  

 Geometry modeling: Once localization is completed and a 3D point cloud is generated, what is 
the best way to model the environment? Traditionally triangulation has been applied to 3D point 
clouds to result in meshes. However, planar approximation of walls and floors could potentially 
result in better looking, more artifact free models, even though they could oversimplify the 
environment or could fail in complex structures such as staircases.  

 Texture mapping: Given that the texture for each piece of geometry in a model is captured by 
multiple cameras, and by multiple frames in a given camera, how does one go about texture 
selection? Lack of neighborhood consistency can result in disturbing visual artifacts. 

 Visualization and rendering: What is the best way to interact with the resulting models? The size 
of resulting models is generally too large to be viewed with today’s renders without Level of 
Detail (LoD) simplification. Yet LoD simplification needs to be applied in such a way so as to 
avoid disturbing visual artifacts at the boundaries. Can image based rendering be used to visualize 
the scene without explicitly constructing a 3D model? 

 
In the remainder of this reportl, we go over each of the above areas.  Section 2 deals with system 
architecture, Section 3 with localization, Section 4 with geometry modeling, Section 5 with texture 
mapping, and Section 6 with image based rendering.  
 
 
II. SYSTEM ARCHITECTURE  
 
 

Figures 1(a) and 1(b) show the CAD model and an actual picture of our backpack system. We mount 

three 2D laser range scanners and two Inertial Measurement Units (IMUs) onto our backpack rig, which 

is carried by a human operator. The yaw scanner is a 40Hz Hokuyo UTM-30LX 2D laser scanner with a 

30-meter range and a field of view of 270 degrees. The pitch scanner and left vertical geometry scanner, 

also known as the roll scanner, are 10Hz Hokuyo URG-04LX 2D laser scanners each with a 4-meter 

range and a field of view of 240 degrees. These scanners are positioned orthogonal to each other. The 

InterSense InertiaCube3 IMU is used to provide orientation parameters at the rate of 180 Hz. Another 

IMU is a strap-down navigation-grade Honeywell HG9900, which combines three ring laser gyros with 

bias stability of less than 0.003 degrees/hour and three precision accelerometers with bias of less than 

0.245mm/ . The HG9900 provides highly accurate measurements of all six degrees of freedom (DOF) 

at 200Hz and serves as our ground truth. The reasons for using HG9900 only for ground truth are cost, 

weight, power, and size considerations as well as operational limitations such as frequent zero velocity 

updates.   

 

 

We use the laser scanners for both localization and 3D geometry construction. In particular, the left 

vertical geometry scanner is used to build a 3D point cloud once localization is complete. Similarly, as 

shown in Section VI, the cameras serve the dual purpose of refining localization as well as texture 

mapping the resulting models.  

 
III. LOCALIZATION ALGORITHMS 
 
We have developed a series of 3D localization algorithms based on heterogeneous sensors such as laser 
scanners, IMU and cameras [11]. The outline of this section is as follows. In Section IV-A, we describe 
localization algorithms based on scan matching. Section IV-B describes ways in which loop closure 
detection can reduce the overall localization error. Section IV-C outlines our loop closure detection 
algorithm, and Section IV-D includes performance characterization of our scan matching localization 
algorithms.  
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                                              (a)                                                                     (b) 

                      

Figure 1. (a) CAD model of the backpack system; (b) the backpack system worn by a human operator. 
 
 

A. Scan Matching Algorithms 
 

The simplest approach to localization is to use the three orthogonally mounted laser scanners, each  

assigned to estimate one of the three orientation parameters and two translation parameters via scan 

matching algorithms such as Iterated Closest Point (ICP).  With the backpack worn upright, x represents 

forward direction, y leftward, and z upward. Referring to Figure 1, the yaw scanner scans the xy plane, 

the pitch scanner scans the x-z plane, and the left vertical geometry scanner, which is also the roll 

scanner,  scans the y-z plane. Thus, the yaw scanner can resolve yaw rotations about the z axis, the pitch 

scanner resolves pitch rotations about the y axis, and the roll scanner resolves the roll rotation about the x 

axis. Assuming that each scanner scans the same plane over time, we can apply scan matching on 

successive laser scans from each scanner and integrate the translations and rotations obtained from scan 

matching to recover two translation parameters and one rotation parameter of the backpack over time. 

Thus, x,y, and yaw are estimated by the yaw scanner, x,z, and pitch by the pitch scanner, and y,z, and roll 

by the roll scanner. Combining these we can recover all six degrees of freedom; we refer to this as 3xICP 

algorithm as it runs ICP three times once on each laser scanner [11].   
 
The next simplest alternative is to use the inexpensive, InterSense IMU to estimate pitch and/or roll. The 
reason for not using yaw estimate from this IMU is that it uses a magnetometer and earth’s magnetic field 
to determine heading. As such, its yaw estimate is usually unreliable due to steel objects distorting the 
earth magnetic field inside buildings. Thus, we can once again estimate x,y, and yaw by running ICP on 
the yaw scanner, pitch and roll from the InterSense IMU, and x,z, and pitch by running ICP on the scans 
from the pitch scanner. This algorithm is referred to as 2xICP+IMU since it runs ICP twice [11].   
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Finally, it is possible to estimate pitch, roll, and z by assuming the floor is planar, and fitting lines to pitch 
or roll scans hitting the floor [11]. Pictorially this is shown in Figure 2. In this case, we can run ICP only 
once on the yaw scanner in order to recover x,y, and yaw, and estimate pitch, roll and absolute z values by 
fitting lines to the floor portion of the pitch or roll scanner. We refer to this algorithm as 1xICP+planar 
since it only runs ICP once. A major difference between 1xICP+ Planar algorithm and the other two 
algorithms described earlier is that the former estimates absolute z values in each step, whereas the latter 
ones estimate the change in z in an incremental fashion from one time step to the next. This is because 
scan matching between successive pitch or roll scans only provides the change in z and not absolute value 
of z, thus allowing errors in absolute z to accumulate over time. Implications of this are discussed in more 
details in Section IV-D.   
 
 

  

(a)                                                             (b) 

 
Figure 2:  (a) Side view of the backpack system. The x and y axes show the coordinate system of the pitch laser 

scanner. The direction of motion assumes that the backpack is worn by a human operator moving forward. (b) A 

typical scan from the pitch scanner with the green line on top corresponding to a line fit to the floor. Simple 

geometry can be used to relate pitch to the slope of the green line.  

 
 

Of course these algorithms can be mixed and matched to generate new ones. For example it is possible to 
combine 2xICP+IMU and 1xICP+planar in order to arrive at 1xICP+IMU+Planar algorithm. In this case, 
pitch and roll are estimated by IMU, x, y, and yaw are estimated by the yaw scanner, and z is estimated 
via the planarity assumption by fitting a line to the floor portion of the pitch scanner.  
 

B. Using Loop Closure to Reduce Errors 
 

Any of the transformation estimation algorithms described above can be used for incremental localization 

of the backpack from one time instant to the next. By estimating the transformation between poses at 

consecutive times, we can compose these transformations to determine the entire trajectory of the 

backpack. However, since each transformation estimate is somewhat erroneous, the error in the computed 

trajectory can become large over time resulting in loop closure errors. An example of this is shown in 

Figure 5(a) where the 3xICP algorithm is used in a simple long hallway of about 20 meters to recover the 

backpack trajectory. As seen, the open loop path can have as much as 8 meters of error in absolute z 

value. As seen, in Figure 5(a) detecting and enforcing loop closure can eliminate this error.  

 

In Section IV-C we explain how loop closures can be detected. For now, assuming that we have detected 

time instants in which the backpack is approximately spatially close to where it had visited before, i.e. 

assuming known loop closures, it is possible to reduce the overall localization error by enforcing loop 

closures. To do so, we build a graphical model with nodes denoting poses and the edges between the 

nodes corresponding to transformations between poses obtained via the above set of algorithms. We can 

also associate a covariance error matrix to each edge, representing the degree of uncertainty of that 

estimate. In addition, we can estimate the transformation between the beginning node of a loop and the 
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ending node, i.e. the loop closure node, via any of the above algorithms as long as it is known that the two 

nodes are close to each other in space. Having constructed this closed loop graph, it is possible to solve an 

optimization algorithm over the poses associated with each node in order to minimize the overall error. 

Intuitively, the optimization algorithm takes into account the covariance matrix between every two nodes 

in order to optimally adjust the pose values at each node.  

 

We choose to use optimization framework TORO to solve this problem [10]. In particular, we supply 

TORO with a directed graph G = (V; E) with nodes V and edges E where each node in V represents a 6 

degrees of freedom (DoF) pose, and each directed edge in E represents a 6-DOF transformation  that takes 

pose at one node to the pose at another node. Each transformation needs to have a covariance matrix 

specifying its uncertainty [11]. TORO refines pose estimates by using gradient descent to minimize a 

metric error, thus redistributing the error among the nodes in an optimal fashion. By enforcing loop 

closure, we are essentially supplying a transformation in graph G that causes G to have a cycle.  
 

C. Loop Closure Detection 
 

In this section, we describe an algorithm to automatically detect loop closures using camera imagery on 

the backpack. Our algorithm is a modified version of Newman’s FABMAP [12], a probabilistic approach 

of recognizing places via appearance. Our modifications and extensions to the FAB-MAP algorithm are 

two-fold. First, after building a vocabulary from training data and converting all scenes into words, we 

remove words that appear in all, one, or no scenes. This is because we calculate the co-occurrence of 

words for the Chow Liu tree [14] and words that appear in every image, only one image, or none of the 

images provide little information in distinguishing images. Second, location prior is left uniform, since 

performance is largely unaffected [12].  

 

Computing the probability distribution of all images over all locations is considered one trial. We call a 

match between an image and a location an image pair, since a location originates from an image. This 

match occurs because the probability of it being a genuine loop closure is higher than a pre-specified 

threshold; however, in practice it could be either a genuine loop closure or a false positive. In order to 

emphasize genuine loop closures and recognize false positives, we run 100 trials and record all image 

pairs with the number of times they appear in the trials. In general, the image pairs with the highest count 

from FAB-MAP do not necessarily correspond to genuine loop closures. As such, some post-processing 

is needed to detect genuine loop closures among the top ranked image pair candidates generated  by FAB-

MAP. Our approach to post processing is to prune image pairs that have appeared the most by using key 

point matching [13] to determine whether they are correct matches. As shown in [13], correct and 

incorrect matches have different distributions of the ratio  

 

 
 

where d(a;b) computes the Euclidean distance between a and b. Figure 3 shows an example of the  PDF of 

the above ratio for all the features in two image pairs resulting from FAB-MAP corresponding to a correct 

and an incorrect match. As seen, the PDF for genuine and incorrect matches are quite different. Unlike an 

incorrect match, for a genuine match a significant number and percentage of the features result in the ratio 

in Equation 1 being smaller than 0.6. Figure 4(a) shows the number of candidate image pairs across all 9 

datasets as a function of the number of features satisfying the ratio in Equation 1; each dataset 

corresponds to a 5 to 10 minute data acquisition and consists of 100 images; there are a total of 13 

genuine loop closure pairs for the 9 datasets. As seen, using the absolute number of features is not a 

reliable indicator of the correctness of a given image pair. By contrast, Figure 4(b) shows the same 

quantity as a function of the percentage of features satisfying the ratio in Equation 1. As seen, the 
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percentage of features satisfying Equation 1 can be successfully used to distinguish between correct and 

incorrect candidate image pairs resulting from FAB-MAP for all 13 loop closures corresponding to 9 

datasets. 

 

 

 

 
Figure 3: The PDF of the ratio of distance of the nearest neighbor to the distance of the second closest 

neighbor for two image pairs; (a) a correct pair; (b) an incorrect pair resulting from FAB-MAP.  

 

 
Figure 4: PDF of (a) the number and (b) the percentage of features with ratio below 0.6.  

 

 
D. Performance Characterization of Scan-Matching Localization with Loop Closure  

 

We use the 2xICP+IMU and 1xICP+IMU+Planar algorithms described in Section IV-A to characterize 

the performance of our laser/IMU based localization [11]. In doing so, the loop closures are detected via 

the approach in Section IV-C, and TORO optimization is applied to the directed graph with 

transformations resulting from these two algorithms as described in Section IV-B.  Both localization 

methods use scan matching on the yaw scanner to estimate the backpack pose parameters x, y, and yaw 

over time. Also, both methods use the InterSense IMU to estimate the backpack roll and pitch over time. 

For 2xICP+IMU, scan matching on the pitch scanner is used to estimate change in z over time. The 

1xICP+IMU+Planar method works only in environments with planar floors and fits a line to the floor to 

estimate absolute z at each instant of time.  

 

We test these two algorithms on four datasets: Dataset 1 is a T-shaped corridor intersection that includes a 

roughly 20 meter segment of a hallway. Datasets 2 and 3 are of a staircase roughly 4.5 meters in height. 
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Dataset 4 consists of two roughly 15-meter hallway segments connected by a staircase roughly 4.5 meters 

in height. We first compare 1xICP+IMU+Planar and 2xICP+IMU results on dataset 1 as it is the only 

dataset with a strictly planar floor and no staircases. For the other datasets, which include staircases, we 

use 2xICP+IMU localization as it does not require a planarity assumption. Incremental pose errors are 

compared in the local coordinate frame. Global position and orientation errors are computed in a frame 

where x is east, y is north, and z is upward. Note that global errors result from accumulated local errors. 

As such, their magnitude is for the most part decoupled from the magnitude of local errors. In particular, 

local errors can either cancel each other out to result in lower global errors, or they can interact with each 

other in such a way so as to magnify global errors.  

 

Global and incremental pose errors using 1xICP+IMU+Planar and 2xICP+IMU for dataset 1 are shown in 

Figure 5(b). The results are for loop closure detection, followed by TORO optimization. We see that the 

two methods are comparable with 1xICP+IMU+Planar resulting in significantly lower global z error 

compared to 2xICP+IMU. This is to be expected since in 1xICP+IMU+Planar we estimate the absolute 

value of z, rather than the incremental change in z, at every time step. Thus, the error in z does not have a 

chance to accumulate over time. Nevertheless, since 2xICP+IMU does not make use of a planar-floor 

assumption, it extends to multi-floor datasets 2, 3, and 4.  

 

Global and incremental pose errors using 2xICP+IMU across all four datasets are shown in Figure 6. 

Again, the results are for loop closure detection followed by TORO optimization. We see that compared 

to dataset 1, datasets 2, 3, and 4 corresponding to the multi-floor datasets, have higher error in global roll 

and yaw. Other errors remain comparable to the single-floor case of dataset 1. Across all datasets, 

incremental yaw resulting from horizontal scan matching has lower error than incremental pitch and roll 

resulting from the IMU. The error in pitch and roll by the IMU may be mitigated by calibrating the IMU 

and removing its bias and drift. The resulting estimated trajectories for all four datasets closely resemble 

ground truth trajectories, as shown in Figure 7. We used one loop closure for dataset 1 in Figure 7(a) and 

two loop closures for the remaining three datasets, as input to TORO.  

 

For each dataset, the average position error of the estimated path is reported along with the ground truth 

path’s length in Table I. We find that the average position error relative to the path length for each dataset 

is small, i.e. around 1% or lower.  
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Figure 5. (a) Open loop and closed loop reconstructed paths using 3xICP paths for a simple hallway; (b) 

Global and incremental RMS error characteristics using 1×ICP+IMU+Planar and 2×ICP+IMU on T 

shaped corridor of dataset 1. Markers above each bar denote peak errors.  

 

 
Fig. 6. Global and incremental RMS error characteristics using 2xICP+IMU across all four datasets. 
Markers above each bar denote peak errors.  
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Fig. 7. Estimated trajectories using 2

×
ICP+IMU plotted against ground truth for: (a) dataset 1; (b) 

dataset 2; (c) dataset 3; (d) dataset 4. The estimated trajectory using 1xICP+IMU+Planar for dataset 1 
is similar to that of 2xICP+IMU.  

 
IV. GEOMETRY MODELING  
 

The localization results from Section IV can be applied to the scans from the left vertical geometry 

scanner in Figure 1 in order to generate a 3D point cloud as shown in Figure 8(a). There are multiple 

ways to generate a 3D model from this point cloud. One way would be to fit planes to major surfaces of 

the point cloud as shown in Figures 8(b) and 8(c). The advantage of such an approach is simplicity of the 

resulting models; the disadvantage is that the resulting models do not always faithfully reproduce the 

environment under consideration. For example, objects protruding from walls could get leveled to the 

walls in the process of plane fitting. Also, in complex environments such as staircases, generating models 

using plane fitting could be quite challenging.  

 
An alternative way to generate a 3D model from a point cloud is to apply the fast triangulation algorithm 

we developed for outdoor modeling applications[15]. In this approach we take advantage of the order in 

which the vertical scans are acquired, and the order of the points within each scan so as to generate 

triangles that are well proportioned, i.e. are not long and skinny. Figure 9 shows such a triangulated and  
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                                               (c) 

 

 

                   

Fig. 8. (a) 3D point cloud from laser scanners colored by height and (b) a plane-fitted model of a T-

shaped corridor intersection; (c) texture mapped plane fitted model.  
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texture mapped 3D model for two hallways connected by a staircase corresponding to the trajectory in 

Figure 7(d).  Even though triangulated models represent the details of an environment more faithfully 

than planar models, generally speaking, they are more prone to visual artifacts.  

 

 

 
Figure 9. The 3D model of two hallways connected by a stairwell corresponding to the trajectory shown 

in Figure 7(d).  

V. TEXTURE MAPPING 
 

Using the pose information provided by the localization algorithms discussed in Section IV-B, we can 

transform all captured laser scans into a single 3D coordinate frame. Since camera images are acquired at 

nearly the same time as a subset of the laser scans, nearest-neighbor interpolation of the pose parameters 

allows us to estimate the pose of every camera image. Therefore, to generate a 3D model, we (i) 

transform all laser scans from the floor scanner to a single world coordinate frame and use known 

methods to create a triangulated surface model from ordered laser data [15], and (ii) texture map the 

model by projecting laser scans onto temporally close images. However, we have found that the laser 

based localization algorithms alone are not accurate enough for building textured 3D surface models. For 

example, Figure 10 shows a screenshot of a model created by using the 1xICP+IMU+planar localization 

results and the resulting texture misalignment. In this section we describe an image based approach to 

refine the laser/IMU localization results.  

 
Our proposed image based localization refinement is a two step process. First, we estimate the 

transformations that relate pair-wise camera poses. Second, we obtain a directed graph by adding the 

estimated pair-wise camera transformations as edges to the graph obtained from the scan matching 

algorithms. An example of such a directed graph with both sets of transformations is shown in Figure 11. 

Each small node corresponds to a laser scan, and each large node corresponds to a laser scan and an 

image acquired at approximately the same time. Small arcs represent transformations resulting from the 

scan matching algorithms of Section IV-A.  Long arcs represent transformations estimated with the image 

based refinement algorithm to be described shortly. Once a new directed graph with both scan matching 

and image based edges has been constructed, we perform a round of TORO-based global optimization to 

redistribute the error among the nodes in order to obtain a set of refined pose estimates [10]. To 

accomplish this, TORO requires as input the covariance error associated with each transformation shown 

in Figure 11. As shown later, these new pose estimates lead to better image alignment on the final 3D 

model because they incorporate both laser based and image based alignment.  
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We estimate pair-wise image transformation  by minimizing Sampson re-projection error [40]. This 

minimization can only estimate translation up to an unknown scale factor. However, it does provide us 

with a set of inlier SIFT features; therefore we can estimate the translational scale by aligning 

triangulated, inlier SIFT features from the side-looking left camera with the 3D laser points acquired by 

the left vertical geometry scanner. In particular, we perform a multi-resolution search over the unknown 

scale factor. For each scale, we find the distance between each triangulated SIFT feature and its nearest 

neighbor in the set of 3D laser points acquired by the floor scanner. We choose the scale factor that 

minimizes the median distance over the set of inlier SIFT features. The median distance criteria is chosen 

because it is robust to SIFT outliers that may have been incorrectly identified as inliers.  

 

To obtain the final pose estimates used for 3D modeling, we run a final round of global optimization 

using TORO on the graph shown in Figure 11 [10]. The pair-wise camera pose transformations are 

incorporated as edges in the TORO graph. The edges added to the graph span multiple nodes, as shown 

by the long arcs in Figure 11.  

 

TORO requires that each edge in the graph have a corresponding 6-DOF transformation and a covariance 

matrix. It is not straightforward to derive a closed-form covariance matrix for our image based 

transformations since each one is obtained by first minimizing the Sampson re-projection error followed 

by minimizing the 3D distance between triangulated SIFT features and nearby laser points. However, the 

covariances for the laser based scan matching algorithms can be computed using Censi’s method [17]. 

Using our ground truth, we can also perform a one time calibration process whereby for each diagonal 

element of the covariance matrix we compute the relative scale factor between the laser based and the 

image based localization technique. In particular, over a test run of data acquisition, we first estimate laser 

based transformations and their covariance matrices without loop closures and then estimate image based 

transformations without loop closures. For both techniques, we also compute the RMS error for each of 

the 6 pose parameters by comparison with ground truth provided by the Honeywell HG9900 IMU. For 

practical situations in which the ground truth is not available, we use this relative scaling factor together 

with Censi’s covariance estimate of the laser based localization to arrive at the covariance estimate for 

image based localization. In particular, to obtain the covariance matrices for the image based 

transformations, we average the diagonal covariance matrices from all laser based transformations for a 

given path and scale them based on the square of the relative RMS error between the two techniques. 

Intuitively, in the global optimization, this covariance estimation method emphasizes parameters 

estimated accurately by image based techniques, e.g. translation along the direction of motion, while 

deemphasizing parameters estimated more accurately by laser based techniques, e.g. yaw.  

 

We have tested the above image based refinement algorithms on a number of data sets. In all tested cases, 

it does result in a significant improvement in the visual quality of the resulting 3D textured models. 

Screenshot of the textured 3D model for the scene in Figure 10 is shown in Figure 12. As seen, the 

misalignments exhibited in Figure 10 are significantly reduced.  

The texture mapped 3D models for a number of datasets using the localization results of Section IV 

together with the above image based refinement algorithm can be downloaded from [18].  
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Fig. 10. Screenshot of textured 3D model generated from localization data without image based 

refinement. Misalignments between textures from different images are apparent.  

 

 
 

Fig. 11. Example directed graph for the image based refinement algorithm.  
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Fig. 12. Screenshots of textured 3D model generated with 1×ICP+IMU+planar followed by image based 

pose estimation and texture blending. The 3D model exhibits good texture alignment in comparison with 

Figure 10, generated with 1×ICP+IMU+planar.  

 
VI. VISUALIZATION AND RENDERING 
 
There are two basic ways to visualize and interact with the resulting products from our indoor modeling 
system; one way is to explicitly build 3D geometric models which the users can interact with within a 3D 
browser. So far, most of the discussion in this proposal has been centered on this approach. In particular 
Sections V and VI deal with the explicit 3D geometric construction of models and their texture mapping. 
 
Another way to interact with the resulting data products from our system is image based rendering in 
which images are rendered at a fast rate from a database based upon viewer’s position and orientation. 
Image based renderers vary based on the relationship between the number of input images and the amount 
of known geometry [19]–[28]. During the past year, we have developed an image based rendering system 
which utilizes all data products from the backpack acquisition system: high resolution images from 
cameras, estimated camera poses from localization algorithms, and the relevant geometry computed from 
3D point clouds resulting from laser scanners.  
 
For the T-shaped corridor, each of the 3 cameras in Figure 1 provide 903 images during a five minute 
walk, and the localization algorithms of Section IV estimate the 6 dimensional pose of a camera for each 
image. We use the localization results by converting each pose parameter x, y, z, roll, pitch, and yaw into 
a 3-vector pose representation for each camera on the backpack as shown in Figure 13. Specifically, the 
estimated camera pose is represented by 3 vectors in 3D: a vector for the position of the camera, a vector  
for the center of projection of the camera, which represents the orientation, and a normal vector denoted 
by to represent the up direction. In what follows, we describe various steps of our image based rendering 
system [40].  

 
A.  Selecting the Image to Render  

 
 We use a 3-step process to determine which images to render based on the viewer’s pose and the set of 

estimated camera poses. In step 1, if the position vector for a specific camera pose is within a threshold 
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radius of the viewer’s position vector, the associated image is added to set A of images to be potentially 

rendered. The second step involves pruning images in set A that are oriented in the wrong direction to 

obtain set A’. The dot product between the viewer’s orientation vector and the camera’s orientation vector 

provides a metric for how close a given image is to the viewer’s image plane. The resulting set of images 

A’ is close to the viewer in both orientation and position; the “best” image in set A’ is chosen to be the one 

with the closest position vector to the viewer’s. With a tight dot product threshold in step 2, the chosen 

image has a camera position closest to the viewer’s and an image plane in the same direction as the 

viewer’s orientation with minimal deviation. The sets of images A and A’ and the “best” image are shown 

in Figure 14.  

 

 
B.  Image Mosaicing for Increased Field of View  

 
Similar to most image based renderers, our image based renderer uses matching features between images 

to mosaic images together to provide an increased field of view [29]. In doing so, we inherently assume 

that close by images are related to each other by a 3x3 homography. We determine proximity of images 

by taking advantage of camera pose information as derived from backpack localization results described 

in Section IV.  

 

Due to the large unstructured data set input to the the renderer, we have taken various steps to optimize 

for scalability. Features and homographies take an inordinate amount of time to compute; therefore, these 

processes are pre-computed offline. The online or real-time procedure then renders multiple images by 

stitching them together with the pre-computed homographies. The result is that an increase in the number 

of images or the amount of known geometry only increases the amount of offline calculations, not that of 

the online rendering.  

 

The offline procedure finds SIFT features for each image and calculates a 3x3 homography between 

nearby images within the RANSAC framework [16], [30].  

 
C.  Online Real-Time Rendering  

 

The online process loads the homographies from disk into memory to stitch relevant images to the “best” 

image chosen in Section V-A for a given view. The renderer performs a similar procedure to determine 

images considered to be neighbors by taking into account position and orientation relative to the “best” 

image. These neighbors are cached for future searches, limiting the search calculation to a single pass 

across all images. 

 

The camera pose information for each image is available from the backpack localization results as 

described in Section IV. In addition to camera poses, the homography parameters such as the number of 

inliers and the residual error resulting from the homography compilation are taken into account in 

choosing neighboring images for stitching purposes. Inherently, these transformations assume that the 

images are coplanar, but in practice the scene is not always a flat environment. Therefore, homographies 

that transform the image by a rotation of more than 45 degrees of any axis are not applied as they likely 

correspond to non-planar scenes.  

 
1) Culling and Intersection:  

 

If we were to estimate a homography for each pair of images, the run time would become prohibitively 

long, i.e. on the order of O(n
2

) where n is the number of images. However, optimizations can be made by 

exploiting the known geometry of the environment. Specifically, the backpack localization results can be 
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used to generate a 3D point cloud as shown in Figure 8(a), and a resulting planar model as shown in 

Figure 8(b). An intersection test can then be used to detect occlusions due to planes, and to determine 

whether two images can be considered neighbors for the mosaicing step [40].  

 
2) Alpha Blending:  

 

Neighboring images can have inconsistent lighting or distortion that affect the mosaic; as such, the 

boundaries between images can be fairly pronounced, diminishing the visual appeal. We choose to use a 

variant of feathering to alpha blend images together in OpenGL. To do so, we divide each plane into a 

series of one pixel wide planes, and apply a triangular weighting function horizontally to the ith one pixel 

wide plane.  

 
D.   Image Based Rendering Results  

 
We describe the capability of our proposed renderer on a T-shaped hallway with 2709 wall, ceiling, and 

floor images at 1338x987 pixels from 3 cameras. The rendering machine has 8 Intel Xeon 2.66 Ghz CPUs 

with 4GB of RAM running 64-bit Ubuntu 8.04 using an nVidia Quadro FX 4600 graphics card with 

768MB of memory. The multithreaded renderer takes up to two hours to process SIFT features for 2709 

images and up to six hours to find homographies among all such images. The renderer can display single 

camera images at approximately 20 frames per second. An initial cost of stitching images together 

reduces the frame rate to 10 frames per second for two stitched images. As expected, an inverse 

relationship exists between the number of images stitched together and the frame rate. The optimal field 

of view with high frame rate is around 5 images stitched together resulting in 5 frames per second.  

 

The viewer can navigate the image based renderer using the keyboard and mouse to control translation 

and orientation respectively. Rotating the view allows the viewer to look up, down, and sideways, 

corresponding to each of the 3 cameras on the backpack: the top, bottom, and left cameras. In our current 

implementation, the displayed views are limited to the images taken along the path of the backpack 

because view interpolation has not yet been incorporated. With the estimated pose of the camera, each 

image is transformed to the world coordinate frame; the images are approximated to have straight lines 

and right-angle corners. A map of the environment from the plane fitted models directs the user to 

navigate throughout the scene. The goal of the navigation is to allow the user to quickly and efficiently 

view the walls, floor, and ceiling at any position within the scene.  

 

A rendered video sequence for the T-shaped corridor can be found in [18].  
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Fig. 13. Camera pose. The position vector is the camera’s world coordinates. The orientation vector is 

the center of projection of the image. The up vector defines the rotation of the camera.  

 

Fig. 14. Finding the best image to render. The grey vector is the viewer’s pose and the black vectors 

represent camera poses. Red indicates neighboring images, blue similarly oriented images, and green 

closest image.  
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