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ABSTRACT 

Prediction of events is fundamental to both human and artificial agents. The main 

problem with previous prediction techniques is that they cannot predict events that have 

never been experienced before.  This dissertation addresses the problem of predicting 

such novelty by developing algorithms and computational models inspired from recent 

cognitive science theories: conceptual blending theory and event segmentation theory. 

We were able to show that prediction accuracy for event or state prediction can be 

significantly improved using these methods.  

The main contribution of this dissertation is a new class of prediction techniques 

inspired by conceptual blending that improves prediction accuracy overall and has the 

ability to predict even events that have never been experienced before. We also show that 

event segmentation theory, when integrated with these techniques, results in greater 

computational efficiency. We implemented the new prediction techniques, and more 

traditional alternatives such as Markov and Bayesian techniques, and compared their 

prediction accuracy quantitatively for three domains: a role-playing game, intrusion-

system alerts, and event prediction of maritime paths in a discrete-event simulator. Other 

contributions include two new unification algorithms that improve over a naïve one, and 

an exploration of ways to maintain a minimum-size knowledge base without affecting 

prediction accuracy.  



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. TERMINOLOGY ............................................................................................1 
C. MOTIVATIONS ..............................................................................................5 

1. Prediction Is Important .......................................................................5 
2. Prediction Is Hard................................................................................6 

D. PROBLEMS OF PREDICTION ....................................................................7 
E. OBJECTIVES AND METHODOLOGY ......................................................8 
F. DISSERTATION OVERVIEW ......................................................................8 

II. LITERATURE SURVEY ............................................................................................9 
A. INTRODUCTION............................................................................................9 
B. POSSIBLE PREDICTION TECHNIQUES ..................................................9 

1.  Rule-based System ...............................................................................9 
2.  Finite State Machine ..........................................................................10 
3.  Markov Model ....................................................................................10 
4.  Observable Operator Model .............................................................12 
5.  Bayesian Network ..............................................................................12 
6.  Genetic Algorithms ............................................................................13 
7.  Inductive Logic Programming ..........................................................14 
8.  Reinforcement Learning ...................................................................15 
9.  Statistical Relational Learning .........................................................15 
10.  Recognition Primed Decision Making ..............................................17 
11.  Case-based Reasoning .......................................................................18 
12.  Analogical Reasoning.........................................................................18 

C. CONCEPTUAL BLENDING .......................................................................20 
1. Theory of Cognition ...........................................................................20 

a. Mental Spaces .........................................................................21 
b. Organizing Frame ...................................................................22 
c. Integration Network ................................................................22 
d. Constitution principles ............................................................23 
e. Simple Network .......................................................................23 
f. Mirror Scope Network ............................................................23 
g. Single Scope Network .............................................................24 
h. Double Scope Network ............................................................24 
i. Governing Principles ..............................................................24 
j. Applications .............................................................................25 

2.  Relating Conceptual Blending to Relational Time-series 
Prediction ............................................................................................25 
a. Simplex Network .....................................................................27 
b. Mirror Network .......................................................................28 
c.  Single-scope Blending Network..............................................30 
d. Common Percepts: COMMON(s1, s2) ...................................32 



 viii 

e. Similarity Score: SIMSCORE(s1, s2) ....................................32 
f. Double Scope Network ............................................................33 
g. Integrated Networks ................................................................34 

D. SITUATION LEARNING.............................................................................35 
E. DISCUSSION .................................................................................................38 
F. CONCLUSIONS ............................................................................................41 

III. DETAILS OF PREDICTION TECHNIQUES USED IN EXPERIMENTS ........43 
A. INTRODUCTION..........................................................................................43 
B. STATISTICAL LOOK-UP TABLE ............................................................43 

1. Learning for Statistical Lookup Table .............................................44 
2. Prediction for SLT .............................................................................45 
3. Example for SLT ................................................................................45 

C. VARIABLE MATCHING (VM) ..................................................................45 
1. Learning for VM ................................................................................46 
2. Prediction for VM ..............................................................................47 
3. Example for VM .................................................................................48 

D. MULTIPLE SIMPLE BAYESIAN (MSB) ..................................................49 
1. Learning for MSB ..............................................................................49 
2. Prediction for MSB ............................................................................49 
3. Example for MSB ...............................................................................49 
4. Effect of Number of Child Nodes .....................................................52 

E. SIMPLE BAYESIAN MIXTURE (SBM) ....................................................52 
1. Learning for Simple Bayesian Mixture............................................53 
2. Prediction for SBM ............................................................................54 
3. Effect of Number of Distributions ....................................................54 

F. VARIABLE-ORDER MARKOV MODEL .................................................55 
1. Learning for VOMM .........................................................................56 
2. Prediction for Variable-order Markov Model ................................57 
3. Example for VOMM ..........................................................................57 
4. Effect of Maximum Order .................................................................57 

G. SINGLE-SCOPE BLENDING .....................................................................58 
1. Overview .............................................................................................59 

a. Learning for =Single-scope Blending ....................................59 
b Prediction for SSB ..................................................................59 

2. Backtrack with Heuristics .................................................................63 
a. Type Check Heuristics ............................................................64 
b. Termination Condition ...........................................................64 

3.  Semi-Greedy Best-first Search ..........................................................65 
a. Best-first Search ......................................................................65 
b. Greedy ......................................................................................66 
c. Semi-Greedy ............................................................................66 
d. Potential Filtering ...................................................................66 
e. Integrated Mirror and Single-scope Blending .......................67 

4.  Attention-based Binding ....................................................................68 
H. PERFORMANCE MEASUREMENT .........................................................70 



 ix 

I. CONCLUSION ..............................................................................................71 

IV. EXPERIMENT 1: PYMUD—AN AGENT-BASED VIRTUAL 
ENVIRONMENT .......................................................................................................73 
A. INTRODUCTION..........................................................................................73 
B. PYMUD ...........................................................................................................73 
C. UTILITY OF PREDICTION .......................................................................74 
D. METHODOLOGY ........................................................................................75 

1. Test Data .............................................................................................75 
2. One Vote .............................................................................................76 
3. Next Percept .......................................................................................76 
4. Prediction Accuracy...........................................................................76 
5. Hardware ............................................................................................76 
6. Time Window Size .............................................................................77 

E. RESULTS .......................................................................................................77 
F. DISCUSSION .................................................................................................79 
G. CONCLUSION ..............................................................................................83 

V. EXPERIMENT 2: INTRUSION-ALERT PREDICTION .....................................85 
A. INTRODUCTION..........................................................................................85 
B. INTRUSION-ALERT PREDICTION .........................................................85 

1. Instant .................................................................................................86 
2. Rule Base.............................................................................................86 
3. Statistical .............................................................................................87 
4. Temporal .............................................................................................87 
5. Discussion............................................................................................88 

C. UTILITY OF PREDICTION .......................................................................88 
D. METHODOLOGY ........................................................................................89 

1. Test Data .............................................................................................89 
2. Percept of Arity 2 ...............................................................................91 
3. Time Window Size .............................................................................93 
4. One Vote .............................................................................................93 
5. Next Percept .......................................................................................93 
6. Prediction Accuracy...........................................................................93 
7. Hardware ............................................................................................93 

E. RESULTS .......................................................................................................94 
F. DISCUSSION ...............................................................................................100 
G. CONCLUSION ............................................................................................105 

VI. EXPERIMENT 3: SIMKIT EVENT PREDICTION ...........................................107 
A. INTRODUCTION........................................................................................107 
B. DISCRETE EVENT SIMULATION .........................................................107 
C. MARITIME SIMULATION ......................................................................108 
D. UTILITY OF PREDICTION .....................................................................109 
E. METHODOLOGY ......................................................................................111 

1. Test Data ...........................................................................................111 
2. Percept of Arity 2 .............................................................................111 



 x 

3. One Vote ...........................................................................................112 
4. Next Percept .....................................................................................112 
5. Prediction Accuracy.........................................................................112 
6. Hardware ..........................................................................................113 
7. Time Window ize..............................................................................113 

F. RESULTS .....................................................................................................113 
G. DISCUSSION ...............................................................................................115 
H. CONCLUSION ............................................................................................115 

VII. ALGORITHMIC ANALYSIS ................................................................................117 
A. INTRODUCTION........................................................................................117 
B. COMPLETENESS ANALYSIS .................................................................117 

1. Failure Rate Analysis .......................................................................118 
2. Rotational Sampling for Attention Technique ..............................120 

C. SCALABILITY ANALYSIS .......................................................................123 
1. Theoretical Time Complexity .........................................................123 
2. Scalability: Long Relational Time Series .......................................124 
3. Scalability: Function of Situation Size ...........................................127 
4. Scalability: Function of Object Constant ......................................129 

D. CONCLUSION ............................................................................................130 

VIII. EVENT SEGMENTATION ....................................................................................131 
A. INTRODUCTION........................................................................................131 
B. EVENT SEGMENTATION THEORY .....................................................131 
C. MOTIVATION ............................................................................................133 
D. METHOD OF HIERARCHICAL EVENT SEGMENTATION .............134 

1. Percept Sequence Segmentation by a Time Window....................134 
2. Percept Sequence Segmentation by a Term in Percept ................135 
3. Learning for Event Segmentation ..................................................135 
4. Prediction for Event Segmentation ................................................136 
5. Example of Event Segmentation .....................................................136 

E. EXPERIMENT ON PYMUD......................................................................138 
1. Event Feature ...................................................................................138 
2. Experiment Methodology ................................................................138 
3. Results ...............................................................................................139 
4. Discussion..........................................................................................142 

F. EXPERIMENT ON INTRUSION ALERTS .............................................143 
1. Event Feature ...................................................................................143 
2. Experiment Methodology ................................................................143 
3. Results ...............................................................................................143 
4. Discussion..........................................................................................146 

G. CONCLUSION ............................................................................................147 

IX. SITUATION ELIMINATION ................................................................................149 
A. INTRODUCTION........................................................................................149 
B. SITUATION RANKING .............................................................................150 

1. Count .................................................................................................150 



 xi 

2. Time ...................................................................................................150 
3. Count and Time................................................................................151 

C. ELIMINATION TECHNIQUES ................................................................151 
1. Fixing Memory Size .........................................................................151 
2 Fixing a Fraction of the Cumulative Memory Size of No 

Elimination .......................................................................................151 
3. Consecutive Success (Bit) ................................................................151 
4. Fraction Learning ............................................................................152 
5. Gradient of Past Performance ........................................................152 

D. EXPERIMENTAL SETUP .........................................................................153 
E. RESULTS AND DISCUSSION ..................................................................153 

1. Fixing Memory Size .........................................................................153 
2. Fixing a Fraction of the Cumulative Memory Size .......................155 
3. Consecutive Success .........................................................................158 
4. Fraction Learning ............................................................................160 
5.  Learning Memory Size: Based on Gradient of Past 

Performance .....................................................................................163 
7. Experiment on Longer Time Series................................................165 
8. Effect of Situation Elimination on Prediction Accuracy on 

Pymud ...............................................................................................169 
F. CONCLUSION ............................................................................................171 

X. DOUBLE-SCOPE BLENDING ..............................................................................173 
A. INTRODUCTION........................................................................................173 
B. BLENDING OF CURRENT AND PREVIOUS SITUATION ................175 

1. Description ........................................................................................175 
2. Experiment .......................................................................................176 
3. Result .................................................................................................176 

C. BLENDING OF TWO PREVIOUS SITUATIONS .................................177 
1. Description ........................................................................................177 
2. Experiment .......................................................................................179 
3. Result .................................................................................................179 

D. CONCLUSIONS ..........................................................................................183 

XI. SENSITIVITY ANALYSIS.....................................................................................185 
A. INTRODUCTION........................................................................................185 
B. SITUATION TIME WINDOW ..................................................................185 

1. Experiment .......................................................................................185 
2. Results on Pymud and Discussion ..................................................185 
3. Results on Intrusion Alerts and Discussion ...................................187 
4. Discussion..........................................................................................188 

C. TIE BREAKING ..........................................................................................189 
1. Experiment .......................................................................................189 
2. Results and Discussions ...................................................................189 

D. PREDICTION WITH TIME ......................................................................191 
1. Experiment .......................................................................................191 
2. Results and Discussions ...................................................................191 



 xii 

E. CONCLUSIONS ..........................................................................................193 

XII. CONCLUSION ........................................................................................................195 
A. CONCLUSIONS ..........................................................................................195 
B. FUTURE WORK .........................................................................................198 

1. Varying Time Window ....................................................................198 
2. Efficient Situation Indexing ............................................................198 
3. Mental Simulation ............................................................................198 

C. TRANSITION ..............................................................................................198 
1. Online Learning and Prediction of IDS Alerts Cyber Security ...199 
2. A Predictive Approach to Cyber Deception Cyber Security .......199 

LIST OF REFERENCES ....................................................................................................201 

INITIAL DISTRIBUTION LIST .......................................................................................209 

 
  



 xiii 

LIST OF FIGURES 

Figure 1. An Example of Relational Time-series. .............................................................3 
Figure 2. Sequence Diagram. Each Node Represents an Event. Each Edge 

Represents a Transition of Event. [11] ............................................................11 
Figure 3. An Example of Markov Network from [20]. ...................................................16 
Figure 4. Simple Integration Network from [42]. ...........................................................22 
Figure 5. Simplex Blending Network for Structure to Constant Matching.....................28 
Figure 6. Statistical Lookup Table as Mirror Scope Network ........................................29 
Figure 7. Variable Matching as Mirror Scope Network. .................................................30 
Figure 8. Single-scope Blending Network. .....................................................................33 
Figure 9. A Cartoon Example for Double-scope Blending, modified from [42]. ...........34 
Figure 10. Integrated Network. .........................................................................................35 
Figure 11. An example of relational time-series repeated from Figure 1. . ......................36 
Figure 12. A Collection of Situations (Left Column) and Targets (Right Column). ........36 
Figure 13. Possible Problem Formulations for Prediction. ...............................................43 
Figure 14. Constant versus Variables Representation. ......................................................46 
Figure 15. Variables Representation of  Figure 14. . ........................................................46 
Figure 16. Examples of Three Situations. Situation3 is a Repeat of Situation2. ..............50 
Figure 17. Multiple Simple Bayesian networks for Figure 16. . .......................................50 
Figure 18. A Current Situation 1. ......................................................................................51 
Figure 19. A Current Situation 2. ......................................................................................51 
Figure 20. Effect of Number of Children for Multiple Simple Bayesian on Pymud. .......52 
Figure 21. Effect of Number of Distribution on Accuracy for Simple Bayesian 

Mixture. SBM2Means SBM with Two Distributions. .....................................54 
Figure 22. Effect of Number of Distribution on Time for Simple Bayesian Mixture. ......55 
Figure 23. Maximum Order-2 Context Tree for Letter Sequence A-B-R-A-C-A-D-A-

B-R-A. ..............................................................................................................56 
Figure 24. Effect of Maximum Order for Variable-Order Markov Model. ......................58 
Figure 25. Backtracking Partial Matching process. ..........................................................63 
Figure 26. State of the Priority Queue after Processing the First Level of the Tree. ........66 
Figure 27. Illustration of Attention-based search. .............................................................70 
Figure 28. A Relational Time-series from Pymud. ...........................................................74 
Figure 29. Comparison of Prediction Accuracy on Pymud...............................................77 
Figure 30. Comparison of Computation Time on Pymud. SLT. .......................................78 
Figure 31. Comparison of Computation, with Bactrack2 and BFS removed....................78 
Figure 32. Maximum Fringe Size Encountered during the 40x100 Prediction Events. ....80 
Figure 33. Number of Correct Prediction of New Percepts. .............................................81 
Figure 34. Comparisons of No-Match for Prediction Techniques in Conjunction with 

Situation Learning. ...........................................................................................82 
Figure 35. Correlation Graph from [67]. ...........................................................................86 
Figure 36. Probabilistic Reasoning Model from [69]........................................................87 
Figure 37. Sequence Diagram from [11]. Each Node Represents an Event. Each Edge 

Represents a Transition of Event. ....................................................................88 



 xiv 

Figure 38. Alert Sequence from Snort Network Intrusion-detection System. ..................90 
Figure 39. Cumulative Frequency of Distinct Alert in 2 Dataset. X-axis is the 

Cumulative Count of Distinct Alert Records Order by Decreasing 
Frequency of Those Records. Y-axis is the Cumulate Distribution 
Function. ..........................................................................................................91 

Figure 40. Dataset 1: Prediction Accuracy. .......................................................................94 
Figure 41. Dataset 2: Prediction Accuracy. .......................................................................95 
Figure 42. Final Prediction Accuracies for Dataset 1 and 2. .............................................95 
Figure 43. Dataset 1: Computation Time. .........................................................................96 
Figure 44. Dataset 2: Computation Time. .........................................................................96 
Figure 45. Dataset 1 and 2: Prediction Accuracies from 161 batches of 100 alerts. .........97 
Figure 46. Dataset 1 and 2: Computation Time from 161 batches of 100 alerts. ..............97 
Figure 47. Dataset 1 and 2: Prediction Accuracies from 161 batches of 100 alerts. .........98 
Figure 48. Dataset 1 and 2: Normalized Prediction Accuracy over Entropy ....................99 
Figure 49. Dataset 1 and 2: Computation Time from 161 batches of 100 alerts. ..............99 
Figure 50. Prediction Accuracy on Simulated Attack Data ............................................104 
Figure 51. Dataset 1 TCPDump: Prediction Accuracy. ..................................................105 
Figure 52. Event Graph (from [75]). Circles are Events. The Arguments in the Event 

Parentheses are the Attribute of the Event. The Arrow Marks the Relation 
between Event A and Event B. t is the Time of Event B after Event A Has 
Occurred. J Is the Parameter That is Passed from Event A to event B. The 
i in the Parentheses above the Curvy Line Is the Condition for the 
Relation. .........................................................................................................108 

Figure 53. SimEventListener Relationship: Component Listener “Hears” all of 
Component Source’s Events [76]. .................................................................108 

Figure 54. A Simkit-based Singapore Harbor Simulator. The Green Triangles are 
Ship Movements. ...........................................................................................110 

Figure 55. A Relational Time-series of Small-boat Events. ............................................110 
Figure 56. Shipping Event Prediction Accuracies: 1 Batch of 1400 events. ..................113 
Figure 57. Shipping Event Prediction Accuracies: 5 Batch of 1400 events. ..................114 
Figure 58. Shipping Event Computation Time: 5 Batch of 1400 events. .......................114 
Figure 59. Possible unification ........................................................................................120 
Figure 60. Selected unification ........................................................................................120 
Figure 61. Discarded bindings.........................................................................................121 
Figure 62. Attention versus Rotational Attention: Prediction Accuracy.........................122 
Figure 63. Attention versus Rotational Attention: Computation Time. ..........................122 
Figure 64. Pymud 1x1000: Prediction Accuracy. ...........................................................124 
Figure 65. Pymud 1x1000: Computation Time over Time. ............................................125 
Figure 66. Pymud 1x1000: Computation Time without Backtrack over Time. ..............125 
Figure 67. Snort Dataset 1 1x1000: Prediction Accuracy. ..............................................126 
Figure 68. Snort Dataset 1 1x1000: Computation Time over Time. ...............................126 
Figure 69. Snort Dataset 1 1x1000: Computation Time without Backtrack over Time. 127 
Figure 70. Pymud Computation Time over Situation Size. BFS: Greedy Best-first 

Search. ............................................................................................................128 



 xv 

Figure 71. Pymud Computation Time over Situation Size Focusing on Greedy Best-
first Search and Attention. .............................................................................128 

Figure 72. Snort Computation Time over Situation Size. BFS: Greedy Best-first 
Search. ............................................................................................................129 

Figure 73. Snort Computation Time over Constant Size. ...............................................130 
Figure 74. Snort Computation Time over Constant Size, Attention Only. .....................130 
Figure 75. Prediction and Event Segmentation Theory [2]. ............................................132 
Figure 76. Example of Event Segmentation by Action. ..................................................137 
Figure 77. Effect of event segment on Prediction Accuracy on Pymud short time 

series, 40x100. noEST: no event segmentation. EST Place: Segmentation 
by Place. EST Action: Segmentation by Action. ...........................................139 

Figure 78. Effect of Event Segmentation on Computation Time on Pymud Short 
Time Series, 40x100. .....................................................................................140 

Figure 79. Effect of event segment on Prediction Accuracy on Pymud short time 
series, 20x10000. ...........................................................................................140 

Figure 80. Effect of Event Segmentation on Computation Time on Pymud Short 
Time Series, 20x10000. .................................................................................141 

Figure 81. Effect of Event Segment on Prediction Accuracy on Pymud Short Time 
series, 1x50000. .............................................................................................141 

Figure 82. Effect of Event Segmentation on Computation Time on Pymud Short 
Time Series, 20x10000. .................................................................................142 

Figure 83. Effect of Event Segmentation on Prediction Accuracy, Cyber, 16x1000......144 
Figure 84. Effect of Event Segmentation on Computation Time, Cyber, 16x1000. .......144 
Figure 85. Instantaneous Result of the Effect of Event Segmentation on Prediction 

Accuracy, 16x1000, cyber. ............................................................................145 
Figure 86. Instantaneous Result of the Effect of Event Segmentation on Computation 

time, 16x1000, cyber......................................................................................145 
Figure 87. Effect of Event Segmentation on Prediction accuracy, Cyber Dataset 1 and 

2, 1x 16000.....................................................................................................146 
Figure 88. Effect of Event Segmentation on Computation Time, Cyber Dataset 1 and 

2, 1x 16000.....................................................................................................146 
Figure 89. Effect of Increasing Number of Situation on the Run Time. .........................149 
Figure 90. Effect of Fixing Memory Size on Snort Alert Prediction, 8x1000. ...............154 
Figure 91. Effect of Fixing Memory Size on Situation Count, 8x1000. .........................154 
Figure 92. Effect of Fixing Memory Size on Snort Alert Prediction, 8x2000. ...............155 
Figure 93. Effect of Fixing Memory Size on Situation Count, 8x2000. .........................155 
Figure 94. Effect of Fixing a Fraction of Memory Size on Snort Alert Prediction, 

8x1000. F0.1 Means 10% of the Original Memory Count. ...........................156 
Figure 95. Effect of Fixing a fraction of Memory Size on Situation Count, 8x1000. 

F0.1 Means 10% of the Original Memory Count. .........................................156 
Figure 96. Effect of Fixing a factor of memory size on Snort Alert Prediction, 

8x2000. F0.1 means 10% of the original memory count ...............................157 
Figure 97. Effect of Fixing a Factor of Memory Size on Situation Count, 8x1000. 

F0.1 Means 10% of the Original Memory Count. .........................................157 



 xvi 

Figure 98. Effect of Consecutive success on Snort Alert Prediction, 8x1000. BitX 
Means X Consecutive Correct Prediction. BitL Is Variation of 
Consecutive Success Requirement. ...............................................................158 

Figure 99. Effect of Consecutive Success on Situation Count, 8x1000. BitX Means X 
Consecutive Correct Prediction. BitL is Variation of Consecutive Success 
Requirement. ..................................................................................................159 

Figure 100. Effect of Consecutive success on Snort Alert Prediction, 8x2000. BitX 
Means X Consecutive Correct Prediction. BitL is Variation of Consecutive 
Success Requirement. ....................................................................................159 

Figure 101. Effect of Consecutive success on Situation Count, 8x2000. BitX Means X 
Consecutive Correct Prediction. BitL Is Variation of Consecutive Success 
Requirement. ..................................................................................................160 

Figure 102. Effect of Factor Learning on Snort Alert Prediction, 8x1000. R Is the Rate 
of Learning. ....................................................................................................161 

Figure 103. Effect of Factor Learning on Snort Alert Situation Count, 8x1000. R Is the 
Rate of Learning. ...........................................................................................161 

Figure 104. Effect of Factor Learning on Snort Alert Prediction, 8x2000. R Is the Rate 
of Learning. ....................................................................................................162 

Figure 105. Effect of Factor Learning on Snort Alert Situation Count, 8x2000. R is the 
rate of learning ...............................................................................................162 

Figure 106. Effect of Gradient Difference on Snort Alert Prediction, 8x1000. ................163 
Figure 107. Effect of Gradient Difference on Snort Alert Situation Count, 8x1000. .......164 
Figure 108. Effect of Gradient Difference on Snort Alert Prediction, 8x2000. ................164 
Figure 109. Effect of Gradient Difference on Snort Alert Situation Count, 8x2000. .......165 
Figure 110. Comparison of different Situation Elimination Techniques  on Prediction 

over Time. ......................................................................................................166 
Figure 111. Comparison of different Situation Elimination Techniques on Final 

Prediction accuracies. ....................................................................................166 
Figure 112. Comparison of different Situation Elimination Techniques on situation 

Count over Time. ...........................................................................................167 
Figure 113. Comparison of Different Situation Elimination Techniques on Final 

Situation Count. .............................................................................................167 
Figure 114. Effect of Situation Elimination on Prediction Accuracy: 1x15000. ..............168 
Figure 115. Effect of Situation Elimination on Computation Time: 1x15000. .................168 
Figure 116. Effect of Situation Elimination on Prediction Accuracy for Pymud: 

1x8000............................................................................................................169 
Figure 117. Effect of Situation Elimination on Situation Count for Pymud: 1x8000 .......170 
Figure 118. A Cartoon Example for Double-scope Blending [42] ...................................174 
Figure 119. Illustration of Double-scope Blending of Previous and Current Situation 

Situations by Types. .......................................................................................176 
Figure 120. Effect of Double-scope Blending by Type on Prediction Accuracies. ..........177 
Figure 121. Illustration of Double-scope Blending of Two Previous Situation and 

Current Situation. ...........................................................................................178 
Figure 122. Effect of Double-scope Blending (Sup) on Accuracies over Different 

Sequence Length ............................................................................................180 



 xvii 

Figure 123. Effect of Double-scope Blending (Sup) on Accuracies over 100,000 
Sequences on Pymud. Double-scope blending (DSB). Single-scope 
blending (SSB). ..............................................................................................181 

Figure 124. Prediction Accuracies Difference over Time .................................................181 
Figure 125. Rate of New Situation Encounter. .................................................................182 
Figure 126. Comparison of AAccuracies for SSB versus DSB on Snort Alerts. ..............182 
Figure 127. Effect of Time Window on Single-scope Blending Prediction Accuracies 

in Pymud. .......................................................................................................186 
Figure 128. Effect of Time Window on Single-scope Blending Computation Time in 

Pymud. ...........................................................................................................186 
Figure 129. Effect of Time Window on Single-scope Blending Prediction Accuracies 

in Cyber. .........................................................................................................187 
Figure 130. Effect of Time Window on Single-scope Blending Computation Time in 

Cyber. .............................................................................................................188 
Figure 131. Effect of Tie-Breaking on Prediction Accuracy: Pymud 40x100. .................190 
Figure 132. Effect of Tie-Breaking on Prediction Accuracy: Cyber 16x1000. ................190 
Figure 133. Effect of Time Prediction on Accuracy: Pymud 40x100. ..............................192 
Figure 134. Effect of Time Prediction on Accuracy: Cyber 161x100. .............................193 
Figure 135. Effect of Time Prediction on cyber 161x100: From Prediction Time to 

mt+2sd Where mt Is the Mean Time of Predicted Occurrence Time and sd 
Is the Standard Deviation. ..............................................................................193 

Figure 136. The Framework for Relational Time-series Learning and Prediction. ..........195 
 



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xix 

LIST OF TABLES 

Table 1 Correspondence between Conceptual Blending and Relational Time-series 
Prediction. ........................................................................................................26 

Table 2 Statistical Student T-Test Result. P-value for Comparing Original BFS 
with Fringe Size Restricted BFS on Computation Time. ................................80 

Table 3 T-Test Result (p-value) for Comparing Original BFS with Attention 
Model. ..............................................................................................................80 

Table 4 Properties of Snort Alert Dataset. ....................................................................90 
Table 5 Example of Two Snort Alerts in Relational Table Form. ................................92 
Table 6 Example of Two Snort Alerts in Relational Percept Form with Arty 1 and 

2........................................................................................................................92 
Table 7 Statistical Significant Test with SSB-attention on Prediction Accuracies on 

Dataset1&2 161x100. ......................................................................................98 
Table 8 Statistical Significant Test with SSB-attention on Computation Time on 

Dataset1&2 161x100. ......................................................................................98 
Table 9 Paired T-test on Prediction Accuracies on Dataset1&2 161x100 by 

Entropy. Colored values represent significant difference compared with 
SSB-attention. ................................................................................................100 

Table 10 Group T-test on Prediction Accuracies on Dataset1&2 161x100 by 
Entropy. Colored values represent significant difference compared with 
SSB-attention. ................................................................................................100 

Table 11 Dataset 1: Alert Class Detection. ...................................................................102 
Table 12 Dataset 1: Effect of Frequency on Detection Rate.........................................102 
Table 13 Dataset 2: Alert Class Detection. ...................................................................103 
Table 14 Dataset 2: Effect of Frequency on Detection Rate.........................................103 
Table 15 P-value for Significant Tests on Shipping Event Prediction Accuracies. ......115 
Table 16 Failure Analysis Outcome. .............................................................................119 
Table 17 Statistical t-test for Comparing PredictionAaccuracies of Attention and 

Rotational Attention. ......................................................................................122 
Table 18 Classification of Types by knowledge. ..........................................................175 
Table 19 Significant Test Comparing Double-scope Blending by Type to Single-

scope Blending. ..............................................................................................177 
Table 20 Significant Test Comparing Single-scope Blending and Double-scope 

Blending by Blending Two Previous Situations. ...........................................180 
Table 21 Significant Test for Effect of Time Window on Single-scope blending 

Prediction Accuracies in Pymud ....................................................................186 
Table 22 Significant Test for Effect of Time Window on Single-scope Blending 

Prediction Accuracies in Cyber. ....................................................................187 
Table 23 Description of Tie-breaking Modes. ..............................................................189 
 



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xxi 

 
LIST OF ACRONYMS AND ABBREVIATIONS 

RTS  Relational Time Series 

CBT  Conceptual Blending Theory 

EST  Event Segmentation Theory 

SLT  Statistical Lookup Table 

VM  Variable Matching 

MSB  Multiple Simple Bayesian 

SBM  Simple Bayesian Mixture 

VOMM Variable-Order Markov Model 

  



 xxii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 
  



 xxiii 

ACKNOWLEDGMENTS 

This dissertation would not be possible without the professional and academic 

guidance, help and support from my dissertation supervisor and PhD committee 

members. I am most grateful to Dr. Christian Darken for his patience and guidance from 

the identification of the research problem to the actual research work, to the dissertation 

defense, and finally, the writing of this dissertation. Without his profound knowledge in 

the field of artificial intelligence, I would have taken a much longer time to complete the 

research objectives.  

I would like to thank my PhD committee members for their proactive support in 

the course of my research work. Without Dr. Neil Rowe, I would not be able to 

demonstrate the utility of my research in the cyber security domain. I am grateful for 

cyber intrusion alert data provided by Dr. Rowe’s honeypot, and also for his meticulous 

readings and comments on my dissertation. I would like to thank Dr. Arnold Buss for his 

proactive support and guidance for helping me to apply my research work on Simkit, the 

most widely used discrete event simulation in the Naval Postgraduate School. I also 

would like to thank Dr. Ralucca Gera for her friendly guidance on the most important 

mathematical theory that underpins my research work. Her advice on the most advanced 

concept on graph theory has led to the reduction in time complexity in my algorithm 

development.  Additionally, I would like to thank retired Professor John Hiles for 

introducing the conceptual blending theory and providing his continual guidance despite 

his retirement.  

Above all, I would like to thank my wife, Hwee-Choo Serene Tan, for her love 

and support. She not only has supported me, but also assumed the primary role of taking 

care of our three children: Sheryl, Sherry and Timothy.  



 xxiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 1 

I. INTRODUCTION 

A. BACKGROUND 

Prediction of events is fundamental to both human and artificial agents. Many 

prediction techniques exist. The main problem with many prediction techniques is that 

they cannot predict events that have never been experienced before.  Our approach to 

solving the problem is inspired by theories of cognitive science. Before we go into the 

details, we will start by defining some of the terms that we use throughout the 

dissertation, followed by a brief discussion on the motivations of prediction and 

backgrounds of this dissertation. We then describe the dissertation problems and 

objectives, and the methodology for solving the problem.  

B. TERMINOLOGY 

We first define some terminology that will be used in this dissertation. 

1) Timed percept: A timed percept is defined as  

p = r(c1,c2,…,cm, t, type) where  

- r is the predicate. 

- ci for i∈[0..m] are constants that represent actors, location, or 

environment objects,  related by r.  

- t is the time when p is received. 

- type ∈{e, a, +, -} describes the type of timed percept where ‘e’  means 

p is a point timed percept that describes an event, ‘a’ means p is a 

point timed percept that describes an action, ‘+’ means p marks the 

beginning of an interval timed percept, ‘-‘ means p is a cancelling 

point timed percept (cancelling percept in short) that remove a 

corresponding interval timed percept.  

A point timed percept is a timed percept that happens at one point in time and its 

assertion ceases to be guaranteed. A timed percept that describes an occurrence of an 
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event or an action is a point timed percept. For example, a timed percept that describes “a 

ball hits the wall” becomes false immediately after it occurs.   

An interval timed percept occurs at the ‘+’ percept, persist for an interval amount 

of time and is removed by a corresponding ‘-‘ percept. An interval timed percept occurs 

and remains true until something happens that changes its state to false. An interval timed 

percept contains a state that has a piecewise constant trajectory. For example, a percept 

that describes “a ball is in the box” is true until the ball is removed.  

A timed percept indicating the beginning of an interval state has a ‘+’ indicator in 

the predicate such as p = r(c1,c2,…,cm, t, +) where r is the predicate, ci for i∈[0..m] are 

constants. The interval timed percept becomes false when a special type of point timed 

percept arrives, indicated by ‘-‘ in the predicate such as p = r(c1,c2,…,cm, t, -) where r is 

the predicate, ci for i∈[0..m] are constants. When type is empty, the timed percept is a 

point timed percept.  

A timed percept is therefore a set of constants that are related by a predicate and 

occurs at a particular time. A timed percept is the smallest unit of data perceived by an 

artificial agent. Timed percepts may contain updates of states, actions taken, or events 

occurring in the world. Timed percepts may contain real number or categorical constants.  

2) Simplified percept: A simplified percept ps is derived from a timed percept pt 

through the homomorphism function f: (pt = r(c1,c2,…,cm, t, type))  → (ps = r(c1,c2,…,cm, 

type)) 

A simplified percept is a homomorphism of a timed percept such that the time of 

occurrence of the timed percept is discarded. Multiple timed percepts that are only 

different on time will be mapped into the same simplified precept. Each simplified 

percept has a corresponding timed percept. Other approaches to prediction could discard 

space or other arguments if they wanted to make less specific predictions (but hence 

predictions more often true). 

In this dissertation, when a percept mentioned without ‘timed’ or ‘simplified’, it 

refers to a simplified percept.  
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3) Relational time series: A relational time-series is a sequence of timed 

percepts: p1p2…pn. If ti is the time of timed percept pi, the following holds: ti-1 ≤ ti ≤ ti+1. 

An example of relational time-series is given in Figure 1. . 

Pi Percepts Descriptions 
P1 loc(Ed,   road, 1, +) Ed is at location road 
P2 loc(Fox1, road, 2, +) Fox1 is at location road 
P3 go (Fox1, east, 3, e) Fox1 go east 
P4 loc(Fox1, road, 5, -) Fox1 is NOT at location road 
P5 loc(Fox2, road, 10, +) Fox2 is at location road 
P6 go (Fox2, east, 11, e) Fox2 is going east 
P7 loc(Fox2, road, 13, -) Fox2 is NOT at location road 

Figure 1.  An Example of Relational Time-series. 

4) Current time and current percept: Given a relational time-series p1p2…pn 

and a time sequence t1t2…tn such that timed percept pi occurs at time ti, the current timed 

percept is pn and the current time is defined as tn.   

5) Next percept: Given a relational time-series p1p2…pn and a time sequence 

t1t2…tn such that timed percept pi occurs at time ti, the next simplified percept is pn+1 

6) Next percept prediction: A prediction can be defined as an expected 

simplified percept that the agent will receive at a future time. Each prediction should 

have a time restriction and space restriction to be fair. In this dissertation, we use the 

same definition in Sun and Giles [1] defined in the paragraph that follows. 

A next simplified percept prediction problem is p1p2…pn ├ pf where p1p2…pn is a 

sequence of timed percept, ├ is an operator that expresses that simplified percept pf is the 

predicted next simplified percept given the current timed percept history.  

We call the predicted next simplified percept as predicted percept.  

A predicted percept is by default a simplified percept that has no corresponding 

timed percept because the predicted percept is a hypothetical percept.  

A predicted percept may have a predicted time component that indicates 

restrictions on the predicted time of occurrence for the predicted-percept.  
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7) Correct next percept prediction: A predicted simplified percept is said to be 
correct if the prediction occurs at an expected time or space. In this dissertation, we use a 
more restricted metric that disregards the expected time and space prediction. The 

predicted simplified percept 𝑝𝑝 = 𝑟𝑝�cp1, cp2, … , cpm, IPp � is said to be correct if the next 

simplified percept 𝑝𝑛 = 𝑟𝑛(cn1, cn2, … , cnm, IPn) is such that 𝑝𝑝 = 𝑝𝑛, 𝑟𝑝 = 𝑟𝑛, cp1 =

cn1for all i = 1,2, … , m, IPp = IPn where 𝑟𝑛 and 𝑟𝑝 are predicates, cp1 and cn1 are 

constants in the predicate, and IPp and IPn are the types of simplified percept. Time of 

timed percept occurrence is ignored. 

8) Situation: A situation is a set of point and interval percepts such that, the point 
percepts, excluding the cancelling percept, occur in a small fixed time window and the 
interval percepts that has no corresponding cancelling percept. Given a relational time-
series p1p2…pn that occurs at time t1t2…tn, and a time window tw, a situation is formed by 

the set of simplified percepts {H, pr, pr+1,…, pr+m} if tr ≤ tr+1 ≤ … ≤ tr+m , (tr+m - tr ) ≤ tw 
where H is a set of interval simplified percepts from p1p2…pr-1 that has not encountered the 
corresponding ‘-‘ percept, and that pr, pr+1,…, pr+m cannot include contradictory percepts, 
and the most recent percept will remove earlier contradictory percepts. pr, pr+1,…, pr+m 
cannot contain percept of type ‘-‘ and the corresponding interval percept must be removed. 

In real problem, an agent may receive timed percepts that are not of interest to the 
prediction problem. We assume that all timed percepts have been preprocessed by an 
external process so that all timed percepts received by the agent are relevant to the 
prediction task.  

9) Situation-based prediction: A prediction problem is si ├ pc where ├ is an 
operator that predict that pc is the next predicted percept after the current situation si.  

10) Target percept: A target percept is a next percept of a situation.  

11) Situation-target tuple: A situation-target tuple is a (situation, next-simplified 
percept-target) tuple defined as sti = (si, ti) where si is a situation and ti is a set of 
simplified percepts such that the corresponding timed percepts of ti are the next 
simplified percept of the corresponding timed percepts of si. The simplified percepts in ti 
are known as target simplified percepts. We will call the (situation, next-simplified 
percept-target) tuple as situation-target in short.  
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12) Exact matching: Two situations 𝑠1 = {𝑝11,𝑝21, … ,𝑝𝑛1} and 

𝑠2 = {𝑝12,𝑝22, … ,𝑝𝑛2} exactly match if 𝑝11 = 𝑝12,𝑝21 = 𝑝22, … , 𝑝𝑛1 = 𝑝𝑛2, where the p terms 
are simplified percepts  

13) Matching by unification: Two situations 𝑠1 = {𝑝11,𝑝21, … , 𝑝𝑛1} and 𝑠2 =
{𝑝12,𝑝22, … ,𝑝𝑛2} are said to have matched by unification if 

𝑆𝑈𝐵𝑆𝑇(θ,𝑝11) = 𝑝12, 𝑆𝑈𝐵𝑆𝑇(θ,𝑝21) = 𝑝22, … , 𝑆𝑈𝐵𝑆𝑇(θ,𝑝𝑛1) = 𝑝𝑛2 where θ is a set of 

unification 𝑝11:𝑝12, 𝑝21:𝑝22, … ,𝑝𝑛1:𝑝𝑛2 where ‘:’ is a binding operator.  

14) Current situation: The current situation is the situation that contains the 
current simplified percept.  

15) Novel percept: Given a set of previously encountered simplified percepts C = 

{p1,p2,…pn} and a current simplified percept pc, we say that pc is novel if pc ∉ C.  

A simplified percept can be said to be novel if it has no exact match with any 
previous simplified percept, even if the object constants are of the same type. For 
example, suppose we have previously encountered simplified percept p1: color-
white(car1). Sometime in the future, we encountered another simplified percept p2: color-
white(car2). We say that p2 is a novel percept because it is not the same as p1. 

C. MOTIVATIONS 

1. Prediction Is Important 

Decision making plays a major role for both human and artificial agents. Kurby 

and Zacks [2] discovered from their neuroscience studies that human agents make 

decisions based on current and predicted future states. Furthermore, the ability to predict 

future events and to act based on the predicted states can enhance the fidelity of agent 

behavior models. Kunde and Darken [3] showed that prediction capability can enhance 

the realism of an artificial military agent when the agent was able to delay a call for fire 

action at the moment when one adversary tank of a convoy was sighted by predicting that 

there are more enemy tanks in the convoy. Prediction capability enables an agent to 

manipulate its current environment to do better in the future rather than simply react to 

events.  
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In addition to an agent in artificial environments, relational time-series are also 

found in cyber intrusion-detection system [4] such as Snort [5]. In cyber intrusion-

detection system, cyber intrusion activities are captured as intrusion alerts. When alerts 

occur, damages may have already occurred. Hence, it is imperative to prevent certain 

high priority alerts from occurring. These alerts are represented in a relational table form, 

which can be converted into a relational time series. The ability to predict the next alert 

may help the network system administrator to better prepare the network for future 

attack.  

Ship movement can also be expressed as a relational time-series if we represent 

the continuous movement by discrete spaces such as a rectangular grid. We can then 

capture a sequence of ship related events as relational time series. We can therefore 

predict ship movements in order to differentiate between normal and suspicious ship 

behavior. Given a suspicious ship, we can also attempt to predict its future position in for 

interdiction plan.  

Relational time-series can also be found in discrete event simulation engine [6], 

[7] as sequence of events. Many software models are created on discrete event simulation 

engine for system engineering studies. Given prediction capability, the software model 

can use prediction to design anticipatory decision support system or use prediction to 

improve the fidelity of software human agent.  

2. Prediction Is Hard 

Sun and Giles [1] discussed several significant issues in sequence learning. The 

first is the many existing models (recurrent network, reinforcement learning and heuristic 

methods) cannot handle temporal dependency in which the next percept may depend on 

the current percept or a percept that occurred a way before the current percept.   The 

second issue is hierarchical structuring of sequences, in which a sequence consists of 

subsequences. A third issue concerns noisy sequences.  

In addition, the environmental behavior that an agent is tasked to learn can be 
unknown to the designer. Therefore, learning and prediction of relational time-series 
from environments that are characterized as unknown, high entropy, non-stationary and 
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noisy is a hard problem. Since there is no knowledge of the environment, there can be no 
predefined statistical graphical model or structure for knowing what kinds of percept that 
will arrive next. There can be arbitrarily many constants and relations of arbitrary arity, 
which can result in a large state space and high entropy with a low rate of repetitive 
encounters. The environment can be changing frequently and noisy, with different 
percept subsequences occurring for different environment. For example, the percept 
sequence may look different when an agent is engaging in a fight with the same monster 
at different location. While each atom can be treated as a proposition, ignoring the 
relational structural properties can miss out opportunities to predict percepts that have not 
been seen before.   

Therefore, prediction is hard, especially in unknown and noisy environments. In 
the case that the data is relational, the technologies available for this task are mainly 
based on production systems or statistical graphical model inference processes such as 
Bayesian networks. To apply these approaches, it is necessary that domain knowledge or 
a substantial amount of example data be available to a human engineer or 
computationally-expensive learning process [1]. In addition, percept sequence is 
characterized by high variability or a large number of unknown predicates and object 
constants become known only later, or an environment is changing over time. 

The above characteristics of unknown and noisy relational time-series present 
many challenges and opportunities for sense-making. We have not seen any research 
effort that directly addresses the learning and prediction problem of relational time-series 
on unknown, high entropy, non-stationary and noisy environment. Research areas such as 
statistical relational learning or operator observable model are the most relevant. 
However, they are not designed for relational time-series prediction.  

D. PROBLEMS OF PREDICTION 

The first problem is that the current prediction techniques demonstrated on 
relational time-series have limited capability, if not none, to predict novel percepts. The 
Bayesian and Markov prediction techniques require percepts to be encountered first 
before they can predict them in the future. These techniques are suitable for domains 
when simplified percepts repeat frequently and new simplified percepts are few. While 
analogical reasoning can infer new knowledge on unknown domain, the first attempt of 
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analogical reasoning on relational time-series prediction produces poor prediction 
accuracy when the simplified percepts encountered are mostly novel [8].  

The second problem is the accumulation of new situations learned by the situation 
learning. In noisy environments with often new percepts, the rate of new situation 
encounters will be high, which will cause the number of situations to grow. The continual 
growth of situations will affect the overall complexity of learning and prediction when 
the time-series is long. In addition, the situations that are stored may have been obsolete 
but will continue to use memory and computational cycles.   

E. OBJECTIVES AND METHODOLOGY 

This dissertation aims to improve the current learning and prediction methods on 

relational time-series by exploiting cognitive science theories. We explored conceptual 

blending and event segmentation theories.  It also aims to show that learning and 

prediction of relational time-series can be extended to a variety of real-world tasks.   

We applied the prediction algorithms on three rather different applications: (1) 

Pymud, a role-playing gaming environment, (2) alerts reported by a network intrusion-

detection system and (3) Simkit, a discrete event simulation engine.  

F. DISSERTATION OVERVIEW 

The introduction, problems, objectives and methodologies are given in chapter 1. 

The literature survey is given in Chapter 2. Chapter 3 describes the algorithms of the 

computational models used for making predictions.  The experiments on the three 

application domains are given in Chapters 4, 5 and 6, respectively, followed by an 

algorithmic analysis in Chapter 7. In Chapter 8, we introduce another cognitive model 

(event segmentation theory) and show how it can help to improve the prediction 

performance of our conceptual blending predictor. In Chapter 9, we describe several 

ways in which we can eliminate some data to improve search efficiency while maintain 

the similar level of prediction accuracy. In Chapter 10, we describe a computation 

implementation of double-scope blending to see how it can help in extreme novel 

situations. We conduct some sensitivity analysis and describe the results in Chapter 11. 

Chapter 12 is the conclusion.  



 9 

II. LITERATURE SURVEY 

A. INTRODUCTION 

Time-series predictions have been widely used in real world prediction such as 

weather forecast, economics data forecast, utility demand forecast, etc. Sapankevych and 

Sankar [9] have done a comprehensive survey of time-series prediction techniques using 

support vector machines. Most of the prediction techniques are based on machine 

learning that learn a nonlinear model from the data. The data usually contain real values, 

which can be modeled through regression analysis. The relational time-series that we are 

interested in is a time-series of predicated categorical data. Sun and Giles [8] provide a 

nice introduction and review of approaches for sequence learning and prediction for 

categorical data. Their review only addresses sequences of propositions and ignores the 

relational properties afforded by relational time series. Our survey will focus on possible 

prediction techniques that may work on categorical predicated data.  

There are many existing techniques that are capable of making predictions of 

future percepts, depending on the characteristics. Some examples of these techniques 

include production system, Bayesian network, Markov model, etc. We will evaluate some 

of these techniques to qualitatively assess their possible utility on learning and prediction 

of relational time series. Recall that the characteristic of relational time-series are 

unknown, stochastic, noisy and high variability of predicate and object constants.  

B. POSSIBLE PREDICTION TECHNIQUES 

1.  Rule-based System 

Rule-based systems are knowledge-based systems whose behaviors are governed 

by a set of precondition-action rules [10]. When the preconditions of a rule is satisfied or 

matches some states of the world, the action of the rule is triggered. Rule-based systems 

encapsulate domain knowledge in rules and have no or limited learning capabilities after 

they are trained and deployed. Referring to Chapter 1, the preconditions can refer to a set 

of simplified percepts that form a situation. If the current situation (a set of simplified 

percepts) matches the preconditions of a rule, the action of the rule is to return a 
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simplified percept as prediction. If we know the application domain, we can write rules to 

make predictions based on preconditions encountered. Rule-based systems rely heavily 

on domain knowledge, which can only be created for known environments. Even if the 

developers have good anticipation capabilities or foresightedness, encoding a large state 

space or writing rules to address all possibilities are usually prohibitive.  

2.  Finite State Machine 

Finite state machine [10] is a “finite, directed, connected graph, having a set of 

states, a set of input values and a state transition function.” The transition function 

defines the transition of states from one state to another. One state can only transition to 

one other state given a particular input.  Finite state machines encapsulate domain 

knowledge in the finite state transition diagram and have no learning capabilities after 

they are designed and deployed. Referring to Chapter 1, state space corresponds to our 

simplified percept space while transition corresponds to a prediction. We can let the 

previous current simplified percept be the state in the finite state machine, and let the 

current simplified percept be the input. The transition is defined by the previous and 

current simplified percept. However, since finite state machine requires a predefined 

finite state transition diagram, which we assume is unavailable for relational time-series 

prediction.  

3.  Markov Model 

A finite state machine is a special type of Markov model [10] in which the 

transitions in the machine are deterministic. A Markov model is a stochastic model such 

that there are possibly multiple next states in which a state can transit, whose probability 

of transition is conditioned on the current and historical states, depending on the order of 

the Markov mode.  If the next state is defined based on the previous state, it is termed 

first order Markov model. If the next state is based on n previous percepts, it is termed 

nth-order Markov Model. In a variable-order Markov model of order n, the next state is 

defined based on n previous states during learning. During prediction, if nth order is not 

achievable, the next lower order is used, and so on until the first order.  
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We can view a relational time-series as a Markov model in which each state 

corresponds to our simplified percept. Each simplified percept can be seen as a state in 

the percept space, made up of all possible combination of predicates and object constants.  

The transition with the highest conditional probabilities on the maximum achievable 

order is return as the prediction.  

One limitation of the Markov model lies in its strict ordering. A new percept 

chain may simply have the order of two percepts swapped, or have extra trivial but 

relevant percepts in between two previously encountered percepts, but the Markov model 

will treat them as a new chain. This limitation may result in over-fitting. Furthermore, 

Markov model cannot predict a novel percept but can only predict percepts found in the 

Markov model. Nevertheless, a Markov model is suitable for online unsupervised 

learning in unknown and stochastic environment. An implementation of the variable-

order Markov model is described in the next chapter.  

Li et al. [11] proposed a sequential approach that is applied in the correlation of 

intrusion-detection alerts. During the offline training, the algorithm divides the entire list 

of processed alerts into multiple shorter sequences by using a sliding window. The 

sequences are then fused to form a minimal set of sequence that best represent the set of 

sequences. The sequence diagram generated is shown in Figure 2. . This approach is 

similar to n-order Markov chain approach. The variable-order Markov model described in 

the next chapter is a similar to Li et al. [11]’s sequential approach but with variable order 

and support online learning.  

 
Figure 2.  Sequence Diagram. Each Node Represents an Event. Each Edge Represents a 

Transition of Event. [11] 
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4.  Observable Operator Model 

The observable operator model [12] models a stochastic process in order to 

compute the probability distribution over all possible future sequences, given that a 

sequence of observation has been observed. The probability of observing a future 

sequence is  

𝑃�𝑌0 = 𝑎𝑖0 ,𝑌1 = 𝑎𝑖1 , … ,𝑌𝑘 = 𝑎𝑖𝑘� = 𝟏𝑇𝑎𝑖𝑘𝑇𝑎𝑖𝑘−1 …𝑇𝑎𝑖0𝑤0 
Where  

• Y0, Y1, …, Yk are random variables in the sequence 
• 𝑎𝑖0, 𝑎𝑖1, … 𝑎𝑖𝑘  are the observables corresponds to the random variables and i 

refers to different types of observable. 
• 1 is an identity vector that attempts to sum the column vector to form the 

probability value 
• 𝑇𝑎𝑖𝑘  is the operator corresponds to an observable  at position k in the sequence 

where Ta=MTOa where MT is the transpose of the state transition matrix and Oa is 
a diagonal matrix that express the conditional distribution of each observation 
given each state.  

• w0 is the initial distribution of the hidden states.  
 

The learning process requires prior manual estimation of the random variables 

and observables. In our setting, since we have no idea what to expect in the relational 

time series, there is no way that we can identify the random variables and observables. 

Jaeger et al. [12] describes a simple way to learn the random variables and observables 

iteratively. The estimated model in the previous iteration is used to construct an estimator 

with a better statistical efficiency for the next one. In the application of predicting future 

characters in a storybook, only 2 to 5 iterations are typically needed. Nevertheless, it is 

infeasible if we need to run the process each time when a new percept arrives. Spanczer 

[13] has also identified that learning in observable operator model, though Simple, but is 

a partially solved problem. He also highlighted the difficulty of choosing the heuristics 

required to have an efficient algorithm that can converge fast enough to the “real” 

observable operator model.  

5.  Bayesian Network 

A Bayesian network is a directed acyclic graph where the nodes are random 

variables and edges represent conditional dependencies between the random variables 

[14]. Bayesian networks encapsulate domain knowledge in the form of conditional 
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probabilities. The direction of inference is usually predefined because learning the 

direction of inference is too slow for many online learning tasks due to that conditional 

probabilities are usually unidirectional while the direction of inference is not obvious 

from the data. The inference structure learning can be seen as choosing a model from all 

possible inference networks that represents the data, which has been shown to be NP-

Hard [15]. Bayesian networks with predefined inference structure have been used to 

interpret percept sequences, to derive possible adversarial goals and actions by computing 

the posterior probabilities of goals, states, and plans given the percept sequences [16]. 

When no training example is available, the conditional probability tables are based on 

human subjective judgments. With the large state space and changing environment, 

Bayesian networks structural learning is infeasible.  

With reference to relational time-series prediction, we can interpret each 

situation-target tuple as a Bayesian network. From a set of situation-target tuples, we can 

have one naive Bayesian network for each target percept, where the target percept is the 

parent node while the percepts in the situation are the child nodes, effectively forming 

multiple simple Bayesian networks. To generate a prediction, we compute the posterior 

probability of all target percepts given the current situation and return the target percepts 

with the highest condition probability as the prediction. Bayesian mixture is another 

Bayesian network that improves upon naïve Bayesian to allow it to learn certain 

functions such as Exclusive-OR. Bayesian mixture contains probability mixture densities, 

constructed by normalizing a linear combination of two or more simple Bayesian 

networks probability densities having the same parent and child nodes. We will describe 

the Bayesian network techniques in the next chapter.  

6.  Genetic Algorithms 

A genetic algorithm is a kind of evolutionary algorithm that can be described as a 

variant of stochastic beam search in which, successors states are generated by combining 

two parent states [17]. A genetic algorithm begins with a set of k randomly generated 

states. Each state is represented as a string of finite alphabets that represent some 

parameters in the real world. A fitness function, which can be a heuristic function or a 
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simulator, is used to evaluate the value of the states. The child states are generated from 

the parent states through a process of selection, pairs, cross-over and mutation. Genetic 

algorithms have been used to predict adversary’s future action by selecting sequences of 

events/states/actions based on perceived goals and situations [16]. For example, given a 

current situation and assumed goals of the adversary, genetic algorithms can generate a 

sequence of events to maximize some functions or the likelihood to achieve the assumed 

goals.  

With reference to relational time-series prediction problem, the sequence of 

events can serve as percept predictions. The characters of the state could come from the 

percept space. There are many limitations of the genetic algorithms for use in the 

relational time-series prediction problem. Given an unknown domain, the percepts are 

unknown. Even if we could generate a permutation of all possible percept, we would not 

be able to know in advance the length of the string.  In addition, evaluation functions can 

limit the nature of scenarios to be evaluated. Furthermore, these functions are usually 

developed for known domains. The other limitation is the assumed adversarial goals, 

which is also unavailable when the domain is unknown. Hence, genetic algorithms can 

only be used if domain knowledge is available. 

7.  Inductive Logic Programming 

In inductive learning, also known as concept learning, an agent learns a general 

function or a set of rules from specific input-output pairs [17], [18]. The input usually 

contains a set of attributes and values. The rules or the concepts are learned if a 

combination of values in a certain feature set is a member of the learned concept. In 

relational time-series learning and prediction, we only have percepts as the value of the 

features set. Since each percept can contain anything from an unknown domain, we have 

no way to identify a set of features and training examples for concept learning.   

Inductive Logic Programming is a type of inductive learning that induces first 

order logic theories from examples in relational form. For example, if we have the 

following percepts: FATHER(JOHN, CALEB), FATHER(CALEB, TIMOTHY), 

GRANDFATHER(JOHN, SHERYL), we can induce a rule: ∀x∀y∀z, FATHER(x,y), 
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FATHER(y,z)  GRANDFATHER(x, z). The main limitation is on the strict logic 

constraints. A rule will not be learned if there is even just one counterexample. For 

example, the grandfather rule is generally true. However, if there is just one case of 

abnormal relation in the family that contradicts the rule, that rule will be violated, and 

will not be induced, even though it may be true statistically. Such contradictory 

phenomena are common in noisy environments.  

While probabilistic inductive logic programming may seem to better address the 

stochastic domain, the entire inductive logic programming algorithm must be rerun for 

each arriving percepts. This poses a great problem because inductive logic programming 

is exponential in the number of predicates and constants. Hence, inductive logic 

programming is unsuitable for online learning in relational time series. 

8.  Reinforcement Learning 

In reinforcement learning [10], an agent learns a set of policy for action selection. 

The policy contains a set of state-action pairs with a value that describes the historical 

goodness of applying that action in that state. The goodness value is accumulated based 

on a reward or penalty function known as “reinforcement”. Reinforcement learning is not 

the same as relational time-series learning mainly because its main focus is to learn a set 

of policies to maximize the cumulative reward, while relational time-series learning and 

prediction problem needs to predict environmental states even though they are irrelevant 

to the reinforcement calculation. Furthermore, in unknown domain, the reinforcement 

may not arrive or may be unknown.  

9.  Statistical Relational Learning 

Statistical relational learning combines first-order logic with statistical learning 

[19]. The relational learning addresses the relational representation (first order logic) that 

better represents the world, while the statistical learning addresses the uncertainty of the 

data by relaxing the hard constraint in the relational domain. Statistical relational learning 

is usually modeled using a graphical model such as Markov network (MN) or Bayesian 

Network (BN). While Bayesian Network models causality, Markov network models 

association between two random variables, in the form of an undirected graph. The nodes 
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in the Markov network are organized into cliques. A potential function Φ() is defined for 

each clique, which assigns non-negative real values to each state in each clique. The 

equation and an example for calculating a joint distribution is given in Figure 3. .  

 

 

Figure 3.  An Example of Markov Network from [20]. 

The example shows four random variables. In statistical relational learning, each 

random variable is a percept. In reference to our prediction problem, we are trying to 

predict which of the random variables is true given the state of the other random 

variables. Smoking and cancer nodes form one clique while cancer, asthma and cough 

nodes form another clique. Suppose that we have Φ(Cancer=true, Asthma=true, 

Cough=true)=5.0, Φ(Smoking=true, Cancer=true, Asthma=true, Cough=true) = (4.5 * 

5.0) / Z where Z is a normalizing factor that sum over all possible states. Statistical 

relational learning has seen many applications such as relational classification [21], link 

based clustering of web search [22], and link prediction in relational data [23]. 

Khosravi and Bina [24] identified several limitations of statistical relational 

learning. The biggest limitation is the complexity of inference because the size of the 

graph grows exponentially with the number of attributes and objects. Most inference 

methods are based on the standard Bayesian or Markov network inference approaches. 

Markov network’s inference approach requires the computation of the partition function 

Z, which makes the inference process NP-Complete. Most of the current research is 
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focused on making the inference process more efficient. Statistical relational learning 

appears to better suit a domain with low variability that has many instances of repeated 

data, which are usually arranged in a relational database. This is due to the great 

challenge of structural learning in statistical relational learning. In our relational time-

series problem where we expect mostly unknown, large and changing state spaces, 

Statistical relational learning is unsuitable for relational time-series learning and 

prediction.   

10.  Recognition Primed Decision Making 

Recognition Prime Decision Making (Ross et al., 2004) is a human decision 

model that says that human make decision based on their experience. Sokolowski (2007) 

has developed the Recognition Prime Decision Making agent based on the recognition-

primed decision making to model a military decision-maker at the operational level of 

warfare. Sokolowski uses expert-system approach, which comprises of handcrafted frame 

data structure that corresponds to a single experience that holds the cues, goals, and 

actions that describe that experience. In each decision situation, the RPDAgent searches 

its table of frames to look for a match. If a match is found, the matching frame, together 

with its associated cues, goals, and actions will be retrieved. Otherwise, the model will 

ignore the situation. The frame can be seen as the preconditions of a rule-based 

production system. With reference to our work, if the domain is known, we can create 

frame to match against the situations. Nevertheless, our set of percepts that made up a 

situation may not contain cues, goals, and actions. Kunde and Darken [3] show that 

prediction ability enhanced the realism of the behavior of a military commander by 

predicting the near future events before making a decision on the calling of fire on 

incoming enemy tanks. They use a decision tree approach to model the process of mental 

simulation in order to predict a future event. While these models demonstrated higher 

fidelity for modeling a human agent, these models require domain knowledge and cannot 

be used for novel situation prediction.  
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11.  Case-based Reasoning 

Case-based reasoning [25] is a problem-solving method that uses a knowledge 

based system of past known problem-solution cases to provide a solution for new 

problems.  Case-based reasoning attempts to solve new problems by adapting solutions of 

similar past problems [26].  Case-based reasoning has been widely applied and includes 

questioning and answering [27], product classification [28], medical diagnosis [29], etc. 

Case-based reasoning can predict future events by retrieving a similar case previously 

encountered. In our context, we can match the current set of percept against the problems 

in the case repository. Like recognition prime decision-making agent (RPDA), a problem 

description may contain a set of attributes such as goal, action to describe a case. In our 

case, we only have the percepts, which come from an unknown percept space. Unlike the 

recognition prime decision making, case-based reasoning can represent messy concepts 

using examples [30].  

Case-based reasoning usually assumes some kind of canonical labeling for 

similarity matching purpose and k-Nearest Neighbor is a common metric used for 

similarity measure. These approaches require the attributes-values and their weight to be 

predetermined in order to determine the contribution to the similarity measure when one 

attribute is similar or different. In an unknown domain when the attributes are largely 

unknown, traditional approach to case-based reasoning is not suitable for relational time-

series learning and prediction. A statistical lookup table can be said to be a kind of case-

based reasoning when each case to case matching is either exactly the same or not.  

12.  Analogical Reasoning 

Analogy is the mind's ability to perceive associations between dissimilar things, 

and to make analogies based on these associations. Analogical reasoning attempts to find 

associations between the current problem and the known problem, by looking for 

unification among the attributes in the two problems. Analogical reasoning has been 

widely applied in areas where new knowledge is created from existing one. French [31] 

provides a comprehensive on analogical reasoning.  
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Reichman [32], from a spontaneous dialogues experiment, proposed that analogy 

focus on relationships between objects for dialogues. Analogy, through a context space 

model of discourse, specifies a frame of reference for discussion, and uses structure 

mapping approach for reasoning.  Winston’s  work on analogical reasoning [33] is 

probably one of the earliest one. He demonstrated the analogical reasoning ability to infer 

knowledge about a new domain (electrical current) from a known domain (water current) 

and in comparison of story plots. He advocated identifying important predicates such as a 

predicate that has some form of “cause-effect” relationship. Although the problem being 

addressed is not on relational time-series prediction, Winston pointed out the problem of 

exponential time complexity and suggest using constant properties to filter away 

unwanted unification. Marshall’s Metacat [33], an analogy making computer model 

allows comparison of problems in an insightful way and able to recall patterns that occur 

in its own "train of thought".  

Analogical reasoning has seen several good applications. Mirayala and Harandi 

[35] used analogical reasoning to derive software specification by constructing an 

analogy of an informal specification to a formal one found in their knowledgebase. 

Objects are mapped by types without consideration relationship between objects.  

MacKellar and Maryanski [36] used analogical reasoning to retrieve knowledge from a 

database through the use of an example. Breitman et. al. [37] used analogy mappings to 

map entities between handcrafted database schema and a new weak database schema, to 

generate new entity-relationship in order to improve the weak schema of the new 

database. Eremeev and Varshavsky [38] show how analogical reasoning can be used on 

intelligent decision-support systems to look for solution of problems for diagnostic and 

forecasting. McSherry [39] used analogical reasoning to estimate the value of home 

property, by mapping the attributes of home property to those of known value properties.  

Baydin et. al. [40] recently demonstrated one possible use of analogical reasoning to 

retrieve distant but relevant cases to solve mediation problem. While their works 

demonstrate novel solution generation, a human is required for guided matching and case 

retrieval before the solution can be meaningful. Baydin et. al. use the structural mapping 

approach by Falkenhainer et. al. [41]. Falkenhainer’s structural mapping demonstrates 
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interesting analogical reasoning capability that uses guided binding of elements from one 

situation to another situation.  

While analogical reasoning can generate novel knowledge, the case searching and 

matching process has exponential complexity because the unification processes in 

structural mapping is equivalent to a subgraph isomorphism problem. To speed up case 

search, MacKellar and Maryanski [36] used case indexing, which associate cases with 

type metadata. Cases that are of the same type as the problem on hand are identified for 

analogical reasoning.  The searches for the optimal set of unification are usually based on 

backtracking search [41]. To speed up the process, heuristics are usually use for guided 

binding of elements and the backtracking method assume a connected graph. So far, we 

have not seen analogical reasoning applied on the problem of learning and prediction of 

relational time-series prediction. The reason could be due to complexity issues. 

Nevertheless, since analogical reasoning can generate novel knowledge, we look to a 

similar reasoning technique called conceptual blending. 

C. CONCEPTUAL BLENDING 

1. Theory of Cognition 

Conceptual blending is a proposed general theory of cognition developed by 

Fauconnier and Turner [42]. The theory describes the way humans process and 

rationalize information through a set of mental operations. In their book, Fauconnier and 

Turner [42] present various examples that show how the theory of conceptual blending is 

one possible explanation of how humans think. The theory also explains the process by 

which humans assign meaning to incoming information from sensory input, then they 

integrate it, and then finally learn and gain new knowledge. Fauconnier and Turner [42] 

suggest that humans unconsciously and constantly blend when they talk, listen, and think 

in every aspect of human life. The blending process happens at a fast speed and generates 

many blends in parallel. The blended space can, in turn, serves as input space for 

subsequent blends.  

To explain briefly, conceptual blending is a set of human cognition theories that 

explain how humans make sense of the world, through a process of imaginative blending 
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of concepts to arrive at an understanding of a new environment. Conceptual blending 

blends two input spaces to form a blended space. Input spaces may refer to our previously 

encountered situation or the current situation. The blended space is a new situation, 

which can be hypothetical. The generic space in conceptual blending contains the 

common structure found in both input spaces. Extra counterfactual elements are then 

added from the blended space to the input spaces through the back-projection 

mechanism. There are four types of network in conceptual blending, which are 

differentiated based on how structures from the two input spaces are used in the blend. 

Structure is defined by the relations and object constant types in the situation.  

Two of the network types, single-scope and double-scope networks, are similar to 

analogical reasoning. Other than single-scope network, we will also evaluate the other 

three types of network on relational time-series prediction. 

a. Mental Spaces 

Conceptual blending is a set of operations in which existing mental spaces 

are integrated to form new mental spaces. According to Fauconnier and Turner [42], 

mental spaces are small conceptual packets, constructed as we think and talk for local 

understanding and action. Mental spaces contain elements that are structured by frames 

and cognitive models. They are modified as thought and discourse unfold. They operate 

in working memory and are connected to long term schematic knowledge and specific 

memory.  Mental Spaces can be given an abstracted neural interpretation by thinking of 

activated mental spaces as co-activated neuronal assemblies where the links between 

elements correspond to co-activation (neurobiological bindings).  

There are three types of mental spaces: input, generic and blended spaces. 

While input spaces are activated spaces, generic spaces contain the common elements 

and links from the input spaces, and the blended space contains elementscaptured in the 

generic spaces and other more specific structures.  

In one example given by Fauconnier and Turner [42], one input space 

represent an office environment, and one input space represent the computer science 

environment. The generic space show the common aspect of the office and computer 
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science environment such as files and folder. The blended space is a computer desktop 

design that has folders and files, but has a recycle bin on the desktop.   

b. Organizing Frame 

Every mental space has two parts: an organizing frame and a set of 

elements. The organizing frame provides relations to organize the elements. An example 

is that “father-of” is a relation that relate two elements “John” and “Mary”.  

c. Integration Network 

A simple integration network is described in Figure 4. . In the figure, two 

input spaces connected by solid lines representing the cross-mappings among related 

elements in the input spaces through “vital relationship” mapping. The vital relations 

identified are change, cause-effect, time, space, identity, change, distinctness, part-whole, 

representation, role, analogy, disanalogy, property, similarity, category, and 

Intentionality. The dotted lines are the projection of elements from the input spaces to the 

generic and blended spaces. The links between the input spaces are known as “outer-

space” links and are compressed into an “inner-space” links inside the blend. The box in 

the blend is the organizing structure that organizes the elements in the blend.  

 

Figure 4.  Simple Integration Network from [42]. 
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d. Constitution principles 

Fauconnier and Turner [42] provide a set of principles to govern the 
blending process. Blends are generated through a set of operators: composition, 
completion, and elaboration. The composition operator selectively projects elements from 
the input and generic spaces. The completion operator adds to the blended space 
additional elements and relations based on independently recruited frames. The 
elaboration operator models the process of a human being anticipating results or 
consequences by thinking or imagining into the future. After the blending process is 
completed, the projected or simulated counter-factual conclusions that resulted from the 
elaboration process can be back-projected into the input spaces to add meaning and 
understanding to them. Back-projection is a term that describes the adding of a 
hypothetical percept into the current situation. 

e. Simple Network 

There are four types of blending networks, depending on which organizing 
frame is used. An organizing frame is the frame or structure that is used to organize the 
elements in the blended spaces. The first is a simple blending network in which one input 
space contains the organizing frame while the other input space does not have a frame. 
The cross-mappings between input spaces are usually roles to values connections. The 
relevant parts of the frame in one input are projected with its roles, and the elements are 
projected from the other input as values to those roles in the blend. For example, the 
organizing frame may consist of a father-daughter relation while the other input space 
provides two individuals for the values to the roles in the frame. 

f. Mirror Scope Network 

The second one is a mirror network in which all spaces (inputs, generic, 
and blend) share the same organizing frame. The purpose for mirror network is mainly to 
compare the differences between two input spaces. Fauconnier and Turner [42] use the 
monk example in which the uphill going monk and the downhill going monk were 
walking on the same path. The organizing frame is the frame of “walking along a path”. 
The illustrated blended space may not have the same organizing frame because it has two 
monks instead of one. In our case, we will use the definition that all spaces have the same 
organizing frame 
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g. Single Scope Network 

The third one is a single scope network in which there are at least two 

input spaces, each with a different organizing frame. However, only one of the organizing 

frames is used to organize the blend. Fauconnier and Turner [42] use the illustration of a 

company’s chief executive officer (CEO) “fighting” with another company’s CEO. The 

illustration blends the business context with the boxing sport context. The frame that is 

being used is from the boxing input space to illustrate the win-lose characteristic from the 

sport context. 

h. Double Scope Network 

The fourth one is a double scope blend in which both inputs have different 

organizing frames, and the blended space‘s organizing frame is made up of parts of each 

of those frames and has an emergent structure of its own; that is, a new type of organizing 

frame is created through a double-scope blend. Fauconnier and Turner [42] cite the 

illustration of a computer desktop, which is a combination of a computer frame and an 

office desktop frame. The computer desktop is not an office desktop but the frame of an 

office desktop provides the context of a familiar working environment. Meanwhile, the 

computer frame situates the desktop within the computing environment, thus creating the 

emergent frame of a computer desktop. 

i. Governing Principles 

The number of blends that can be generated is potentially huge by virtue 

of the combinatorial permutations of input space elements. However, many of the blends 

generated are not meaningful. Fauconnier and Turner [42] have identified a set of eight 

governing principles to provide a way for evaluating and selecting blends. The governing 

principles include compression, topology, Pattern Completion, Integration, Promoting 

Vital Relation, Web, Unpacking and relevant. These governing principles are collectively 

known as optimality principles.  Some principles can conflict with other principles so not 

all principles need necessarily be satisfied fully but sufficiently and optimally.  
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j. Applications 

The original text by Fauconnier and Turner [42] contains a lot more details 

and the reader is referred to it for a more thorough treatment of the theory, including 

many examples illustrating the theory and principles. Conceptual blending has since been 

applied to understanding formal expressions in linguistics [43], explaining metaphorical 

reasoning [44], understanding counterfactual reasoning [45], analyzing mathematical 

evolution [46], and developing human computer interfaces [47]. Other applications of 

conceptual blending can be found on the Blending and Conceptual Integration web portal 

(http://markturner.org). Computational creativity, in particular, involves a specific from 

of conceptual blending known as double scope blending, and has been applied to machine 

poetry generation [48] and the generation of animation characters [49]. Tan and Kowk 

[50] applied the double scope blending to generate novel and creative scenarios for sense-

making in a maritime security domain.  

Ozkan [51] implements a threat assessment model, using a multi-agent system 

and conceptual blending theory, to mimic how a human expert assesses the intention of 

an incoming air threat. In another thesis, Tan [52] also implements threat assessment 

using conceptual blending for surface warfare based on cues such as platform type, 

position, flag, destination, heading, speed, communication, activity, origin, and ESM to 

establish various forms of violations to determine the track’s intention through a 

weighting strategy in terms of “friendly,” “neutral,” “potentially hostile,” or “unknown.” 

In yet another thesis, Tan [53] uses the conceptual blending theory to develop a threat 

assessment, resource assignment, and plan generation model. While these theses show 

that multi-agent system and conceptual blending theory can be used to introduce 

cognitive intelligence into a computational model, these theses only use simple and 

mirror scope blending, which requires domain knowledge and cannot be used to predict 

novel situation.  

2.  Relating Conceptual Blending to Relational Time-series Prediction 

Conceptual blending, though vividly espoused by Fauconnier and Turner [42], 

poses significant challenges to computational modelling. Key among these is that the 
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mechanisms underlying some of the human cognitive processes described by Fauconnier 

and Turner are still not clear to them. For example, they mentioned that humans are able 

to activate appropriate frames for conceptual blending but did not explain how such 

frame activation is achieved. Henceforth, certain simplification will have to be made in 

order to facilitate the design and implementation of a workable computational model of 

conceptual blending to improve prediction accuracy on relational time series.  

With reference to our problem on relational time-series prediction, the mental 

spaces are our situations, which comprise of a set of percepts. Input spaces can either be 

previously encountered situation or the current situation. The blended space is a new 

situation. The generic space contains common percepts in both input spaces. Back-

projection adds the target percept to the input spaces as prediction. The summary of 

correspondence between conceptual blending and relational time-series prediction is 

given in Table 1.  

Conceptual Blending Relational Time-series Prediction 
Mental space Situation: a set of percepts 
Dots in mental space Object constants or variables 
Input space 1 One previous situation 
Input space 2 Current situation 
Generic space A set of common percepts in input space  and 2 after 

unification 
Blend Previous situation with unification from current situation 
Cross space mapping Unification 
Identity mapping Unification by identity vital link 
Back projection Adding unified target percept to the input space 
Organizing frame The relations and constant types used in the blend 
Simple Network Not applicable because frame cannot be created for unknown 

domain 
Mirror Network Statistical Lookup table 
Single Scope Network To be described in more details 
Double Scope 
Network 

To be described in more details 

Table 1  Correspondence between Conceptual Blending and Relational Time-
series Prediction. 

We will describe how conceptual blending can be implemented computationally 

in the following sub sections.  
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a. Simplex Network 

Simplex network is a type of blending network in which, one input space 

contains the structure while the other input space contains only the constants. These 

structures can be added manually into the knowledge base to represent some known 

situations with their associated target percept. This is useful for making predictions when 

the system starts with zero knowledge or that there is no appropriate situation found in 

our knowledge base that matches the current situation. Such no-match circumstances are 

commonly found in statistical lookup table and variable matching. An example of such 

structure can be that (troll and agent are co-located) ├ (troll hit agent) where “├” is the 

prediction operator, (troll hit agent) is the target percept and (troll and agent are co-

located) is the organizing frame. Note that “troll” and “agent” are object type, not objet 

constant. “co-located” and “hit” are relation.  

An example is described in Figure 5. . In the diagram, we have the relational 

time-series on the left and the integration network on the right. Input space 1 contains the 

structure in which the percepts are just relations and variables indicated by ?x. The green 

arrow input space 1 is the target percept. Input space 2 contains the constants. The 

constants and the variables are matched base on their types. The blend is the input space 1, 

with constants from input 2. The blue solid arrow symbolizes the back-projection of the 

target percept to the input space 2. The simplex network has little use when the application 

domain is unknown because there is no way to hand-create percept sets.   
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Figure 5.  Simplex Blending Network for Structure to Constant Matching. 

b. Mirror Network 

The mirror network [42] is a blending network that has all spaces (input, 

generic and blend) having the same organizing frame. The situation matching approaches 

can be considered as an example of the mirror network when we compare the current 

situation with the previous situation to look for one that matches exactly as in statistically 

lookup table, or matches by unification as in variable matching. The blending network 

here has one input space representing a previous situation, and another input space 

representing the current situation. The input space 1 is added to the blended space. The 

purpose of our blend is not to discuss the differences between mapped objects in both 

input spaces, but to allow the target percepts to be identified and added into the current 

situation input space as prediction. In the constant mode, the target percept from the 

previous situation is back-projected exactly to be the next percept of the current situation.  
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An example is given in Figure 6. . Both input space 1 and 2 have exactly 

the same situation except that input space 1 has a target percept (green arrow). Recall that 

each situation comprises of a set of percepts. Each percept is made of a relation with one 

or more object constants. The first constant in the percept is always the relation constants. 

The relation can refer to an action or state change (indicated by ‘+’), which are 

inconsequence on the blending operation. In this blend, the purpose is to look for another 

situation that is exactly the same as the current situation. When it is found, the target 

percept is simply added to the input space 2 as a possible prediction.  

 
Figure 6.  Statistical Lookup Table as Mirror Scope Network 

In variable matching, both input spaces may not be exactly the same but share the 

same set of relations. In Figure 7. , the current situation contains agent2 while the 

previous situation contains agent1. Both constants are different but are of type agent. In 

this case, the current situation is associated to the previous situation through a unification 

process. Finding the unification is equivalent to a graph isomorphism problem. Troll1 is 
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unified with troll2 while agent is unified with agent2. Hence, the bindings can be used to 

replace the predicted percept structure with constants from the current situation. 

 

 
Figure 7.  Variable Matching as Mirror Scope Network. 

c.  Single-scope Blending Network 

Single-scope blending [42]is a type of conceptual blending which both 

input spaces have different organizing frames, and one of them is used in the blended 

space. In our context, input space 1 is one of the previous situations. Input space 2 is the 

current situation. Both situations are not only different in the object constants, but also in 

the relations and object types. The blended space uses the organizing frame of input 

space 1 and some constants of input space 2 if there is a unification of each of those 

constants to constant in input space 1. The constants from input space 2, if not unified 

with any other constant, will not be substituted. The generic space contains the common 

percepts found in both input spaces with the constant binding. A previous situation is 

chosen such that the generic space is maximized. The substituted target percept with the 

highest count of occurrence is back-projected to input space 2 as the next likely percept. 
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The main difference between single scope and mirror scope lies in the selection of input 

space 1, which is the previous situation. Mirror scope requires exact matching or 

matching by substitution while single scope relax the requirements further by choosing 

the previous situation with the most similar structure as the current situation.  

An example of single scope blending is described in Figure 8. . We have a 

current situation [In(agent2, room2), In(dagger1, room2), In(troll2, room2)], which is 

assigned as input space 2. Given input space 2, we search through all previous situations 

to find the most similar one as the input space 1. Suppose that previous situation 

[In(troll1, room1), In(agent1, room1)] is found to be the most similar one and I assign 

input space 1. This previous situation has a target percept [Hit(troll1, agent1)]. The 

organizing structure of input space 1 is [In(?troll, ?room), In(?agent, ?room)], which 

describes that there is a troll in a room and an agent in the same room. Input spaces 1 and 

2 have many differences. Firstly, the rooms are not different. Secondly, the trolls are 

different. Thirdly, the agents are different. Lastly, the current situation has a dagger in the 

room. The set of unifications found are [Troll1:Troll2, agent1:agent2, room1: room2]. To 

generate a prediction, we take the target percept and substitute the elements with the 

unification. Hit(troll1, agent1) becomes Hit(troll2, agent2) 

Cross space mappings associate constants from both concepts. The 

mappings process or unification can be expressed as finding a graph injection from input 

space 1 to input space 2. Each input space is viewed as a graph. The nodes of the graph 

are the object constants in the percepts, the relations in the percepts form the links, and 

we try to unify as many constants as possible. If all constants are unified, we have a 

bijection between the graphs. Otherwise, it is called injective homomorphism. We 

assume that percepts with arity more than 2 (two object constants in a percept) have been 

converted to an equivalent set of percepts with arity 2. Since two situations may be 

different, we attempt to find the largest subgraph in one concept that can be 

isomorphically matched to a subgraph in another concept. This is equivalent to the 

problem of finding a subgraph isomorphism between two graphs, whose associated 

decision problem is NP-complete. We use a recursive backtracking method to identify the 

largest common subgraph in both previous and current situation. The backtracking 
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method is complete because it searches through all possible unifications to find a set with 

maximum possible mappings. When every constant in one percept in concept 1 can be 

unified with by one constant in another percept in concept 2, we have one common 

percept if both percepts have the same relation. The total number of common percept is 

the similarity score. Once the largest subgraph is identified, the constants in the subgraph 

of one concept can be substituted by the corresponding constants in the other subgraph 

since they are mapped in the subgraph isomorphism process.  

The generic space contains the common percepts in both concepts after the 

substitution is applied. We look for a situation that maximizes the generic space. It is the 

most similar situation. In the case of multiple situations that share the same similarity 

score, the latest one is used.  

d. Common Percepts: COMMON(s1, s2) 

The common percepts of two situations s1, s2 are the percepts that appear 

in both situations and form an injective function between s1, s2. If |s1| = |s2| = 

|COMMON(s1, s2)|, there is a bijective function between s1, s2. 
 

e. Similarity Score: SIMSCORE(s1, s2) 

The similarity score: SIMSCORE(s1, s2) = 2|COMMON(s1,s2)|
|s1|+|s2|  . 
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Figure 8.  Single-scope Blending Network. 

f. Double Scope Network 

In double scope network [42], all input spaces have different frames and 
the organizing frame of the blend comprises of different elements from the structures of 
both input spaces. The central idea is to create a new structure, one that we have not seen 
before such that the structure is useful to reason about the current situation. A cartoon 
example is given in Figure 9. . In the figure, we have a current situation that describes a 
new situation (a Pegasus) that we have not seen before. In order to predict its capability, 
we have to find something similar. However, if we only found a horse and a bird in our 
previous situation, we can create a new structure that combines the horse and the bird 
structures. Note that we can have more than two input spaces. The new structure may 
allow a better understanding of the new situation. However, the resultant meaning of the 
new structure depends on the parts of the old structures added to the new structure. It is 
possible and common that many structure generated are nonsensical. We will describe 
our exploration of the double scope blending in a later chapter.  
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Figure 9.  A Cartoon Example for Double-scope Blending, modified from [42]. 

g. Integrated Networks 

Fauconnier and Turner [42] describe that these four types of integration 

networks run as a single mental process and not in isolation. A simple way to integrate 

these four networks can be described in Figure 10. . When the system starts and we have 

no previous situation, we can fall back on some default frame. In our application, since 

we assume that we do not know the domain, we cannot hand write any general 

knowledge for this purpose. Nevertheless, there are some general knowledgebase that 

might be useful for certain general reasoning purpose such as MIT’s ConceptNet and 

Princeton University’s WordNet. If the exact situation can be found, we will use the 

mirror scope network. Otherwise, we can use single scope or double scope, depending on 

the rate of new situation encounter. In our experiment, we saw that prediction accuracy is 

slightly better for double scope blending when rate of new situation encounter is high.  
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Figure 10.  Integrated Network. 

D. SITUATION LEARNING 

Situation learning [8] is an unsupervised sequence learning technique that takes a 

sequence of situation-target tuples from a relational time-series and forms a more concise 

set of situation-target tuples, stored in a container, by combining situation-target tuples 

that have the same situation into one situation-target tuples. Given a situation-target tuple, 

if the situation does not exactly match with any situation in the container, the situation-

target is added into the container. If the situation exactly matches with one situation in the 

container but the target does not match with any targets of the situation in the container, 

the target percept is added into the situation-target tuple and updates all data count. If the 

situation exactly matches with one situation in the container and the target exactly 

matches with one target of the situation in the container, we just need to update data 

count.  

We will illustrate situation learning using the example timed percepts given in 

Figure 1. . The set of situation-targets learned is given in Figure 12. . 
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Pi Percepts Descriptions 
P1 loc(Ed,   road, 1, +) Ed is at location road 
P2 loc(Fox1, road, 2, +) Fox1 is at location road 
P3 go (Fox1, east, 3, e) Fox1 go east 
P4 loc(Fox1, road, 5, -) Fox1 is NOT at location road 
P5 loc(Fox2, road, 10, +) Fox2 is at location road 
P6 go (Fox2, east, 11, e) Fox2 is going east 
P7 loc(Fox2, road, 13, -) Fox2 is NOT at location road 

Figure 11.  An example of relational time-series repeated from Figure 1. . 

Situation  Target  
{} 1 loc(Ed,   road, +) 1 
{loc(Ed, road, +)} 2 loc(Fox1, road, +) 

loc(Fox2, road, +) 
1 
1 

{loc(Ed, road, +)  
loc(Fox1, road, +)} 

1 go(Fox1, east, e) 1 

{loc(Ed, road, +)  
loc(Fox1, road, +)  
go(Fox1, east, e)} 

1 loc(Fox1, road, -) 1 

{loc(Ed, road, +)  
loc(Fox2, road, +)} 

1 go(Fox2, east, e) 1 

{loc(Ed, road, +)  
loc(Fox2, road, +)  
go(Fox2, east, e)} 

1 loc(Fox2, road, -) 1 

Figure 12.  A Collection of Situations (Left Column) and Targets (Right Column). 

When the learning process starts, there is no percept. The current situation is an 

empty set.  

When the first percept loc(Ed, road, +) arrives, it becomes the target percept of 

the current situation, which is empty. The situation-target tuple ({},loc(Ed, road, +)) is 

added into the container at the first row in the table of  Figure 12. . The current situation 

is updated to be {loc(Ed, road, +)}.  

When the second percept loc(Fox1, road, +) arrives, it becomes the target percept 

of the current situation {loc(Ed, road, +)}. The situation-target tuple ({loc(Ed, road, 

+)},loc(Ed, road, +)) is added into the container at the second row in the table of  Figure 

12. . Assuming we use a time window of 1sec, the current situation is updated to be 

{ loc(Ed, road, +), loc(Fox1, road, +)}. 
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When the third percept go(Fox1, east, e)arrives, it becomes the target percept of 

the current situation { loc(Ed, road, +), loc(Fox1, road, +)}.The situation-target tuple 

({ loc(Ed, road, +), loc(Fox1, road, +)}, go(Fox1, east, e)) is added into the container at 

the third row in the table of  Figure 12. . The current situation is updated to be { loc(Ed, 

road, +), loc(Fox1, road, +), go(Fox1, east, e)}. 

When the fourth percept loc(Fox1, road, -) arrives, it becomes the target percept 

of the current situation { loc(Ed, road, +), loc(Fox1, road, +), go(Fox1, east, e)}. The 

situation-target tuple ({loc(Ed, road, +), loc(Fox1, road, +), go(Fox1, east, e)}, loc(Fox1, 

road, -)) is added into the container at the fourth row in the table of  Figure 12. . The 

current situation is updated to be ({loc(Ed, road, +)} since loc(Fox1, road, -) is the 

‘-‘ percept that remove its corresponding loc(Fox1, road, +) interval percept and go(Fox1 

east e) is not in the 1sec time window from loc(Fox1, road, -).  

When the fifth percept loc (Fox2, road, +) rrives, it becomes the target percept of 

the current situation {loc(Ed, road, +)}. The situation already exists in the container, and 

is found at the second row of the table in Error! Reference source not found.. 

Therefore, loc (Fox2, road, +) is added as a second target of situation {loc(Ed, road, +)} 

at the second row of the table in Error! Reference source not found.. Note that the 

count of situation {loc(Ed, road, +)} is incremented to 2. The current situation is updated 

to {loc(Ed, road, +), loc (Fox2, road, +)} 

When the sixth percept go(Fox2, east, e) arrives, it becomes the target percept of 

the current situation {loc(Ed, road, +), loc (Fox2, road, +)}. The situation-target tuple 

{loc(Ed, road, +), loc (Fox2, road, +)}, go(Fox2, east, e)) is added into the container at 

the fifth row in the table of  Figure 12. . The current situation is updated to be { loc(Ed, 

road, +), loc (Fox2, road, +), go(Fox2, east, e) }  

When the final percept loc(Fox2, road, -) arrives, it becomes the target percept of 

the current situation { loc(Ed, road, +), loc (Fox2, road, +), go(Fox2, east, e) }. The 

situation-target tuple { loc(Ed, road, +), loc (Fox2, road, +), go(Fox2, east, e) }, loc(Fox2, 

road, -)) is added into the container at the sixth row in the table of  Figure 12. . The 

current situation is updated to be { loc(Ed, road, +)}  
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Situation learning has a low complexity and is capable of learning from a 
relational time-series of possibly unknown, high entropy, non-stationary and noisy 
environment.  

Note that this is not a Markovian approach since the sequential property is 
removed from each situation ad that a percept may have been received long time ago and 
still remain true even though other later percepts have become false.  

Situation learning addresses the problem of relational time-series learning and 
prediction by turning the learning and prediction problem into a situation matching and 
simple inference process. Situation learning stores the percepts in predicate form and 
allows prediction techniques to use the predicates for inference. For each situation not 
found in the set of situation-target tuples {(si,ti)}, situation learning creates a new 
situation-target tuple, and allow prediction techniques to immediately use it for 
prediction. Each situation can contain any combination of percepts, regardless of how 
large the state space is. It manages probabilistic data by having multiple target percepts. 
Noisy data is managed by a simple creation of additional situation-target pair for new 
situations. The disadvantage is that situation learning requires the homomorphism from 
timed percepts to simplified percepts to be sufficiently strong that the same situation can 
occur reasonably frequently.  If the homomorphism is too weak, situations will tend to be 
distinct and the number of situation-target tuples will continue to grow and will affect the 
computation time when prediction is required.  

E. DISCUSSION 

Many possible approaches for learning and prediction of relational time-series 
such as rule-based systems and finite state machines assume that detailed domain 
knowledge is known. While these approaches have work well in many applications, they 
will fail on prediction task in unknown environments. Unknown environments require 
agents to be robust and flexible, as well as to be able to learn and to adapt in new 
environments. While a Bayesian network learning agent is capable of online learning, the 
structures of the knowledge representation are usually fixed. Structural or rule learning 
are usually limited and done offline due to the exponential complexity. We need 
structural flexibility or multiple structures to account for the complex nature of the 
relational time series. 
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Methods such as inductive logic programming or Markov models are either logic-

constrained, have strict sequence requirements, or are based on propositional 

representations. While Markov models and variants thereof have found many successful 

applications, their strict sequence requirement prevents them from being used for noisy 

situations. Likewise, strict logic constraints do not allow inductive logic programming to 

learn rules with multiple or noisy outcomes. Reinforcement learning is not designed for 

relational time-series learning and prediction. Furthermore, many methods assume 

propositional data representations even though the relational formalism is a more natural 

way of representing the world of objects. While statistical relational learning may allow 

statistical inference, its highly constrained topological network structures prevent it from 

use in unknown environments. Hence, these methods are hard to generalize to predict 

percepts that have not been seen before.  

Time-series predictions have been widely used in real world prediction such as 

weather forecast, economics data forecast, utility demand forecast, etc.  Sapankevych 

and Sankar [9] have done a comprehensive survey of time-series prediction techniques 

using support vector machines. Most of the prediction techniques are based on machine 

learning that learn a nonlinear model from the data. The data usually contains real values, 

which can be modeled through regression analysis. The relational time-series that we are 

interested in is a time-series of predicated categorical data. 

In analogical reasoning, there is a concept of source and target domains where the 

target and source are from different domain but similar in some significant aspect. The 

inference method takes the source domain and project onto the target domain to deduce 

missing details. For example, given a source that says that air flows from a high pressure 

point to a low pressure one, when projected onto the water domain gives us: water flows 

from a high pressure point to a low pressure one. The inference method of single scope 

and double scope blending is similar to analogical reasoning.  

However, conceptual blending is different than analogical reasoning for some 

subtle differences. The first difference is the identification of the mappings between the 

source and target. In analogy, the mapping is based on significant nodes or relations such 

as cause-effect [54], while conceptual blending defines a set of possible 15 vital links 
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such as “part-whole, is-a, etc. In our application, we restrict to the “identity” vital link 

because we do not assume the availability of any knowledge that we can leverage. The 

use of MIT’s Concept Net or Princeton University’s Word Net can infer other forms of 

relation as demonstrated in [50]. Identity vital link means that two constants are unified 

only if both constants are structurally similar, or both constants are of the same type. The 

identity vital link serves as a constraint in identifying association between constants. This 

constraint may limit the amount of creativity (such as relating a sword to a dagger) but it 

turns out that most constants in our applications require strong type constraint. For 

example, if an IP-address constant is unified with a protocol constant, or that a boat is 

unified with a velocity constant, the constructed prediction will be wrong.  

The second difference between traditional analogy and our problem lies on the 

connectedness of each situation. In other analogy problems, each situation is fully 

connected such that the constructed graph with constants as nodes and relation as links is 

a connected graph. However, in our relational time-series prediction problem, most 

situations are not connected. As a result, the traditional efficient way of solving a sub-

graph isomorphism problem using backtracking will not work. To avoid NP-

completeness complexity and yet still able to allow disconnected situation, we need new 

technique for identifying the association between target and source constants.  

The third difference is lies in the use of multiple sources for the transfer to the 

target in double scope blending. In traditional analogy, there is only one source. In double 

scope blending, there are multiple sources, which can come from multiple previous 

situations and even come from the target, which is the current situation.  

While we can argue that conceptual blending is different than analogy because of 

the subtle differences, we can also see conceptual blending as a more detailed 

specification of the general analogy theory. If conceptual blending is similar to analogical 

reasoning, the primary contribution of this dissertation is the use of analogical reasoning 

on relational time-series prediction.  
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F. CONCLUSIONS 

Prediction in known environments can be solved using knowledgebase system or 

Bayesian inference with a predetermined structure. When the environment is unknown 

but highly repetitive, probabilistic and Markov approaches will work well. When the 

environment is unknown but stationary with limited relational and object variety, 

Bayesian and Markov will take some time to learn. When the environment is unknown, 

stationary and contains huge varieties and constants, Bayesian becomes infeasible when 

most percept count are similar or just one. Markov may work if the noise level is low. 

When the environment is unknown, non-stationary and noisy, both Bayesian and Markov 

techniques will fail.  
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III. DETAILS OF PREDICTION TECHNIQUES USED IN 
EXPERIMENTS 

A. INTRODUCTION 

Given a set of situation-target tuples and a current situation, the prediction can be 

derived by some of the inference techniques discussed in chapter 2. Figure 5 shows the 

basic idea. The black dots in Figure 13.  are simplified percepts in the situation and grey 

dots are target simplified percepts. These techniques provide means to generate zero, one 

or more predictions given the current situation and a set of situation-targets. The details 

of inference networks are given in the sections that follow.   

 

 

Figure 13.  Possible Problem Formulations for Prediction. 

The following subsections describe details of six prediction techniques that we 

implemented: two variants of situation matching, two variants of Bayesian network, a 

variable-order Markov model, and variance of single-scope blending. Each of these 

techniques represents the situation-target differently and uses different techniques to 

make predictions.  

B. STATISTICAL LOOK-UP TABLE 

A lookup table is a list of situation-target tuples. Two situation-target tuples (s1,t1) 

and (s2,t2) where s1=s2 will be merged to form one tuple (s1,t1 ∪ t2 in the lookup table. 

The situation-target tuples are added into a lookup table in the following manner. If the 

situation is new, a new entry is created that contain the situation-target tuple and inserted 

into the last row of the lookup table. If the situation already exists in the lookup table, the 

Situation 

Target 
percept 

… 

 Situation 
matching 

… 

  Markov 
chain 

… 

Bayesian 
 network 
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target is merged with the existing target percepts. Note that the target percepts are 

independent of one another given the situation of the tuple.  

A statistical lookup table represents the set of situation-target as a lookup table, 

and searches the lookup table for a situation that exactly matches the current situation. If 

a match is found, the target percept with the highest number of occurrence is selected to 

be the predicted percept. If a match is not found, no prediction will be returned. 

1. Learning for Statistical Lookup Table 

A situation-target container C is a lookup table that contains a set of situation-

target tuples sti = (si, ti). Let S be a set of situations in C and Let ft(si) be a function that 

return the set of target percepts of si, i.e., a set of percepts ti such that (si, ti) ∈ C. Given 

the current percept tc and the current situation sc, we update container C based on the 

situation-target tuple stc = (sc, tc) as follows: 

𝑛𝑒𝑤 𝐶(𝑠𝑡𝑐) = �
𝐶.𝑎𝑑𝑑(𝑠𝑡𝑐) , 𝑠𝑐∉𝑆

𝑓𝑡(𝑠𝑐).𝑎𝑑𝑑(𝑡𝑐)∧ 𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) , 𝑠𝑐 ∈ 𝑆, 𝑡𝑐∉𝑓𝑡(𝑠𝑐)
𝑓𝑡(𝑠𝑐).𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑐)∧ 𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) , 𝑠𝑐 ∈ 𝑆, 𝑡𝑐 ∈ 𝑓𝑡(𝑠𝑐)

 

Where: 

C. add(stc) adds stc into the container C.  

𝑓t(s𝑐).𝑎𝑑𝑑(𝑡𝑐) adds 𝑡𝑐 as a target percept of sc in 𝑓t(s𝑐)  

𝑓t(s𝑐).𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑐) updates the count of 𝑡𝑐 in 𝑓t(s𝑐)  

𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) update the count of 𝑠𝑐 in C 

Essentially, if the current situation does not exactly match with any situation in 

the container, we add the situation-target into the container. If the current situation 

exactly matches with one situation in the container but the target does not match with any 

targets of the situation in the container, we add the target percept into the situation-target 

tuple and update all data count. If the current situation exactly matches with one situation 

in the container and the target exactly matches with one target of the situation in the 

container, we just need to update data count.  
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2. Prediction for SLT 

Given the current situation sc, generate the prediction as follow: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(s𝑐) =  �
𝑁𝑜𝑛𝑒 , s𝑐∉S

𝑎𝑟𝑔 max
𝑡∈𝑓𝑡(𝑠𝑐)

𝑃𝑟𝑜𝑏(𝑡|s𝑐) , s𝑐 ∈ S  

Essentially, if the current situation is in the container, we return the target percept 

with the highest count given 𝑠𝑐 

3. Example for SLT 

During learning, if the current situation is {loc(Ed road +), loc(Fox2 

road +), go(Fox2 east e)}, it will match the last row in Figure 12.  and the 
counter will increment from 1 to 2. If the target percept is found in the right column of 
the same row, the number of occurrence of the target will be incremented. If the target 
percept is not found, we will add the target percept into the right column of the same row. 

If the current situation is {loc(Ed road +), loc(Fox3 road +), go(Fox3 

east e)}, it will not match with any situation in Figure 12.  and will be added as a new 
row with count 1. The target percept will be added into the right column of the new row.  

During prediction, if the current situation is {loc(Ed road +), loc(Fox2 

road +), go(Fox2 east e)}, it will match the last row in Figure 12.  and the 

prediction will be loc(Fox2 road -). If the current situation is {loc(Ed road 

+), loc(Fox3 road +), go(Fox3 east e)}, it will not match with any 
situation in Figure 12.  and no prediction will be returned. The probability of the 

prediction is computed as  𝑃𝑟𝑜𝑏(𝑡|s𝑐) =  𝑎
𝑏
 where a is the number of occurrence of 

loc(Fox2 road -) as the target percept of {loc(Ed road +), loc(Fox2 

road +), go(Fox2 east e)}, which is 1, and b is the number of occurrence of 
the matched situation, which is 1.  

C. VARIABLE MATCHING (VM) 

The Variable Matching technique replaces all constants in the predicate of a 
percept with variables. Instants that occur multiple time will be replaced by the same 
variable. The predicates are not replaced by variables. The matching of situations 
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becomes the problem of variable matching by unification. A unification is a set of 

variable bindings, e.g. θ(α, β)={?a:?b, …} where variable ?a from situation α is bound to 

variable ?b in situation β. SUBST(θ, β) denotes the result of applying substitution θ to 

situation β. Two situations α and β are said to match if α = SUBST(θ, β). There is no 
prediction when there is no match between the current situation and any situation in the 
situation table. Finding matches is equivalent to a graph isomorphism problem. 

An example of the constant to variable representation is shown in Figure 14. . The 
variable representation of Figure 14.  is given in Figure 15. .  
 
 
 

 

Figure 14.  Constant versus Variables Representation. 

{} 1 loc(?a ?b +) 1 
{loc(?a ?b +)} 2 loc(?c ?b +) 

loc(?d ?b +) 
1 
1 

{loc(?a ?b +)  
loc(?c ?b +)} 

2 go(?c ?d e) 2 

{loc(?a ?b +)  
loc(?c ?b +)  
goE(?c ?d e)} 

2 loc(?c ?b -) 2 

Figure 15.  Variables Representation of  Figure 14. . 

1. Learning for VM 

A variablized situation-target is a situation-target with variables instead of 
constants. A variablized situation-target container C contains a lookup table of 
variablized situation-targets where each variablized situation-target sti = (si, pi). Let S be 
a set of variablized situations that appears in C and let ft(si) be a function that returns the 
set of variablized target percepts of si, i.e., a set of variablized percepts pi such that (si, ti) 

∈ C. Given the current variablized percept tc and the current variablized situation sc just 
prior to pc, we update C based on the variablized situation-target tuple stc = (sc, tc) as 
follows: 

Constant Variable 

loc(Ed road +) Loc(?x ?y +) 

loc(Ed grass +) loc(?x ?z +) 
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𝑛𝑒𝑤 𝐶(𝑠𝑡𝑐) = �
𝐶.𝑎𝑑𝑑(𝑠𝑡𝑐) , 𝑠𝑐∉𝑆

𝑓𝑡(𝑠𝑐).𝑎𝑑𝑑(𝑡𝑐)∧ 𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) , 𝑠𝑐 ∈ 𝑆, 𝑡𝑐∉𝑓𝑡(𝑠𝑐)
𝑓𝑡(𝑠𝑐).𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑐)∧ 𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) , 𝑠𝑐 ∈ 𝑆, 𝑡𝑐 ∈ 𝑓𝑡(𝑠𝑐)

 

Where: 

C. add(stc) adds stc into the container C.  

𝑓t(s𝑐).𝑎𝑑𝑑(𝑡𝑐) adds 𝑡𝑐 as a target percept of sc in 𝑓t(s𝑐)  

𝑓t(s𝑐).𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑐) updates the count of 𝑡𝑐 in 𝑓t(s𝑐)  

𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) update the count of 𝑠𝑐 in C 

Essentially, if the variablized current situation does not exactly match with any 

variablized situation in the container, we add the variablized situation-target into the 

container. If the variablized current situation exactly matches with one variablized 

situation in the container but the variablized target does not match with any variablized 

targets of the situation in the container, we add the variablized target percept into the 

situation-target tuple and update all data count. If the variablized current situation exactly 

matches with one variablized situation in the container and the variablized target exactly 

matches with one variablized target of the situation in the container, we just need to 

update data count.  

2. Prediction for VM 

A variablized situation-target container C contains a lookup table of variablized 

situation-targets where each variablized situation-target sti = (si, ti). Let θ( sa, sb) be a set 

of unifications that bind elements in situation sa and sb and SUBST(θ,sb) denotes the 

result of applying substitution θ to situation sb. Let S be a set of variablized situations that 

appears in C and let ft(si) be a function that return the set of variablized target percepts of 

si, i.e., a set of variablized percepts ti such that (si, ti) ∈ C. Given the current situation sc, 

generate the prediction as follow: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(s𝑐) = 
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 �SUBST �θ, arg max
t∈ft(si)

Prob(t|si)� , ∃θ∃si ∈ S, SUBST(θ, si) = sc
none , otherwise 

 

Essentially, if we can find a variablized situation that matches the current 

situation by unification, we return the substituted variablized target percept that occurs 

the highest number of time as the prediction.  

3. Example for VM 

During learning, if the current situation is {loc(Ed road +), loc(Fox3 

road +], go(Fox3 east e)}, the variable representation {loc(?a ?b +), 

loc(?c ?b +), goE(?c ?d e)} will match the last row in Figure 15.  and the 

counter will in increment from 2 to 3. The variable representation of the target percept 

will be added into the right column of the same row appropriately. If the current situation 

is {loc(Ed road +), loc(Fox3 road +), loc(Fox3 east +)}, it will 

not match with any situation in Figure 15.  and will be added as a new row with count 1.  

During prediction, if the current situation is {loc(Ed road +), loc(Fox3 

road +], go(Fox3 east e)}, the variable representation {loc(?a ?b +), 

loc(?c ?b +), goE(?c ?d e)} will match the last row in Figure 15.  with 

binding θ={Ed:?a, road:?b, Fox3:?c, east:?d} and the substituted prediction is 

loc(Fox3 road -). If the current situation is {loc(Ed road +), loc(Fox3 

road +), loc(Fox3 east +)}, it will not match with any situation in Figure 15.  

and no prediction will be returned  

The variablized matching should find many more matches than the statistical 

lookup table when the number of new situation is high where the current situation is often 

not exactly match with any situation in the lookup table. While the variablized matching 

addresses the possible problem of too little data for variablized matching, it may find 

more misleading matches if the constants that are unified are not really compatible.  
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D. MULTIPLE SIMPLE BAYESIAN (MSB) 

When the relational time-series is decomposed into a set of situation-target tuples, 

we can have one simple Bayesian network for each target percepts as the parent node, 

and the situation being the child nodes, effectively forming multiple simple Bayesian 

networks. 

1. Learning for MSB  

Let P be a set of percepts previously encountered. Each percept pi∈P has a set of 

children, formed by a set of situations si that belongs to the situation-target tuples in the 

lookup tables such that the target percept is pi. Given a current situation-target tuple (sc, 

tc), the statistical properties of sc and tc are updated as follows: 

Increment_count (tc) 

∀p in sc, Increment_count (p | tc) 

Essentially, we count the number of data points for the target percept and 

data points for each child percept in the current situation given the target percept 

2. Prediction for MSB 

Let C be a set of percepts previously encountered. Each percept pi has a set of 

children, formed by a set of situations si that immediately precede pi. Given the current 

situation sc, generate the prediction as follow: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(s𝑐) =  �
𝑁𝑜𝑛𝑒 , ∀p ∈ C, Prob(p|s𝑐) = 0

𝑎𝑟𝑔max
𝑝∈𝐶

𝑃𝑟𝑜𝑏(𝑝|s𝑐) , otherwise  

Essentially, we compute the probability of all parent percepts given the current 

situation and return the one with the highest condition probability as the prediction. 

3. Example for MSB 

During learning, we create a naïve Bayesian network for each distinct target 

percept. Note that different situation-target tuples that have the same target will be 

combined into the same simple Bayesian network, since they have the same target, which 
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is the parent of the Bayesian network. The distinct target percept is the parent while the 

children are the percepts that have occurred at least once in the situations that 

immediately precede the parent. Supposed that we have 3 situations given in Figure 16.  

where percepts above ‘=>’ belong to a situation and percepts below are the targets. There 

are two distinct target percepts, so we create 2 networks as shown in Figure 17. .  

 

Situation1 Situation2 Situation3 
dagger(dagger27 +) dagger(dagger27 +) dagger(dagger27 +) 
 spock(spock17 +) spock(spock17 +) 
=> => => 
spock(spock17 +) Loc(dagger27 spock17  +) Loc(dagger27 spock17  +) 

Figure 16.  Examples of Three Situations. Situation3 is a Repeat of Situation2. 

 

 
Figure 17.  Multiple Simple Bayesian networks for Figure 16. . 

During prediction, we compute the probability of all parent percepts given the 

current situation. The parent percept with the largest conditional probability will be 

retuned as the prediction. Suppose that the current situation in Figure 18. . 

Let A refers to dagger(dagger27 +) 

spock(spock17 +) dagger(dagger27 +) 

spock(spock17 +) P P(LP) 
1 1/3 2/5 
0 2/3 3/5 
 

Pa dagger(dagger27 +) P P(LP) 
0 0 0/2 1/4 
0 1 2/2 3/4 
1 0 0/1 1/3 
1 1 1/1 2/3 
 

spock(spock17 +)  

dagger(dagger27 +) 

Loc(dagger27 spock17  +) P P(LP) 
1 2/3 3/5 
0 1/3 2/5 
 

Pa dagger(dagger27 +) P P(LP) 

0 0 0/1 1/3 
0 1 1/1 2/3 
1 0 0/2 1/4 
1 1 2/2 3/4 

 
Loc(dagger27 spock17  +) 

Pa spock(spock17 +) P P(LP) 

0 0 1/1 2/3 
0 1 0/1 1/3 
1 0 0/2 1/4 
1 1 2/2 3/4 
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Let B refers to spock(spock17 +) 

Let C refers to Loc(dagger27 spock17  +) 

Let P1 refers to parent spock(spock17 +) 

Let P2 refers to parent Loc(dagger27 spock17  +) 

We compute the probability of the parent as follow: 

𝑃(𝑃1 = 1|𝐴 = 1) =
𝑃(𝐴 = 1|𝑃1 = 1) ∗ 𝑃(𝑃1 = 1)

𝑃(𝐴 = 1|𝑃1 = 1) ∗ 𝑃(𝑃1 = 1) + 𝑃(𝐴 = 1|𝑃1 = 0) ∗ 𝑃(𝑃1 = 0)

=
1
1 ∗

1
3

�1
1 ∗

1
3� + �2

2 ∗
2
3�

=
1
3

= 0.333 

𝑃(𝑃2 = 1|𝐴 = 1) =
𝑃(𝐴 = 1|𝑃2 = 1) ∗ 𝑃(𝑃2 = 1)

𝑃(𝐴 = 1|𝑃2 = 1) ∗ 𝑃(𝑃2 = 1) + 𝑃(𝐴 = 1|𝑃2 = 0) ∗ 𝑃(𝑃2 = 0)

=
2
2 ∗

2
3

�2
2 ∗

2
3� + �1

1 ∗
1
3�

=
2
3

= 0.667 

 
Current Situation 1 
dagger(dagger27 +) 

Figure 18.  A Current Situation 1. 

Current Situation 2 
dagger(dagger27 +) 
spock(spock17 +) 

Figure 19.  A Current Situation 2. 

Suppose that the current situation is as shown in Figure 19. . We compute the 

probability of parent as follow: 

𝑃(𝑃1 = 1|𝐴 = 1,𝐵 = 1) =
𝑃(𝐴 = 1|𝑃1 = 1) ∗ 𝑃(𝐵 = 1|𝑃1 = 1) ∗ 𝑃(𝑃1 = 1)

∑ 𝑃(𝐴 = 1|𝑃1 = 𝑥) ∗ 𝑃(𝑃1 = 𝑥)𝑥∈(0,1)

=
2
3 ∗

1
2 ∗

1
3

�2
3 ∗

1
2 ∗

1
3� + �3

4 ∗
1
2 ∗

2
3�

=
4

13
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𝑃(𝑃2 = 1|𝐴 = 1,𝐵 = 1) =
𝑃(𝐴 = 1|𝑃2 = 1) ∗ 𝑃(𝐵 = 1|𝑃2 = 1) ∗ 𝑃(𝑃2 = 1)

∑ 𝑃(𝐴 = 1|𝑃2 = 𝑥) ∗ 𝑃(𝐵 = 1|𝑃2 = 𝑥) ∗ 𝑃(𝑃2 = 𝑥)𝑥∈(0,1)

=
2
2 ∗

2
2 ∗

2
3

�2
2 ∗

2
2 ∗

2
3� + �1

1 ∗
0
1 ∗

1
3�

= 1 

4. Effect of Number of Child Nodes 

We used the benchmark environment in [8] and vary the time window for 40 

sequences of 100 percepts.  The variation of the prediction accuracies as a function of 

time window are as shown in Figure 20. . It appears that the larger the time window, the 

lower the prediction accuracy. A larger time window is expected to perform poorer 

because child percepts that are further away in time are more likely to be independent of 

the current percept. 

 

Figure 20.  Effect of Number of Children for Multiple Simple Bayesian on Pymud. 

E. SIMPLE BAYESIAN MIXTURE (SBM) 

 Simple Bayesian mixture is an improvement over multiple simple Bayesian to 

allow it to learn certain functions such as Exclusive-OR. A simple Bayesian mixture 

0.160 0.160 0.152 

0.057 

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180

0.01sec 0.1sec 1.0sec 10sec

Fr
ac

tio
n 

of
 C

or
re

ct
 P

re
di

ct
io

n 

Time Window 

Effect of Time Window on MSB Prediction Accuracy 



 53 

contains probability mixture densities, constructed by normalizing a linear combination 

of two or more Bayesian networks probability densities having the same parent and child 

percepts. In multiple simple Bayesian, we have one distribution for one parent-child 

network. In Simple Bayesian mixture, the same distribution for one parent-child network 

is divided into several weighted distributions. Simple Bayesian mixture is implemented 

using the Estimate and Maximize (EM) algorithm.  

1. Learning for Simple Bayesian Mixture 

In multiple simple Bayesian, we compute ∀𝑝 ∈ 𝐶,𝑃𝑟𝑜𝑏(𝑝|s𝑐) where C is a set of 

all target percepts. In Simple Bayesian Mixture, we have multiple distributions Ci for 

each simple Bayesian network. ∀𝑝 ∈ 𝐶𝑖 compute ∑ ,𝑎𝑖𝑃𝑟𝑜𝑏(𝑝|s𝑐)𝑘
𝑖=1 . 𝑎𝑖 is the weight of 

a distribution, so ∑ 𝑎𝑖 = 1𝑘
𝑖=1 . Each data point (one situation-target sti) is fractionally 

assigned to the distributions in C. The fractional assignment for a data point x in each 

distribution j is computed as: 

𝑓𝑗(𝑥) =
𝑎𝑗𝑃𝑟𝑜𝑏𝑗(𝑥)

∑ 𝑎𝑖𝑃𝑟𝑜𝑏𝑖(𝑥)𝐶
𝑖

 

The weight aj for distribution Cj and total number of data point N is updated: 

𝑎𝑗 = �
𝑓𝑗(𝑥)
𝑁

𝑥

 

The distributions in C are allocated using an Estimate and Maximize (EM) 

algorithm. Given a new data point x and the number of distributions k (initialized to 

zero): 

Estimate:  

If k is zero, skip this step.  

Otherwise compute the fractional assignment of x as above 

Maximize:  

If the spawn rule dictates, create a new distribution based on x with a 

fractional assignment of one.  
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Otherwise, update all components using x and fractional assignments. 

Spawn Rule: ∑ 𝑎𝑖𝑃𝑟𝑜𝑏𝑖(𝑥)𝐶
𝑖 < 1

2𝑘+1
 

2. Prediction for SBM 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(s𝑐) =  

⎩
⎪
⎨

⎪
⎧ 𝑁𝑜𝑛𝑒 , ∀p ∈ C,�𝑎𝑖𝑃𝑟𝑜𝑏𝑖(𝑥)

𝐶

𝑖

= 0

𝑎𝑟𝑔max
𝑝∈𝐶

�𝑎𝑖𝑃𝑟𝑜𝑏𝑖(𝑥)
𝐶

𝑖

, otherwise 

 

3. Effect of Number of Distributions 

We used the benchmark environment in [8] and vary the number of distributions 
for 40 sequences of 100 percepts. The variations of the prediction accuracy and 
computation time over number of distribution are as shown in Figure 21.  and Figure 22. . 
We observe that SBM2 produces the optimal results since there is insignificant difference 
between SBM2, SBM3, SBM4 and SBM5, but SBM2 has the shortest computation time 
as compared to SBM3, SBM4 and SBM5. 

 
 

Figure 21.  Effect of Number of Distribution on Accuracy for Simple Bayesian 
Mixture. SBM2Means SBM with Two Distributions.  
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Figure 22.  Effect of Number of Distribution on Time for Simple Bayesian Mixture. 

F. VARIABLE-ORDER MARKOV MODEL 

A variable-order Markov model is an extension to the Markov chain models in 

which a variable order is used in place of a fixed order. A Markov chain is chain of finite 

states such that each state transition respects the Markov property, which means that the 

probability distribution of future state conditioned on the present state is independent of 

earlier past states. It is a Markov process with a discrete state space. If the order is one, 

each state depends on the most recent state. If the order is two, each state depends on the 

two most recent states in a fixed sequence. If the order is variable, each state can depend 

on different number of states in a fixed sequence. Hence, it is called Variable-Order 

Markov model (VOMM).  A relational time-series of order n is xn = x1, x2, …,xn-1, xn 

where n is the order.   

We implemented a VOMM model using context trees [55]. Suppose we have a 

letter sequence: 'A', 'B', 'R', 'A', 'C', 'A', 'D', 'A', 'B', 'R', 'A'. Each letter can represent each 

percept in our domain. We can build a maximum 2-order context tree as shown in Figure 

23. . Any path from the root to any node denotes a reversed Markov chain.  For example, 

the path [Root, ‘A’, ‘R’] denotes a Markov chain ‘RA' with a target ‘C’. Another 

example: the path [Root, ‘A’] denote a Markov chain ‘A’ with target percepts ‘B’, ‘C’ 
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and ‘D’. The number beside the target percept denotes the number of occurrence. Note 

that a path from the root note to any node denotes a single previous situation.  

 

Figure 23.  Maximum Order-2 Context Tree for Letter Sequence 
A-B-R-A-C-A-D-A-B-R-A. 

1. Learning for VOMM  

Let C be a context tree that store a set of situation-target sti = (si, pij) as branches 

from the root to the leaf nodes as shown in Figure 23. . The nodes that are one hop away 

from the root are situations of Markov model order 1. The characters underneath each 

node are the target percepts while the number represents the number of occurrences of the 

percept given the node.  

Given the current situation sc = [p1p2…pn-1pn] and the target percept pc, we store 

the situation-target stc = (sc, pc) by looking for pn among the child nodes of root node, pn-1 

among the child nodes of pn, until p1 among the child nodes of p2. If we are able to find 

the entire [p1p2…pn], we just add pc at the deepest node down the path, which is p1, if pc 

does not already exist as target percept, or increment its count otherwise. The current 

percept pc is also added at each level of the path to enable variable-order Markov mode. 

If we are unable to find a [p1p2…pn] branch, we just create a new branch at the point 

when the Markov chain differs. For example, given sc = [p1p2], if we can find p2 at the 

first level but not p1 at the second level, we create a new p1 node and append it as child 

node of p2 node, and add the pc at the p1 node.  

A:5, B:2, R:2, C:1, D1 
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2. Prediction for Variable-order Markov Model 

Let C be a context tree that store a set of situation-target coni = (si, pij) as branches 

from the root to the leaf nodes as shown in Figure 23. . Given the current situation sc = 

[p1p2…pn], we traverse down the tree by looking for p1 at the first level, p2 at the second 

level, until the nth level. If pn is reached, return the percept at the node with the highest 

count. If pn cannot be reach reached, return a percept at the lowest level reached. 

3. Example for VOMM 

Let us assume that the alphabets in the context tree in Figure 23.  represent 

percepts. During learning, if the current situation contains a single percept ‘A’, we will 

traverse the tree from root to ‘A’ and add the target percept in ‘A’. If the current situation 

is ‘DA’, we traverse the path ‘A’, ‘D’ and add the target percept in ‘D’. If the current 

situation is ‘BA’, we will not find the path ‘A’, ‘B’. Hence, we will add another node ‘B’ 

under ‘A’ and add the new target percept inside ‘B’. If the current situation is ‘E’, we 

create a new node under the root.  

During prediction, we try to maximize the order matching. If the current situation 

is “DA,” we traverse down the path “A,” “D” and return “B” as the prediction. If the 

current situation is “ZA,” we will traverse down the path “A.” Since we cannot find ‘Z’ 

in ‘A’, we stop at ‘A’ and return ‘B’ as the prediction.  

4. Effect of Maximum Order 

We used the benchmark environment in [8] and vary the maximum order for 40 

sequences of 100 percepts. The environment is controlled to remove a random 

component from the sequence used in the actual experiments. The prediction 

performances as a function of maximum order are shown in Figure 24. . We observe that 

the results plateau at maximum order 6, though statistically insignificant. We use a 

maximum order of 10 for the benchmark comparison later. 
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Figure 24.  Effect of Maximum Order for Variable-Order Markov Model. 

G. SINGLE-SCOPE BLENDING 

The above prediction techniques are mainly activation approaches, other than 

variable matching. The activation approaches activate previously seen percepts as 

predictions. Such approaches cannot predict new percepts that have not been 

encountered. The variable matching technique, based on graph isomorphism, can 

generate a new percept for prediction. However, it requires full graph matching, which is 

susceptible to noise and complex environment in which most situation encountered are 

new. The proposed approach is to look at current cognitive science theory on how human 

creativity can be modeled. In the next section, we will explore the theory of Conceptual 

Blending [42]. This theory explains the human creative process, which may help to 

improve the prediction accuracy in unknown environments.  
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1. Overview 

The computational models of the single-scope blending described in this section 

are built on the definitions given in the chapter on previous work and situation learning. 

Recall that situation learning transform the relational time-series into a set of situation-

target tuples. The prediction task is to predict the next percept given the current situation 

and the set of situation-target tuples.  

a. Learning for =Single-scope Blending 

Single-scope blending uses the lookup table as in the statistical lookup 

table prediction techniques. A situation-target lookup table C contains a lookup table of 

situation-target tuples sti = (si, ti). Let S be a set of situations si in C and let ti be a set of 

target percepts of si. Given the current percept tc and the current situation sc, we store the 

situation-target tuple stc = (sc, tc) as follow: 

𝑛𝑒𝑤 𝐶(𝑠𝑡𝑐) = �
𝐶.𝑎𝑑𝑑(𝑠𝑡𝑐) , 𝑠𝑐∉𝑆

𝑓𝑡(𝑠𝑐).𝑎𝑑𝑑(𝑡𝑐)∧ 𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) , 𝑠𝑐 ∈ 𝑆, 𝑡𝑐∉𝑓𝑡(𝑠𝑐)
𝑓𝑡(𝑠𝑐).𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑐)∧ 𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) , 𝑠𝑐 ∈ 𝑆, 𝑡𝑐 ∈ 𝑓𝑡(𝑠𝑐)

 

where: 

C. add(stc) adds stc into the container C.  

𝑓t(s𝑐).𝑎𝑑𝑑(𝑡𝑐) adds 𝑡𝑐 as a target percept of sc in 𝑓t(s𝑐)  

𝑓t(s𝑐).𝑢𝑝𝑑𝑎𝑡𝑒(𝑡𝑐) updates the count of 𝑡𝑐 in 𝑓t(s𝑐)  

𝐶.𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑐) update the count of 𝑠𝑐 in C 

b Prediction for SSB 

Let C contains a lookup table of situation-target sti = (si, ti). Let S be a set 

of situation that appears in C and let T be a set of target percepts of si ∈S. Let Σi be the 

unification space that contains all possible unification between si∈S and sc. Let θi(si, 

sc)∈Σi be the set of unification of the object constants in one previous situation si∈S and 

current situation sc. Let Subst(θi,β) be a function that substitutes the object constants in 
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situation β using θi so that Subst(θi,β) = α = f(β). Let Ti be the target set of si. Given the 

current situation sc, generate the prediction as follow: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(s𝑐)

= arg max
𝑆𝑖∈𝑆,θ𝑖∈Σi

�𝑆𝐼𝑀𝑆𝐶𝑂𝑅𝐸(𝑠𝑢𝑏𝑠𝑡(θ𝑖, s𝑖), 𝑠𝑐)�∧ 𝑠𝑢𝑏𝑠𝑡 �θ𝑖 , argmax
𝑡𝑖∈T(𝑠𝑖)

𝑃𝑟𝑜𝑏(𝑡𝑖|s𝑖)� 

Essentially, we first find a situation among all previous situation  si∈S and 

a set of unification θi∈Σi that maximize the similarity score by 

𝑎𝑟𝑔max
𝑆𝑖∈𝑆

�𝑆𝐼𝑀𝑆𝐶𝑂𝑅𝐸(𝑠𝑢𝑏𝑠𝑡(θ𝑖, s𝑖), 𝑠𝑐)� . Then we find the highest probable target ti ∈ 

Ti such that 𝑎𝑟𝑔max
𝑡𝑖∈𝑇𝑖

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑡𝑖|si). Next, we apply substitution on ti: ti’ = 

𝑠𝑢𝑏𝑠𝑡(θ𝑖, t𝑖) and return ti’ 

The high-level algorithm of single-scope blending that is implemented in 

this dissertation is described in Algorithm 1: . The for-loop in Algorithm 1:  compares 

all previous situations with the current situation. Each previous situation takes turn to be 

the input space 1 while the current situation is the input space 2. The generic() function 

models the process of identifying common percepts for the generic space and generate a 

similarity score between input space 1 and 2. In the process, generic() also return a set 

of object constant bindings  between the two input spaces. The previous situation with the 

highest similarity score will be selected as the actual input space 1 and the bindings are 

applied onto the selected situation to generate the prediction.  

Algorithm 1: Single-scope blending 
Input Con A set of situation-targets st = { (si,ti) } where si 

is past situation and ti are target percepts of si 
Input sc Current situation 
Description Implement Definition 11 

 
1 maxScore ← -1 
2 maxGenericSpace = None 
3 bestInputSpace1 = None 
4 inputSpace2 ← sc   
5 for each sti in st 
6  inputSpace1 ← sti.si  
7  genericSpace, θ ← generic (inputSpace1, inputSpace2) 
8  if genericSpace.SIMSCORE()> maxScore 
9   maxScore = genericSpace.SIMSCORE() 
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10   bestInputSpace1 = inputSpace1 
11 blend = generateBlend(θ, bestInputSpace1) 
12 prediction = blend.targetPercept() 

13 return prediction 

The generic()function looks for unification of object constants from two 

input spaces, which is equivalent to a subgraph isomorphism problem. Algorithm 2 

describes an implementation of the generic() using a backtracking process. The algorithm 

starts with the smallest possible common subgraph that can be found in both situations 

and add bindings into the common subgraph if the nodes in the bindings shared some 

structure properties. This algorithm is used in [41]. Algorithm 2a describes the algorithm 

using high level pseudo code while 2b is closer to the actual codes implemented on 

Python.  

Algorithm 2a: Generic_backtrack (simplified) 
Input s1 Situation 1 
Input s2 Situation 2 
Description Take one constant from each situation and bind them. 

If there is at least one common edge, keep this 
mapping and continue to other unmapped constants. 
Otherwise, discard this mapping. 

  
1  Function generic (s1, s2) 
2      Create root node of unbind constants 
3      Iteration 
4         Expand node on all possible constant bindings 
5     For each new binding,  
6       If no additional common percept found: continue 
7       Create new node of unbind constants   
8   Select the leave nodes with highest common percept count 
9 Return best bindings and common percept count 
 

Algorithm 2b: Generic_backtrack (Python style pseudo codes) 
1  Function generic (s1, s2) 
2 SC1 ← {s1 constants} 
3 SC2 ← {s2 constants}   
4 fringe ← [], θ ←[] 
5 unmapped1 ← SC1 
6 unmapped2 ← SC2 
7 numSimilarAtoms  ← 0 
8 fringe.append([unmapped1, unmapped2, numSimilarAtoms , θ]) 
9 solutionList ←[] 
10 while fringe not empty: 
11   [unmapped1,unmapped2,numSimilarAtoms,θ]←fringe.pop() 
12   if unmapped1 is empty or unmapped2 is empty: 



 62 

13     solutionList .append(θ,numSimilarAtoms ) 
14     continue 
15   for c1 in unmapped1: 
16     for c2 in unmapped2: 
17  newU1 = copy(unmapped1) 
18  newU1.remove(c1) 
19  newU2 = copy(unmapped2) 
20  newU2.remove(c2) 
21  score = COMMON(c1, c2, s1, s2, θ) 
22  newθ = copy(θ) 
23  θ.append( (c1, c2)   ) 
24  if score == 0: 
25   continue 
26  numSimilarAtoms += score 
27  fringe.append([newU1,newU2,numSimilarAtoms,θ])  
28 (θ*,score)=element of solutionList with largest 
numSimilarAtoms 
29 similarityScore = SIMSCORE (s1,s2, numSimilarAtoms) 

30 return similarityScore, θ* 
 

Please refer to Figure 25.  for an illustration of the backtracking 

implementation given in Algorithm 2b. The algorithm starts with a permutation of 

possible bindings. Each binding corresponds to a node in the tree in Figure 25. . These 

nodes are pushed into the fringe, which is a stack that holds the yet-to-process nodes. 

Each node in the stack is popped, evaluated, and other possible bindings are then added 

into the stack. The evaluation is a simple counting of the number of common percepts in 

both situations if the binding is accepted. For example, if we accept the (x1:x4) binding 

in the first level, we have an additional score of one because the binding produces one 

common percept, which is troll+(x1) and troll+(x4). There are additional two possible 

bindings (x2:x5) and (x3:x5) consistent with this one. The (x2:x5) binding does not 

contribute any additional common percepts. Hence, the additional score is zero. Since 

there is no other unmapped nodes in concept 2 for x3, the algorithm backtracks to 

evaluate (x3:x5), which contributes two common percepts in conjunction with (x1:x4). 

After evaluating (x3:x5), (x3:x5)is popped. Since there is no common percept for (x3:x5), 

the algorithm backtracks. A flow from the root to the leaf node constitutes one solution of 

bindings. The total score for a solution describes the similarity score of both situations. 

The path [(x1:x4), (x2:x5)] has a score of one while the path [(x1:x4), (x3:x5)] has a 

score of three. The path with the highest possible score indicates the maximum possible 
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similarity score between two situations. It is possible that more than one path has the 

same similarity score.  

 
Figure 25.  Backtracking Partial Matching process. 

2. Backtrack with Heuristics 

There are two problems with the above backtrack method. First, Algorithm 2 

assumed a connected graph. A situation of percepts can be modeled as a graph: Object 

constants are the nodes while the relations are the edges of the graph. Falkenhainer [41] 

would remove isolated nodes to speed up processing. Our situations, when converted into 

a graph, are often not fully connected. For example, suppose we have another percept in 

both situations: (hit x6, x7), which is not connected to the other part of the graph. 

Suppose we have a common subgraph with the current binding (x1:x4). When the new 

binding (x6:x6) is attempted, there is no common percept and (x6:x6) will be ignored. 

This will cause suboptimal result in the prediction problem. The second problem is 

thatthere can be more than one set of bindings that will achieve the same similarity score. 

Many nonsensical bindings can results in same similarity score. For example, spock 

mapped to pitchfork, and both are at location xyz.  

A more robust backtracking search is to remove the backtrack rule of algorithm 2 

line 23 and 24, which is used by McGregor [56]. The effect is the same as the tree search 

described in Figure 25. , but with the blue cross removed. However, McGregor's [56] 
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approach has a serious computational complexity problem since it literally searches the 

entire search space before determining which path to the leaf nodes is the best path of 

bindings. We introduce the following heuristics to improve the complexity. The 

improved backtrack algorithm is given in Algorithm 3a and 3b. Algorithm 3a describes 

the algorithm using high-level pseudo code, while 3b is closer to the actual code 

implemented on Python.  

a. Type Check Heuristics 

McGregor [56] proposes to use heuristics to prune the search tree by 

checking if the current binding is a valid partial solution. We can use a similar heuristics 

by checking for invalid constant type binding. For example, a constant of type 

“pitchfork” cannot be bind with a constant of type ‘place.” 

b. Termination Condition 

A new termination condition is introduced when a maximum score is 

found. Termination condition: g == min (|s1|, |s2|) where g is the score that counts the 

number of common percepts in situation s1 and situation s2. |si| gives the number of 

percepts in the situation. For example, if situation s1 has 3 percepts, while situation s2 has 

10 percepts, the maximum number of common percepts is 3. So, if we found a set of 

bindings that provides 3 common percepts, the algorithms can terminate.   

Algorithm 3a: Similarity_Backtrack_Heuristic (simplified) 
Input s1 Situation 1 
Input s2 Situation 2 
Description Take one constant from each situation and map them. 

If there is at least one common edge, keep this 
mapping and continue to other unmapped constants. 
Otherwise, discard this mapping. 

  
1  Function generic (s1, s2) 
2      Create root node of unbind constants 
3      Iteration 
4         Expand node on all possible constant bindings 
5     For each new binding,  
6       If different type: continue 
7       Create new node of unbind constants  
8   if maximum possible score found: break from loop 
9   Select the leave nodes with highest common percept count 
10 Return best bindings and common percept count 
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Algorithm 3b: Similarity_backtrack_heuristic (Python-style pseudo codes) 
1 SC1 ← {s1 constants} 
2 SC2 ← {s2 constants}   
3 fringe ← []  
4 θ ←[] 
5 unmapped1 ← SC1 
6 unmapped2 ← SC2 
7 numSimilarAtoms  ← 0 
8 fringe.append([unmapped1, unmapped2, numSimilarAtoms , θ]) 
9 solutionList ←[] 
10 while fringe not empty: 
11   [unmapped1,unmapped2,numSimilarAtoms,θ] ← fringe.pop() 
12   if unmapped1 is empty or unmapped2 is empty: 
13     solutionList .append(θ,numSimilarAtoms ) 
14     continue 
15   for c1 in unmapped1: 
16     for c2 in unmapped2: 
17  if c1.type() ≠ c2.type() 
18   continue 
19  newU1 = copy(unmapped1) 
20  newU1.remove(c1) 
21  newU2 = copy(unmapped2) 
22  newU2.remove(c2) 
23  score = countCommonAtom(c1, c2, s1, s2, θ) 
24  newθ = copy(θ) 
25  θ.append( (c1, c2) ) 
26  numSimilarAtoms += score 
27  fringe.append([newU1, newU2, numSimilarAtoms, θ])  
28  if numSimilarAtoms == min(|s1|,|s2|) 
29   solutionList .append(θ,numSimilarAtoms ) 
30   Clear fringe 
31   terminate 
32 (θ*,score)=element of solutionList with largest 
numSimilarAtoms 
33 similarityScore = 2 * numSimilarAtoms  / (|s1| + |s2|) 
34 return similarityScore, θ* 
 

3.  Semi-Greedy Best-first Search 

We introduce an algorithm that performs significantly faster than 

algorithm 4 (backtrack with heuristics). The algorithm is given in algorithm 5. The 

differences between the algorithm 4 and 5 are given below.  

a. Best-first Search 

The fringe of the algorithm is implemented as a priority queue so that 

paths with higher potential will be given a higher priority. This is to allow a higher 
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priority path to hit the termination condition faster than the lower priority path. An 

example is given in Figure 26. . 

 

 
Figure 26.  State of the Priority Queue after Processing the First Level of the Tree. 

b. Greedy 

Decrease fringe size to minimal (1 or 2). This has the same assumption as 

the above that if the front node has the best path, there is no need to explore other path. 

This is incomplete. Nevertheless, it can be shown that the prediction accuracy results of 

fringe size of 2 are statistically insignificant when compared to the complete search.   

c. Semi-Greedy 

Experiment shows that fringe size 2 achieves similar result as depth-first 

search and best-first search. Instead of fixing a fringe size as 1, we can vary it by allow 

paths with 2 highest scores to remain in the fringe. 

d. Potential Filtering 

Before the similarity score is computed, we compute its maximum value 

by the equation: p = 2 * min(|s1| + |s2|) / (|s1| + |s2|). If p is smaller than 

the current global highest similarity score, computed from other situation, we can skip the 

current computation.  
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e. Integrated Mirror and Single-scope Blending 

If two situations are exactly the same, expensive similarity computation 

can be avoided. Mirror and single-scope blending are integrated by first checking for 

exact matching. If there is exact matching, mirror scope is run. If there is no exact 

matching, single scope is run.  

Algorithm 5a: Best-first search (simplified) 
Input s1 Situation 1 
Input s2 Situation 2 
1  Function similarity (s1, s2) 
2      Create root node 
3     Iteration 
4         Expand tree on best node 
5         Compute SimilarityScore 
6         If maximum possible score found: 
7           break 
8   Keep the best scoring nodes 
9 Return best bindings and similarity score 
 

Algorithm 5b: Best-first search (Python style pseudo codes) 
Input s1 Situation 1 
Input s2 Situation 2 
Input gglobal Current global highest score 
1 SC1 ← {s1 constants} 
2 SC2 ← {s2 constants} 
3 If 2 * min(|s1| + |s2|) / (|s1| + |s2|) < gglobal 
4  return 
5 fringe ← []  
6 maxFringeSize = 2  
7 θ ←[] 
8 unmapped1 ← SC1 
9 unmapped2 ← SC2 
10 g,h,f ← 0 
11 fringe.append([unmapped1, unmapped2, g,h,f, θ]) 
12 solutionList ←[] 
13 solutionHighestScore ← 0 
14 while fringe not empty: 
15  [unmapped1, unmapped2, g,h,f, θ] ← fringe.pop() 
16  if unmapped1 is empty or unmapped2 is empty: 
17   solutionList .append(θ,g) 
18   solutionHighestScore = max(g, solutionHighestScore) 
19   continue 
20  for c1 in unmapped1: 
21   for c2 in unmapped2: 
22    if c1.type ≠ c2.type: continue 
23    newU1 = copy(unmapped1) 
24    newU1.remove(c1) 
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25    newU2 = copy(unmapped2) 
26    newU2.remove(c2) 
27    g += countCommonAtom(c1, c2, s1, s2, θ) 
28    θ.add((c1, c2)) 
29    if g == min(|s1|,|s2|) 
30     solutionList .append(θ,numSimilarAtoms ) 
31     Clear fringe 
32     terminate 
33    h = heuristicsScore() 
34    f = g + h 
35    If f < solutionHighestScore 
36     continue 
37    fringe.append([newU1, newU2, g,h,f, θ]) 
38  fringe.sort(by f) 
39  Trim fringe based on max fringe size  
40 (θ*,score) = element of solutionList with largest numSimilarAtoms 
41 similarityScore = 2 * g / (|s1| + |s2|) 
42 return similarityScore, θ* 
 

4.  Attention-based Binding 

We improve the greedy best-first search algorithm by looking at how the human 

eye focuses its attention during a visual search process, by targeting the high salience 

property first [57], [58]. The idea is to generate a pairing score when we pair two 

constants, based on its type and in and out degree. Two similar constant must have 

similar types and in and out degree. The Attention algorithm is given in Algorithm 6 and 

7.  

Algorithm 6: Attention (Python-style pseudo codes) 
Input s1 Situation 1 
Input s2 Situation 2 
Description Form all possible pairs from s1 and s2. Each pair has a 

similarity score based on name, type, in and out degree. 
Lexical sort them by pair similarity score. For unification 
mapping starting from the most similar pair  

 
1 SC1 ← {s1 constants}, in and out degree 
2 SC2 ← {s2 constants}, in and out degree  
3 pairs ← getPairing(SC1,SC2) 
4 g1AddedTerms ← {} 
5 g2AddedTerms ←{} 
6 path ← [] 
7 score ← 0 
8 for [c1, c2, pairScore] in pairs: 
9  if not c1 in g1AddedTerms and not c2 in g2AddedTerms: 
10   g1AddedTerms[c1] = True 
11   g2AddedTerms[c2] = True 
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12   θ.append([c1, c2]) 
13 numSimilarAtoms   = countCommonAtom(c1, c2, s1, s2, θ) 
14 similarityScore = 2 * numSimilarAtoms  / (|s1| + |s2|) 

15 return similarityScore, θ 

Algorithm 7: getPairing 
Input SC1 {s1 constants}, in and out degree 
Input SC2 {s2 constants}, in and out degree 
Input s1 Situation 1 
Input s2 Situation 2 
Description Form pairings between constants in s1 and s2 if they have the 

same type. Compute score as  
[ExactNameMatch, typeScore, BothExactDegreeMatch, 
AtLeastOneDegreeMatch, DegreeDiff] 

 
1 pairings ← [] 
2 for C1 in SC1: 
3  for {C2}in {C2i}: 
4   #typeScore 
5   if C1.type == C2.type 
6    typeS ← 1 
7   else 
8    continue 
9   #exact match 
10   if g1Term == g2Term:  
11    ExactS = 1 
12   else: 
13    ExactS = 0 
14   #BothExactDegreeMatch 
15   outDiff= |outdeg(C1) - outdeg(C2)| 
16   inDiff= |indeg(C1) - indeg(C2)| 
17   if outDiff == 0 and inDiff == 0:  
18    inoutS = 1 
19   else: 
20    inoutS = 0 
21   #AtLeastOneDegreeMatch 
22   if outDiff == 0 or inDiff == 0:  
23    oneS = 1 
24   else:  
25    oneS = 0 
26   #DegreeDiff 
27   DegreeDiff = -(inDiff + outDiff)     
28   score = [ExactS, typeS, inoutS, oneS, DegreeDiff] 
29   pairings.append([C1, C2, score]) 
30 pairings.sort(key=lambda x: x[2], reverse=True) 
31 return pairings 

We will illustrate the attention-based algorithm using the example given in  

Figure 27. . We have two situations at the top left and right diagram in Figure 27. . For 

each constant in the two situations, we construct the structural properties table as shown 

in the table at the center of Figure 27. . The structural properties are compared in the 
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bottom table. The score is a 5-tuple that indicates: (1) both constants of the same type, (2) 

both constants share the same name, (3) both constants have exactly the same in and out 

degree, (4) both constants similar in either in and out degree, and (5) total degree 

different. The pairs in the bottom table are sorted lexically by the score. The pair that 

appears at the top will be selected. The next pair will be selected if none of the constants 

in the pair has been selected.  

 
 

constants In Degree Out Degree Type 
Troll1 0 1 D 
Agent1 0 1 A 
Location1 2 0 L 
Troll2 0 1 D 
Agent2 0 1 A 
Location2 2 0 L 

 
constant1 constant2 Score 
Dragon - 1 Dragon2 [1, 0, 1, 1, 0] 

Agent2 [0, 0, 1, 1, 0] 
Location2 [0, 0, 0, 0, -3] 

Agent - 1 Dragon2 [0, 0, 1, 1, 0] 
Agent 2 [1, 0, 1, 1, 0] 
Location2 [0, 0, 0, 0, -3] 

Location - 1 Dragon2 [0, 0, 0, 0, -3] 
Agent2 [0, 0, 0, 0, -3] 
Location2 [1, 0, 1, 1, 0] 

 

 
Figure 27.  Illustration of Attention-based search. 

H. PERFORMANCE MEASUREMENT 

In the experiments that follow, we use two metric of measuring the performance 

of each prediction techniques: prediction accuracy and run time. The predicted percept 

p = r(c1, c2, … , cm) is said to be correct if the next percept p′ = r′(c1′, c2′, … , cm′) is 

such that p′ = p, r′ = r, ci′ = ci for all i = 1,2, … , m. Prediction accuracy = 𝑐
𝑛
 where n is 

the number of percept receive and c is the count of correct prediction. The run time is 
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simply the time to complete each experiment of predicting all percepts in each relational 

time series.  

Note that the prediction accuracy measurement does not include time prediction, 

but is based on next simplified percept only. A prediction may not occur immediately and 

another percept may arrive before the predicted percept arrives. There are several ways to 

consider prediction with a time interval. We can use a constant time interval and or time 

of occurrence between situation and target. For second method, we can collect the 

intervals compute mean and standard deviation (SD). If the predicted percept falls within 

1SD, 2SD or 3SD, we can consider it correct. There are two ways of collecting the 

interval, from situation's perspective or target's perspective. As a result of all these 

complexity, we fall back on the strictest measure of effectiveness: predict the next 

percept. Prediction with time is studied in the sensitivity analysis in chapter 0 where 2SD 

is used on target's perspective.  

A given situation can have multiple target percepts (possible predictions). 

Different prediction techniques are capable of different number of prediction. For 

Bayesian inference, all previously encountered percepts are possible.  For Markov 

inference, the lower the order, the greater number of prediction. Situation-matching 

prediction depends on the number of target percepts. Hence, to be fair, we asked each 

technique to produce their best guess. 

I. CONCLUSION 

In this chapter, we describe six prediction algorithms. After a relational time-

series has been decomposed into a set of situation-target tuples, we can apply different 

kind of prediction techniques in the inference process. The prediction techniques 

discussed are statistical lookup table, variable matching, variable-order Markov model, 

multiple simple Bayesian, simple Bayesian mixture and single-scope blending.   

We have provided a few variants of algorithms that can be used to implement 

single-scope blending. The single-scope blending aims to maximize the generic space and 

run into the problem of subgraph isomorphism. The traditional subgraph isomorphism is 

solved by using backtracking algorithms, which is NP-complete and has a complexity of 
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n! where n is the number of nodes in each situation, assuming same number of nodes. 

The best-first search and the attention based are algorithms that can potentially reduce the 

complexity from exponential to quadratic.  
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IV. EXPERIMENT 1: PYMUD—AN AGENT-BASED VIRTUAL 
ENVIRONMENT 

A. INTRODUCTION 

Modeling and Simulation (M&S) tools have been used widely in military training 

and analysis. The fidelity of the computational model is critical for any analysis that 

requires computational modeling to be meaningful. Many computational human models 

make decisions based on previous and current states alone. Kunde and Darken [3] show 

the fidelity of agent behaviors can be enhanced by prediction. This finding is in line with 

Kurby and Zacks [2] cognitive neuroscience studies that show human agents make 

decisions based on predicted future states. To enable decision making based on future 

states, the agent must have prediction capability.  

Darken [8] developed situation learning to allow learning and prediction on a 

benchmark environment called Pymud, a text-based role-playing game. Darken [8] 

showed that the statistical lookup table and variable matching prediction techniques work 

very well over 200,000 percepts for this game. However, prediction accuracy is poor in 

the beginning of the relational time-series when there is a lack of situations learned of the 

environment. This shows that prediction is difficult in unknown environments, and the 

prediction accuracy is made worst when the environment is stochastic and noisy. On the 

chapter on previous work, the prediction accuracy significantly improves with Markov 

chain and Bayesian inference. However, these two methods cannot predict new percepts.  

In this chapter, we compare the various forms of newly developed single scoping 

blending inspired algorithms with the other prediction techniques mentioned in chapter II 

on the Pymud role-playing game.  

B. PYMUD 

Pymud is a text-based role-playing virtual environment in which, a virtual agent is 

controlled by a human player. To create an unknown behavior, the virtual agent is 

programmed to choose his action randomly. Actions include “go eastward,” “pick up a 

weapon,” “equip with weapon,” “hit,” and many more. There are other agents (monsters) 
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in the environment such as goblins, trolls and dragons. There are three types of weapons: 

pitchfork, dagger and sword. Each weapon varies in effectiveness against each type of 

monster. Each time a monster is killed, it will leave behind a weapon. Each monster, 

weapon, agent and location has a distinct name constant. The sequence of percepts 

describes what the agent sees, such as its location, weapons, and monsters. An example 

of a relational time-series from Pymud is listed in Figure 28. . The relational time-series 

is a sequence of percepts. Each percept has a time component, which is shown here as the 

first term. The second term is the simplified percept. The terms in the parentheses are the 

object constants. Note that the arity can be 1 or 2. The percept type is identified by the 

last argument in the percept such as ‘a’, ‘e’, ‘+’ and ‘–‘ where ‘a’ indicates that the 

percept is of action type, ‘e’ indicates that the percept is of event type, ‘+’ indicates the 

start of a new state and ‘–‘ indicates the end of a new state. 

look(spock84, 0.0, a) 
place(Paperville3, 0.0, +) 
location(pitchfork74, Paperville3, 0.0, +) 
pitchfork(pitchfork74, 0.0, +) 
location(spock84, Paperville3, 0.0, +) 
spock(spock84, 0.0, +) 
get(pitchfork74, spock84, 2.75, a) 
get(spock84, pitchfork74, 2.75, e) 
location(pitchfork74, spock84, 2.75, +) 

Figure 28.  A Relational Time-series from Pymud.  

C. UTILITY OF PREDICTION 

There are many ways how the prediction can be used. The main one is to use the 

predictions to improve the behavior fidelity of the virtual human agent. For example, if 

we have a rule-based agent that has a single rule that says “if being hit=>run”. This rule 

says that if the agent is being hit, it should run away. If the agent encountered a red 

goblin and being hit, it will run away. The next time when the agent sees another red 

goblin, it will not run until being hit. Such a behavior is clearly suboptimal. If the agent is 

able to predict that the red goblin will hit it, it will run away the moment it realize that it 

is co-located with a red goblin.  
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Another motivation is to predict based on other agents encounter. If an agent 

observes that a red goblin hit another agent, when it sees another red goblin, it will run 

away. Other than penalty learning, it can also learn to predict positive rewarding states.  

Reward and penalty details need not come from action percept. They can come 

from other percepts for state update such as a reduction in life or have a better weapon. 

All types of percepts can be important for decision making. Hence, we do not 

discriminate percepts but attempt to predict all percepts that arrive.  

D. METHODOLOGY 

Our prediction task is to predict the next percept the agent may see, given the past 

percept sequence, regardless of the type of percepts such as action or state update. The 

controls of the experiment are as follow.  

1. Test Data 

The test data were obtained from the Pymud text-based role-playing game. To 

create an unknown behavior, the virtual agent that is supposed to be controlled by a 

human player is programmed to choose his action randomly. Darken [8] tested the 

prediction performance by running the prediction algorithms on more than 250,000 

percepts. The prediction accuracy gets increasingly better as the number of percepts 

increases. This is true because Pymud is a stationary environment and given sufficient 

number of percepts, the general characteristics of Pymud can be learned.  

In this study, we want to know how the prediction techniques work in noisy and 

mostly new environments. We consider short relational time-series of 100 percepts only. 

To allow statistical significance testing, we use 40 different relational time-series of 100 

percepts. To simulate noisy environments, before we make each prediction, we randomly 

select two simplified percepts in the current situation and exchange their position in the 

situation. For example, suppose we have percept A, B, C and D in a situation in this 

order: A>B>C>D. If the two random percepts selected are A and B, the situation 

becomes B>A>C>D. 
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2. One Vote 

A given situation can have multiple target percepts (possible predictions). 

Different prediction techniques are capable of different number of prediction. For 

Bayesian inference, all previously encountered percepts are possible.  For Markov 

inference, the lower the order, the greater number of prediction. Situation-matching 

prediction depends on the number of target percepts. Hence, to be fair, we asked each 

technique to produce their best guess. 

3. Next Percept 

A prediction may not occur immediately and another percept may arrive before 

the predicted percept arrives. There are several ways to consider prediction with a time 

interval. We can use a constant time interval and or time of occurrence between situation 

and target. For second method, we can collect the intervals compute mean and standard 

deviation (SD). If the predicted percept falls within 1SD, 2SD or 3SD, we can consider it 

correct. There are two ways of collecting the interval, from situation's perspective or 

target's perspective. As a result of all these complexity, we fall back on the strictest 

measure of effectiveness: predict the next one. Prediction with time is studied in the 

sensitive studies at chapter 0 where 2SD is used on target’s perspective.  

4. Prediction Accuracy 

The predicted percept p = r(c1, c2, … , cm) is said to be correct if the next percept 

p′ = r′(c1′, c2′, … , cm′) is such that p′ = p, r′ = r, ci′ = ci for all i = 1,2, … , m. 

Prediction accuracy = 𝑐
𝑛
 where n is the number of percept receive and c is the count of 

correct prediction 

5. Hardware 

All experiments were run on a Dell XPS Laptop i7 1.87Ghz 16GB RAM with 

Windows 7.  
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6. Time Window Size 

The time window used in the experiment is 0.1sec, the same time window used in 

the previous work experiment.  

E. RESULTS 

The prediction accuracies are shown in Figure 29.  and the computation times are 

shown in Figure 30. . To allow better comparison of the computation times, the timings 

for the two slowest algorithms are removed in 0. In the results listed in the figure, 

Backtrack1 refers to the original backtrack algorithm listed in algorithm 2. Backtrack2 

refers to a more complete backtrack algorithm listed in algorithm 4. BFS refers to 

algorithms 5. BFS FS=2 refers to algorithm 5 but with fringe size limited to 2. Attention 

refers to algorithm 7. 

  

 
 

Legend: SLT: Statistical Lookup Table. VM: Variable Matching. VOMM: Variable-Order Markov Model. 
MSB: Multiple Simple Bayesian. SBM: Simple Bayesian Mixture. Backtrack1: Algorithm 2. BFS FS=x: Best-
first Search with Fringe Size x 

Figure 29.  Comparison of Prediction Accuracy on Pymud.  
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Legend: SLT: Statistical Lookup Table. VM: Variable Matching. VOMM: Variable-Order Markov Model. 
MSB: Multiple Simple Bayesian. SBM: Simple Bayesian Mixture. Backtrack1: Algorithm 2. BFS FS=x: Best-
first Search with Fringe Size x 

Figure 30.  Comparison of Computation Time on Pymud. SLT. 

 
Legend: SLT: Statistical Lookup Table. VM: Variable Matching. VOMM: Variable-Order Markov Model. 
MSB: Multiple Simple Bayesian. SBM: Simple Bayesian Mixture. Backtrack1: Algorithm 2. BFS FS=x: Best-
first Search with Fringe Size x 

Figure 31.  Comparison of Computation, with Bactrack2 and BFS removed. 
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F. DISCUSSION 

Figure 29.  shows that the worst of the single-scope blending algorithms perform 

better than the other previous techniques in prediction accuracy. Backtrack1 is a subgraph 

isomorphism approach that incrementally increases the size of common subgraph if and 

only if the newly added binding results in at least one common structure with the 

previously bind nodes. If the newly added binding are not connected to the previously 

bind nodes, it will not be added. It is only good for a connected graph and will ignore the 

unconnected nodes. It is incomplete for situation comparison in Pymud. As a result, it 

performs poorly as compared to the other single-scope blending techniques.  

Backtracks2 performs better than Backtrack1 in prediction accuracy because it is 

a complete technique and searches the disconnected part of the graph. Backtracks2 has 

limitation. Firstly, the computation complexity is n! or O(nn) where n refers to the 

number of constant in one situation. Furthermore, in most cases where noisy situation are 

vastly different, there are many suboptimal bindings that will generate the same number 

of common percept. We need a more efficient algorithm and better algorithms.  

The best-first search family of algorithms performs much better than the 

traditional backtracking algorithms in terms of prediction accuracy. The original best-first 

search algorithm described in algorithm 5 is complete. However, it has no computational 

time advantage because the heuristics are only useful when one situation is a complete 

subgraph of another situation. When the common percepts are only a subset of both 

situations, the termination condition will not be satisfied and the algorithm must process 

all necessary nodes in the fringe. Furthermore, the sorting process increases the 

computational complexity. To have a feel of how bad the sorting complexity is, Figure 

32.  shows the maximum fringe size encountered during the prediction events. 

Nevertheless, the fringe does indicate that the best solutions are found at the front of the 

queue. When the fringe size is reduced to 1 or 2, the computation time reduces 

significantly as shown in Figure 30.  and 0. The statistical student-T test results for 

comparing the prediction accuracy of the Fringe size 1 and 2 with the original best-first 

search are given in Table 2. If our threshold p-value is 0.05 (α0.05), BFSFS=1 fails the 

paired t-test significant test and we conclude that FS=1 is different than the original best-
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first search. However, the two sample t-test p-value shows that their overall prediction 

accuracies have no significant different. The FS=2 does passed both paired t-test and two-

sample t-test. Hence, we can conclude that FS=2 is similar prediction performance to the 

original best-first search. The restricted best-first search is termed as Greedy best-first 

search.  

 
Figure 32.  Maximum Fringe Size Encountered during the 40x100 Prediction Events. 

 P-value 
BFS FS=1 

P-value 
BFS FS=2 

Paired t-test 0.018679441 0.149055981 
Two sample t-test 0.698569455 0.819056942 

Table 2 Statistical Student T-Test Result. P-value for Comparing Original BFS 
with Fringe Size Restricted BFS on Computation Time. 

The Attention algorithm performs similarly than the best-first search method in 

prediction accuracy and significantly better in computation time. The results of paired t-

test and two sample group t-test are given in Table 3. The paired t-test shows that the 

best-first search and attention model are different but the two sample t-test indicates that 

their overall prediction accuracies are similar.  

 P-value for comparing Best-first search and Attention 
Paired t-test 0.008944283 
Two sample t-test 0.652817524 

Table 3 T-Test Result (p-value) for Comparing Original BFS with Attention 
Model. 

The single-scope blending and variable matching prediction techniques do not 

rely solely on recalling previously seen percepts. The bindings of constants between 
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current and previous situations provide the capability to adapt previously-seen percepts to 

the current situation. Unlike the statistical lookup table or Bayesian and Markov chain 

techniques where predicted percepts are “activated” from a bunch of previously seen 

percepts, single-scope blending and variable matching generate predictions that may or 

may not have been seen before. Figure 33.  shows the number of correct prediction 

generated by single-scope blending and variable matching that have not been seen before. 

The “generative” approach to prediction is the primary reason why single-scope blending 

performs much better than other techniques. Variable matching does not do equally well 

because it requires full graph isomorphism, which is hard to come by in a dynamic and 

noisy environment. Single-scope blending is superior to variable matching because 

subgraph isomorphism has the property of partial situation matching that allows the recall 

of similar situation in the face of noise. Bayesian and Variable-Order Markov Model also 

demonstrate partial matching. However, these techniques cannot associate similar 

constants and lack the ability to adapt recalled percepts to the current situation.  

 

 
Legend: SSB: Single-scope Blending. VM: Variable Matching. 

Figure 33.  Number of Correct Prediction of New Percepts. 
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match for 40 batches of 100 percepts.  No-match occurs when the algorithm is unable to 

find a reasonable situation. Variable-Order Markov model handles the no-match problem 

by varying the order of Markov Model. The Bayesian techniques handle the problem 

using Laplace distribution. 

 
Legend: SLT: Statistical Lookup Table. VM: Variable Matching. VOMM: Variable-Order Markov Model. 
MSB: Multiple Simple Bayesian. SBM: Simple Bayesian Mixture. 

Figure 34.  Comparisons of No-Match for Prediction Techniques in Conjunction with 
Situation Learning. 

The variable-order Markov model handles novel situations better than statistical 

lookup table and variable matching. While the variable-order Markov model does not 

require exact percept to percept matching, and even allow partial matching, it requires 

exact sequential adjacency ordering. For example, the sequence of words [The blue fish 

is eating] will not match the sequence [The fish is eating]. In addition, variable-order 

Markov model treats each percept as a proposition.  

The multiple simple Bayesian network is able to handle unseen situations with the 

smoothing n-gram models [59] of assigning probabilities to newly encountered percepts 

in the current situation. However, its performance is limited for several reasons. Firstly, it 

cannot predict unseen percept. Secondly, when there are too many novel percepts, the 

prior probability for each percept can be very low. The smoothing n-gram models assign 

a probability that can be unfairly large to new percepts. Thirdly, Simple Bayesian 
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network cannot handle exclusive-OR relationship and there are percepts that are mutually 

exclusive. Thirdly, percepts in the sequence are not independent and identically 

distributed. The simple Bayesian mixture performs better than the multiple simple 

Bayesian. However, it also suffers some of the limitations found in multiple simple 

Bayesian.  

G. CONCLUSION 

We have implemented the situational learning method and prediction techniques 

on Python programming language and quantitatively compared the results on a role-

playing game. We conclude that the Bayesian and Markov approaches perform better 

than the situation matching approaches. One surprising finding in this study is that non 

Markovian techniques can perform equally well than the Markovian one, even though the 

Markovian techniques are the popular techniques for sequence learning and prediction. 

The results presented above show that the single-scope blending approach to 

prediction on relational time-series perform much better than the current techniques in the 

role-playing game benchmark environment. In addition, we have also showed that the 

two novel algorithms: Greedy best-first search and attention perform significantly better 

than the original backtracking approach for solving our subgraph isomorphism problem.  
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V. EXPERIMENT 2: INTRUSION-ALERT PREDICTION 

A. INTRODUCTION 

A network intrusion-detection system [4] such as [5] is a critical device that 

screens all incoming packet for suspicious activities, either based on hand crafted 

signature rules, or abnormality detection. The network intrusion-detection system 

generates alerts in a time-series fashion.  

There are two well-known issues with using a network intrusion-detection system. 

The first issue is that each network intrusion-detection system can generate tremendous 

amount of alerts. For example, Prof Rowe’s Honeypot can potentially generate thousands 

of alerts per day. Such huge number of alert causes challenges for system administrators. 

Many alerts have lower priority. However, these alerts cannot be ignored because they 

may serve as prerequisite for higher priority alerts in the future. Alert predictions could 

justify ignoring earlier alerts. A second issue is that network intrusion-detection systems 

are retrospective defense in which alerts indicate current or previous attacks. When high 

priority alerts are generated, damages might have been done already.  

B. INTRUSION-ALERT PREDICTION 

There are several approaches that can help network administrators to deduce 

higher level information such as intents of attacker, by summarizing network intrusion-

detection system alerts. One of the goals of higher level knowledge is to predict future 

attacker’s action, which can be observed as future network intrusion-detection system 

alerts. The process of summarizing network intrusion-detection system alerts involve 

normalization [60], aggregation [61][62], and correlation. We will review some of the 

correlations techniques here since it is the part where prediction of future alerts can be 

made. Techniques of alert correlation include instant base, rule base, statistical, and 

temporal.   
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1. Instant  

Instant base approaches [63][64][65] correlate alerts by matching the alerts 

against a library of known scenarios. Each scenario is described by a formal model such 

as attack graph, hierarchical tree, etc. Scenario development requires human expert to 

meticulously analyze each attack scenario, and to represent it in the format that the 

system understand. The limitations of Instant Base approaches are that, scenario 

development is expensive and that the library of historical scenarios cannot detect new 

kinds of attack [66]. An example of correlation graph is as shown in Figure 35. .  

 
Figure 35.  Correlation Graph from [67]. 

2. Rule Base 

Rule-based approaches [64][67][68] address some limitations of instant base 

approaches by using rules. Sundaramurthy et. al. [67] shows that by using generic rules, 

they are able to identify attack scenarios that were not considered during the development 

phase. The rules usually directed towards the pre and post condition of each pair of alerts. 

Two alerts are correlated if one alert generate a post condition that matches the pre-

condition of the second alert. In Sundaramurthy et. al. [67]’s approach, facts from the 

previous step will be added into prolog, which will generate and infers more facts. All 

facts (added or inferred) will be put together to form a graph, called scenario.  As with all 

knowledge based system, Rule based approaches suffer the limitations of rule 

management, as well as the need for human expert to convert domain knowledge into a 

set of rules.  
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3. Statistical  

Both Instant and Rule base suffer because they rely on human expert for 

knowledge. Statistical techniques allow automated mining of knowledge. Qin [69] 

proposed a Bayesian Network approach that runs offline on a set of historical records to 

learn the network structures and the conditional probability tables.  Each alert pairs are 

analyzed based on their attributes to form different evidences. These evidences are used 

to compute the probability of correlation (Figure 36. ). The limitations of statistical 

techniques offline batch training on selected training set. It assumes that the problem of 

NIDS prediction is stationary and the selected training sets are representative of what the 

network will be expecting.  

 
Figure 36.  Probabilistic Reasoning Model from [69]. 

4. Temporal 

Cuppens [64] proposed a time series-based statistical analysis method that aims to 

test if a time-series variable X correlates with another time-series variable Y. However, 

the approach suffers a limitation of failure to correlate two alerts if there are random time 

delays between them. Li et. al. [11] proposed a sequential approach. During the offline 

training, the algorithm divides the entire list of processed alerts into multiple shorter 

sequences by using a sliding window. The sequences are then fused to form a minimal set 

of sequence that best represent the set of sequences. The author writes that the detection 

performance decreases in the face of new attack strategies. The sequence diagram 

generated is shown in Figure 37. . The limitation of Li et. al. [11]’s approach is the need 

for offline batch training.  
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Figure 37.  Sequence Diagram from [11]. Each Node Represents an Event. 

Each Edge Represents a Transition of Event. 

5. Discussion 

One important purpose of correlation is the ability to predict future action of the 

attackers amid noisy and incoming alert sequence. One major limitation of approaches 

above is the failure to learn the knowledge online. Since attack strategy changes in a fast 

pace fashion [11], the current alert must be incorporated into the knowledgebase as soon 

it is received. Darken‘s situation learning [8] is capable of assimilating the latest percept 

into the knowledgebase, and use that updated knowledge to make a prediction. Our 

situation learning and prediction approach can be used in network intrusion-detection 

system Snort alerts prediction since the network intrusion-detection system alert sequence 

is a time-series and that each network intrusion-detection system alert is in relational 

form since each alert has a predicate (Alert ID) and that attributes (protocol, IP addresses, 

etc.) in the alert. Our Bayesian approach is similar to Qin [69] but is able of online, 

learning. Our variable Markov model is similar to Li et. al. [11] but is capable of online 

learning and partial matching.  

C. UTILITY OF PREDICTION 

Alert prediction is useful for network defense. The first motivation is to provide 

the network administrators early warning of a potentially harmful attack so that they can 

take appropriate action to avoid the attack. The second motivation is for cross networks 

alert prediction. Situation learning learns a set of situation that can be shared with other 

situation learning systems. If an attack is encountered in one network, we can 
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immediately use that data to monitor and predict similar attack on all other networks. The 

third motivation is to allow anticipatory approach to cyber deception. Our predictions 

may tell what the hacker wants so that we can deploy our deceptions to achieve our 

objectives such as luring him away from the production networks.   

D. METHODOLOGY 

Our prediction task is to predict the next alert the system administrator may see, 

given the past alert sequence. The controls of the experiment are as follow.  

1. Test Data  

Professor Rowe has a honeynet setup in his lab with a Snort network intrusion-

detection system. Two alert sequences (labeled as dataset 1 and 2) were collected from 

the honeynet for this research, described in [70]. The alert sequences were obtained from 

Internet traffic trying to connect to the honeynet. An example of the alert sequence is 

listed in Figure 38. . A summary of the dataset is given in Table 4. The total column is the 

total number of alerts. If two alerts are exactly the same but arrived at different time, they 

are said to be repeated. If two alerts are different even through the Snort ID are the same, 

both are considered as different distinct alerts. The distinct alert column refers to the 

number of the distinct alerts encountered, excluding the repeated alert. Repeat rate in 

Table 4 is computed as the division of the total number of alert by the number of distinct 

alert. It is a measure of number of high frequency alerts. The Entropy is a measure of 

uncertainty of a random variables defined in Shannon [71]. In our context, the random 

variable is the occurrence of alerts. Entropy is computed as: E =  −∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2(𝑝(𝑥𝑖))𝑛
𝑖  

where p(xi) is the probability of alert xi.  
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Figure 38.  Alert Sequence from Snort Network Intrusion-detection System. 

 Total Distinct 
alert 

repetitive rate Entropy Duration 

DataSet1 6482 1590 4.08 7.46 2 months 
DataSet2 9619 4304 2.23 11.08 2 weeks 

Table 4 Properties of Snort Alert Dataset.   

The charts given in Figure 39.  plot the cumulative distribution function for 

distinct alerts in their respective datasets. In dataset 1, 40% of the distinct alerts make up 

80% of the total number of alert. In dataset 2, 55% of the distinct alerts make up 80% of 

the total number of alert. The repetitive rate and entropy are important characteristics of 

the dataset because both represent the number of distinct alerts in a batch and describe the 

variability of the dataset. As the number of distinct alert in each batch increases, the 

entropy increases and repetitive rate drops. When entropy is low, meaning the dataset is 

highly repetitive and involves a small quantity of distinct alert, prediction techniques are 

expected to have better prediction accuracy.  On the other hand, when entropy is high, 

prediction accuracy is expected to drop.   
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Figure 39.  Cumulative Frequency of Distinct Alert in 2 Dataset. X-axis is the 

Cumulative Count of Distinct Alert Records Order by Decreasing 
Frequency of Those Records. Y-axis is the Cumulate Distribution Function.  

2. Percept of Arity 2 

A Snort alert is a percept. An alert sequence is a percept sequence. Snort alerts 

come in relational table form with many fields. Some of the fields contain irrelevant data 

for prediction. In this experiment, we use the fields: Snort ID, protocol and source and 

destination IP Address. The relational representation of an alert is “Snort ID (protocol, 

source IP, destination IP)”. The arity is 3.  

The single-scope blending algorithms are designed to work on percepts of arity 1 

and 2, because of the underlying graph based representation. This means that each 

percept must have a relation and one or two object constants. Therefore, we must 

transform one 3-arity alert percept into an intermediate representation, which is a group 

of multiple arity-2 percepts. We must also account for multiple 3-arity alerts that form a 

situation. In a situation, we assign a record number to each alert by the order in the 

situation. The first alert is record 1, the second alert is record 2, and so on. In a percept, 
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when a record number is assigned, we relate the field elements in the alert to that record 

number using the following method: Rn(C1, C2, …, Cq) = F1 (Rn, C1), F2 (Rn, C2), … Fq 

(Rn, Cq), =  Fi (Rj, Ci), If a record has four fields, we convert to arity 2 by saying that field 

i of record n is C, where i is the field or column number, n is the record number and C is 

the constant. An example of how the table form is converted to the intermediate form is 

illustrated in Table 5 and Table 6. Note that we also add arity-1 percept to mean that it is 

a type percept.  

 
 
Record 

Field 0: 
ID 

Field 1: 
Protocol 

Field 2: 
IP 

Field 3: 
IP 

1 2924 TCP 63.205.26.77 78.45.215.210 
2 2924 TCP 78.45.215.210 63.205.26.80 

Table 5 Example of Two Snort Alerts in Relational Table Form. 

Relation Constant 1 Constant 2 
Field0 Record0 2924 
Predicate-Type 2924  
Field1 Record0 TCP 
Protocol-Type TCP  
Field2 Record0 63.205.26.77 
IPAddress-Type 63.205.26.77  
Field3 Record0 78.45.215.210 
IPAddress-Type 78.45.215.210  
Record-Type Record0  
Field0 Record1 2924 
Field1 Record1 TCP 
Field2 Record1 78.45.215.210 
Field3 Record1 63.205.26.80 
IPAddress-Type 63.205.26.80  
Record-Type Record1  

Table 6 Example of Two Snort Alerts in Relational Percept Form with Arty 1 and 
2. 
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3. Time Window Size 

The time window used in the experiment is 0.1sec.  

4. One Vote 

A given situation can have multiple target percepts (possible predictions). 

Different prediction techniques are capable of different number of prediction. For 

Bayesian, all previously encountered percepts are possible.  For Markov, the lower the 

order, the greater number of prediction. Situation matching prediction depends on the 

number of target percepts. Hence, to be fair, we ask each technique to produce their best 

guess. 

5. Next Percept 

A prediction may not occur immediately and another percept may arrive before 

the predicted percept arrives. There are several ways to consider prediction with a time 

interval. We can use a constant time interval and or time of occurrence between situation 

and target. For second method, we can collect the intervals compute mean and standard 

deviation (SD). If the predicted percept falls within 1SD, 2SD or 3SD, we can consider it 

correct. There are two ways of collecting the interval, from situation's perspective or 

target's perspective. As a result of all these complexity, we fall back on the strictest 

measure of effectiveness: predict the next one. Prediction with time is studied in the 

sensitive studies at chapter 0 where 2SD is used on target's perspective.  

6. Prediction Accuracy 

The predicted percept p = r(c1, c2, … , cm) is said to be correct if the next percept 

p′ = r′(c1′, c2′, … , cm′) is such that p′ = p, r′ = r, ci′ = ci for all i = 1,2, … , m. 

Prediction accuracy = 𝑐
𝑛
 where n is the number of percept receive and c is the count of 

correct prediction 

7. Hardware 

All experiments were run on a Dell XPS Laptop i7 1.87Ghz 16GB RAM with 

Windows 7.  
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E. RESULTS 

The prediction accuracies of the prediction techniques are illustrated in Figure 40.  

and Figure 41.  for dataset1 and dataset2, respectively. The single-scope blending 

technique used here is the attention technique. Separate runs were conducted to compare 

between best-first search and attention but no significant differences were found. The 

final prediction of dataset 1 and 2 are repeated in Figure 42.  for easy comparison.  

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), 

SimpleBayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB.) 

Figure 40.  Dataset 1: Prediction Accuracy.  
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Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 

Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB.) 
 

Figure 41.  Dataset 2: Prediction Accuracy.  

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 

Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB.) 
 

Figure 42.  Final Prediction Accuracies for Dataset 1 and 2.  
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Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 

Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB.) 
 

Figure 43.  Dataset 1: Computation Time.  

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VAR), Multiple Simple Bayesian (MSB), Simple 

Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope blending (SSB 
 

Figure 44.  Dataset 2: Computation Time. 
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To allow us to do statistical tests, both datasets were combined into one and 
subsequently divided into 161 sequences of 100 alerts in each sequence. The prediction 
and computation time results are given in Figure 45. and Figure 46. , respectively. The 
paired t-test and two group t-test for prediction accuracies and computation as compared 
to the SSB-attention are given in Table 7 and Table 8, respectively. 

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian Mixture 
(SBM), Variable-Order Markov Model (VOMM), Single-scope blending (SSB). 

Figure 45.  Dataset 1 and 2: Prediction Accuracies from 161 batches of 100 alerts. 

 
Legend:Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian Mixture 
(SBM), Variable-Order Markov Model (VOMM), Single-scope blending (SSB). 

Figure 46.  Dataset 1 and 2: Computation Time from 161 batches of 100 alerts. 
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Test SLT VM MSB SBM VOMM SSB-

BFS 
SSB-

attention 
Paired 
T-test 

0.000 0.000 0.000 0.000 0.000 0.000 1.000 

Group 
T-test 

0.000 0.000 0.000 0.000 0.000 0.711 1.000 

Table 7 Statistical Significant Test with SSB-attention on Prediction Accuracies on 
Dataset1&2 161x100. 

Test SLT VM MSB SBM VOMM SSB- 
BFS 

SSB-
attention 

Paired 
T-test 0.000 0.000 0.000 0.000 0.000 0.002 1.000 
Group 
T-test 0.000 0.000 0.000 0.000 0.000 0.003 1.000 

Table 8 Statistical Significant Test with SSB-attention on Computation Time on 
Dataset1&2 161x100. 

We have also measured entropy for the run results. The prediction accuracies and 

computation time by entropy are as shown in Figure 47. , Figure 48. , and Figure 49. , 

respectively. The result of paired t-test and two-group t-test are given in 0 and 0, 

respectively.  

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Figure 47.  Dataset 1 and 2: Prediction Accuracies from 161 batches of 100 alerts.  
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Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Figure 48.  Dataset 1 and 2: Normalized Prediction Accuracy over Entropy 

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Figure 49.  Dataset 1 and 2: Computation Time from 161 batches of 100 alerts. 
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entropy SLT VM MSB SBM VOMM SSB-BFS SSB-
attention 

[0,1) 0.293 0.278 0.188 0.187 0.245 0.144 1.000 
[1,2) 0.029 0.035 0.022 0.018 0.030 0.028 1.000 
[2,3) 0.000 0.000 0.000 0.001 0.000 0.000 1.000 
[3,4) 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
[4,5) 0.000 0.000 0.000 0.000 0.000 0.123 1.000 
[5,6) 0.000 0.000 0.000 0.000 0.000 0.021 1.000 
[6,7) 0.000 0.000 0.000 0.077 0.000 0.014 1.000 

Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian 
Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Table 9 Paired T-test on Prediction Accuracies on Dataset1&2 161x100 by 
Entropy. Colored values represent significant difference compared with SSB-

attention. 

 
entropy SLT VM MSB SBM VOMM SSB-

BFS 
SSB-
attention 

[0,1) 0.279 0.291 0.224 0.298 0.243 0.417 1.000 
[1,2) 0.019 0.024 0.016 0.040 0.022 0.144 1.000 
[2,3) 0.000 0.000 0.000 0.003 0.000 0.002 1.000 
[3,4) 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
[4,5) 0.000 0.000 0.000 0.000 0.000 0.133 1.000 
[5,6) 0.000 0.000 0.000 0.000 0.000 0.022 1.000 
[6,7) 0.000 0.000 0.000 0.035 0.000 0.019 1.000 

Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian 
Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Table 10 Group T-test on Prediction Accuracies on Dataset1&2 161x100 by 
Entropy. Colored values represent significant difference compared with SSB-

attention. 

F. DISCUSSION 

From the results above (Figure 40. , Figure 41.  and Figure 42. ), the single-scope 

blending approach clearly outperformed the other techniques in prediction accuracy. In 

Figure 40. , most of the prediction accuracies reach steady state at around 0.57 while 

single-scope blending stabilizes at 0.71. The difference is about 25%. Dataset 2 is a more 

challenging alert sequence, given its high entropy and low repetitive rate. From Figure 

41. , we observe that the Multiple Simple Bayesian and the Variable-Order Markov 

Model score badly on prediction accuracy. The Variable Matching is the second best to 
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Single-scope blending.  The difference between Single-scope blending and Variable 

Matching is about 30%. The single-scope blending however, suffers in terms of 

computation time as shown in Figure 43.  and Figure 44. . 

Figure 45.  and Figure 46.  show the prediction accuracies and computation time 

comparison among the predictors for 161 batches of 100 alerts, generated by combining 

dataset 1 and 2. The significant tests for comparing the predictor’s performance against  

the attention technique are shown in Table 7 and Table 8. Table 7 says that all predictors 

except the best-first search are significantly different than the attention technique in both 

paired and 2-group T-test. The best-first search and the attention techniques have similar 

prediction accuracies as shown by the 2-group t-test. We also observe in Table 8 that the 

attention technique is significantly faster than the best-first search.  

Figure 41.  shows that performance difference between the attention predictor and 

the other predictors are more significant in dataset2, which has higher entropy. To 

explore this further, the prediction results in Figure 45.  are dissected by entropy and 

plotted in Figure 47. . When entropy is less than 1, there is no significant difference 

among the predictors as shown in both paired and 2-group t-test in in 0 and 0. When 

entropy is at least 1, there is significant difference between the attention predictor and the 

other predictors. As entropy increases, the difference in prediction accuracy increases. 

Note that like the attention predictor, the variable matching prediction accuracy tends not 

to decrease as much as the rest as entropy increases. This is because the variable 

matching predictor is also able to predict unseen percept. It is interesting to note that as 

entropy increases, the computation time increases. This is because as entropy increases, 

the number of new situations increases, which should increases the computation time. 

The computation time at entropy [6,7) appear to decrease even though the entropy is 

greater. It is likely an outlier.  

0 and 0 provide more insight into why Single-scope blending performs much 

better in dataset 1. 0 shows that the Single-scope blending correctly detected 59.56% of 

the 1590 alert classes in dataset 1. Detection is defined as the correct prediction of a 

distinct alert at least once. The explanation is illustrated in 0. 0 reads: There are 643 

distinct alerts that occur only once. Out of these 643 occurrences, Single-scope blending 
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detected 163 while multiple simple Bayesian and variable-order Markov model detected 

none. This shows that Single Scope bending is able to predict unseen categorical data. As 

the number of occurrence increases, multiple simple Bayesian and variable-order Markov 

model catch up eventually and achieve similar accuracy performance as the Single-scope 

blending when occurrences reach 10. 

  

 SSB MSB VOMM 
Alert Class Detected 947 379 375 
% 59.56% 23.84% 23.58% 

Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian 
(MSB), Simple Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope 
blending (SSB). 

Table 11 Dataset 1: Alert Class Detection. 

 
Number of 
Occurrence 

Number of Alerts SSB Detects MSB detects VOMM detects 

1 643 163 0 0 
2 751 621 230 242 
3 52 34 27 14 
4 88 80 77 74 
5 5 0 0 0 
6 11 10 8 8 
7 3 3 1 1 
8 2 2 2 2 
9 4 4 3 3 
10 3 3 3 3 

Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian Mixture 
(SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Table 12 Dataset 1: Effect of Frequency on Detection Rate. 

0 and 0 provide more insight into why single-scope blending performs much 

better on dataset 2. 0 shows that the single-scope blending correctly detected 47.63% of 

the 9619 alert classes in dataset 2. Detection here refers to the correct prediction of a 

distinct alert at least once. The explanation is illustrated in 0. 0 reads: There are 2157 

alert classes that occur only once. Out of these 2157 occurrences, single-scope blending 

detected 455 while multiple simple Bayesian and variable-order Markov model detected 

none. As the number of occurrence increases, multiple simple Bayesian and variable-
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order Markov model catch up eventually. Unlike dataset 1, the detection performances do 

not even out when the number of occurrence reaches 10. 

 

 SSB MSB VOMM 
Distinct Alert Detected 2050 807 644 
% 47.63% 18.75% 14.96% 

Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian Mixture 
(SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Table 13 Dataset 2: Alert Class Detection. 
 
 
 
 

 
Number of 
Occurrence 

Number of Alerts SSB Detects MSB detects VOMM detects 

1 2157 455 0 0 
2 1652 1226 477 332 
3 122 73 80 48 
4 197 170 141 146 
5 24 10 11 12 
6 45 36 27 30 
7 19 9 5 8 
8 16 12 8 10 
9 7 4 4 5 
10 8 5 5 5 

Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian Mixture (SBM), 
Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Table 14 Dataset 2: Effect of Frequency on Detection Rate. 

The limitation of the single scope blending is the computation complexity. Figure 

43.  and Figure 44.  show the run time is much slower than the current prediction 

techniques. Nevertheless, is the attention technique is much faster than the traditional 

backtracking approaches.   

In a separate study, Khong [72] studied the alert prediction accuracies by using a 

tool called Pytbull to attack a simulated network. Pytbull is capable of 11 classes of 

attacks that amount to more than 250 types of attack. In the setup, there were three 
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attackers that run Pytbull and three victim machines that run the SNORT intrusion-

detection system. The prediction accuracy is Figure 50. . In this experiment, the attackers 

randomly chose a victim at every 10 seconds interval. The result is shown here to 

illustrate that the prediction accuracy is consistent with the results from our dataset.  

 

Figure 50.  Prediction Accuracy on Simulated Attack Data 

We have also run the prediction algorithms on the TCPDump file that 

accompanied the Snort Alert sequence. The results are listed in Figure 51. . Predicting the 

network traffic flow can be useful in cyber security since it is a precursor to alerts being 

generated. Dataset 1 has about 6480 alerts but has about 300,000 TCP data. Figure 51.  

only shows the first 6000 prediction. The single-scope blending and variable matching 

predictors obtained much better prediction accuracy than the other predictors. The single-

scope blending predictor is also significantly better than the variable matching predictor. 
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Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Figure 51.  Dataset 1 TCPDump: Prediction Accuracy. 

G. CONCLUSION 

In this experiment, we show that relational time-series learning and prediction can 

be used to predict cyber intrusion alert. This is the first time that such integrated online 

learning and prediction capability is demonstrated on cyber alert prediction. We have also 

showed that the single-scope blending performs much better than the current prediction 

techniques. We have also provided an analysis that explains why is single-scope blending 

better, which is due to the ability to predict at dynamic and changing environments. The 

ability to predict unseen categorical data point shows that it can handle new and unknown 

domain much better than the other prediction techniques.  
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VI. EXPERIMENT 3: SIMKIT EVENT PREDICTION 

A. INTRODUCTION 

We also tested prediction for a class of simulations that run on discrete event 

simulation. Discrete event simulation has been widely used in many kinds of studies in 

the Naval Postgraduate School. For example, students from the System Engineering 

Department built a Simkit simulator to study ship-to-ship and ship-to-shore supplies 

transfer in riverine operations [73]. In another study, a discrete event simulator was 

developed to model the San Francisco Harbor to look into port security matters [74]. Tan  

[53] also uses a discrete event simulator to model the Singapore harbor. The Combat XXI 

simulator, which is also a discrete event simulator, is a combat simulation tool used by 

the US Army Training and Doctrine Command (TRACDOC).  

One distinct feature about discrete event simulation is the scenario evolvement 

through a sequence of events occurrence. A discrete even is usually specified by a time of 

occurrence, an event name, and a list of zero or more attributes of the event. Therefore, a 

discrete event can be regarded as a percept in our context and the sequence of discrete 

events is a relational time series. The sequence of discrete event exists in all discrete 

event simulation. By showing that relational time-series prediction can be used to predict 

events on a discrete event simulator, it suggests that we can use it successfully on other 

discrete event simulators because the underlying representation is the same.  

B. DISCRETE EVENT SIMULATION 

We used a discrete event simulation toolkit called Simkit. Many discrete event 

simulation library are built on Simkit [6], a set of Java programming language libraries 

that support easy development of discrete event simulators that are based on event graph 

and listener framework. Discrete event simulations execute by running through a 

sequence of scheduled events. This list of events is managed by the event scheduler in 

Simkit. Each event is equivalent to a relational percept. In Figure 52. , event A is a 

percept of arity zero while event B is a percept of arity one. The event graph in the figure 

is read as: the occurrence of Event A schedules Event B to occur after time t when 
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condition (i) is met. j is the input value that is required for the argument k in Event B. A 

sequence of events is a natural relational time-series that exists in all Simkit simulators or 

possibly any discrete event simulations.  

 

Figure 52.  Event Graph (from [75]). Circles are Events. The Arguments in the Event 
Parentheses are the Attribute of the Event. The Arrow Marks the Relation 
between Event A and Event B. t is the Time of Event B after Event A Has 
Occurred. J Is the Parameter That is Passed from Event A to event B. The i 
in the Parentheses above the Curvy Line Is the Condition for the Relation.   

Several events can be grouped together to form one component. The mechanism 

that allows inter-component communication is the listener framework. Figure 53.  shows 

a component “Listener” that listens to the events occurrences in the “Source” component. 

Professor Buss provided a Java class SimpleEventDumper that extends from 

BasicSimEntity to subscribe to interested events that are generated by the scheduler. We 

simply need to connect any simulated entities to the SimpleEventDumper with a listener 

adaptor. 

 

Figure 53.  SimEventListener Relationship: Component Listener “Hears” all of 
Component Source’s Events [76]. 

C. MARITIME SIMULATION 

We use the Harbor Simulator in [53]. A snapshot of the simulator is shown in 

Figure 54. . The simulator models the movement of ship movements as discrete events. 

Each discrete event for movement indicates a start moving event with a start location and 

velocity, or a stop moving event. A ship model moves through a path with a sequence of 

A B(k)
t

(i)

j

Source Listener
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start and stop moving events. In the scenario, each ship is assigned a path, which is 

randomly chosen from a list of predefined paths that model the sea line of 

communication. A sample sequence of events generated from the maritime simulator is 

given in Figure 55. . Each event contains the ship ID, starting location and velocity. In 

discrete event simulation, states trajectories are piecewise constant. However, moving 

actors such as moving ships move in constantly changing continuous space. Therefore, 

the locations of moving actors are modeled implicitly and are not considered states in 

discrete event simulation. Instead, the states that represent the implicit states are a 

combination of the start location and velocity. With a start location and velocity, we can 

calculate the exact location from the equation of motion at a given time. An actor with a 

constantly changing direction can be modeled as a sequence of changing velocity with 

possible same starting location. While there are other information available in the discrete 

event simulation, we only use the fields as shown in Figure 55. .  

D. UTILITY OF PREDICTION 

The purpose of using relational time-series prediction with discrete event 

simulation is to allow software agents to make predictions based on the events 

encountered instead of looking at the ground truth information available in the event 

scheduler. In [53], there are patrol craft chasing after suspicious watercraft based on 

suspicious craft’s current location. Henceforth, the patrol crafts always end up at the 

suspicious craft’s previous location. The behavior can be easily enhanced by chasing 

after the predicted location.  

Another possible application is to demonstrate a predictive decision support 

system that is capable of anticipating shipping events. If a ship deviates too much from 

our prediction, meaning if we keep failing to predict a ship’s next event, this ship is 

highly suspicious. This is in line with a recent neuroscience theory [2] that describes that 

if the prediction keeps failing, cognition is in a state of instability and there is a need to 

activate another segment (a set of percepts with regard to a context such as a particular 

room, action or actor) to improve prediction. The new segment might be “piracy” instead 

of “transit” or “Enter-Harbor” segment. Changing segment is beyond the scope of this 
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demonstration. Another possible purpose is to model a human monitoring the maritime 

traffic. The human model can flag out a suspicious ship based on prediction error.  

 
Figure 54.  A Simkit-based Singapore Harbor Simulator. The Green Triangles are Ship 

Movements. 

Time   EventName objectID  location     velocity 
136027 StartMove SmallBoat75 (-40.000,311.000) [-3.401,-0.249] 
136039 EndMove  SmallBoat75 (-81.000,308.000) [0.000,0.000] 
136073 StartMove SmallBoat76 (-177.000,320.000)[-2.202,-2.603] 
136088 EndMove  SmallBoat76 (-210.000,281.000)[-3.402,-0.235] 
136088 StartMove SmallBoat76 (-210.000,281.000)[-3.402,-0.235] 
136113 EndMove  SmallBoat76 (-297.000,275.000)[3.009,-1.605] 
136113 StartMove SmallBoat76 (-297.000,275.000)[3.009,-1.605] 
136128 EndMove SmallBoat76 (-252.000,251.000)[2.576,2.234] 
136128 StartMove SmallBoat76 (-252.000,251.000)[2.576,2.234] 
136161 EndMove SmallBoat76 (-169.000,323.000)[0.000,0.000] 
137876 StartMove SmallBoat77 (-84.000,108.000) [0.000,0.000] 

Figure 55.  A Relational Time-series of Small-boat Events. 
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E. METHODOLOGY 

Our prediction task is to predict the next event the agent may see, given the past 

event sequence. The controls of the experiment are as follow.  

1. Test Data 

Each discrete event corresponds to one percept. The event name is the relation. 

The object ID, location and velocity are the object constants of the relational percept. We 

obtained five sequences of roughly1400 discrete events from separate simulation runs of 

the maritime simulator. Five runs are sufficient to show the statistical significance of the 

differences in prediction performance. While there are several classes of ship in the 

scenario, we only collect the sequence of events on one class: the small boats. The reason 

is that suspicious craft are usually the small boats. In this experiment, we only work on 

the small boat. When the simulation starts, each small boat will select one of the pre-

fixed paths randomly and execute its movement. 

2. Percept of Arity 2 

A discrete event is a percept. An event sequence is a percept sequence. Discrete 

events come in relational table form with many fields. Each event has an arity greater 

than two. In this experiment, we use the fields: Event Name, object ID, velocity and 

location. The relational representation of an alert is “Event_Name (object_ID, location, 

velocity)”. The arity is 3. Therefore, we must transform one 3-arity alert percept into an 

intermediate representation, which is a group of multiple arity-2 percepts. We must also 

account for multiple 3-arity alerts that form a situation. In a situation, we assign a record 

number to each event by the order in the situation. The first event is record 1, the second 

event is record 2, and so on. In a percept, when a record number is assigned, we relate the 

field elements in the event to that record number using the following method: Rn(C1, C2, 

…, Cq) = F1 (Rn, C1), F2 (Rn, C2), … Fq (Rn, Cq), =  Fi (Rj, Ci), If a record has four fields, 

we convert to arity 2 by saying that field i of record n is C, where i is the field or column 

number, n is the record number and C is the constant. The conversion process is the same 

as the one used in network alert prediction.  
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3. One Vote 

A given situation can have multiple target percepts (possible predictions). 

Different prediction techniques are capable of different number of prediction. For 

Bayesian, all previously encountered percepts are possible.  For Markov, the lower the 

order, the greater number of prediction. Situation matching prediction depends on the 

number of target percepts. Hence, to be fair, we ask each technique to produce their best 

guess. 

4. Next Percept 

A prediction may not occur immediately and another percept may arrive before 

the predicted percept arrives. There are several ways to consider prediction with a time 

interval. We can use a constant time interval and or time of occurrence between situation 

and target. For second method, we can collect the intervals compute mean and standard 

deviation (SD). If the predicted percept falls within 1SD, 2SD or 3SD, we can consider it 

correct. There are two ways of collecting the interval, from situation's perspective or 

target's perspective. As a result of all these complexity, we fall back on the strictest 

measure of effectiveness: predict the next one. Prediction with time is studied in the 

sensitive studies at chapter 0 where 2SD is used on target's perspective.   

5. Prediction Accuracy 

The predicted percept p = r(c1, c2, … , cm) is said to be correct if the next percept 

p′ = r′(c1′, c2′, … , cm′) is such that p′ = p, r′ = r, ci′ = ci for all i = 1,2, … , m. 

Prediction accuracy = 𝑐
𝑛
 where n is the number of percept receive and c is the count of 

correct prediction. In discrete event simulation, the paths in which the watercrafts follow 

are a set of waypoints, which can be seen as categorical data. The maritime simulator is a 

deterministic model. Therefore, all watercraft on the same path will have the same start 

and end location. This is a reasonable assumption since watercraft usually follows the sea 

lines of communication that consist of traffic buoys at designated location. In a stochastic 

model where location and velocity are a distribution from the waypoints, we can consider 

the prediction is correct if the predicted location and velocity are close to the actual ones.  
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6. Hardware 

All experiments were run on a Dell XPS Laptop i7 1.87Ghz 16GB RAM with 

Windows 7.  

7. Time Window ize 

The time window used in the experiment is 0.1sec, the same time window used in 

the previous work experiment.  

F. RESULTS  

The variation of prediction accuracy over time for the first run is illustrated in 

Figure 56. . We observe that the single-scope blending prediction technique has the 

highest prediction accuracy, followed by the variable matching. The other techniques did 

not get any prediction correct.  

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 
Figure 56.  Shipping Event Prediction Accuracies: 1 Batch of 1400 events. 

The averaged prediction accuracy with standard error over five run are shown in 
Figure 57. . Again, we observe that the single-scope blending prediction technique has 
the highest prediction accuracy, followed by the variable matching for all five runs. The 
averaged computation time with standard error over five run are shown in Figure 58. . 
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We observed that the single-scope blending is much slower than most other techniques. 
The p-values of student t-test of statistical significance are given in 0. Since the p-values 
are less than 0.05, we conclude that the results are statistically significant.  
 

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Figure 57.  Shipping Event Prediction Accuracies: 5 Batch of 1400 events. 

 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple 
Bayesian Mixture (SBM), Variable-Order Markov Model (VOMM), Single-scope Blending (SSB). 

Figure 58.  Shipping Event Computation Time: 5 Batch of 1400 events. 
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Batch SLT VM MSB SBM VOMM VOMM-

VAR 
SSB-
attention 

paired 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
group 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
Legend: Statistical Lookup Table (SLT), Variable Matching (VM), Multiple Simple Bayesian (MSB), Simple Bayesian Mixture 
(SBM), Variable-Order Markov Model (VOMM), Variabiized Variable-Order Markov Model (VOMM-VAR), Single-scope Blending 
(SSB). 

Table 15 P-value for Significant Tests on Shipping Event Prediction Accuracies. 

G. DISCUSSION 

Other than variable matching and single-scope blending predictors, the other 

techniques did not get any predictions correct. Single-scope blending is significantly 

superior to variable matching. The reason for this phenomenon is because all ships in the 

scenario are distinct and each ship only passes through the path only once. Therefore, all 

shipping events are distinct and novel. For example, SmallBoat19 will only be at location 

(-13.0,160.0) and velocity [-2.343,2.477] only once. All events are new and unseen. The 

event that SmallBoat19 located at (-13.0,160.0) with velocity [-2.343,2.477] has never 

occurred in the percept history until time 38.9. As a result, Bayesian and Markov chain 

methods fail to achieve any correct predictions in this application. For new precept 

prediction, only variable matching and single-scope blending predictors are capable 

because of the underlying isomorphism and unification processes. As the repetitiveness 

increases, we expect the other techniques to catch up. Nevertheless, the purpose of this 

demonstration is to show how each technique performs when all percepts are unseen. 

From this exercise, we show that the single-scope blending is capable of achieving an 

average prediction accuracy of 70% without any domain knowledge or any heuristics.  

H. CONCLUSION 

This experiment shows that we can apply relational time-series learning and 

prediction on the event list in Simkit, thereby demonstrating that relational time-series 

learning and prediction can be applied on discrete event. We have again shown that the 

single-scope blending has better prediction accuracy than the other predictors.  
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VII. ALGORITHMIC ANALYSIS 

A. INTRODUCTION 

We have introduced the single-scope blending prediction technique in chapter IV 

and show that it has significantly better prediction accuracy than all other prediction 

techniques mentioned in chapter III, tested on Pymud percept prediction, Snort alert 

prediction and Simkit event prediction. We have also described three variations of the 

single-scope blending prediction technique: backtrack, greedy best-first search and 

attention. While they have similar prediction accuracy, the greedy best-first search and 

the attention technique are not guaranteed to find the best match because of the 

underlying greedy approach of searching for a unification solution. The first objective is 

to do a more detailed completeness analysis, which compare these two techniques with 

the complete backtrack technique.  

We have also shown that the greedy best-first search is faster than backtracking 

and attention based model is faster than greedy best-first search. While we have reduced 

the computation complexity from exponential time O(2n) to quadratic time O(n3) and 

O(n2) where n is he number of object constants in each situation, the exponent of greater 

than one is still a concern. Hence, the second objective is to do a scalability analysis to 

see how scalable (in the number of object constants and number of situation) the greedy 

best-first search and the attention model are.   

B. COMPLETENESS ANALYSIS 

Completeness is defined as the ability to consider all possible solutions. In our 

case, we want to consider all possible unifications of object constants from the previous 

situation and the current situation, to choose one set of unifications that give us the best 

similar score. The backtrack technique of searching for a common subgraph in the current 

and previous situations is complete because it compares the outcome of all possible 

unifications before arriving at the set of unification that has the best similar score. The 

backtrack technique uses a depth-first search, and the deepest depth is fixed because the 

number of object constants in the current and previous situation is fixed.  The greedy 
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best-first search only searches for the best two paths of the search tree, and is therefore 

incomplete. The attention is also incomplete because it only considers one path of the 

search tree. We want to see the effect of incompleteness through a more detailed analysis: 

failure and rotational analysis, which we will discuss below.  

1. Failure Rate Analysis 

Failure rate analysis compares the outcome of the incomplete best-first search and 

attention technique with the outcome of the complete backtrack technique. In all  

prediction events, we want to see how many of them in which the greedy best-first search 

and attention techniques are able to achieve exactly the same outcome as the backtrack 

technique in the Pymud benchmark environment. There are three possible levels in which 

we can explore the incompleteness. Level 1: selected previous situation, level 2: 

unification, level 3: similarity score. The first level compares the selected most similar 

previous situations by the greedy best-first search and the attention techniques with the 

backtrack technique. The second level compares the set of unifications chosen to bind 

object constants from one situation to the other, given that the selected previous situation 

is the same. The third level is to compare the similarity score of the selected previous 

situation and the current situation, among the three techniques.   

We compare the outcome from the 40 batches of 100 percepts on Pymud. The 

results for the level 1 test are given in Table 16. Out of the situations selected by the 

backtrack technique, the greedy best-first search technique selects the same previous 

situations at about 96.375% of the time while the attention technique selects the same 

previous situation at about 90.55% of the time. For the level 2 test the greedy best-first 

search technique unification outcome is 91.3% exactly the same as the backtrack 

technique while the attention technique only achieve 83.9%. The average similarity score 

difference of greedy best-first search technique and attention when compared to 

Backtrack are 0.0156  and 0.0343, respectively.  
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Compared to Backtrack BFS Attention 
Selected previous situation 0.96375 0.9055 
Isomorphism Outcome 0.913 0.839 
Average difference in similarity score 0.0156 0.0343 

Table 16 Failure Analysis Outcome. 

From this study, the greedy best-first search technique is closer to the backtrack 

than the attention technique. Despite these differences, backtrack, greedy best-first search 

and attention techniques are able to achieve similar prediction accuracies. This is because 

of the dynamic and noisy nature of the relational time series, which we discuss below.  

It is possible for different set of unifications outcomes to have the same similarity 

score because the set of unifications may not be used to generate the prediction. For 

example, consider a previous situation that has two object constants, dagger1 and place1, 

and a percept of arity one such as commandless(). If the current situation has two object 

constants: goblin2 and agent2, and a percept of arity one such as commandless(). If no 

object constant type information is given, it does not matter if goblin2 unifies with 

dagger1 or place1, the only similar percept is commandless() 

It is possible for different prediction techniques to select the same situation even 

though unifications choices are different, which result in different similarity scores. This 

is because situations are selected based on the relative similarity scores of other previous 

situation. Since the similarity score differences are small, the ideal previous situation 

should emerge similarly when compared to other less favorable previous situation.   

It is possible to have different situations selected and yet have the same prediction 

outcome. This is because different situations can have the same target percept. 

Furthermore, different situations may be similar but are deemed as two different 

situations because of some trivial differences.   

As a result, minor differences in unification choices and selection process can still 

achieve the similar prediction accuracies.  
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2. Rotational Sampling for Attention Technique 

The attention technique pairs up all possible object constants from the previous 

and current situations, generates a constant-to-constant similarity score, and selects the 

pairs that have the highest score. Pairs that are not selected will be discarded. This is a 

one-time process. Rotational sampling iterates through the selection process multiple 

times. Each time, one pair is rotated to the top of the list, regardless of its score, so that 

every pair will be selected at least once. At the end of one iteration, the situation 

similarity score will be computed. The pairs from the iteration that has the highest 

situation similarity score will be used for prediction.  

We will illustrate the incompleteness using an example. Figure 59.  shows a list of 

possible bindings, sorted based on their node similarity scores. If we process from the 

top, we will use the bindings as shown in Figure 60. .  

Constant1,   constant2,   node similarity 
['Record1',   'Record1',   [1, 1, 1, -0.0]] 
['Record2',   'Record2',  [1, 1, 1, -0.0]] 
['Record1',   'Record2',   [0, 1, 1, -0.0]] 
['63.205.26.73',  '69.64.58.18',  [0, 1, 1, -0.0]] 
['189.250.177.224', '69.64.58.18',  [0, 1, 1, -0.0]] 
['Record2',   'Record1',   [0, 1, 1, -0.0]] 
['189.250.177.224', '63.205.26.77',  [0, 0, 1, -1.0]] 
['189.250.177.224', '63.205.26.80',  [0, 0, 1, -1.0]] 
['63.205.26.73',  '63.205.26.77',  [0, 0, 1, -1.0]] 
['63.205.26.73',  '63.205.26.80',  [0, 0, 1, -1.0]] 

Figure 59.   Possible unification  

Constant1,   constant2,   node similarity 
['Record1',   'Record1',   [1, 1, 1, -0.0]] 
['Record2',   'Record2',   [1, 1, 1, -0.0]] 
['63.205.26.73',  '69.64.58.18',  [0, 1, 1, -0.0]] 
['189.250.177.224', '63.205.26.77',  [0, 0, 1, -1.0]] 

Figure 60.   Selected unification 
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Constant1,   constant2,   node similarity 
['Record1',   'Record2',   [0, 1, 1, -0.0]] 
['Record2',   'Record1',   [0, 1, 1, -0.0]] 
['189.250.177.224', '63.205.26.77',  [0, 0, 1, -1.0]] 
['189.250.177.224', '63.205.26.80',  [0, 0, 1, -1.0]] 
['63.205.26.73',  '63.205.26.77',  [0, 0, 1, -1.0]] 
['63.205.26.73',  '63.205.26.80',  [0, 0, 1, -1.0]] 

Figure 61.   Discarded bindings  

The attention model is incomplete because the unexplored unifications as shown 

in Figure 61.  can potentially lead to a better situation similarity score, since they have the 

same node similarity score as some selected unifications. In the unselected unifications, 

['189.250.177.224', '69.64.58.18', [0, 1, 1, -0.0]] has the same node similarity score as the 

accepted unification ['63.205.26.73', '69.64.58.18', [0, 1, 1, -0.0]], which is selected by 

chance. If ['189.250.177.224', '69.64.58.18', [0, 1, 1, -0.0]] is selected, ['63.205.26.73', 

'69.64.58.18', [0, 1, 1, -0.0]] will be rejected because of the clash. If ['189.250.177.224', 

'69.64.58.18', [0, 1, 1, -0.0]] is selected, ['189.250.177.224', '63.205.26.77', [0, 0, 1, -1.0]] 

will be rejected. From this example, this algorithm is not complete. 

We use the rotational sampling technique to check for the effect of 

incompleteness. During rotational sampling, discarded unification such as 

['189.250.177.224', '69.64.58.18', [0, 1, 1, -0.0]] will be rotated to the top once and be 

accepted as a unification.  

The experiment is based on Snort alert dataset 1. We divided the 16000 alerts into 

16 batches of 1000 alerts each. The prediction results are displayed in Figure 62. . The 

prediction accuracies are statistically insignificant. The t-tests results are shown in Table 

17. The computation time for rotational attention is as shown in Figure 63. .  
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Figure 62.  Attention versus Rotational Attention: Prediction Accuracy. 

 T-Test p-value 
paired 0.89960219 
2-group 0.99902179 

Table 17 Statistical t-test for Comparing PredictionAaccuracies of Attention and 
Rotational Attention.  

 
Figure 63.   Attention versus Rotational Attention: Computation Time. 
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From this experiment, we observed that there is insignificant difference on 

prediction accuracy between the attention and the rotation techniques.  

C. SCALABILITY ANALYSIS 

In this scalability analysis, we will start with a brief discussion on the theoretical 

time complexity of the prediction techniques used in the three experiments. Next, we will 

see how the three variations of single-scope blending techniques perform on long 

relational time series. In section C3, we will study how these three prediction techniques 

scale on the number of percept count in one situation. The last section study how these 

three prediction techniques scale on the number of object constant count in one situation.  

1. Theoretical Time Complexity 

From the above description of various prediction techniques, the time complexity 

of statistical lookup table (SLT) for comparing two situation is O(s) where s is the 

number of situation in the lookup table. The worst case time complexity of variable 

matching (VM) is O(s*n2) where n is the number of object constants in one situation, 

assuming both situation has the same number of constant n, and s is the number of 

situation in the lookup table. There exist many heuristics to reduce the time complexity, 

even to O(s) time complexity at the expense of accuracy. For example, if the numbers of 

constants in two situations are different, there is no matching. The time complexity of 

multiple simple Bayesian (MSB) is O(n2) where n is the number of distinct percept. The 

worst case occurs when each distinct percept is a child of very other distinct percepts. 

Simple Bayesian mixture (SBM) has a time complexity similar to the multiple simple 

Bayesian. The worst case complexity of variable order Marov model is O(n) where n is 

the number of percept, when the entire sequence matches.  

The worst case complexity of best-first search is O(bm) where b is the branching 

factor and m is the maximum depth of the tree. The branching factor is the possible 

bindings and maximum depth is the total number of pairings needed. Hence, the 

maximum complexity is O(s*nn) where s is the number of situation in the lookup table 

and n = min (n1, n2) where n1 and n2 are the number of object constants in situation 1 

and situation 2. The number of object constants in the tree search that the Greedy BFS 
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must process is mn + a(m-1)(n-1) + a(m-2)(n-2) + .. + a(m-(m-1))(n-(m-1)) where m and 

n are the number of object constants in situation 1 and 2, respectively, m ≤ n and a is the 

fringe size. Supposed that the number of constants are n on both situations, the greedy 

best-first search complexity for fringe size a is O(s*a*n3). 

The attention model has to evaluate all possible pairings once. The maximum 

time complexity is also O(n*m*s) where m and n are the number of object constants in 

situation 1 and 2, respectively.  

2. Scalability: Long Relational Time Series 

In this experiment, we run a long time-series for backtrack, greedy best-first 

search (BFS) and attention prediction techniques. Instead of 100, we want to see the 

effect of longer sequence up to 1000 percepts. The prediction and computation time 

results on Pymud over 1000 percepts are as shown in Figure 64.  and Figure 65. , 

respectively. These two charts show that while the prediction accuracies are similar, the 

computation time for best-first search and attention increase much slower than the 

backtrack technique. The time complexity for best-first search and attention look linear 

on Figure 65. . A long time-series (5000) in Figure 66.  shows the effect of the exponents 

after the time-series passed the 1000 percept point.  

 
Figure 64.  Pymud 1x1000: Prediction Accuracy. 
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Figure 65.  Pymud 1x1000: Computation Time over Time. 

 
Figure 66.  Pymud 1x1000: Computation Time without Backtrack over Time. 
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to be linear because unlike in Pymud, the repeat rate is a lot higher in the Snort alert 

sequence 

 

 

Figure 67.  Snort Dataset 1 1x1000: Prediction Accuracy. 

 

Figure 68.  Snort Dataset 1 1x1000: Computation Time over Time. 
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Figure 69.  Snort Dataset 1 1x1000: Computation Time without Backtrack over Time. 
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Figure 70.  Pymud Computation Time over Situation Size. BFS: Greedy Best-first 
Search. 

 

Figure 71.  Pymud Computation Time over Situation Size Focusing on Greedy Best-
first Search and Attention. 
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Figure 72.  Snort Computation Time over Situation Size. BFS: Greedy Best-first 
Search. 

4. Scalability: Function of Object Constant 

In the next level, we evaluate the run time over number of object constants in one 

situation. As the number of object constant reaches 30 (Figure 73. ), the greedy best-first 

search technique becomes intractable. The Attention model continues to be near linear 

even up to 250 object constants, as shown in Figure 74. .  
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Figure 73.  Snort Computation Time over Constant Size. 

 

 

Figure 74.  Snort Computation Time over Constant Size, Attention Only. 

D. CONCLUSION 

In this chapter, we have shown that while Greedy best-first search and attention 

are incomplete, both are able to achieve similar results as the complete backtrack 
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number of constant in a situation reaches 30. The attention technique has consistently 

remains efficient at near linear time complexity even at constant count of 250.  

Nevertheless, as shown in the long time series, even the attention technique does not 
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VIII. EVENT SEGMENTATION  

A. INTRODUCTION 

Previously, we show that the single-scope blending predictors are desirable 

because they have significantly better prediction accuracy as compared to other 

predictors. However, single-scope blending predictors are slow, because the problem of 

searching for a set of unifications to maximize situation similarity is equivalent to a 

subgraph isomorphism problem. While the most efficient attention technique scale well 

in the number of object constants, it does not scale well in the face of long time-series 

because of the increasing number of situation being added into the lookup table. 

One way to improve on the time complexity is to look at the learning aspect of the 

relational time series. This chapter describes a technique inspired by the event 

segmentation theory that can potentially improve the time complexity over long time-

series with frequent new situation. The next chapter discusses another approach that 

improves the time complexity by eliminating unpopular and older situation from the 

lookup tables.  

B. EVENT SEGMENTATION THEORY 

Event segmentation theory [2][77][78][79][80][81][82] is a theory of how the 

mind/brain segments ongoing activity into meaningful events. Segmentation simplifies 

the ongoing activity and treats an interval of time as a single chunk [2]. This chunk is 

constructed and maintained as a mental representation of the current unfolding event in 

the working memory. This mental representation provides a basis for predicting how 

activity will unfold. When situation changes, prediction error increases because the 

current mental representation is no longer effective in predicting new events. Hence, 

prediction errors cause an update to the working memory: saving the previous mental 

representation to the long term memory and construct a new one. At event boundaries, 

the active memory is cleared and a new event model is from current perceptual 

information. This process is explained in Figure 75. . 
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Figure 75.  Prediction and Event Segmentation Theory [2].  

Kurby and Zacks [2] write that good segmentation saves on processing resources 

and improves comprehension. Good segmentation requires identifying the correct event 

features. There are two general ways to segmentation. Fine units segmentation (bottom 

up) [78] is based on salient physical features, distinctive sensory characteristics and 

movement features. Coarse units Segmentation (top-down) is identified based on abstract 

features related to goals, social relationships, or personality traits and Knowledge 

structures.  

Maglianoand and Zacks [79] write that event can be identified based on three 

degrees of continuity (i) Continuous in space, time, and action; (ii) Discontinuous in 

space or time but continuous in action; and (iii)Discontinuous in action as well as space 

or time. Swallow et al. [80] also mentioned about identifying events based on features 

such as Location, Actors, Goals, Objects and Interactions with objects. Reynolds et. al. 

[77] also suggested that event can be identified based on people, places, things, action 

changes, temporal, spatial location, and causal sequence. Zacks [78] also suggested new 

mental models are initiated when there is a change in space, time, protagonist, objects, 

goals, causes, or character.  

Event Model is a working memory representation of “what is happening now” 

[81]. All perceptual input is processed in the context of an activated Event Model. Event 

Model contains aspects of a situation that are consistent within an event and allow 



 133 

disambiguation of ambiguous sensory information and Filling-in of missing information. 

Zacks and Sargent [81] suggest that event model is maintained in lateral prefrontal cortex 

(PFC). Event model has two parts: Current perceptual information and an event schema 

(Similar Encountered State). Event schema contains patterns of information learned over 

a lifetime of experience. It resides in the long-term semantic memory and is implemented 

by the lateral prefrontal cortex.  Schema effects on ongoing perception [82] and provide a 

framework for incoming information and new information. It also suggests what objects 

are likely to be present and what steps are likely to be performed, and in which order. It 

also helps to fill in missing information.  

C. MOTIVATION 

The current ways of managing the situation-target tuples is to place all situation-

target tuples in one lookup table. During prediction, prediction techniques such as 

statistical lookup table, variable matching and single-scope blending must search through 

all situation-target tuples in the lookup table when none of the situations in the situation-

target tuples matches the current situation.  

Event segmentation can provide a hint on how to improve the management of the 

lookup table to improve search efficiency. The current implementation of having one 

lookup table for all situation-target tuples can be seen as having all tuples coming from 

the same segment. Conceptually, we can segment the entire relational time-series by 

some event features, thereby forming multiple isolated sequences of percepts. Percepts 

that fall in between two event features will be part of the same segment, identified by the 

first event feature. We will have one lookup table for one event feature. Segment of the 

same event features will go into the same lookup table. Examples of event features in 

Pymud are action, actor, event, and place. Instead of searching one big lookup table, we 

can search an appropriate smaller lookup table of the same segment event feature as the 

current situation, thereby, reducing processing time.  
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D. METHOD OF HIERARCHICAL EVENT SEGMENTATION 

In hierarchical event segmentation, we segment the relational time-series by 

multiple event features. We will describe a way of hierarchical event segmentation by 

two event features. The first layer of event segmentation is by time. The second layer is 

by a term in the percept.  

1. Percept Sequence Segmentation by a Time Window 

The first layer of event segmentation is by time. This is similar to the way by 

which a situation-target tuple is formed as defined in definition 10, except that the 

situation is now timed. At this layer, the time-series is not explicitly isolated into multiple 

time series, but forming multiple segments with overlapping percepts. We effectively 

convert a percept sequence into a situation-target tuple sequence. 

Timed situation: Given a relational time-series p1p2…pn that occurs at time 

t1t2…tn, and a time window tw for segmentation, a situation is formed by the set of timed 

percepts {H, pr, pr+1,…, pr+m} if tr ≤ tr+1 ≤ … ≤ tr+m , (tr+m - tr ) ≤ tw where H is a set of 

interval timed simplified percepts from p1p2…pr-1 that has not encountered the 

corresponding ‘-‘ percept, and that pr, pr+1,…, pr+m cannot include contradictory percepts, 

and the most recent percept will remove earlier contradictory percepts. pr, pr+1,…, pr+m 

cannot contain percept of type ‘-‘ and the corresponding interval percept must be 

removed. The time of situation is the time of current timed percept.  

Timed situation-target tuple: A timed situation-target tuple is defined as sti = 

(si, ti) where si is a timed situation and ti is a time percepts that is the next simplified 

percept of si. The percepts ti is known as target percepts. We will call the (situation, next-

percept-target) tuple as timed situation-target in short. The subscript ‘i' is ordered by 

time.   

Time-series of timed situation-target tuple: A time-series of situation-target 

tuple is a sequence of situation-target tuple: st1 st2… st n. If ai is the time of timed percept 

pi, the following holds: ai-1 ≤ ai ≤ ai+1. 
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Segmentation by time: Segmentation by time is the first layer of segmentation 

that converts a relational time-series into a timed situation-target tuple sequence: 

Segmentationtime (p1p2…pn) = st1 st2… st n. 

2. Percept Sequence Segmentation by a Term in Percept 

Event feature: Let event feature be fe = v0(v1, v2, …, vn) where each variable vi 

corresponds to one term ci in a timed percept p = c0(c1, c2, …, cn) such that ci is a value of 

variable vi. Each variable has a binary state: on and off. A variable is said to be off if the 

variable is not used as part of the event feature. We use φ to indicate a variable vi is 

turned off.  

For example, an event feature based on action in Pymud is described as fe = φ 

(v1,φ, …, φ, vn=a). An event feature based on actor in Pymud is described as fe = φ 

(v1=troll|dragon|green_goblin|red_goblin,φ, …, φ, vn=a). An even feature based on rule 

ID in Snort alert is described as fe = φ (v1,φ, …, φ, φ).  

Segment: A segment in the relational time-series r = p1p2…pn is comprised of the 

percept subsequence [papa+1pa+2…pa+mpb) such that pa is the first percept in the 

subsequence and one that contains the event feature and pa+m is the last percept in the 

subsequence before pb, which mark the start of another segment.  

Segment-tag situation and situation-target tuple: We use the event feature fe as the 

name of a segment. All timed situation-target-tuples are tagged with a segment name 

based on the event feature. These situation-target tuples are called Segment-tag situation-

target tuple, respectively. When tagged, all timed percepts in the timed situation-target-

tuple are converted to simplified percepts through homomorphism.  

3. Learning for Event Segmentation 

Given a sequence of segment-tagged situation-target tuples st1, st2… stm with their 

associated segment tag sequence t1, t2… tm, a new lookup table is created when a new 

segment tag is encountered. Given a situation-target tuples and its segment tag, we 
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invoke the learning algorithm in section C.1.a in chapter IV using the container C 

associated with the segment-tag.  

4. Prediction for Event Segmentation 

Given a set of containers of lookup table associated with a segment tag, a current 

segment-tagged situation, we invoked the prediction algorithms in section C.1.b in 

chapter IV with container associated with the segment tag. 

5. Example of Event Segmentation 

An example of how the segmentation might work is described in Figure 76. . 

When a percept contains an event feature, that feature becomes the name of the new 

segment. Given a sequence of incoming percepts, we tag the resultant situation-target 

tuples by the segment where they belong to. We can store the situation-target tuples in 

their respective segment lookup table. 
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Incoming Percepts 
*look(agent4,0.0,a) 
place(Loc3,0.0,+) 
loc(fork74,Loc3,0.0,+) 
fork(fork74,0.0,+) 
 
*get(fork74,agent4,2.75,a) 
get(agent4,fork74,2.75,e) 
loc(fork74, Loc3,2.75,-) 
loc(fork74,agent4,2.75,+) 
 
*w(agent4,5.5,A) 

 
Situation Target Tag 
[] look(spock8,a) [] 
look(spock8,a) place(Loc3,+) look 
look(spock8,a) 
place(Loc3,+) 

loc(fork74,Loc3,+) look 

look(spock8,a) 
place(Loc3,+) 
loc(fork74,Loc3,+) 

fork(fork74,+) 
 

look 

look(spock8,a) 
place(Loc3,+) 
loc(fork74,Loc3,+) 
fork(fork74,+) 

get(fork74,agent4,a) 
 

look 

place(Loc3,+) 
loc(fork74,Loc3,+) 
fork(fork74,+) 
get(fork74,agent4,a) 

get(agent4,fork7,e) get 

place(Loc3,+) 
loc(fork74,Loc3,+) 
fork(fork74,+) 
get(fork74,agent4,a) 
get(agent4,fork7,e) 

loc(fork74, Loc3,-) get 

place(Loc3,+) 
fork(fork74,+) 
get(fork74,agent4,a) 
get(agent4,fork7,e) 

loc(fork74,agent4,+) get 

place(Loc3,+) 
fork(fork74,+) 
get(fork74,agent4,a) 
get(agent4,fork7,e) 
loc(fork74,agent4,+) 

w(agent4,5.5,A) get 

Figure 76.  Example of Event Segmentation by Action. 
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E. EXPERIMENT ON PYMUD 

The goal of the experiment is to see if we can use event segmentation to 

significantly reduce the computation time.  

1. Event Feature 

When a percept that contains an event feature arrives, the subsequent situations 

and the resultant situation-target tuples will be tagged based on the new event feature. 

The relational time-series of Pymud offer several event features for segmentation: Actor, 

Action, Event and Place. 

A troll actor percept Troll(troll84,0.0,+) contains a feature Troll(φ,φ,φ). Since there 

are other actors, we have to defined a few event feature such as Dragon(φ,φ,φ), 

Green_goblin(φ,φ,φ), and Red_goblin(φ,φ,φ). Note that such explicit iteration of actor is 

not possible in unknown environment. We need other meta information to indicate if a 

percept is defining an actor.  

A look action percept look(spock84,0.0,a) and any other action percepts 

contain the event feature φ(φ,φ,a).  

A place percept place(Paperville3,0.0,+) and any other place percepts 

contain the event feature place(φ,φ,φ).  

A event percept get(spock84,pitchfork74,2.75,e) and any other event 

percepts contain the event feature φ (φ…φ, e). 

2. Experiment Methodology 

The experiment in chapter IV is repeated with event segmentation by action, 

actor, event and place individually. The first experiment studies the effect of event 

segmentation on short time series. We continue to use 40 batches of 100 percepts. The 

second experiment studies the effect of event segmentation on longer time series of 

10,000 percepts. We repeat the experiment 20 times. We also ran one experiment of a 

50,000 percept sequence. The attention predictor is used in this experiment.  
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3. Results  

The prediction performance and time performance for short time-series are 

described in Figure 77.  and Figure 78. , respectively. The prediction performance and 

time performance for a longer time-series of 10,000 percepts are described in Figure 79.  

and Figure 80. , respectively. The prediction performance and time performance for a 

time-series of 50,000 percepts are described in Figure 81.  and Figure 82. , respectively. 

 

 

Figure 77.  Effect of event segment on Prediction Accuracy on Pymud short time 
series, 40x100. noEST: no event segmentation. EST Place: Segmentation by 

Place. EST Action: Segmentation by Action. 
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Figure 78.  Effect of Event Segmentation on Computation Time on Pymud Short Time 
Series, 40x100.  

The prediction performance and time performance for the longer time-series are 

described in Figure 79.   and Figure 80. , respectively.  

 
Figure 79.  Effect of event segment on Prediction Accuracy on Pymud short time 

series, 20x10000. 
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Figure 80.  Effect of Event Segmentation on Computation Time on Pymud Short Time 

Series, 20x10000.  

The prediction performance and time performance for the 50,000 time-series are 

described in Figure 81.  and Figure 82. ,  respectively.  

 
Figure 81.  Effect of Event Segment on Prediction Accuracy on Pymud Short Time 

series, 1x50000. 
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Figure 82.  Effect of Event Segmentation on Computation Time on Pymud Short Time 

Series, 20x10000.  

4. Discussion  

On short time series, we observe from Figure 77.  that, the prediction accuracy of 

segmentation by actor and event decreased insignificantly while the prediction accuracy 

of segmentation by action and place deceased significantly. From Figure 78. , the run 

time of all event segmentation experiment register significant decrease. This result is 

encouraging because segmentation by actor and event register significant decreased on 

computation time while achieving similar prediction accuracy.  

On longer time series, we observe that the segmentation by event continue to 

achieve similar prediction accuracy (Figure 79. ) but has a much lower computation time 

(Figure 80. ). This result is expanded on Figure 81.  and Figure 82.  that segmentation by 

event appear to improve on prediction accuracy over a longer time with the run time 

growing much slowly.  

Choosing an appropriate feature for event segmentation is therefore crucial.  
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F. EXPERIMENT ON INTRUSION ALERTS 

A second experiment studied the effect of event segmentation on network 

intrusion detection alerts prediction.  

1. Event Feature 

The relational time-series of Snort alerts also allows several event features such as 

rule ID and protocol. There are more features if we consider more data from the Snort 

alert. In this experiment, we will only look at rule ID and protocol.  

Note that segmentation by ID will not degenerate into a first order Markov model 

when the ID is constantly changing. Recall that in the hierarchical segmentation, we 

segment by time first followed by an event feature. We effectively convert a sequence of 

alerts into a sequence of situation-target tuples. The second layer of segmentation 

provides a tag in each situation-target tuple. Each situation will still contain a set of 

alerts. A constantly changing ID means that the tag for the situation-target tuple keeps 

changing.  

2. Experiment Methodology 

The experiment in chapter V was repeated with event segmentation added. We 

have 16 replications of 1000 alerts each and one run on the entire 16,000 alerts.  

3. Results  

The prediction accuracy and time performance for 16x1000 are given in Figure 

83.  and Figure 84. , respectively. The instantaneous results for prediction accuracy and 

time performance are given in Figure 85.  and Figure 86. , respectively. The 

instantaneous results for prediction accuracy and time performance of 1x16101 are given 

in Figure 87.  and Figure 88. , respectively. 
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Figure 83.  Effect of Event Segmentation on Prediction Accuracy, Cyber, 16x1000. 

 

 

Figure 84.  Effect of Event Segmentation on Computation Time, Cyber, 16x1000. 
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Figure 85.  Instantaneous Result of the Effect of Event Segmentation on Prediction 
Accuracy, 16x1000, cyber. 

 
 

 

Figure 86.  Instantaneous Result of the Effect of Event Segmentation on Computation 
time, 16x1000, cyber. 
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Figure 87.  Effect of Event Segmentation on Prediction accuracy, Cyber Dataset 1 and 
2, 1x 16000. 

 

Figure 88.  Effect of Event Segmentation on Computation Time, Cyber Dataset 1 and 2, 
1x 16000. 

4. Discussion  

We observe that the prediction accuracies are similar for event segmentation and 

for no event segmentation. Event segmentation by Snort ID achieves the most saving on 
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computation time. From the instantaneous results, we can see the computation time for 

segmentation by ID increase much slower than the other two. The time performance for 

protocol, though is significantly faster than the noES, is poorer than the ID because there 

are only three type of protocol: TCP, UDP and ICMP. There are only three lookup tables 

while the ID one has a lot more because of the variety of ID.   

G. CONCLUSION 

In this chapter, we show that we can use the event segmentation to improve the 

current state of the art in relational time-series learning and prediction. We show that 

event segmentation by event and rule ID can help to reduce processing time for Pymud 

and cyber domain, respectively.  

For future works, there are many possible way of improving the event 

segmentation. Kurby and Zacks [2] mentioned that the percept stream can be segmented 

by multiple features and be arranged in hierarchical order.  Our current implementation is 

a two layer system in which, the top layer is segment by a feature and the lower layer is 

segment by a time window. A more complicated hierarchical system can be introduced 

that account for more features, such as place and actor. In addition, the current mean of 

combination is to switch when the accuracy of event segmentation surpasses the one 

without event segmentation. One possible improvement is the switch at the point with the 

difference in prediction accuracy begins to narrow.  
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IX. SITUATION ELIMINATION 

A. INTRODUCTION 

The situation learning approach learns a set of situation-target tuples from the 

relational time series. The number of situation-target tuples increases over time whenever 

new situations are encountered. Figure 89.  shows that the cumulative prediction time 

increases exponentially (top chart) when the number of situation increases (bottom chart) 

linearly. The number of situations is the number of entries in the lookup table.  

 
Figure 89.  Effect of Increasing Number of Situation on the Run Time. 
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In the lookup table, not all previous situations are useful for prediction. Some 

situations are there because of noise. Some situations might be too old to be useful. 

Furthermore, in a relational time series, there is a notion of moving context. Situations 

encountered a long time ago may not be relevant in the current context. These un-useful 

situations could require unnecessary computation time. The objective in this chapter is to 

find a changing minimal set of situations to be kept in the lookup table that corresponds 

to the unknown moving context such that the prediction accuracy will not suffer 

significantly but will significantly improves processing time.  

In the next few sections, we will first discuss how to rank the situations in the 

lookup table. When the situations are ranked, we can eliminate the situation that has the 

least ranking. Next we will discuss several ways to determine when to eliminate situation 

of the lowest rank.  

B. SITUATION RANKING 

To find a minimal set of relevant situations in the lookup table, we have to 

eliminate the less relevant ones. We need a mean to sort the situation by relevancy so that 

we can eliminate situation with low level of relevancy. We can define relevancy by count 

or time or both. 

1. Count 

In the count method, the situations are ranked by their number of occurrence. 

Situations of higher count have a higher probability of occurring, and may therefore be 

more valuable, since a situation that rarely occurs may just be a noise. A tie can be 

broken by using the time. There is a problem that newer situations that occur recently 

may get eliminated because they are among the lowest count.  

2. Time 

In the time method, the situations are ranked by their time of occurrence, or 

update. A situation that occurred recently is more valuable than one that occurred a long 

time ago. A tie can be broken by using the count. There is a problem that the oldest 

situation but high occurrence situation may get eliminated 
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3. Count and Time 

Each situation has two scores, one from time-rank and the other from count-rank. 

These two scores are averaged to form the combined ranking.  Situations that have high 

ranking mean that they occur frequently and recently.  

The combined method is used to generate a relevancy ranking for each situation.  

C. ELIMINATION TECHNIQUES 

When the situations are ranked, we can eliminate the situations that have the least 

rankings. We will now discuss several ways on how to eliminate those low-rank 

situations.  

1. Fixing Memory Size 

The simplest way to eliminate situations is to set a threshold or maximum 

memory size, which is the maximum number of situation we want in our table. When the 

maximum memory size is reached after we added a new situation, we will eliminate the 

one with the lowest rank. We fixed the memory size by a fraction of the length of each 

time series. 

2 Fixing a Fraction of the Cumulative Memory Size of No Elimination 

Instead of fixing the maximum memory size on some constant figure, it might be 

better to use online information to decide whether we should increase or decrease the 

maximum memory size. Hence, the maximum memory size can be based on a fraction of 

the cumulative memory size of the original memory size when no situation elimination is 

used. For example, we can fix the memory size based on 10%, 20%,…, 100% of the 

running number of situation of no elimination. 

3. Consecutive Success (Bit) 

We can also vary the maximum memory size based on the past few predictions 

performances. If we record one correct prediction as 1, and incorrect prediction as 0, we 

have a bit string [b1, b2, …, bn] that describes the prediction results, where n is the 

number of prediction events so far. A new memory size learning method can be based on 
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the number of past consecutive success. If we can achieve a fixed number of consecutive 

successes, we will lower the maximum memory capacity. Let a bit length define the 

number of consecutive success required. Let the number of past consecutive success be c. 

If c == bit length, decrease memory size.  

We introduce bit length learning (BitL), a mode where we attempt to learn a bit 

length instead of fixing it. Bit length learning is described in following algorithms. 

Essentially, if we have successes, decrease memory size, increase bit length. 
 

Algorithm 10: Consecutive success 
Bit_Length ← 1 
At each prediction event: 

If Bit_Length == c: 
            Bit_Length = Bit_Length + 1 

else: 
Bit_Length =  max(1, Bit_Length -1) 

4. Fraction Learning 

Instead of fixing a fraction of the original number of situation, we can let the 

fraction vary according to the prediction performance. If we are getting good 

performance, we can reduce the factor. We use the consecutive method to determine 

when to reduce or increase. For example, if we have c consecutive correct prediction, we 

reduce the factor by a rate r. The algorithm is given below: 
 

Algorithm 11: Factor Learning 
If Bit_Length == c: 
 Factor f =  max(0, f – r) 
Else 
 Factor f =  min(1, f + r) 

5. Gradient of Past Performance 

A measure of efficiency can be computed by dividing the current prediction 

accuracy by the number of situation: e = a/s where e is the efficiency, a is the average 

accuracy after each prediction event, and s is the number of situation after that prediction 

event. Suppose that en is the current efficiency, en-m is the efficiency of the prediction 

event occurred m events before n. A gradient g can be computed between en and en-

m:  g(m) = en - en-m. If g is negative, we can reduce memory size.  
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D. EXPERIMENTAL SETUP 

We test the elimination techniques on two domains: intrusion-alert prediction and 

Pymud percept prediction. For intrusion-alert prediction, we used the two alert sequences 

(dataset 1 and dataset 2) described in chapter 5. Dataset I and 2 are combined to form a 

single dataset. These two dataset contains more than 16,000 of alerts, over 3.5 months of 

network intrusion alerts. The alerts are then broken down into 16 series of 1,000 alerts 

each, numbered 1,2,…,16. A second experiment was run based on 8x2000 percepts. This 

is to test the robustness of the results determined by the first experiment. 

For Pymud, we run the experiments on the relational percept sequence obtained 

from Pymud as described in chapter 4. 

E. RESULTS AND DISCUSSION  

1. Fixing Memory Size 

The prediction accuracy and situation count as a function of fixed memory size 

are as shown in Figure 90.  and Figure 91. . The statistical method of the “student group 

t-test” shows that maintaining a memory size of 100 is enough to have similar accuracy 

for 1000 long alert sequence. The next set of results (Figure 92. , Figure 93. ) is obtained 

from the 8x2000 experiment. Statistical student group t-test shows that maintaining a 

memory size of 200 is enough to have similar accuracy for 2000 long alert sequence. 

From these two tests, we know that there exists a solution that has fewer situation counts 

but similar accuracy. 
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Figure 90.  Effect of Fixing Memory Size on Snort Alert Prediction, 8x1000. 

 
Figure 91.  Effect of Fixing Memory Size on Situation Count, 8x1000. 
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Figure 92.  Effect of Fixing Memory Size on Snort Alert Prediction, 8x2000. 

 
Figure 93.  Effect of Fixing Memory Size on Situation Count, 8x2000. 
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1000 long alert sequence. The results for 8x2000 are listed Figure 96.  and Figure 97. . 

Statistical student group t-test also shows that maintaining a memory size of 10% of the 

original memory is enough to have similar accuracy for a 2000 alert sequence. 

 

 
Figure 94.  Effect of Fixing a Fraction of Memory Size on Snort Alert Prediction, 

8x1000. F0.1 Means 10% of the Original Memory Count. 

 
Figure 95.  Effect of Fixing a fraction of Memory Size on Situation Count, 8x1000. 

F0.1 Means 10% of the Original Memory Count. 
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Figure 96.  Effect of Fixing a factor of memory size on Snort Alert Prediction, 8x2000. 

F0.1 means 10% of the original memory count 

 
Figure 97.  Effect of Fixing a Factor of Memory Size on Situation Count, 8x1000. F0.1 

Means 10% of the Original Memory Count. 
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3. Consecutive Success 

The prediction accuracy and situation count as a function of number of 

consecutive success to eliminate situation for 8x1000 are listed in Figure 98.  and Figure 

99.  while the results for 8x2000 are listed in Figure 100.  and Figure 101. . The student 

group t-test shows reducing the memory size based on the previous prediction outcome is 

enough to have similar accuracy for both 1000 and 2000 long alert sequence. The bit 

learning method appears to achieve the highest number of saving on situation count while 

maintaining similar accuracy.  

 

 
Figure 98.  Effect of Consecutive success on Snort Alert Prediction, 8x1000. BitX 

Means X Consecutive Correct Prediction. BitL Is Variation of Consecutive 
Success Requirement. 
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Figure 99.  Effect of Consecutive Success on Situation Count, 8x1000. BitX Means X 

Consecutive Correct Prediction. BitL is Variation of Consecutive Success 
Requirement. 

 

 
Figure 100.  Effect of Consecutive success on Snort Alert Prediction, 8x2000. BitX 

Means X Consecutive Correct Prediction. BitL is Variation of Consecutive 
Success Requirement. 
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Figure 101.  Effect of Consecutive success on Situation Count, 8x2000. BitX Means X 

Consecutive Correct Prediction. BitL Is Variation of Consecutive Success 
Requirement. 
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fraction by the rate. The prediction accuracy and situation count for 8x1000 are listed in 
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Figure 102.  Effect of Factor Learning on Snort Alert Prediction, 8x1000. R Is the Rate 

of Learning. 

 

  
Figure 103.  Effect of Factor Learning on Snort Alert Situation Count, 8x1000. R Is the 

Rate of Learning. 
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Figure 104.  Effect of Factor Learning on Snort Alert Prediction, 8x2000. R Is the Rate 

of Learning. 

 

 
Figure 105.  Effect of Factor Learning on Snort Alert Situation Count, 8x2000. R is the 

rate of learning 
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5.  Learning Memory Size: Based on Gradient of Past Performance 

In this experiment, we varied the length of the gradient from the current 

prediction event to the previous one prediction event (g2), two prediction event (g3), … 

nine prediction event g(10). gInf is the gradient computed from the current prediction 

event to the first prediction event. gSuccess is the gradient computed from the current 

prediction event to the past few prediction event where there is consecutive prediction 

success. The results are given in Figure 106.  and Figure 107.  for 1000 long sequence 

and Figure 108.  and Figure 109.  for 2000 long sequence. The student group t-test shows 

that gInf and gSuccess are able to reduce the situation count significantly while having 

similar accuracy for both 1000 and 2000 long alert sequence. 

  

 
Figure 106.  Effect of Gradient Difference on Snort Alert Prediction, 8x1000. 
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Figure 107.  Effect of Gradient Difference on Snort Alert Situation Count, 8x1000. 

 
Figure 108.  Effect of Gradient Difference on Snort Alert Prediction, 8x2000. 
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Figure 109.  Effect of Gradient Difference on Snort Alert Situation Count, 8x2000. 
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Figure 110.  Comparison of different Situation Elimination Techniques 

 on Prediction over Time. 

 
Figure 111.  Comparison of different Situation Elimination Techniques on Final 

Prediction accuracies. 
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Figure 112.  Comparison of different Situation Elimination Techniques on situation 

Count over Time. 

 
Figure 113.  Comparison of Different Situation Elimination Techniques on Final 

Situation Count. 
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The next set of results below (Figure 114.  and Figure 115. ) compares the effect 

of fLearning situation elimination with the No-Elimination. The prediction accuracies are 

similar but the computation time has significantly been reduced.  

 

Figure 114.  Effect of Situation Elimination on Prediction Accuracy: 1x15000. 

 

Figure 115.  Effect of Situation Elimination on Computation Time: 1x15000. 
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8. Effect of Situation Elimination on Prediction Accuracy on Pymud 

The virtual environment of the Pymud environment used for this experiment was 

a small one that only has 19 rooms. As a result, the Pymud is a more stationary domain. 

The probability of returning back to the situation is high. Hence, situation elimination 

may not work well. We repeat the above exercise on Pymud but found that none of the 

above elimination methods can provide significant situation reduction while maintaining 

similar accuracy. A selection of some of the better situation elimination techniques on 

Pymud and their associated results are described in Figure 116.  and Figure 117. . From 

these two charts, we can see that as we reduce the situation count, the prediction 

accuracies also reduces accordingly and significantly. Nevertheless, the bit learning 

(black line) method appears to be a good compromise between prediction accuracies and 

situation count. The final prediction accuracies is 12% lower but the situation count is 

reduced by 80%.  

 
Figure 116.  Effect of Situation Elimination on Prediction Accuracy for Pymud: 1x8000 
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Figure 117.  Effect of Situation Elimination on Situation Count for Pymud: 1x8000 
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F. CONCLUSION  

In this exercise, we have shown that we can improve the efficiency of time-series 

learning and prediction on network intrusion-alert predictions by reducing the situation 

and yet, still able to maintain similar prediction accuracy. There are many methods of 

learning the memory size. In the methods that we tried so far, changing the maximum 

memory size by a varying fraction of the original memory size is the most optimal one on 

network intrusion alert predictions.  

Situation elimination is more applicable to a domain that is not stationary. The 

Snort alert prediction is a non-stationary domain because the alerts generated, though 

highly repetitive, only exist in certain time duration and almost never return. This is not 

true in the Pymud domain because the agent can return to the same encounter in which 

previous situations are still relevant no matter how old or how infrequent it can be. 

Nevertheless, we have also shown that situation elimination using bit learning works 

partially for Pymud domain if minor reduction in prediction accuracies can be 

accommodate for faster prediction time.  
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X. DOUBLE-SCOPE BLENDING 

A. INTRODUCTION 

There are four types of blending (simple, mirror, single-scope and double-scope), 

depending on the structure of the input and blended spaces. The structures are defined by 

a set of relations and object constant types. The simple network is one which one input 

space contains the structure while the other input space does not have a structure but only 

object constants and types (role). Mirror-scope is one which all spaces have the same 

structure. In single-scope, both input spaces have different structures. The structure of 

one space (previous situation) is used for the blended situation. In double-scope blending, 

all spaces have different structures. A new structure is generated for the blended 

situation.  

The central idea for double-scope blending is to create a new structure, one that 

we have not seen before, that is useful to reason about a current situation that we have not 

seen before. An example is given in Figure 9.  and shown again in Figure 118. . In the 

figure, we have a current situation that describes a new situation (a Pegasus) that we have 

not seen before. In order to predict its capability, we have to find something similar. 

However, if we could only find a horse and a bird in our previous situation, we can create 

a new structure (or creature) that combines the horse and the bird structures. The new 

structure may allow a better understanding of the new situation. However, the resultant 

meaning of the new structure depends on the parts of the old structures added to the new 

structure. It is possible and common that many structures generated are nonsensical.  

Fauconnier and Turner [42] describe that the Microsoft Windows desktop is a 

double scope blend of an office environment and the world of computer science. Goguen 

and Harrell [48] use double-scope blending for machine poetry generation. Pereira [49] 

generates creative animation characters by blending known characters. Tan and Kwok 

[50] use double-scope blending to generate creative scenarios of maritime terrorism from 

known scenarios.  
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Figure 118.  A Cartoon Example for Double-scope Blending [42]  

Our initial assessment of using double-scope blending on relational time series 

prediction was discouraging because double-scope blending can generate too many 

structures and possibilities such that there is no way to evaluate these structures to 

determine which one should we use to make a prediction. The number of possible new 

structures are in the order of (|n1|+|e1|)(|n2|+|e2|) where n1 and n2 refer to the number of 

constant nodes in situation 1 and 2, respectively, and e1 and e2 are the number of relations 

in situation 1 and 2, respectively. Nevertheless, we could use a very simple form of 

double-scope blending to avoid exponential explosion of possible structures by deviating 

minimally from the most similar situation. We will describe two simple double-scope 

blending: blending of current and previous situation, and blending of two previous 

situations. 
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B. BLENDING OF CURRENT AND PREVIOUS SITUATION 

1. Description 

In our single-scope blending algorithm described in algorithm 5 and 6, constants 

that are of different type will not be bound. Binding of constants that are not the same 

type will violate the single-scope blending because the structure of the selected previous 

situation will be changed. This is true since some bindings of different type are 

nonsensical. For example, IP address should not be bound to a Protocol. A pitchfork 

should not be bound to a dragon. However, some dissimilar type bindings are acceptable 

such as pitchfork and dagger because they share a common higher level: weapon.  

To allow dissimilar type bindings, we need to generate a new structure, a blend of 

the current situation with the previous situation, by changing the type of the constant in 

the previous situation. To avoid nonsensical dissimilar types, we created a classification 

of types to allow dissimilar types to be classified into the same class so that dissimilar 

type from the same class can be bind. The classifications are described in the table. Such 

classification knowledge may be found in dictionary or knowledgebase such as Princeton 

University’s WordNet or MIT’s Semantic Net. An illustration is given in Figure 119. . 

The previous situation has an object constant of type troll while the current situation has a 

goblin. Since both troll and goblin belong to the class “monster”, we allow such binding 

and change the structure of the previous situation to have goblin instead of troll.  

 

Class type 

Weapon Pitchfork Dagger Sword 

Monster Goblin Troll Dragon 

Table 18 Classification of Types by knowledge. 
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Figure 119.  Illustration of Double-scope Blending of Previous and Current Situation 

Situations by Types. 

2. Experiment 

We repeated the experiments described in chapter IV on Pymud. Everything else 

remained the same except that constants that were of different types, but belonged to the 

same class, were allowed to be unified. The objective is to see if we can get better 

prediction accuracy on this type of double-scope blending.  This type of double-scope 

blending is not suitable for the intrusion-alert prediction because different constant types 

cannot be further classified for unification.  

3. Result 

The prediction accuracies for double-scope blending by type and single-scope 

blending for two different relational time-series length are given in Figure 120. . The 

significant test results are given in Table 19. For length 100, there is no statistical 

significant for both paired and group t-test. This is likely due to no encounter of different 

type constant within that short time series. For 1000 length, paired t-test indicates that 

both double-scope blending by type and single-scope blending are different. While group 
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t-test shows that there is no significance difference, it does show a trend of significant 

difference as time-series lengthen. This is likely due to the fact that constant of dissimilar 

types are frequently encountered as time-series lengthened.  

 SSB DSB (Type) 
Paired 0.4982 0.0125 
Group 0.9708 0.8484 

Table 19 Significant Test Comparing Double-scope Blending by Type to Single-
scope Blending. 

 

 

Figure 120.  Effect of Double-scope Blending by Type on Prediction Accuracies. 
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An illustration is given in Figure 121. . Suppose we have identified the most 

similar situation as shown in the left shaded box, with its associated target percepts. The 

similarity score is ¾. Both target percepts have the same number of occurrence of 1. If 

the desired prediction is the second percept, we would be wrong because we would have 

chosen the first one based on the default tie breaking rule. We will look for another 

situation such that when added, will improve the similarity score. We found another 

situation, list at the second row, such that when added into the most similar previous 

situation, and after unification, results in a better score of 4/4. Note that during the initial 

search process for the most similar situation, all previous situations constants would 

already been unified with the current situation. Note that in the final outcome, the second 

target percept “Hit()” is chosen for prediction because it now has a higher occurrence 

count than the target percept Exit().  

 
Figure 121.  Illustration of Double-scope Blending of Two Previous Situation and 

Current Situation. 
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Algorithm 12: Blending Two Previous Situation 
 

scurrent  ← current situation 
smatch   ← previous situation that best match current situation 
θ1={a/b}  ← constant bindings of smatch and scurrent  

such that SUBST(θ1, smatch) = scurrent 
φ1 {a/b} ← percept bindings of SUBST(smatch) and scurrent  

such that smatch.a =  scurrent.b 
Ω1   ← scurrent - SUBST(smatch) 
Sprevious  ← previous situations - smatch 
nunmapped ← |Ω1| 
s2  ← none 
For sp in Sprevious 

θ2={a/b}  ← constant bindings of sp and scurrent  
such that SUBST(θ2, sp) = scurrent 

φ2={a/b} ← percept bindings of SUBST(sp) and scurrent  
such that smatch.a =  scurrent.b 

Ω2   ← Ω1 – (Ω1 ∩ SUBST(smatch)) 
If |Ω2|< nunmapped: 
 s2 = sp 

Ranges = smatch.ranges + s2.ranges 
If smatch.ranges.r1 == s2.ranges.r2 
 P = r1.p + r2.p - r1.p * r2.p 
If tie, increase p by w1 and w2: p += (1-p)*w1*w2 
w1 = n/len(range) where n is the number of terms in range found in 
common percept 
w2 = prior probability of range 

2. Experiment 

We repeated the experiments described in chapter IV (Pymud) and V (Snort 

alert). After the most similar situation was found, we looked for a second situation that 

could best supplement the most similar situation and result in a better situation match. 

When found, the newly blended situation was used for the prediction. Otherwise, single-

scope blending is used. The objective is to see if we can get better prediction accuracy on 

this type of double-scope blending when compared to single scope blending.  

3. Result 

The results of the experiment on Pymud are given in Figure 122.  and the 

significant test results for comparing the difference between double scope and single 

scope blending are given in Table 20. From the group t-test, there is no significant 

difference in all three sequence length. However, the paired t-tests show that there is a 
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significant different for length 100 and 10,000. We notice that there is a trend that the 

double-scope blending prediction accuracy gets better progressively.  
 

 p-value for comparing double and single scope blending 
 100 1000 10000 
paired 0.00 0.32 0.01 
group 0.52 0.95 0.74 

Table 20 Significant Test Comparing Single-scope Blending and Double-scope 
Blending by Blending Two Previous Situations.  

 

 

Figure 122.  Effect of Double-scope Blending (Sup) on Accuracies over Different 
Sequence Length 
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new situation is frequently encountered, double-scope blending tends to perform better, 
However, as the rate of new situation encounter reduces, the prediction-accuracy 
differences eventually converge.  
 

 

Figure 123.  Effect of Double-scope Blending (Sup) on Accuracies over 100,000 
Sequences on Pymud. Double-scope blending (DSB). Single-scope 

blending (SSB). 

 

Figure 124.  Prediction Accuracies Difference over Time 
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Figure 125.  Rate of New Situation Encounter. 
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Figure 126.  Comparison of AAccuracies for SSB versus DSB on Snort Alerts.  
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D. CONCLUSIONS 

We have demonstrated two ways of doing double-scope blending. The first is a 

blend of the selected situation and the current situation. This type of blending allows us to 

bind constant of dissimilar type. Improvement on prediction accuracies have been 

observed on Pymud. We are unable to show this on the Snort alert dataset because the 

constant types cannot be classified into the same class.  

The second type of double-scope blending is the blending of two previous 

situations. We observed that for 100 long sequences, SSB is slightly better, probably by 

chance. For 1,000 long sequences, the performances are the same. For 10,000 long 

sequences, DSB is slightly better. We also show that double-scope blending tends to be 

better when the rate of new situation is higher.  
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XI. SENSITIVITY ANALYSIS 

A. INTRODUCTION 

The problem of time-series learning and prediction has many parts. Its success 

depends on several other variables such as the time window, time of prediction 

occurrence, tie breaking, etc. We will attempt to explore some issues in this chapter.  

B. SITUATION TIME WINDOW 

In all previous experiments described in chapters IV, V and VI, the time window 

has been set to 0.1 sec, which is the window used in Darken (2005). We did some 

sensitivity studies by looking at the prediction outcome with smaller and larger time 

windows.  

1. Experiment 

The experiments described in chapter IV and V were rerun by varying the time 

window at sizes such as 1-percept, 0.01sec, 0.1sec, 1sec, 2sec, 3sec and 4sec.   

2. Results on Pymud and Discussion 

The effect of time window on single-scope blending prediction accuracy on 
Pymud is described in Figure 127. . The statistical significance is described in Table 21. 
We observe that as the time window increases, the prediction accuracy decreases. The 
reason for this could be that the next percept generally depends on closer historical 
percepts. When we reduce the situation size to 1, which represents the shortest possible 
time window, the prediction accuracies is actually higher than the time window of 0.1sec. 
This shows that the occurrence of percepts in the Pymud depends on the immediate 
previous percept. As the time window gets bigger, situation gets bigger, and it becomes 
more difficult to encounter the same situation. The similarity score will generally decline. 

The computation time also increases as shown in Figure 128. . This is because as 
the situation becomes bigger, the number of constant in each situation increases. Recall 
that the time complexity of the attention model is O(n2) where n is the number of constant 
in each situation.  
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Figure 127.  Effect of Time Window on Single-scope Blending Prediction Accuracies in 
Pymud. 

 w-1percept w-0.01 w-0.1 w-1 w-2 w-3 w-4 
paired 0.000 1.00 1.00 0.00 0.00 0.00 0.00 
group 0.147 1.00 1.00 0.62 0.33 0.00 0.00 

Table 21 Significant Test for Effect of Time Window on Single-scope blending 
Prediction Accuracies in Pymud 

 
Figure 128.  Effect of Time Window on Single-scope Blending Computation Time in 

Pymud. 
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3. Results on Intrusion Alerts and Discussion 

A similar experiment was conducted to study the time window effect on intrusion-

alert prediction. The prediction accuracy as a function of time window is as shown in 

Figure 129. , which shows a trend of decreasing prediction accuracy as time window 

increases. The significant for various cases as compared to w-0.1 are as shown in Table 

22. The computation time also increases as a function of time window as shown in Figure 

130. . It is interesting to note that the window of 0.001 has a negative effect on prediction 

accuracy as compared to w-0.01 and w-0.1. This is actually due to the inability to account 

for larger contexture situation when the time window becomes too small.   

 
Figure 129.  Effect of Time Window on Single-scope Blending Prediction Accuracies in 

Cyber. 

 w-0.001 w-0.01 w-0.1 w-1 w-2 w-3 w-4 
paired 0.922 0.991 1.000 0.003 0.001 0.000 0.000 
group 0.922 0.991 1.000 0.524 0.336 0.210 0.145 

Table 22 Significant Test for Effect of Time Window on Single-scope Blending 
Prediction Accuracies in Cyber. 
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Figure 130.  Effect of Time Window on Single-scope Blending Computation Time in 
Cyber. 
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C. TIE BREAKING 

It is possible that several previous situations may share the same similarity score 

when compared to the current situation. Previously, we only used the earliest situation 

found. In this section, we will look at various ways to break ties and to study their effect 

on the prediction accuracy.  

The modes of tie-breakers used in this study are given in the table below 

Modes w-0.001 
Earliest Choose the earliest situation 
Latest Choose the latest situation 
Highest Count & Earliest Choose the situation with highest count 

of occurrence.  Break tie by choosing the 
Earliest situation 

Highest Count & Latest Choose the situation with highest count 
of occurrence.  Break tie by choosing the 
latest situation 

Lowest Count & Latest Choose the situation with lowest count 
of occurrence.  Break tie by choosing the 
Latest situation 

Lowest Count & Earliest Choose the situation with lowest count 
of occurrence.  Break tie by choosing the 
Earliest situation 

Highest Target Percept 
Count 

Gather all target percepts from all 
situations that have the highest similarity 
score. Choose the prediction that has the 
highest probability of occurrence 

Table 23 Description of Tie-breaking Modes. 

1. Experiment 

The experiments described in chapter IV and V are rerun by varying the tie 

breaking mode as describe in Table 23.   

2. Results and Discussions 

The effects of different tie breaking modes for Pymud and intrusion alerts are 

given in Figure 131.  and Figure 132.  respectively. In Pymud, tie-breakers that choose 

the earliest, lowest earliest or highest range achieve the best prediction accuracy.  For 

intrusion alerts, choosing the highest earliest and highest range achieve the best 
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prediction accuracy. It is interesting to note that Pymud favors the situation with lower 

occurrence count while intrusion alerts favor the highest occurrence count. The highest 

target percept count tie breaker appears to be consistently good in both domains. 

 

 

Figure 131.  Effect of Tie-Breaking on Prediction Accuracy: Pymud 40x100. 

 
Figure 132.  Effect of Tie-Breaking on Prediction Accuracy: Cyber 16x1000. 
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D. PREDICTION WITH TIME 

The criterion for evaluating prediction accuracy in the previous experiments was 

very stringent. If the next percept received is not the same as the prediction, we say the 

prediction is wrong. In this sensitivity analysis, we relax the criterion in which, if there 

exists a future percept pi and a prediction pp such that pp = pi and (pp.mt-2st) < pi.time < 

(pp.mt+2st) where mt and st refer to the meant time and standard deviation respectively of 

the time of prediction occurrence. This mean that if the predicted percept occurs at a 

designated range of time in the future, we say the prediction is correct even though it is 

not the next percept received. The range of time is computed based on the expected mean 

time of occurrence with two standard deviations from the expected time.  

1. Experiment 

The experiments described in chapter IV and V are rerun but with the new criteria 

of deciding if a prediction is correct.    

2. Results and Discussions 

The results that compare the prediction accuracies for with and without time 

prediction on Pymud are given in Figure 133. . With time prediction, the prediction 

accuracies improved for all predictors on Pymud, especially the multiple simple Bayesian 

network.  
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Figure 133.  Effect of Time Prediction on Accuracy: Pymud 40x100.  

Prediction accuracy for prediction with time on network intrusion-alert prediction 

is worse off as shown in Figure 134. . This could be due to the time of occurrence hardly 

occurs within the two standard deviations from the predicted occurrence time. If we relax 

the requirement further by saying that prediction is correct if it occurs anytime from 

prediction time to the predicted mean time of occurrence plus 2 standard deviations from 

the mean, the results are shown in Figure 135. . This is a reasonable assumption since if a 

high priority alert is predicted, we may expect it to occur almost immediately instead of 

waiting till the predicted time of occurrence.  Nevertheless, even with more relaxation, 

the prediction accuracy is still not doing better than the next percept prediction.   

Further investigation shows that the non-stationary nature of network intrusion 

alerts causes many situations learnt to have only single occurrence. As such, the standard 

deviation is usually zero. When standard deviation is zero, the time range becomes zero 

and the next percept must occur at the exact time of time prediction. This explains the 

poorer prediction accuracy. 

0.09 
0.11 

0.16 

0.25 0.24 

0.35 

0.10 0.11 

0.29 
0.31 

0.33 

0.40 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

SLT VM MSB SBM VOMM SSB

Fr
ac

tio
n 

Co
rr

ec
t P

re
di

ct
io

n 

Effect of Time Prediction on Accuracy: Pymud 40x100 

No Time

Time



 193 

 

Figure 134.  Effect of Time Prediction on Accuracy: Cyber 161x100. 

 
Figure 135.  Effect of Time Prediction on cyber 161x100: From Prediction Time to 

mt+2sd Where mt Is the Mean Time of Predicted Occurrence Time and sd 
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small for both Pymud and cyber in order to maximize prediction accuracy. However, 

with intrusion alerts, when we reduced the time window to have just one alert, the 

prediction accuracy decreased. We will need to do some pre-testing to determine an 

appropriate window size.  

The second sensitivity study looked at the effect of breaking a tie if more than two 

situations have the same similarity score when compared to the current situation. We 

show that the highest target count tie-breaker works best for both Pymud and cyber.  

We have also explored the effect of time prediction. If we relax the current 

criterion of measuring accuracy, by allowing the predicted percepts to occur in a small 

time period, the prediction accuracy increases on Pymud. The prediction accuracy 

decrease on cyber alert prediction is due to the often novel new situation encountered and 

results in zero standard deviation for the expected time of arrival variation. We need a 

better way to collect the aggregate the data in order to have a more realistic expected time 

of arrival with an interval.  
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XII. CONCLUSION 

A. CONCLUSIONS 

This dissertation addresses the problem of predicting percepts that have not been 

experienced before, by developing algorithms and computational models inspired from 

recent cognitive science theories: conceptual blending theory and event segmentation 

theory. The parts in this dissertation can be summarized in a framework as shown in 

Figure 136. . 

 
Figure 136.  The Framework for Relational Time-series Learning and Prediction. 
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The main contribution of this dissertation is a new class of prediction techniques 

inspired by a cognitive science theory, Conceptual Blending that improves prediction 

accuracy overall with an ability to predict even events that have never been experienced 

before. We also show that another cognitive science theory, Event Segmentation, when 

integrated with the Conceptual Blending inspired prediction techniques, results in greater 

computational efficiency. We implemented the new prediction techniques, and other 

prediction techniques such as Markov and Bayesian techniques, and compared their 

prediction accuracy quantitatively for three domains: a role-playing game, intrusion-

system alerts, and event prediction of maritime paths in a discrete-event simulator. Other 

contributions include two new unification algorithms that improve over a naïve one and 

an exploration of ways on maintaining a minimum size knowledgebase without affecting 

prediction accuracy.  

In Pymud, we observed that single-scope blending prediction technique has 

significantly higher prediction accuracy than other prediction techniques: statistical 

lookup table, variable matching, multiple simple Bayesian, simple Bayesian mixture, and 

variable Markov model. The greedy best-first search is a significant improvement over 

the naïve backtrack technique and the attention model is a significant improvement over 

the greedy best-first search. The attention model is able to scale much better than the 

naïve backtrack and greedy best search method for solving a unification problem. The 

time window has to be small for optimal prediction accuracy and the recommended time 

window is 0.0sec such that every situation contains just one percept. On breaking ties for 

equally similar situation, optimal prediction accuracy was achieved by pooling all targets 

together and choosing the one with the highest number of occurrence. The single scope 

blending prediction technique is slower than other prediction techniques. To improve 

time performance further, we showed that Event Segmentation can help to improve 

computation time. The success of event segmentation depends on the event feature 

chosen. The event feature ‘event’ works well in the Pymud domain but ‘action’, ‘actor’ 

and ‘place’ result in poorer prediction accuracy. Situation elimination is another way to 

improve computation time, by controlling the number of situation in the lookup table 

without affecting the prediction accuracy significantly. We could eliminate less relevant 
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situation-target tuples using the Consecutive-Learning situation elimination technique. 

However, situation elimination is suboptimal for stationary domain such as Pymud. We 

also observed that time prediction works well on Pymud. We also observed that double-

scope blending, by using a type-hierarchical knowledge for searching for unification, 

produced better prediction accuracy on longer time series. Double-scope blending of two 

previous situations may help to improve prediction accuracy at times when the frequency 

of new situation is high.  

In Cyber intrusion-alert prediction, we also observed that single-scope blending 

prediction technique has significantly higher prediction accuracy than other prediction 

techniques: statistical lookup table, variable matching, multiple simple Bayesian, simple 

Bayesian mixture, and variable Markov model. The greedy best-first search is again a 

significant improvement over the naïve backtrack technique and the attention model is a 

significant improvement over the greedy best-first search. The time window has to be 

small for optimal prediction accuracy and the recommended time window is 0.001sec. On 

breaking ties for equally similar situation, optimal prediction accuracy was also achieved 

by pooling all targets together and choosing the one with the highest number of 

occurrence. Event Segmentation can also help to improve computation time in Cyber 

intrusion-alert prediction. The success of event segmentation again depends on the event 

feature chosen. The event feature ‘ID’ and ‘protocol’ work well in Cyber intrusion-alert 

prediction but using the ‘protocol’ did not achieve as much computation time saving as 

using ‘ID’. Situation elimination works much better in Cyber intrusion-alert prediction 

than in Pymud to improve computation time. We could eliminate less relevant situation-

target tuples using the Fraction-Learning situation elimination technique. We also 

observed that time prediction did not works well on Cyber intrusion-alert prediction, 

particularly because many distinct alerts occur only once and does not allow sufficient 

data point to compute the time interval based on standard deviation of the arrival time 

collected. We also observed that double-scope blending of two previous situations may 

help to improve prediction accuracy at times when the frequency of new situation is high.  

In the maritime discrete event prediction, we also observed that the single scope 

blending has significantly higher prediction accuracy. In fact, only single-scope blending 
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prediction technique and variable matching are able to achieve some number of correct 

predictions.   

This dissertation solves the problem of predicting novelty by developing 

algorithms and computational models inspired from recent cognitive science theories: 

conceptual blending theory and event segmentation theory. 

B. FUTURE WORK 

Relational time-series learning and prediction is useful in both virtual and real 

worlds. There are still many areas that have not been explored.  

1. Varying Time Window  

We have shown that the time window is a critical parameter. Instead of fixing it, 

we want an automated way to vary it as the situation evolves.  Further experiments need 

to be done. 

2. Efficient Situation Indexing 

Today, we start searching for situation sequentially. It is possible to index the 

situation to allow efficient search. However, generating an index is itself NP-Complete. It 

will be good to find an efficient indexing method to help to organize the situation 

database. 

3. Mental Simulation 

We have only worked on one-step prediction. Mental simulation is a multi-step 

prediction process. It is useful to extend our work on single step process into multi-step 

prediction and to develop new set of prediction approaches to improve prediction 

accuracy.  

C. TRANSITION 

The algorithms and code developed in this dissertation can be applied to decision-

support systems and can potentially change the current best practice in many domains.  



 199 

1. Online Learning and Prediction of IDS Alerts Cyber Security 

When an intrusion-detection system alert is triggered, damage might already have 

been done. The ability to predict attacks earlier can allow preventive measures. We can 

also use the situations learned on one network domain to be used on another network 

domain. It would be useful to test the prediction algorithm on production network.  

2. A Predictive Approach to Cyber Deception Cyber Security 

Appropriate deception strategies on honeypot are important to fool an attacker 

into certain belief states. A deception strategy should be chosen based on the goal of the 

attackers. However, such goal information is not available. Nevertheless, through 

intrusion-detection system alerts, we can predict the future action of the attacker and can 

better deploy strategy to allow more successful deception such as enticing attackers to 

stay longer or discourage him to stay away.  
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