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Abstract— This paper addresses the problem of target detec-

tion and classification, where the performance is often linted
due to high rates of false alarm and classification error, posibly
because of inadequacies in the underlying algorithms of feare
extraction from sensory data and subsequent pattern claskta-
tion. In this paper, a recently reported feature extraction algo-
rithm, symbolic dynamic filtering (SDF), is investigated fa target
detection and classification by using unmanned ground senso

(UGS). In SDF, sensor time series data are first symbolized

to construct probabilistic finite state automata (PFSA) thd, in
turn, generate low-dimensional feature vectors. In this pper, the
performance of SDF is compared with that of two commonly used
feature extractors, namely Cepstrum and principal componet
analysis (PCA), for target detection and classification. Tree
different pattern classifiers have been employed to comparéhe
performance of the three feature extractors for target detetion

and human/animal classification by UGS systems based on tw

sets of field data that consist of passive infrared (PIR) andeismic
sensors. The results show consistently superior performae of

Asok Ray Soumalya Sarkdr Thyagaraju Damarfa Nasser M. Nasrabatli

ication; Unattendeou@d Sensors: Border Control

the real-valued signal into complex-valued analytic sigona
extract the phase information [8]. In the SDF-based feature
extraction, the time series data are first converted intobgym
sequences, and then probabilistic finite-state autom#&aApP
are constructed from these symbol sequences to compress the
pertinent information into low-dimensional statisticaltyerns.
More recently, SDF-based feature extraction from (wavelet
transformed) time series has been proposed by Jin et al. [9]
for target detection and classification in border regiortse T
rationale for using wavelet-based methods is time-frequen
localization and denoising of the underlying sensor tinteese
However, this method requires selection and tuning of séver
parameters (e.g., wavelet basis function and scales) doaki
o Pre-processing in addition to the size of the symbol alphabe
that is needed for SDF.

Feature extraction based on the concept of Cepstrum [10]

SDF-based feature extraction over Cepstrum-based and PCA- has been reported as a conceptually simple and computa-

based feature extraction in terms of successful detectiorfalse
alarm, and misclassification rates.

. INTRODUCTION

Several feature extraction methods have been propo%
to generate patterns from time series data for classifitati
purposes. The well-known kurtosis method [1] provides a st
tistical measure of the amplitude of the time series. In lagiot
method [2], a feature vector is constructed using the spectr
where the power spectral density and the wavelet coeffiie
are used along with principal component analysis for featuf
extraction; similar time-frequency domain methods havenbe

proposed by other researchers [3], [4]. Recently, feature

traction from time series of robot motion behavior has be&t®
proposed by Mallapragada et al. [5], based on symbolic dg/
namic filtering (SDF) [6], [7], where the time series data ever

preprocessed by Hilbert transform that requires conversfo

tionally efficient tool for use in pattern classification J11

The objective of the current paper is to make a comparative

evaluation of Cepstrum-based, PCA-based, and SDF-based

feature extraction for target detection and classificatiothe

o&der regions using unattended ground sensor (UGS) system

owever, unlike the previous work of Jin et al. [9] and
allapragada et al. [5], this paper has used direct pantitip

and symbolization on time series data for feature extractio

without performing the wavelet transform or Hilbert tramsh

rtn?r signal pre-processing. The rationale is to make SDF com-

arable to Cepstrum and PCA for feature extraction, which do

not usually preprocess the time series. In this case (iighout

ewavelet-transform or Hilbert-transform pre-processirighe
ignal), the SDF-based feature extraction method has only a

ingle parameter to tune, which is the (finite) cardinalityhe

ymbol alphabet; this is computationally more efficientntha

if wavelet or Hilbert transformation is used. For companiso

of the Cepstrum-based, PCA-based, and SDF-based feature
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has been evaluated on the same sets of field data in conjanctio
with the sparse representation (e.g;;optimization) [12],
support vector machines (SVM) [13], adnearest neighbor
(k-NN) [13] as the pattern classifiers. These three pattern
classifiers have been employed to compare the performance of
the feature extractors for target detection and human&nim
classification by unattended ground sensor (UGS) systems
based on two sets of field data that consist of passive idfrare
(PIR) and seismic sensors as explained below.

Tools of target detection and classification by unattended
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ground sensor (UGS) systems have been extensively usedvi®re F'(w) is the Fourier transform of the signglt); the
monitor human activities for border security; typical exdes operator #—! is the inverse Fourier transform; arf(z)

of UGS are seismic and Passive Infrared (PIR) sensonsdicates the real part of a complex scatar

Seismic sensors are suitable for long-range target detecti A slightly modified version of this algorithm is used here.
because they are relatively less dependent on exogengiter obtaining the Fourier transform of the signal, freqog
disturbances (e.g., Doppler effects), as compared to ticousomponents with small values are discarded before takiag th
sensors [2] that are prone to contamination by environnheniiaverse Fourier transform to prevent high unimportant comp
noise. In contrast, PIR sensors are well-suited for motierents from gaining higher Cepstrum values. After finding the
detection and has the advantage of low power consun@epstrum features, the firdf. components are used as Cep-
tion [14]. Nevertheless discriminating human footstemalg strum features for classification. Algorithm 1 for Cepstrum
from other target types and noise sources is a challengibgsed feature extraction is presented below.

problem, because of the rapidly decreasing trend of signal t

noise ratio (SNR) as the distance between the sensor and Afgorithm 1 Cepstrum for feature extraction

moving target increases. Furthermore, the footstep sdreale Input:_Time series data selse R'*N; Cut-off sampleN, (where N, <
dissimilar signatures for different environments and pess N); and dimension of the Cepstrum featuke. (where N. < Ny).”

which make the problem of target detection and classifinati®utput: Extracted Cepstrum-based featyre R'*Ne of the time-seriesc
even more challenging [15]. 1: uCjclni)ute tr}sf magnitude of FHF'(w)| of the given time series where
In contrast to the Cepstrum-based and PCA-based featurestore the firstv; frequency components and discard the rest

extraction, the advantage of the SDF-based algorithm is th& Computef.(t) = R (F~! (log [F(w)[)) ;¢ = 1,..., Ny

it takes into account the local information of the signal dénd % ComPpute the featurp = [fe(1) fe(1) ... fe(Ne)]

is capable of mitigating noise in the data even if the signal

is not pre-processed for denoising. It is shown in a later

section of the paper that the SDF-based feature extraction

yields superior successful detection, false alarm, andative B. Principal Component Analysis for Feature Extraction

correct classification rates compared to Cepstrum-based an|p:s subsection briefly describes the principal component

PCA-based feature extraction. _ o _analysis (PCA) for feature extraction, which has been widel
This paper is organized into five main sections includingsed in diverse applications [13]. While the Cepstrum-base
the present section. Section |1 briefly describes the &lgoS  fo4¢yre extraction makes use of only the information imlsetld
of Cepstrum-based, PCA-based, and SDF-based feature jg%; time series, PCA takes advantage of the informationef th
traction. Section Il succinctly discusses the the threepa  ensemple of training data in addition to the local inforrati
classification algorithms that have been used in this papgy. exiract the features [13]. Let the training data sets, (i.e
Section IV presents the results of target detection andi€las ihe ensemble of time series) be organized ag&hx N)-
cation based on two sets of field data of passive i”frared)(m&r_nensional data matrix, wher® is the number of training

and seismic sensors. Section V summarizes and concludes Eﬂta sets andV is the length of each data set (i.e., 1-D time

paper with recommendations for future research. series). For the detection problem, the training data stesi
of both “No Target” and “Target Present” classes while, ia th
Il. FEATURE EXTRACTORS human/animal classification problem, the training datesisia

only of samples from the “Target Present” class.

Feature extraction from sensor signals is an important ste . .
in target detection and classification which is accomptishe H_etX be the centered version of the origifal x IV) data

in this paper by three alternative algorithms, namely Ce‘r)r]at_rlx, where each row oX IS an individual data sa_mple
with zero mean. In the application of target detection and

strum [11], PCA [13], and SDF [6]. While the details of” " .\ “° . ;
these algorithms have been reported in earlier publicatior?las‘c"f'cat'on’M is often smaller thanv, i.e., the number

this section briefly reviews the underlying concepts of deat of training §gmp|es are fewer. than the length of time-series
Tglerefore, it is numerically efficient to analyze th&l x M)

extraction from sensor time series for completeness of this . T y
paper and lists the algorithms that have been used in thisrpa{rﬁatr'x (1/M)X X" that has the Same nonzero e?envalues as
: e (N x N) computed covariance matrix /M)X* X [13].
for feature extraction. . .
Let v; be the normalized eigenvectors of the real symmet-
ric matrix (1/M)X X7 corresponding to the (real positive)
A. Cepstrum for Feature Extraction eigenvalues\; that are arranged in the decreasing order of

This subsection briefly describes the Cepstrum-based f&32gNItude, i.e.A; = Ay > -+ > Ay Letm be the smallest
eger such thap ", A\, > n)> .7, A\; wherel < m < M,

ture extraction that has been widely used in speech rec&% - = .
nition and acoustic signal classification [10]. Given a sign'/nere the threshold parametgris a real positive fraction
f(t), t = 1,...,N, Cepstra are usually computed in thé:lose to one. The corresponding (nprmaﬁzed) eigenveetprs
following form [16], which is used in thecepsMatlab func- " the original data space are obtained in terms,oénd A;
tion (http://www.mathworks.com/help/signaliref/rceptal): 2 follows [13][5]:

1 :
folt) = R (F~" (log |F(w)))) (1) wi= = XM= 1.2, m. @




The PCA projection matri¥¥ € RV*™ is then obtained by
grouping the computed eigenvectors as follows:

Symbol Sequence
LySyyBBaPPyys...

8
Y M‘M‘W\W’f"i}‘WM’\“\W\MWMWH“\‘W‘MI

il L
W = [urus . .. tn] 3 Ak .
The PCA-based feature vectorc R'*™ for a given (train or - §§
. . . . . Partitionil ibl d c
test) time-series: € RV is then computed by projection artitoning of (possibly processec) £%
as follows: ZE
p=aW. (4) Statistically Stationary E 2
>0, Probability Histogram g
Algorithm 2 for PCA-based feature extraction is presented 3 ¢
below. 8 o
% Zi | | P(‘hﬂ‘h) P(q%kh)}
Algorithm 2 Principal component analysis for feature extraction el I = = B ' Plala) -~ P@alas)
q; 9z d3 4 s .
Input:  Training time series data setg € R'* j =1,..., M; Tolerance PESA States State Transition Matrix
n € (0,1); and test time series data seg R *N . ) NP
Output: Extracted feature vectqy € R1X™ for the time-series Fig. 1. Concept of symbolic dynamic filtering (SDF) as a featextractor
1: Construct the “centered version” training data maXixc RM <N where
each rowx; has zero mean.
2: Compute the matri = (1/M)XX”™ h (signal) val rr ndin h Il where i n
3: Compute the normalized eigenvectdrs; } of S with their corresponding eac .(S gnal) value CO. esponding to t. e ce ere it tgso
eigenvalues{)\; } in the decreasing order of magnitude (Details are reporte_d in [7].) Thus, a (ﬂmte)_array of syrsho
4: Compute the normalized eigenvectars = \/ﬁ(x)TW called a symbol string (or symbol block), is generated from
5: Find the smallestn < M such that>> "™ | X; > 3M A the (finite-length) tlm_e Se”e$ data. » )
6: Construct(N' x m) projection matrixW = [ug, us, ..., Um] The ensemble of time series data are partitioned by using a
7. Generate(1 x m) reference patterng = xW partitioning tool (e.g., maximum entropy partitioning (IREor

uniform partitioning (UP) methods [7]). In UP, the partitiog
lines are separated by equal-sized cells. On the other hand,
) o i MEP maximizes the entropy of the generated symbols and
C. Symbolic Dynamic Filtering for Feature Extraction therefore, the information-rich cells of a data set areipart
This subsection succinctly presents the underlying cancdipned finer and those with sparse information are parttibn
and theory of symbolic dynamic filtering (SDF) [6] for extraccoarser, i.e., each cell contains (approximately) equaiber
tion of (low-dimensional) features from time-series daia. of data points under MEP. In both UP and MEP, the choice of
stated earlier in Section |, the SDF algorithm reported i) [6alphabet sizeX:| largely depends on the specific data set and
[7] includes wavelet-transformed pre-processing of digba the allowable error of detection and classification.
facilitate time-frequency localization and denoising wéver, In this paper, MEP has been adopted as the partitioning
inclusion of wavelet transform requires tuning of addiabn tool to accommodate sparsity of the time series data to be
design parameters, such as the wavelet basis and a sesywhbolized. For the purpose of pattern classification, the
scales. Since multiplicity of selectable parameters dmme training data set is partitioned with a given alphabet size
the ease of usage and may affect the performance of {h# that is selected by trade-off between information loss
algorithms, this paper has applied SDF directly on the timenhd computational complexity [7] and the partitioning is
series data (i.e., without wavelet preprocessing) to maiéra subsequently kept constant for the test data.
comparison of the three feature extraction methods based o2) Construction of probabilistic finite state automata

the same sets of data. (PFSA): The core assumption for construction of probabilistic
The pertinent steps of the SDF procedure for feature extrdictte State automata (PFSA) is that the symbolic process for
tion are delineated below. different classes of targets can be approximated as a Markov

1) Symbolization of Time Seriehis step requires parti- chain of orderD, called theD-Markov machine, wheré is
tioning (also known as quantization) of the time series .data positive integer. While the details of tie-Markov machine
The signal space, approximately represented by the tgnini@re given in [6], the pertinent information on the constiarct
data set, is partitioned into a finite number of cells that ad a D-Markov machine is presented below.
labeled as symbols, i.e., the number of cells is identically A D-Markov chain is a statistically (quasi-)stationary
equal to the cardinality>| of the (symbol) alphabeE. As stochastic procesS = ---s_1s9---s1---, Where the prob-
an example for the one-dimensional sensor time series dakility of occurrence of a new symbol depends only on the
in Fig. 1, the alphabeE = {a,3,7,6}, i.e., |¥| = 4, and lastD symbols, i.e.,
three partitioning lines divide the ordinate (i.e., y-a»a$ the
time series profile into four mutually exclusive and exhiest
regions. These disjoint regions form a partition, wherehead he construction of a D-Markov machine is based onst@te
region is labeled with one symbol from the alphaketif the splitting that generates symbol blocks, also called words, of
value of time series at a given instant is located in a pddicu different lengths according to their relative importaneed
cell, then it is coded with the symbol associated with thdi) state merginghat assimilates histories from symbol blocks
cell. As such, a symbol from the alphahkgtis assigned to leading to the same symbolic behavior [17]. Words of length

P[Sn | Sn—1"""Sn—D ] = P[Sn | Spn—1""" Sn—D]



D on a symbol string are treated as the states of fhe  3) Formulation of SDF-based feature extraction algorithms
Markov machine before any state-merging is executed. Th$ie SDF-based feature extraction is executed as a contdoinati
on a (finite) alphabet with cardinality:|, the total number of of two algorithms:

possible states is less than or equadt¢”’; and operations of o Maximum entropy partitioning (MEP) of time series data.

Ztateh merglylng TDay' S'Q”'f'camg’ reduce the number Ct’)f that(e;s.. Symbolic dynamic filtering (SDF) for feature extraction,
As the value ofD is increased, more memory is imbe el which makes use of the MEP algorithm.
in the Markov states of the PFSA. However, the benefits _ _
of having additional memory associated with a larger value Algorithm 3 and Algorithm 4 for SDF-based feature extrac-
of D could be offset by the increased computational loaton are presented below.
So, one must make a trade-off between the two competing
requirements of: Algorithm 3 Maximum entropy partitioning
o Capturing information from the time series, and Input: Finite-length stringy of time-series data; and number of symbai}
« Reduction of computational complexity in terms of memQutput: Partition vector € I+ .
. . . . . 1: Sort the time series data stringin the ascending order
ory requirements and execution time in the constructio: | ¢ x=length)
of D-Markov machine algorithms. 3: Assigngp(1) = y(1), i.e., minimum element of

The PFSA states represent different combinations of words " Zfz 0|2 d_o (i-1)*K
on the symbol sequence. In the graph of a PFSA, the dired- #(?) =V (Ce"< =] ))
tional edge that interconnects a state (i.e. a node) to enothgf i”d_fm ) = _ ement
state represents the transition probability between thgges. _- ASS9N@(X[ + 1) = y(K), ie., maximum element of
Therefore, the “states” denote all possible words within a
window of certain length. In this paper, the word sizeis
taken to be 1 and hence the number of possible states '?’ e%abrithm 4 Symbolic dynamic filtering for feature extraction
to the number of symbols; therefore, the results reportéiisn nout Training T . N ,
.. . nput: Training time series data sets € R ,j=1,..., M, atesttime
paper are limited td) = 1. However, in general, larger values " series data set € R*~, and number of symbol&|
of the integer parametdp (i.e., D > 1) might be necessary to Output: Extracted SDF-based feature vecgoe R'*I>! for the time-series
capture the long time-scale information about the prockss.  *
. . s . 1: Initialize y = 0
iS .noted that the operations of state spllt_tlng and Stat@mgr 2 for j =1t M do
might be necessary for PFSA construction with> 1, while 31 y=yUx;
these operations are not required for= 1 [17]. 4-endfor . . "
. . 5: Partitiony using Algorithm 3 to obtain the (common) partition vector
As a consequence of havirg = 1, the number of states is g yse, on the test data setto obtain the symbol string
equal to the number of symbols, i.6Q| = |X|, where the set 7: Construct the (irreducible) state transition probapitnatrix IT by using
i i __ Egs. (5) and (6)
of al.l possible states is .d(.anOted @s={q1, ¢, -, q‘Q‘} .and . Compute the (sum-normalized) left eigenvecpocorresponding to the
|Q| is the number of (finitely many) states. The (estimated) (unique) unity eigenvalue oft

state transition probabilities are defined as:

N (qla (Ik)
i=1,2,...,| Q| N (QZan’)

pla|a) = 5 Vg, € Q  (5)

where N (qi, gi.) is the total count of events when. occurs Ill. TARGET DETECTION ANDCLASSIFICATION
adjacent tay; in the direction of motion. Having computed alll
these probabilitiep (¢x | ;) Vi, ¢ € Q, the (estimated) state
transition probability matrix of the PFSA is given as

Two classification problems are addressed in this papér, bot
of which are of binary type. In the first problem of target
detection, the output of the classifier is either “no targmt”

(1| 1) e.p (q|Q| | ql) “target present”; and the second problem is about clasgjfyi
M= | : o . g) thetargetas “human”or“animal” led by a human. In an earlier

' o publication [9] on this topic, these two classifiers are eeorr

D ((h | QIQ|> P (QIQI | qIQI> lated, i.e., the humapanimal classification is performed only

By appropriate choice of partitioning, it is ensured tha thafter a target is detected, regardless of whether this tigtec
resulting Markov chain model satisfies the ergodicity cendis correct or false. However, the current paper treats ttvese
tions, i.e., the stochastic matriX is irreducible. The rationale classification problems separately, because the maintolgec
is that, under statistically stationary conditions, thelyability here is to compare the performance of Cepstrum, PCA and
of every state being reachable from any other state withBDF as feature extractors and thus treating the detectidn an
finitely many transitions must be strictly positive [18].rF@ classification problems separately would yield unambiguou
given time series, after the matrif is constructed, its left comparison. In this context, three different classifierat th
eigenvectomp corresponding to the (unique) unity eigenvalubave been used in conjunction with each of Cepstrum, PCA
is computed. Then, the vectpr which is the stationary stateand SDF feature extractors are: (i) support vector machines
probability vector, serves as the “feature” vector extdct (SVM) [13], (ii) k-nearest neighbor (k-NN) [13], and (iii)
from the time series as seen in Fig. 1. This feature vectgparse representation classifier (SRC) [11] that are briefly
p is used for pattern classification in the sequel. reviewed in the following paragraphs.



A. Support vector machine (SVM) and k-nearest neighbor @arting point; all targets passed by the sensor sites atandie
NN) algorithms of approximatelys meters. Signals from both PIR and seismic

The SVM and k-NN algorithms are among the most freS€nsors were acquired at a sampling frequency of 10 kHz and
quently used tools of pattern classification [13]. FeNN, the €ach test was conducted over a period of approximately 50
neighborhood sizé is preferably kept small to avoid the over-S€conds.
fitting problem. Similar to the earlier work of Jin et al. [9], The field data set #1 was collected on three different days,
the SVM method has also been used in the current papefdgy#1, Day#2 and Day#3, from test fields on a wash (i.e.,
regenerate the results and compare the performance with off€ dry bed of an intermittent creek) and at a choke point
classification algorithms. A Gaussian kernel has been umed §i-€., & place where the targets are forced to go due to rerrai

with UGS systems. four different days, Day#1, Day#2, Day#3 and Day#4, from

test fields on different types of terrains such as wash, arail
watering stations. Table | lists the numbers of differebelad
] ) ] scenarios for each day for both data sets #1 and #2.

The SRC algorithm was first used for solving the prob- rpe gata sets #1 and #2 have been analyzed for performance
lem of face recognition [12], where a large matk =  omparison of the feature extractors, Cepstrum, PCA, arfd SD
(A1 - 'AC]' consisting Of, the training data,' 1S constru.cte% conjunction with the (binary) classifiers, SVM, k-NN, and
where A;,i € {1,---,C} is a (n x N;) training matrix sgc that have the following respective design parameters:

consisting of the training samples belonging to tifeclassn ] . . o
is the dimension of the feature vector, aNd i € {1,--- ,C} o SVM: Variance of the. Gaussian kernel and regularization
parameter [21], [13] ;

is the number of training samples in the clasandC is the . .

total number of class Iagbels. ﬁ is assumed that a test samplé k'NN.: Neighborhood sizé [13];
from the i** class lies approximately within the subspace °.SRC' Error upper b.oune.i [11]. ]

formed by the training data of thé" class. For a given test Figure 2 presents typical time series and extracted feture
vectory in the sparse classification algorithm, the followindgfom PIR and seismic sensor signals, where individual rows

B. Sparse representation classification (SRC) algorithm

¢,-optimization problem [19] needs to be solved as: represent different scenarios and the individual colurepsa-
. sent the following: sensor signals in Column 1 along with the
min [|z{[¢, such thaty — Az|[,, <e extracted features generated by Cepstrum in Column 2, PCA

In the above optimization problem, the user-selected param N Column 3, and SDF in Column 4.

¢ is a representative of the upper bound of the noise spectrunk€t V1 be the total number of test samples for the Class
in the data [20], where the optimal solutianof the above 1 farget and let,, (where0 < n, < N;) be the number of

¢, optimization is shown to be a sparse vector. Fore m|sgla§5|f|cat|ons of the Clagstarget as belonging to Class
RM, where M is the total number of training samples, leg: Similarly, let N> and n, (where( < n, < N») be the
5;(z) € RM be a new vector whose only non-zero elemenforresponding p'arameters for the Clasa.rget. The 'goal is
are the entries in: that are associated with clagsin A. O selectthe design parameter of a classifier by making a-trad
In the noiseless scenario, if the test datdelongs to the Off between two conflicting objectives of minimizing missia
it class, thens;(z) should be a zero vector for all possibles'f'cat'ons of Classl and C_Iass2 targets, i.e., classifying a

j # i. However, since noisy data are encountered in real-lifgrget to one class when it truly belongs to the other class.

A n A n . .
applications, the residualg — As; (z)||» needs to be computed-€t £1 = & and P> = = be the estimated probabilities of
for classification of the test sampleand the label of the test Misclassifying Class and Clasg targets, respectively. In this

vectory is predicted as the argumeittthat is the minimizer context, the composite objective function is selected tabe
of the residuals. weighted linear combination of the misclassification rates

One of the mgin advantages of th(_e SRC algorithm is that J(@) = aP, +(1—a)Ps @)
a careful selection of the features is not necessary. What
is critical, however, is whether the number of features isherea € (0, 1) is the (user-selected) trade-off parameter; and
sufficiently large and whether the sparse representationJi§y) is the cost functional to be minimized with respect to the
correctly computed. The SRC algorithm is also robust iclassifier design parameter. Depending on how the parameter

dealing with noisy data [20]. is selected, minimization of (o) may lead to different optimal
solutions forP; and P,. Given N; and N, and selectingy =
IV. RESULTS AND DISCUSSION (73%;) the cost functionall in Eq. (7) become{%

This section presents the results of target detection athgt is the total misclassification rate of combined Classid
classification, which were generated from two sets of fieldlass2 targets.
data, each consisting of time series generated from passivé&or each field data set, parameters of the feature extraction
infrared (PIR) and seismic sensors in different sensos.sitalgorithms are chosen by numerical experiments and are kept
Each of the test scenarios consists either of the two clasgasriant for all tests. For Cepstrum method (see Algorithm
of targets: (i) human walking alone, and (ii) animal led by @ Section 1), N. and N, are set to 100 and 150, respec-
walking human. These targets moved along an approximatélely. Thus, the number of Cepstrum features is 100 for
150 meters long trail and returned along the same trail to theth detection and classification. For the PCA method (see
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(b) Typical seismic sensor signals: “Human target” (top y@amd “Animal target led by a human” (bottom row)

Fig. 2. Sensor signals (Column 1) along with the extractedufes generated by Cepstrum (column 2), PCA (column 3) &t (Solumn 4)

Algorithm 2 in Section 1), 96% of the total variance is used\. Target detection

as the cumulative proportion to select the number of pracip ] )
components which, in turn, is the number of PCA features 1able Il shows averaged confusion matrices for the target

used for both target detection and classification. For SDREtection problem for each of the three feature extractors,
based feature extraction (see Algorithm 3 and Algorithm 4 ¥fhere the upper part pertains to data set #1 and the lower
Section I1), alphabet siz&| = 20 has been used for detectiorPa't 10 data set #2. These confusion matrices are obtained by
and || = 30 for classification. In the training phase, for €2PPying the SRC classifier individually on PIR and seismic
finite set of test samples in each class, the design param&f@isor data when, in the cross validation process, theaespe
of each of the three (binary) classifiers, SVM, k-NN and SR(tfye data on each of the single days are used for testing &nd th

is determined by minimizing the total misclassificatioreras '€maining data for training; the results of each test seenar
explained above. are then summed up to form the respective confusion matrix

in Table Il. Each column of the twelve confusion matrices
(i.e., six confusion matrices for each data set) represents
A three-way cross-validation, based on the data collect8te instances in a predicted class of “No Target” or ‘Target
on three days for the data set #1, has been used to asses®i@gent,” and each row represents the instances in an actual
performance of the three feature extractors, Cepstrum, Pclass (i.e., the ground truth). For data set #1, out of a tftal
and SDF, for target detection and classification by using tin220 scenarios for PIR sensors, Cepstrum and PCA yield 196
series data from PIR and seismic sensors. The data setsai@ 179 correct decisions, respectively, while SDF makés 21
divided into three sets by date, i.e., first data from Day 1 as@rrect decisions; the corresponding number for data set #2
Day 2 are used for training and the classifiers are tested ®i¢: out of a total of 420 scenarios for PIR sensors, Cepstrum
Day 3. This process is repeated for two other combinatia)s: @nd PCA yield 340 and 328 correct decisions, respectively,
Day 3 and Day 1 data as training data and Day 2 as test dahjle SDF makes 415 correct decisions. The results areaimil
and (b) Day 2 and Day 3 data as training data and Day 1 as t@stseismic sensors.
data. Thus, three different combinations of training arstire Table 1ll summarizes the average rates of successful target
have been performed for the field data set #1. Similarly,Her t detection, false alarm, and wrong detection by cross-aabd
data set #2, a four-way cross-validation has been used bafedboth data sets #1 and #2, when either Cepstrum, PCA
on the data collected on four days to assess the performaaceSDF is used as the feature extractor for target detection
of the three feature extractors, Cepstrum, PCA, and SDF, falong with the three different classifiers: SVM, k-NN and
target detection and classification from both PIR and seisn8RC. In terms of wrong detection, the performance of SDF is
sensor data. Thus, four different combinations of trairang significantly superior to that of both Cepstrum and PCA for al
testing have been performed for the field data set #2. three classifiers. It is seen that, for data set #1, SDF hidegle



higher successful target detection rates than Cepstrum aedonds while the feature for each test sample was genémated
PCA with consistently small false alarm rates. It is alsonsedess thari0 microseconds. Finally, The training phase for SDF,
that, on the average, SDF vyields better results than Cepstrwhich includes partitioning of the data set and extractiobn o

and PCA for data set #2. features for the training samples, toek2.4 seconds while the
feature of a test sample was generated-i37 milliseconds.
B. Target classification Therefore, for real-time applications, the operations othb

%DF and Cepstrum are performed in the order of milliseconds

Table 1V shows averaged confusion matrices with the SFio extract features from test time series with a slight athge

classifier for classification of human versus animal led b[ ward Cepstr d PCA is the fastest b + onl
human, using PIR and seismic sensors, respectively, fdr eac pstrum, and FLA 1S the fastest because 1t only
accounts for a linear projection for extracting the feagure
of the three feature extractors, where the upper part pertai
to data set #1 and the lower part to data set #2. The re-
sults are obtained by applying SRC individually on PIR and , SUMMARY, CONCLUSIONS AND FUTURE WORK
seismic sensor data when, in the cross validation process,
the respective data on each of the single days are used fofhis paper presents a comparative evaluation of Cepstrum,
testing and the remaining data for training. Each column pfincipal component analysis (PCA) and symbolic dynamic
the twelve confusion matrices (i.e., six confusion masit@ filtering (SDF) as feature extractors for target detectiod a
each data set) represents the instances in a predictedoflasdassification. All three methods have been tested on twa dat
“Human” or “Animal,” and each row represents the instancests, consisting of passive infrared (PIR) and seismicasens
in an actual class (i.e., the ground truth). For the data et #ollected from different fields. The underlying algorithroi
out of a total of 110 scenarios for seismic sensors, Cepstriieature extraction have been executed in conjunction with
and PCA yield 76 and 62 correct classifications, respegtivethree different classification algorithms, namely, suppector
while SDF makes 84 correct classifications; the correspmndimachines (SVM), k-nearest neighbor (k-NN), and sparse rep-
number for data set #2 are: out of a total of 220 scenarios f@sentation classifier (SRC). Cross-validation has beed us
seismic sensors, Cepstrum and PCA yield 119 and 109 correctassess the performance of Cepstrum, PCA and SDF as
classifications, respectively, while SDF makes 158 correfgature extractors for both PIR and seismic sensor data sets
classifications. The results are qualitatively similar IR The results show consistently superior performance of SDF-
sSensors. based feature extraction over both Cepstrum-based and PCA-
Table V summarizes the average rates of successful huni@sed feature extraction in terms of successful detedadtse
classification, false alarm, and misclassification by crosalarm, and wrong detection and classification decisiong Th
validation for both data sets #1 and #2, when either Cepstrurationale for superior performance of SDF over Cepstrum and
PCA or SDF is used as the feature extractor for target detectPCA as a feature extractor is presented below.
along with the three different classifiers: SVM, k-NN and Cepstrum features are extracted using only the local in-
SRC. In terms of misclassification in each of the data seftfrmation of a given time series without making use of the
#1 and #2, the performance of SDF is significantly superigfaining data. In contrast, PCA utilizes the training data t
to that of both Cepstrum and PCA for all three classifiers. find the linear transformation and approximates the sulespac
It is also observed that, in most of the scenarios, usage which most of the variance of the training data lies.
of PIR sensors resulted in better classification performanalthough this is an advantage of PCA over Cepstrum, a linear
compared to that of seismic sensors for both detection amdnsformation is not necessarily a good method of feature
classification. Better results are expected if fusion téphes extraction from the data; this might indeed be a possiblsmea
are employed to take advantage of the cross-correlated infof degraded classification performance of PCA. On the other
mation of the sensors, which is a topic for future research.hand, SDF is a nonlinear feature extraction algorithm that
extracts the pertinent information as a feature vector aakbs
C. Computational costs use of the full training data to find the appropriate pantitiy

This subsection presents a comparison of the computatioﬂ?afhe_teSt time series. ) ) )
costs (i.e., execution time) of the three feature extractio 'oPics for future research in this area include further
algorithms under consideration. To this end, typical satigh theoretical study on refinement of the SDF algorithms and
costs have been generated based on a data set consistinielsk testing under different environments. In this regaad,
156 sets of time series as training samples and 64 diffeetnit JEW key topics are delineated below.
of time series as test samples. The results have been getheratl) Investigation of the impact of finite length of training
on a single core of a 2.13 Ghz CPU with 6 GB memory. It is and test data sets on classification performance [22][12].
noted that each of PCA and SDF has a training phase whict2) Comparison with additional methods of feature extrac-
is usually performed off-line, while Cepstrum treats tiagn tion (i.e., besides Cepstrum and PCA) in conjunction
and test samples uniformly. with other classification algorithms (i.e., besides SVM,
In the experiments, the Cepstrum features were extracted k-NN and SRC).
in ~ 16 milliseconds for each time series. The training phase 3) Development of a rigorous field test procedure for vali-
for PCA, which includes finding the projection matrix and dating robustness of SDF-based feature extraction under
extracting the features for the training samples, took .8 different environmental conditions and data types.



4) Performance evaluation of SDF as a feature extractor feo] D. Childers, D. Skinner, and R. Kemerait, “The cepstruinguide to
classification of different types of human motion, such

as walking and running.

[11]

5) Fusion of different types of sensors to extract
cross-correlated information between the informational

sources to improve the classification performance.
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TABLE |
NUMBER OF DIFFERENT SCENARIOS IN EACH DAY FOR THE DATA SET#1 AND #2

Data set #1 Data set #2
Target Dayl Day2 Day3 Total Dayl Day2 Day3 Day4 Total
No target 32 28 50 110 6 56 82 66 210
Human 14 22 30 66 6 21 47 32 106
Animal 18 6 20 44 0 35 35 34 104
TABLE I

CONFUSION MATRICES OBTAINED BY THESRCCLASSIFIER USINGPIR AND SEISMIC SENSORS OF DATA SET#1 AND #2 FOR TARGET DETECTION
EACH CONFUSION MATRIX IS OBTAINED BY SUMMING UP THE CONFUSIONMATRICES THAT ARE GENERATED BY CROSS VALIDATION

PIR Seismic
No Target Target Present No Target Target Present
< Cepstrum No Target 91 19 104 6
f P Target Present 5 105 11 99
Q
%]
No Target 95 15 70 40
§ PCA Target Present 26 84 39 71
SDFE No Target 108 2 107 )
Target Present 3 107 9 101
N No Target 199 11 179 31
* Cepstrum Target Present 69 141 54 156
Q
o PCA No Target 153 57 43 167
g Target Present 35 175 28 182
SDF No Target 207 3 198 12
Target Present 2 208 28 182




TABLE Il
RESULTS OF THREEWAY CROSSVALIDATION FOR TARGET DETECTION USINGPIR AND SEISMIC SENSORS OF DATA SE¥#1

Successful Target Detection False Alarm Wrong Decision
Cepstrum  PCA SDF Cepstrum PCA SDF Cepstrum PCA SDF
o SVM 0.97 0.95 0.97 0.05 0.00 0.00 3.64% 2.27% 1.36%
* PIR k-NN 0.95 0.90 0.97 0.00 0.00 0.00 2.72% 5.00% 1.36%
3 SRC 0.95 0.76 0.97 0.17 0.14  0.02 10.91% 18.64%  2.27%
% SVM 0.87 0.60 0.94 0.14 0.14  0.09 13.18% 27.27%  7.73%
O Seismic  k-NN 0.78 0.15 0.94 0.25 0.05 0.08 23.64% 45.00%  7.27%
SRC 0.90 0.65 0.92 0.05 0.36  0.03 7.72% 35.91%  5.45%
N SVM 1.00 1.00 0.99 0.02 0.00 0.01 1.43% 0.23% 1.43%
* PIR k-NN 1.00 0.88 1.00 0.01 0.01 0.01 0.24% 6.43% 0.71%
3 SRC 0.67 0.83 0.99 0.05 0.27 0.01 19.05% 21.90%  1.19%
% SVM 0.88 0.91 0.90 0.16 0.08 0.07 14.05% 8.33% 8.57%
O Seismic  k-NN 0.89 0.59 0.88 0.10 0.01 0.08 10.71% 20.95%  10.00%
SRC 0.74 0.83 0.87 0.15 0.73  0.05 20.24% 45.00%  9.29%
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TABLE IV
CONFUSION MATRICES OBTAINED BY SRCCLASSIFIER FORPIR AND SEISMIC SENSORS OF DATA SET#1 AND #2 FOR HUMAN/ANIMAL
CLASSIFICATION.

PIR Seismic

Human  Animal Human  Animal

& cepsum Rl 25 10 %
3

g P ma a2 % 1

SOF  jumal | 16 28 N+

¥ cepsrum R 82 S+
]

s rea o SN R
a

SOF  nuimal | 84 50 e
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TABLE V
RESULTS OF THREEWAY AND FOUR-WAY CROSS-VALIDATION FOR HUMAN /ANIMAL CLASSIFICATION OF DATA SET #1 AND #2,RESPECTIVELY

Successful Human Classification Human False Alarm Wrong Desion
Cepstrum  PCA SDF Cepstrum PCA SDF Cepstrum PCA SDF
o SVM 0.73 0.92 0.88 0.45 0.43 0.20 34.55% 21.82%  15.45%
* PIR k-NN 0.88 0.91 0.89 0.41 0.52 0.34 23.64% 26.36%  20.00%
s SRC 0.77 0.92 0.86 0.57 0.48 0.36 36.36% 23.64% 22.73%
% SVM 0.68 0.24 0.85 0.59 0.45 041 41.82% 63.64% 25.45%
O Seismic  k-NN 0.70 0.55 0.86 0.86 0.68  0.50 52.73% 54.55%  28.18%
SRC 0.85 0.74 0.83 0.55 0.70 0.34 30.91% 43.64%  23.64%
N SVM 0.76 0.61 0.89 0.42 0.58 0.38 32.86% 48.09% 24.76%
* PIR k-NN 0.73 0.59 0.76 0.72 0.46 0.52 49.05% 43.33% 37.62%
3 SRC 0.60 0.56 0.78 0.50 0.32 0.52 44.76% 38.10% 36.67%
% SVM 0.63 0.92 0.91 0.38 0.53 0.38 37.62% 30.48% 23.81%
O Seismic  k-NN 0.56 0.97 0.77 0.36 0.69 041 40.00% 35.71%  31.90%
SRC 0.67 0.15 0.86 0.54 0.10 0.36 43.33% 48.10% 24.76%
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