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Abstract— This paper addresses the problem of target detec-
tion and classification, where the performance is often limited
due to high rates of false alarm and classification error, possibly
because of inadequacies in the underlying algorithms of feature
extraction from sensory data and subsequent pattern classifica-
tion. In this paper, a recently reported feature extraction algo-
rithm, symbolic dynamic filtering (SDF), is investigated for target
detection and classification by using unmanned ground sensors
(UGS). In SDF, sensor time series data are first symbolized
to construct probabilistic finite state automata (PFSA) that, in
turn, generate low-dimensional feature vectors. In this paper, the
performance of SDF is compared with that of two commonly used
feature extractors, namely Cepstrum and principal component
analysis (PCA), for target detection and classification. Three
different pattern classifiers have been employed to comparethe
performance of the three feature extractors for target detection
and human/animal classification by UGS systems based on two
sets of field data that consist of passive infrared (PIR) and seismic
sensors. The results show consistently superior performance of
SDF-based feature extraction over Cepstrum-based and PCA-
based feature extraction in terms of successful detection,false
alarm, and misclassification rates.

I. INTRODUCTION

Several feature extraction methods have been proposed
to generate patterns from time series data for classification
purposes. The well-known kurtosis method [1] provides a sta-
tistical measure of the amplitude of the time series. In another
method [2], a feature vector is constructed using the spectrum,
where the power spectral density and the wavelet coefficients
are used along with principal component analysis for feature
extraction; similar time-frequency domain methods have been
proposed by other researchers [3], [4]. Recently, feature ex-
traction from time series of robot motion behavior has been
proposed by Mallapragada et al. [5], based on symbolic dy-
namic filtering (SDF) [6], [7], where the time series data were
preprocessed by Hilbert transform that requires conversion of
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the real-valued signal into complex-valued analytic signal to
extract the phase information [8]. In the SDF-based feature
extraction, the time series data are first converted into symbol
sequences, and then probabilistic finite-state automata (PFSA)
are constructed from these symbol sequences to compress the
pertinent information into low-dimensional statistical patterns.
More recently, SDF-based feature extraction from (wavelet-
transformed) time series has been proposed by Jin et al. [9]
for target detection and classification in border regions. The
rationale for using wavelet-based methods is time-frequency
localization and denoising of the underlying sensor time series.
However, this method requires selection and tuning of several
parameters (e.g., wavelet basis function and scales) for signal
pre-processing in addition to the size of the symbol alphabet
that is needed for SDF.

Feature extraction based on the concept of Cepstrum [10]
has been reported as a conceptually simple and computa-
tionally efficient tool for use in pattern classification [11].
The objective of the current paper is to make a comparative
evaluation of Cepstrum-based, PCA-based, and SDF-based
feature extraction for target detection and classificationin the
border regions using unattended ground sensor (UGS) systems.
However, unlike the previous work of Jin et al. [9] and
Mallapragada et al. [5], this paper has used direct partitioning
and symbolization on time series data for feature extraction
without performing the wavelet transform or Hilbert transform
for signal pre-processing. The rationale is to make SDF com-
parable to Cepstrum and PCA for feature extraction, which do
not usually preprocess the time series. In this case (i.e., without
wavelet-transform or Hilbert-transform pre-processing of the
signal), the SDF-based feature extraction method has only a
single parameter to tune, which is the (finite) cardinality of the
symbol alphabet; this is computationally more efficient than
if wavelet or Hilbert transformation is used. For comparison
of the Cepstrum-based, PCA-based, and SDF-based feature
extraction, the performance of the respective feature extractors
has been evaluated on the same sets of field data in conjunction
with the sparse representation (e.g.,ℓ1-optimization) [12],
support vector machines (SVM) [13], andk-nearest neighbor
(k-NN) [13] as the pattern classifiers. These three pattern
classifiers have been employed to compare the performance of
the feature extractors for target detection and human/animal
classification by unattended ground sensor (UGS) systems
based on two sets of field data that consist of passive infrared
(PIR) and seismic sensors as explained below.

Tools of target detection and classification by unattended
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ground sensor (UGS) systems have been extensively used to
monitor human activities for border security; typical examples
of UGS are seismic and Passive Infrared (PIR) sensors.
Seismic sensors are suitable for long-range target detection,
because they are relatively less dependent on exogenous
disturbances (e.g., Doppler effects), as compared to acoustic
sensors [2] that are prone to contamination by environmental
noise. In contrast, PIR sensors are well-suited for motion
detection and has the advantage of low power consump-
tion [14]. Nevertheless discriminating human footstep signals
from other target types and noise sources is a challenging
problem, because of the rapidly decreasing trend of signal to
noise ratio (SNR) as the distance between the sensor and the
moving target increases. Furthermore, the footstep signals have
dissimilar signatures for different environments and persons,
which make the problem of target detection and classification
even more challenging [15].

In contrast to the Cepstrum-based and PCA-based feature
extraction, the advantage of the SDF-based algorithm is that
it takes into account the local information of the signal andit
is capable of mitigating noise in the data even if the signal
is not pre-processed for denoising. It is shown in a later
section of the paper that the SDF-based feature extraction
yields superior successful detection, false alarm, and overall
correct classification rates compared to Cepstrum-based and
PCA-based feature extraction.

This paper is organized into five main sections including
the present section. Section II briefly describes the algorithms
of Cepstrum-based, PCA-based, and SDF-based feature ex-
traction. Section III succinctly discusses the the three pattern
classification algorithms that have been used in this paper.
Section IV presents the results of target detection and classifi-
cation based on two sets of field data of passive infrared (PIR)
and seismic sensors. Section V summarizes and concludes this
paper with recommendations for future research.

II. FEATURE EXTRACTORS

Feature extraction from sensor signals is an important step
in target detection and classification which is accomplished
in this paper by three alternative algorithms, namely Cep-
strum [11], PCA [13], and SDF [6]. While the details of
these algorithms have been reported in earlier publications,
this section briefly reviews the underlying concepts of feature
extraction from sensor time series for completeness of this
paper and lists the algorithms that have been used in this paper
for feature extraction.

A. Cepstrum for Feature Extraction

This subsection briefly describes the Cepstrum-based fea-
ture extraction that has been widely used in speech recog-
nition and acoustic signal classification [10]. Given a signal
f(t), t = 1, . . . , N , Cepstra are usually computed in the
following form [16], which is used in thercepsMatlab func-
tion (http://www.mathworks.com/help/signal/ref/rceps.html):

fc(t) = ℜ
(

F−1 (log |F (ω)|)
)

(1)

whereF (ω) is the Fourier transform of the signalf(t); the
operatorF−1 is the inverse Fourier transform; andℜ(z)
indicates the real part of a complex scalarz.

A slightly modified version of this algorithm is used here.
After obtaining the Fourier transform of the signal, frequency
components with small values are discarded before taking the
inverse Fourier transform to prevent high unimportant compo-
nents from gaining higher Cepstrum values. After finding the
Cepstrum features, the firstNc components are used as Cep-
strum features for classification. Algorithm 1 for Cepstrum-
based feature extraction is presented below.

Algorithm 1 Cepstrum for feature extraction

Input: Time series data setsx ∈ R
1×N ; Cut-off sampleNf (whereNf ≤

N ); and dimension of the Cepstrum featureNc (whereNc ≤ Nf ).
Output: Extracted Cepstrum-based featurep ∈ R

1×Nc of the time-seriesx
1: Compute the magnitude of FFT|F (ω)| of the given time series where

ω = 1, . . . , N
2: Store the firstNf frequency components and discard the rest
3: Computefc(t) = ℜ

(

F−1 (log |F (ω)|)
)

, t = 1, . . . , Nf

4: Compute the featurep = [fc(1) fc(1) . . . fc(Nc)]

B. Principal Component Analysis for Feature Extraction

This subsection briefly describes the principal component
analysis (PCA) for feature extraction, which has been widely
used in diverse applications [13]. While the Cepstrum-based
feature extraction makes use of only the information imbedded
in a time series, PCA takes advantage of the information of the
ensemble of training data in addition to the local information
to extract the features [13]. Let the training data sets (i.e.,
the ensemble of time series) be organized as an(M × N)-
dimensional data matrix, whereM is the number of training
data sets andN is the length of each data set (i.e., 1-D time
series). For the detection problem, the training data consists
of both “No Target” and “Target Present” classes while, in the
human/animal classification problem, the training data consists
only of samples from the “Target Present” class.

Let X be the centered version of the original(M×N) data
matrix, where each row ofX is an individual data sample
x with zero mean. In the application of target detection and
classification,M is often smaller thanN , i.e., the number
of training samples are fewer than the length of time-series.
Therefore, it is numerically efficient to analyze the(M ×M)
matrix (1/M)XXT that has the same nonzero eigenvalues as
the (N ×N) computed covariance matrix(1/M)XTX [13].

Let vi be the normalized eigenvectors of the real symmet-
ric matrix (1/M)XXT corresponding to the (real positive)
eigenvaluesλi that are arranged in the decreasing order of
magnitude, i.e.,λ1 ≥ λ2 ≥ · · · ≥ λM . Let m be the smallest
integer such that

∑m

i=1
λi > η

∑M

i=1
λi where1 ≤ m ≤ M ,

where the threshold parameterη is a real positive fraction
close to one. The corresponding (normalized) eigenvectorsui

in the original data space are obtained in terms ofvi andλi

as follows [13][5]:

ui =
1√
Mλi

XT vi, i = 1, 2, . . . ,m. (2)
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The PCA projection matrixW ∈ R
N×m is then obtained by

grouping the computed eigenvectors as follows:

W = [u1u2 . . . um] (3)

The PCA-based feature vectorp ∈ R
1×m for a given (train or

test) time-seriesx ∈ R
1×N , is then computed by projection

as follows:
p = xW. (4)

Algorithm 2 for PCA-based feature extraction is presented
below.

Algorithm 2 Principal component analysis for feature extraction

Input: Training time series data setsxj ∈ R
1×N , j = 1, . . . ,M ; Tolerance

η ∈ (0, 1); and test time series data setx ∈ R
1×N

Output: Extracted feature vectorp ∈ R
1×m for the time-seriesx

1: Construct the “centered version” training data matrixX ∈ R
M×N , where

each rowxj has zero mean.
2: Compute the matrixS = (1/M)XXT

3: Compute the normalized eigenvectors{vi} of S with their corresponding
eigenvalues{λi} in the decreasing order of magnitude

4: Compute the normalized eigenvectorsui =
1√
Mλi

(

X
)T

vi

5: Find the smallestm ≤ M such that
∑m

i=1
λi > η

∑M
i=1

λi

6: Construct(N ×m) projection matrixW = [u1,u2, ...,um]
7: Generate(1×m) reference patternsp = xW

C. Symbolic Dynamic Filtering for Feature Extraction

This subsection succinctly presents the underlying concept
and theory of symbolic dynamic filtering (SDF) [6] for extrac-
tion of (low-dimensional) features from time-series data.As
stated earlier in Section I, the SDF algorithm reported in [6],
[7] includes wavelet-transformed pre-processing of signals to
facilitate time-frequency localization and denoising. However,
inclusion of wavelet transform requires tuning of additional
design parameters, such as the wavelet basis and a set of
scales. Since multiplicity of selectable parameters decreases
the ease of usage and may affect the performance of the
algorithms, this paper has applied SDF directly on the time-
series data (i.e., without wavelet preprocessing) to make afair
comparison of the three feature extraction methods based on
the same sets of data.

The pertinent steps of the SDF procedure for feature extrac-
tion are delineated below.

1) Symbolization of Time Series:This step requires parti-
tioning (also known as quantization) of the time series data.
The signal space, approximately represented by the training
data set, is partitioned into a finite number of cells that are
labeled as symbols, i.e., the number of cells is identically
equal to the cardinality|Σ| of the (symbol) alphabetΣ. As
an example for the one-dimensional sensor time series data
in Fig. 1, the alphabetΣ = {α, β, γ, δ}, i.e., |Σ| = 4, and
three partitioning lines divide the ordinate (i.e., y-axis) of the
time series profile into four mutually exclusive and exhaustive
regions. These disjoint regions form a partition, where each
region is labeled with one symbol from the alphabetΣ. If the
value of time series at a given instant is located in a particular
cell, then it is coded with the symbol associated with that
cell. As such, a symbol from the alphabetΣ is assigned to
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Fig. 1. Concept of symbolic dynamic filtering (SDF) as a feature extractor

each (signal) value corresponding to the cell where it belongs.
(Details are reported in [7].) Thus, a (finite) array of symbols,
called a symbol string (or symbol block), is generated from
the (finite-length) time series data.

The ensemble of time series data are partitioned by using a
partitioning tool (e.g., maximum entropy partitioning (MEP) or
uniform partitioning (UP) methods [7]). In UP, the partitioning
lines are separated by equal-sized cells. On the other hand,
MEP maximizes the entropy of the generated symbols and
therefore, the information-rich cells of a data set are parti-
tioned finer and those with sparse information are partitioned
coarser, i.e., each cell contains (approximately) equal number
of data points under MEP. In both UP and MEP, the choice of
alphabet size|Σ| largely depends on the specific data set and
the allowable error of detection and classification.

In this paper, MEP has been adopted as the partitioning
tool to accommodate sparsity of the time series data to be
symbolized. For the purpose of pattern classification, the
training data set is partitioned with a given alphabet size
|Σ| that is selected by trade-off between information loss
and computational complexity [7] and the partitioning is
subsequently kept constant for the test data.

2) Construction of probabilistic finite state automata
(PFSA): The core assumption for construction of probabilistic
finite state automata (PFSA) is that the symbolic process for
different classes of targets can be approximated as a Markov
chain of orderD, called theD-Markov machine, whereD is
a positive integer. While the details of theD-Markov machine
are given in [6], the pertinent information on the construction
of a D-Markov machine is presented below.

A D-Markov chain is a statistically (quasi-)stationary
stochastic processS = · · · s−1s0 · · · s1 · · · , where the prob-
ability of occurrence of a new symbol depends only on the
lastD symbols, i.e.,

P [sn | sn−1 · · · sn−D · · · ] = P [sn | sn−1 · · · sn−D]

The construction of a D-Markov machine is based on: (i)state
splitting that generates symbol blocks, also called words, of
different lengths according to their relative importance;and
(ii) state mergingthat assimilates histories from symbol blocks
leading to the same symbolic behavior [17]. Words of length
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D on a symbol string are treated as the states of theD-
Markov machine before any state-merging is executed. Thus,
on a (finite) alphabet with cardinality|Σ|, the total number of
possible states is less than or equal to|Σ|D; and operations of
state merging may significantly reduce the number of states.
As the value ofD is increased, more memory is imbedded
in the Markov states of the PFSA. However, the benefits
of having additional memory associated with a larger value
of D could be offset by the increased computational load.
So, one must make a trade-off between the two competing
requirements of:

• Capturing information from the time series, and
• Reduction of computational complexity in terms of mem-

ory requirements and execution time in the construction
of D-Markov machine algorithms.

The PFSA states represent different combinations of words
on the symbol sequence. In the graph of a PFSA, the direc-
tional edge that interconnects a state (i.e. a node) to another
state represents the transition probability between thesestates.
Therefore, the “states” denote all possible words within a
window of certain length. In this paper, the word sizeD is
taken to be 1 and hence the number of possible states is equal
to the number of symbols; therefore, the results reported inthis
paper are limited toD = 1. However, in general, larger values
of the integer parameterD (i.e.,D > 1) might be necessary to
capture the long time-scale information about the process.It
is noted that the operations of state splitting and state merging
might be necessary for PFSA construction withD > 1, while
these operations are not required forD = 1 [17].

As a consequence of havingD = 1, the number of states is
equal to the number of symbols, i.e.,|Q| = |Σ|, where the set
of all possible states is denoted asQ = {q1, q2, . . . , q|Q|} and
|Q| is the number of (finitely many) states. The (estimated)
state transition probabilities are defined as:

p (qk | ql) ,
N (ql, qk)

∑

i=1,2,...,|Q|N (ql, qi)
∀qk, ql ∈ Q (5)

whereN (ql, qk) is the total count of events whenqk occurs
adjacent toql in the direction of motion. Having computed all
these probabilitiesp (qk | ql)∀qk, ql ∈ Q, the (estimated) state
transition probability matrix of the PFSA is given as

Π =







p (q1 | q1) . . . p
(

q|Q| | ql
)

...
. . .

...
p
(

q1 | q|Q|

)

· · · p
(

q|Q| | q|Q|

)






. (6)

By appropriate choice of partitioning, it is ensured that the
resulting Markov chain model satisfies the ergodicity condi-
tions, i.e., the stochastic matrixΠ is irreducible. The rationale
is that, under statistically stationary conditions, the probability
of every state being reachable from any other state within
finitely many transitions must be strictly positive [18]. For a
given time series, after the matrixΠ is constructed, its left
eigenvectorp corresponding to the (unique) unity eigenvalue
is computed. Then, the vectorp, which is the stationary state
probability vector, serves as the “feature” vector extracted
from the time series as seen in Fig. 1. This feature vector
p is used for pattern classification in the sequel.

3) Formulation of SDF-based feature extraction algorithms:
The SDF-based feature extraction is executed as a combination
of two algorithms:

• Maximum entropy partitioning (MEP) of time series data.
• Symbolic dynamic filtering (SDF) for feature extraction,

which makes use of the MEP algorithm.

Algorithm 3 and Algorithm 4 for SDF-based feature extrac-
tion are presented below.

Algorithm 3 Maximum entropy partitioning
Input: Finite-length stringy of time-series data; and number of symbols|Σ|
Output: Partition vector℘ ∈ R

|Σ|+1

1: Sort the time series data stringx in the ascending order
2: Let K=length(y)
3: Assign℘(1) = y(1), i.e., minimum element ofy
4: for i=2 to |Σ| do

5: ℘(i) = y

(

ceil

(

(i− 1) ∗K

|Σ|

))

6: end for
7: Assign℘(|Σ|+ 1) = y(K), i.e., maximum element ofy

Algorithm 4 Symbolic dynamic filtering for feature extraction

Input: Training time series data setsxj ∈ R
1×N , j = 1, . . . ,M , a test time

series data setx ∈ R
1×N , and number of symbols|Σ|

Output: Extracted SDF-based feature vectorp ∈ R
1×|Σ| for the time-series

x
1: Initialize y = ∅
2: for j = 1 to M do
3: y = y

⋃

xj
4: end for
5: Partitiony using Algorithm 3 to obtain the (common) partition vector℘
6: Use℘ on the test data setx to obtain the symbol strings
7: Construct the (irreducible) state transition probability matrix Π by using

Eqs. (5) and (6)
8: Compute the (sum-normalized) left eigenvectorp corresponding to the

(unique) unity eigenvalue ofΠ

III. TARGET DETECTION ANDCLASSIFICATION

Two classification problems are addressed in this paper, both
of which are of binary type. In the first problem of target
detection, the output of the classifier is either “no target”or
“target present”; and the second problem is about classifying
the target as “human” or “animal” led by a human. In an earlier
publication [9] on this topic, these two classifiers are corre-
lated, i.e., the human\ animal classification is performed only
after a target is detected, regardless of whether this detection
is correct or false. However, the current paper treats thesetwo
classification problems separately, because the main objective
here is to compare the performance of Cepstrum, PCA and
SDF as feature extractors and thus treating the detection and
classification problems separately would yield unambiguous
comparison. In this context, three different classifiers that
have been used in conjunction with each of Cepstrum, PCA
and SDF feature extractors are: (i) support vector machines
(SVM) [13], (ii) k-nearest neighbor (k-NN) [13], and (iii)
sparse representation classifier (SRC) [11] that are briefly
reviewed in the following paragraphs.

4



A. Support vector machine (SVM) and k-nearest neighbor (k-
NN) algorithms

The SVM and k-NN algorithms are among the most fre-
quently used tools of pattern classification [13]. Fork-NN, the
neighborhood sizek is preferably kept small to avoid the over-
fitting problem. Similar to the earlier work of Jin et al. [9],
the SVM method has also been used in the current paper to
regenerate the results and compare the performance with other
classification algorithms. A Gaussian kernel has been used for
SVM, similar to what was done in [11] for target classification
with UGS systems.

B. Sparse representation classification (SRC) algorithm

The SRC algorithm was first used for solving the prob-
lem of face recognition [12], where a large matrixA ,
[A1A2 · · ·AC ], consisting of the training data, is constructed
where Ai, i ∈ {1, · · · , C} is a (n × Ni) training matrix
consisting of the training samples belonging to theith class,n
is the dimension of the feature vector, andNi, i ∈ {1, · · · , C}
is the number of training samples in the classi, andC is the
total number of class labels. It is assumed that a test sample
from the ith class lies approximately within the subspace
formed by the training data of theith class. For a given test
vector y in the sparse classification algorithm, the following
ℓ1-optimization problem [19] needs to be solved as:

min ‖x‖ℓ1 such that‖y −Ax‖ℓ2 ≤ ǫ

In the above optimization problem, the user-selected parameter
ǫ is a representative of the upper bound of the noise spectrum
in the data [20], where the optimal solutionx of the above
ℓ1 optimization is shown to be a sparse vector. Forx ∈
R

M , whereM is the total number of training samples, let
δi(x) ∈ R

M be a new vector whose only non-zero elements
are the entries inx that are associated with classi in A.
In the noiseless scenario, if the test datay belongs to the
ith class, thenδj(x) should be a zero vector for all possible
j 6= i. However, since noisy data are encountered in real-life
applications, the residuals‖y−Aδi(x)‖2 needs to be computed
for classification of the test sampley and the label of the test
vectory is predicted as the argumenti∗ that is the minimizer
of the residuals.

One of the main advantages of the SRC algorithm is that
a careful selection of the features is not necessary. What
is critical, however, is whether the number of features is
sufficiently large and whether the sparse representation is
correctly computed. The SRC algorithm is also robust in
dealing with noisy data [20].

IV. RESULTS AND DISCUSSION

This section presents the results of target detection and
classification, which were generated from two sets of field
data, each consisting of time series generated from passive
infrared (PIR) and seismic sensors in different sensor sites.
Each of the test scenarios consists either of the two classes
of targets: (i) human walking alone, and (ii) animal led by a
walking human. These targets moved along an approximately
150 meters long trail and returned along the same trail to the

starting point; all targets passed by the sensor sites at a distance
of approximately5 meters. Signals from both PIR and seismic
sensors were acquired at a sampling frequency of 10 kHz and
each test was conducted over a period of approximately 50
seconds.

The field data set #1 was collected on three different days,
Day#1, Day#2 and Day#3, from test fields on a wash (i.e.,
the dry bed of an intermittent creek) and at a choke point
(i.e., a place where the targets are forced to go due to terrain
difficulties). In contrast, the field data set #2 was collected on
four different days, Day#1, Day#2, Day#3 and Day#4, from
test fields on different types of terrains such as wash, trailand
watering stations. Table I lists the numbers of different labeled
scenarios for each day for both data sets #1 and #2.

The data sets #1 and #2 have been analyzed for performance
comparison of the feature extractors, Cepstrum, PCA, and SDF
in conjunction with the (binary) classifiers, SVM, k-NN, and
SRC that have the following respective design parameters:

• SVM: Variance of the Gaussian kernel and regularization
parameter [21], [13] ;

• k-NN: Neighborhood sizek [13];
• SRC: Error upper boundǫ [11].

Figure 2 presents typical time series and extracted features
from PIR and seismic sensor signals, where individual rows
represent different scenarios and the individual columns repre-
sent the following: sensor signals in Column 1 along with the
extracted features generated by Cepstrum in Column 2, PCA
in Column 3, and SDF in Column 4.

Let N1 be the total number of test samples for the Class
1 target and letn1 (where0 ≤ n1 ≤ N1) be the number of
misclassifications of the Class1 target as belonging to Class
2; similarly, let N2 and n2 (where 0 ≤ n2 ≤ N2) be the
corresponding parameters for the Class2 target. The goal is
to select the design parameter of a classifier by making a trade-
off between two conflicting objectives of minimizing misclas-
sifications of Class1 and Class2 targets, i.e., classifying a
target to one class when it truly belongs to the other class.
Let P1 , n1

N1

andP2 , n2

N2

be the estimated probabilities of
misclassifying Class1 and Class2 targets, respectively. In this
context, the composite objective function is selected to bea
weighted linear combination of the misclassification rates.

J(α) = αP1 + (1− α)P2 (7)

whereα ∈ (0, 1) is the (user-selected) trade-off parameter; and
J(α) is the cost functional to be minimized with respect to the
classifier design parameter. Depending on how the parameterα
is selected, minimization ofJ(α) may lead to different optimal
solutions forP1 andP2. GivenN1 andN2 and selectingα =
(

N1

N1+N2

)

, the cost functionalJ in Eq. (7) becomes
(

n1+n2

N1+N2

)

that is the total misclassification rate of combined Class1 and
Class2 targets.

For each field data set, parameters of the feature extraction
algorithms are chosen by numerical experiments and are kept
invariant for all tests. For Cepstrum method (see Algorithm1
in Section II),Nc and Nf are set to 100 and 150, respec-
tively. Thus, the number of Cepstrum features is 100 for
both detection and classification. For the PCA method (see
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(a) Typical PIR sensor signals: “No target” (top row) and “Presence of a target: human and/or animal” (bottom row)

0 5 10

−20

−10

0

10

20

Time (s)

S
ei

sm
ic

si
g
n
a
l

10 20 30 40 50
0

0.2

0.4

Cepstrum Index

|C
ep

st
ru

m
F
ea

tu
re
|

10 20 30 40 50
0

15

30

45

60

PCA Index

|P
C

A
F
e
a
t
u
r
e
|

6 12 18 24 30
0

0.1

SDF State Index

S
ta

te
P

ro
b
a
b
il
it
y

0 5 10

−20

−10

0

10

20

Time (s)

S
ei

sm
ic

si
g
n
a
l

10 20 30 40 50
0

0.2

0.4

Cepstrum Index

|C
ep

st
ru

m
F
ea

tu
re
|

10 20 30 40 50
0

15

30

45

60

PCA Index

|P
C

A
F
e
a
t
u
r
e
|

6 12 18 24 30
0

0.1

SDF State Index

S
ta

te
P

ro
b
a
b
il
it
y

(b) Typical seismic sensor signals: “Human target” (top row) and “Animal target led by a human” (bottom row)

Fig. 2. Sensor signals (Column 1) along with the extracted features generated by Cepstrum (column 2), PCA (column 3) and SDF (column 4)

Algorithm 2 in Section II), 96% of the total variance is used
as the cumulative proportion to select the number of principal
components which, in turn, is the number of PCA features
used for both target detection and classification. For SDF-
based feature extraction (see Algorithm 3 and Algorithm 4 in
Section II), alphabet size|Σ| = 20 has been used for detection
and |Σ| = 30 for classification. In the training phase, for a
finite set of test samples in each class, the design parameter
of each of the three (binary) classifiers, SVM, k-NN and SRC,
is determined by minimizing the total misclassification rate as
explained above.

A three-way cross-validation, based on the data collected
on three days for the data set #1, has been used to assess the
performance of the three feature extractors, Cepstrum, PCA
and SDF, for target detection and classification by using time
series data from PIR and seismic sensors. The data sets are
divided into three sets by date, i.e., first data from Day 1 and
Day 2 are used for training and the classifiers are tested on
Day 3. This process is repeated for two other combinations: (a)
Day 3 and Day 1 data as training data and Day 2 as test data,
and (b) Day 2 and Day 3 data as training data and Day 1 as test
data. Thus, three different combinations of training and testing
have been performed for the field data set #1. Similarly, for the
data set #2, a four-way cross-validation has been used based
on the data collected on four days to assess the performance
of the three feature extractors, Cepstrum, PCA, and SDF, for
target detection and classification from both PIR and seismic
sensor data. Thus, four different combinations of trainingand
testing have been performed for the field data set #2.

A. Target detection

Table II shows averaged confusion matrices for the target
detection problem for each of the three feature extractors,
where the upper part pertains to data set #1 and the lower
part to data set #2. These confusion matrices are obtained by
applying the SRC classifier individually on PIR and seismic
sensor data when, in the cross validation process, the respec-
tive data on each of the single days are used for testing and the
remaining data for training; the results of each test scenario
are then summed up to form the respective confusion matrix
in Table II. Each column of the twelve confusion matrices
(i.e., six confusion matrices for each data set) represents
the instances in a predicted class of “No Target” or ‘Target
present,” and each row represents the instances in an actual
class (i.e., the ground truth). For data set #1, out of a totalof
220 scenarios for PIR sensors, Cepstrum and PCA yield 196
and 179 correct decisions, respectively, while SDF makes 215
correct decisions; the corresponding number for data set #2
are: out of a total of 420 scenarios for PIR sensors, Cepstrum
and PCA yield 340 and 328 correct decisions, respectively,
while SDF makes 415 correct decisions. The results are similar
for seismic sensors.

Table III summarizes the average rates of successful target
detection, false alarm, and wrong detection by cross-validation
for both data sets #1 and #2, when either Cepstrum, PCA
or SDF is used as the feature extractor for target detection
along with the three different classifiers: SVM, k-NN and
SRC. In terms of wrong detection, the performance of SDF is
significantly superior to that of both Cepstrum and PCA for all
three classifiers. It is seen that, for data set #1, SDF has yielded
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higher successful target detection rates than Cepstrum and
PCA with consistently small false alarm rates. It is also seen
that, on the average, SDF yields better results than Cepstrum
and PCA for data set #2.

B. Target classification

Table IV shows averaged confusion matrices with the SRC
classifier for classification of human versus animal led by
human, using PIR and seismic sensors, respectively, for each
of the three feature extractors, where the upper part pertains
to data set #1 and the lower part to data set #2. The re-
sults are obtained by applying SRC individually on PIR and
seismic sensor data when, in the cross validation process,
the respective data on each of the single days are used for
testing and the remaining data for training. Each column of
the twelve confusion matrices (i.e., six confusion matrices for
each data set) represents the instances in a predicted classof
“Human” or “Animal,” and each row represents the instances
in an actual class (i.e., the ground truth). For the data set #1,
out of a total of 110 scenarios for seismic sensors, Cepstrum
and PCA yield 76 and 62 correct classifications, respectively,
while SDF makes 84 correct classifications; the corresponding
number for data set #2 are: out of a total of 220 scenarios for
seismic sensors, Cepstrum and PCA yield 119 and 109 correct
classifications, respectively, while SDF makes 158 correct
classifications. The results are qualitatively similar forPIR
sensors.

Table V summarizes the average rates of successful human
classification, false alarm, and misclassification by cross-
validation for both data sets #1 and #2, when either Cepstrum,
PCA or SDF is used as the feature extractor for target detection
along with the three different classifiers: SVM, k-NN and
SRC. In terms of misclassification in each of the data sets
#1 and #2, the performance of SDF is significantly superior
to that of both Cepstrum and PCA for all three classifiers.

It is also observed that, in most of the scenarios, usage
of PIR sensors resulted in better classification performance
compared to that of seismic sensors for both detection and
classification. Better results are expected if fusion techniques
are employed to take advantage of the cross-correlated infor-
mation of the sensors, which is a topic for future research.

C. Computational costs

This subsection presents a comparison of the computational
costs (i.e., execution time) of the three feature extraction
algorithms under consideration. To this end, typical simulation
costs have been generated based on a data set consisting of
156 sets of time series as training samples and 64 different sets
of time series as test samples. The results have been generated
on a single core of a 2.13 Ghz CPU with 6 GB memory. It is
noted that each of PCA and SDF has a training phase which
is usually performed off-line, while Cepstrum treats training
and test samples uniformly.

In the experiments, the Cepstrum features were extracted
in ∼ 16 milliseconds for each time series. The training phase
for PCA, which includes finding the projection matrix and
extracting the features for the training samples, took∼ 1.8

seconds while the feature for each test sample was generatedin
less than10 microseconds. Finally, The training phase for SDF,
which includes partitioning of the data set and extraction of
features for the training samples, took∼ 2.4 seconds while the
feature of a test sample was generated in∼ 37 milliseconds.
Therefore, for real-time applications, the operations of both
SDF and Cepstrum are performed in the order of milliseconds
to extract features from test time series with a slight advantage
toward Cepstrum, and PCA is the fastest because it only
accounts for a linear projection for extracting the features.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper presents a comparative evaluation of Cepstrum,
principal component analysis (PCA) and symbolic dynamic
filtering (SDF) as feature extractors for target detection and
classification. All three methods have been tested on two data
sets, consisting of passive infrared (PIR) and seismic sensors,
collected from different fields. The underlying algorithmsof
feature extraction have been executed in conjunction with
three different classification algorithms, namely, support vector
machines (SVM), k-nearest neighbor (k-NN), and sparse rep-
resentation classifier (SRC). Cross-validation has been used
to assess the performance of Cepstrum, PCA and SDF as
feature extractors for both PIR and seismic sensor data sets.
The results show consistently superior performance of SDF-
based feature extraction over both Cepstrum-based and PCA-
based feature extraction in terms of successful detection,false
alarm, and wrong detection and classification decisions. The
rationale for superior performance of SDF over Cepstrum and
PCA as a feature extractor is presented below.

Cepstrum features are extracted using only the local in-
formation of a given time series without making use of the
training data. In contrast, PCA utilizes the training data to
find the linear transformation and approximates the subspace
in which most of the variance of the training data lies.
Although this is an advantage of PCA over Cepstrum, a linear
transformation is not necessarily a good method of feature
extraction from the data; this might indeed be a possible reason
of degraded classification performance of PCA. On the other
hand, SDF is a nonlinear feature extraction algorithm that
extracts the pertinent information as a feature vector and makes
use of the full training data to find the appropriate partitioning
of the test time series.

Topics for future research in this area include further
theoretical study on refinement of the SDF algorithms and
field testing under different environments. In this regard,a
few key topics are delineated below.

1) Investigation of the impact of finite length of training
and test data sets on classification performance [22][12].

2) Comparison with additional methods of feature extrac-
tion (i.e., besides Cepstrum and PCA) in conjunction
with other classification algorithms (i.e., besides SVM,
k-NN and SRC).

3) Development of a rigorous field test procedure for vali-
dating robustness of SDF-based feature extraction under
different environmental conditions and data types.
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4) Performance evaluation of SDF as a feature extractor for
classification of different types of human motion, such
as walking and running.

5) Fusion of different types of sensors to extract
cross-correlated information between the informational
sources to improve the classification performance.
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TABLE I

NUMBER OF DIFFERENT SCENARIOS IN EACH DAY FOR THE DATA SETS#1 AND #2

Data set #1 Data set #2

Target Day1 Day2 Day3 Total Day1 Day2 Day3 Day4 Total

No target 32 28 50 110 6 56 82 66 210
Human 14 22 30 66 6 21 47 32 106
Animal 18 6 20 44 0 35 35 34 104

TABLE II

CONFUSION MATRICES OBTAINED BY THESRCCLASSIFIER USINGPIR AND SEISMIC SENSORS OF DATA SETS#1 AND #2 FOR TARGET DETECTION.

EACH CONFUSION MATRIX IS OBTAINED BY SUMMING UP THE CONFUSIONMATRICES THAT ARE GENERATED BY CROSS VALIDATION.

PIR Seismic

No Target Target Present No Target Target Present

D
at

a
se

t
#1 Cepstrum No Target 91 19 104 6

Target Present 5 105 11 99

PCA No Target 95 15 70 40
Target Present 26 84 39 71

SDF No Target 108 2 107 3
Target Present 3 107 9 101

D
at

a
se

t
#2 Cepstrum No Target 199 11 179 31

Target Present 69 141 54 156

PCA No Target 153 57 43 167
Target Present 35 175 28 182

SDF No Target 207 3 198 12
Target Present 2 208 28 182
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TABLE III

RESULTS OF THREE-WAY CROSS-VALIDATION FOR TARGET DETECTION USINGPIR AND SEISMIC SENSORS OF DATA SET#1

Successful Target Detection False Alarm Wrong Decision

Cepstrum PCA SDF Cepstrum PCA SDF Cepstrum PCA SDF

D
at

a
se

t
#1 PIR

SVM 0.97 0.95 0.97 0.05 0.00 0.00 3.64% 2.27% 1.36%
k-NN 0.95 0.90 0.97 0.00 0.00 0.00 2.72% 5.00% 1.36%
SRC 0.95 0.76 0.97 0.17 0.14 0.02 10.91% 18.64% 2.27%

Seismic
SVM 0.87 0.60 0.94 0.14 0.14 0.09 13.18% 27.27% 7.73%
k-NN 0.78 0.15 0.94 0.25 0.05 0.08 23.64% 45.00% 7.27%
SRC 0.90 0.65 0.92 0.05 0.36 0.03 7.72% 35.91% 5.45%

D
at

a
se

t
#2 PIR

SVM 1.00 1.00 0.99 0.02 0.00 0.01 1.43% 0.23% 1.43%
k-NN 1.00 0.88 1.00 0.01 0.01 0.01 0.24% 6.43% 0.71%
SRC 0.67 0.83 0.99 0.05 0.27 0.01 19.05% 21.90% 1.19%

Seismic
SVM 0.88 0.91 0.90 0.16 0.08 0.07 14.05% 8.33% 8.57%
k-NN 0.89 0.59 0.88 0.10 0.01 0.08 10.71% 20.95% 10.00%
SRC 0.74 0.83 0.87 0.15 0.73 0.05 20.24% 45.00% 9.29%

10



TABLE IV

CONFUSION MATRICES OBTAINED BYSRCCLASSIFIER FORPIR AND SEISMIC SENSORS OF DATA SETS#1 AND #2 FOR HUMAN/ANIMAL

CLASSIFICATION.

PIR Seismic

Human Animal Human Animal
D

at
a

se
t

#1 Cepstrum Human 51 15 56 10
Animal 25 19 24 20

PCA Human 61 5 49 17
Animal 21 23 31 13

SDF Human 57 9 55 11
Animal 16 28 15 29

D
at

a
se

t
#2 Cepstrum Human 64 42 71 35

Animal 52 52 56 48

PCA Human 59 47 16 90
Animal 33 71 11 93

SDF Human 83 23 91 15
Animal 54 50 37 67
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TABLE V

RESULTS OF THREE-WAY AND FOUR-WAY CROSS-VALIDATION FOR HUMAN /ANIMAL CLASSIFICATION OF DATA SET #1 AND #2, RESPECTIVELY.

Successful Human Classification Human False Alarm Wrong Decision

Cepstrum PCA SDF Cepstrum PCA SDF Cepstrum PCA SDF

D
at

a
se

t
#1 PIR

SVM 0.73 0.92 0.88 0.45 0.43 0.20 34.55% 21.82% 15.45%
k-NN 0.88 0.91 0.89 0.41 0.52 0.34 23.64% 26.36% 20.00%
SRC 0.77 0.92 0.86 0.57 0.48 0.36 36.36% 23.64% 22.73%

Seismic
SVM 0.68 0.24 0.85 0.59 0.45 0.41 41.82% 63.64% 25.45%
k-NN 0.70 0.55 0.86 0.86 0.68 0.50 52.73% 54.55% 28.18%
SRC 0.85 0.74 0.83 0.55 0.70 0.34 30.91% 43.64% 23.64%

D
at

a
se

t
#2 PIR

SVM 0.76 0.61 0.89 0.42 0.58 0.38 32.86% 48.09% 24.76%
k-NN 0.73 0.59 0.76 0.72 0.46 0.52 49.05% 43.33% 37.62%
SRC 0.60 0.56 0.78 0.50 0.32 0.52 44.76% 38.10% 36.67%

Seismic
SVM 0.63 0.92 0.91 0.38 0.53 0.38 37.62% 30.48% 23.81%
k-NN 0.56 0.97 0.77 0.36 0.69 0.41 40.00% 35.71% 31.90%
SRC 0.67 0.15 0.86 0.54 0.10 0.36 43.33% 48.10% 24.76%
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